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A HOMOGRAPHIC BEST APPROXIMATION PROBLEM
WITH APPLICATION TO

OPTIMIZED SCHWARZ WAVEFORM RELAXATION

D. BENNEQUIN, M. J. GANDER, AND L. HALPERN

Abstract. We present and study a homographic best approximation problem,
which arises in the analysis of waveform relaxation algorithms with optimized
transmission conditions. Its solution characterizes in each class of transmission
conditions the one with the best performance of the associated waveform re-
laxation algorithm. We present the particular class of first order transmission
conditions in detail and show that the new waveform relaxation algorithms
are well posed and converge much faster than the classical one: the number
of iterations to reach a certain accuracy can be orders of magnitudes smaller.
We illustrate our analysis with numerical experiments.

1. Introduction

Over the last decade, a new domain decomposition method for evolution prob-
lems has been developed, the so-called Schwarz waveform relaxation method; see
[10, 21, 23, 22] for linear problems, and [11, 20, 24] for nonlinear ones. The new
method is well suited for solving evolution problems in parallel in space-time, and
it permits not only local adaptation in space, but also in time. A significant draw-
back of this new method is its slow convergence on long time intervals. This
problem can however be remedied by more effective transmission conditions; see
[17, 8, 18, 13, 14, 31]. These transmission conditions are of differential type in
both time and space, and depend on coefficients which are determined by opti-
mization of the convergence factor. The associated best approximation problem
has been studied for the optimized Schwarz waveform relaxation algorithm with
Robin transmission conditions applied to the one-dimensional advection-diffusion
equation in [15]. In higher dimensions, and for higher order transmission condi-
tions, only numerical procedures have been used so far to solve the associated best
approximation problem; see [31, 8]. Here we study this best approximation problem
in a more general setting: we search for a given function f : C → C the polynomial
s∗n(z) of degree less than or equal to n, which minimizes the quantity

(1.1) sup
z∈K

∣∣∣∣s(z) − f(z)
s(z) + f(z)

e−lf(z)

∣∣∣∣
over all polynomials s of degree less than or equal to n. Here, K is a closed set in
C, and l is a nonnegative real parameter.
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The classical best approximation problem is the following: given a real-valued
continuous function on a compact interval and a class of functions defined on the
same interval, find an element in the class which realizes the distance of the func-
tion to the class. If the class is the linear space of polynomials of degree less than
or equal to n, and the distance is measured in the L∞ norm, then the approxi-
mation problem is called a Chebyshev best approximation problem. This problem
was studied in depth by Chebyshev and De la Vallée Poussin [32]. Its solution is
characterized by an equioscillation property, and can be computed using the Remes
algorithm [34, 33]. Later extensions concern rational approximations [5], and func-
tions of a complex variable [38]. In the latter problem, Rivlin and Shapiro obtained
equioscillation properties, from which they deduced uniqueness; see [35]. In all
cases existence is a matter of compactness. Problem (1.1) generalizes the complex
best approximation problem by polynomials in two directions: first the difference
f − s is replaced by a homographic function in f and s, and second there can be
an exponential weight which involves the function f itself.

2. A general best approximation result

Let K be a closed set in C, containing at least n + 2 points. Let f : K → C be a
continuous function, such that for every z in K, �f(z) > 0. We denote by Pn the
complex vector space of polynomials of degree less than or equal to n. We define,
for l nonnegative real number,

(2.1) δn(l) = inf
s∈Pn

sup
z∈K

∣∣∣∣s(z) − f(z)
s(z) + f(z)

e−lf(z)

∣∣∣∣ ,
and search for s∗n in Pn such that

(2.2) sup
z∈K

∣∣∣∣s∗n(z) − f(z)
s∗n(z) + f(z)

e−lf(z)

∣∣∣∣ = δn(l).

2.1. Analysis of the case l = 0. We suppose here K is compact. We denote for
simplicity by δn the number δn(0). Our analysis of (2.2) has three major steps:
we first prove existence of a solution, then show that the solution must satisfy an
equioscillation property, and finally, using the equioscillation property, we prove
uniqueness of the solution. We define for any z0 in C∗ = C \ 0 and strictly positive
δ the sets

(2.3)
C(z0, δ) = {z ∈ C,

∣∣∣ z−z0
z+z0

∣∣∣ = δ}, D(z0, δ) = {z ∈ C,
∣∣∣ z−z0
z+z0

∣∣∣ < δ},
D(z0, δ) = C(z0, δ) ∪ D(z0, δ).

The proof of the following geometrical lemma is straightforward; see [1]:

Lemma 2.1. For any δ different from 0 and 1, and for any z0 in C∗ = C \ 0, the
set C(z0, δ) in (2.3) is a circle with center at 1+δ2

1−δ2 z0 and radius 2δ
|1−δ2| |z0|. If δ < 1,

the set D(z0, δ) is the interior of the circle, and the exterior otherwise. The set
C(z0, 1) is a line orthogonal to the line (0, z0).

Theorem 2.2 (Existence). Suppose l = 0 and K compact. For every n ≥ 0, the
number δn = δn(0) is strictly smaller than 1, and there exists at least one solution
to problem (2.2).
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δ < 1

C(z0, δ)

D(z0, δ)

z0

1+δ
1−δ z0

1−δ
1+δ z0

δ > 1

C(z0, δ)

D(z0, δ)

z0

1+δ
1−δ z0

1−δ
1+δ z0

Figure 1. Illustration of the geometric Lemma 2.1: definition of
D(z0, δ) in grey.

Proof. Since 1 ∈ Pn, we have δn ≤
∥∥∥1−f

1+f

∥∥∥
∞

. Now for any z in K, �f(z) > 0,

and therefore
∣∣∣1−f(z)
1+f(z)

∣∣∣ < 1. Since K is a compact set, we have δn < 1. To prove

existence, we take a minimizing sequence
(
sk

n

)
k∈N

in Pn, such that

lim
k→∞

∥∥∥∥sk
n − f

sk
n + f

∥∥∥∥
∞

= δn.

There exists a k0 such that, for k ≥ k0, we have
∥∥∥ sk

n−f
sk

n+f

∥∥∥
∞

≤ C < 1 with C =

(1 + δn)/2, and therefore by Lemma 2.1, sk
n

f (z) lies inside the disk D(1, C), C < 1,
for all z in K. Hence sk

n is a bounded sequence in the finite dimensional space
Pn and thus there exists a subsequence which converges to some s∗n in Pn, which
attains the infimum. �

We now investigate the equioscillation property of the solutions to (2.2). To do
so, we need two further lemmas.

Lemma 2.3. For a given vector w = (w1, . . . , wm), m ≤ n + 1, such that wj

is in K for every j, let Uw be the open set in Pn of polynomials s such that
s(wi) + f(wi) �= 0 for all i = 1, 2, . . . , m. If wi �= wj for i �= j, the mapping

Aw : Uw → C
m, s �→

(
s(wi) − f(wi)
s(wi) + f(wi)

)
1≤i≤m

is a submersion: for any s in Uw, the derivative in s, A′
w(s), is onto. Furthermore,

the function (s, w) �→ A′
w(s) is continuous with respect to s and w.

Proof. The derivative of the mapping Aw is given by

(2.4) A′
w(s) · s̃ =

(
2s̃(wi)f(wi)

(s(wi) + f(wi))2

)
1≤i≤m

, ∀s̃ ∈ Pn.

Now for any z in Cm, there exists a unique polynomial s̃ in Pm−1, namely the
Lagrange interpolation polynomial, such that

∀i, 1 ≤ i ≤ m, s̃(wi) =
(s(wi) + f(wi))2

2f(wi)
zi,
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and since m − 1 ≤ n, s̃ is in Pn and A′
w(s) · s̃ = z. The continuity of A′

w with
respect to s and w follows directly from (2.4). �

Lemma 2.4. Let s∗n be a solution of (2.2) for l = 0. Let z = (z1, . . . , zm) be a
vector of m distinct points in K, m ≤ n + 1. We have

(1) s∗n is in Uz ,
(2) let s be such that A′

z(s∗n) s = −Az(s∗n). Then for any ε, 0 < ε < 1, there
exist positive (ε1, . . . , εm), and t0 ∈ (0, 1), such that for any t ∈ [εt0, t0] and
for any z in K with |z − zi| < εi for some i,∣∣∣∣s∗n(z) + ts(z) − f(z)

s∗n(z) + ts(z) + f(z)

∣∣∣∣ ≤ (1 − ε
t0
2

)δn.

Proof. For (1), s∗n is in Uz since otherwise δn would be infinite. For (2), there
exist strictly positive numbers t′0, ε

′
1, . . . , ε

′
m such that, for any t in [0, t′0], and any

w = (w1, w2, . . . , wm) with wj ∈ K and |wj − zj | < εj for all j, s∗n + ts is in
Uw . We now define fi(t, w) = (Aw(s∗n + ts))i, and we apply to fi the first order
Taylor-Lagrange formula in the first variable, about t = 0. There exists τi in (0, t)
such that

fi(t, w) = fi(0, w) + t∂1fi(τi, w),

and by adding and subtracting t∂1fi(0, z), we obtain

fi(t, w) = fi(0, w) + t∂1fi(0, z) + t(∂1fi(τi, w) − ∂1fi(0, z)).

Now using that s satisfies the equation A′
z(s∗n)s = −Az(s∗n), which reads compo-

nentwise ∂1fi(0, z) = −fi(0, z), we get

fi(t, w) = fi(0, w) − tfi(0, z) + t(∂1fi(τi, w) − ∂1fi(0, z))
= (1 − t)fi(0, w) + t(fi(0, w) − fi(0, z)) + t(∂1fi(τi, w) − ∂1fi(0, z)).

Since the functions fi and ∂1fi are continuous in a neighbourhood of (0, z), we
obtain

fi(t, w) = (1 − t)fi(0, w) + tηi(w, w − z),

with some function ηi(w, w − z) continuous in w, which tends to zero with w − z.
Thus, for any positive ε, there exist positive ε1, . . . , εm, and 0 < t0 < 1, such that
for any t in [0, t0] and any w = (w1, . . . , wm) with |wi − zi| < εi for all i,∣∣∣∣s∗n(wi) + ts(wi) − f(wi)

s∗n(wi) + ts(wi) + f(wi)

∣∣∣∣ ≤ (1 − t)δn + εδn
t0
2

= (1 − t + ε
t0
2

)δn.

Thus for t in [εt0, t0] the result follows. �

Theorem 2.5 (Equioscillation). Suppose l = 0 and K is compact. If the polynomial
s∗n, n ≥ 0 is a solution of (2.2), then there exist at least n + 2 points z1, . . . , zn+2

in K such that

(2.5)
∣∣∣∣s∗n(zi) − f(zi)
s∗n(zi) + f(zi)

∣∣∣∣ =
∥∥∥∥s∗n − f

s∗n + f

∥∥∥∥
∞

.

Proof. Let z1, . . . , zm be all distinct points of equioscillation, i.e satisfying (2.5).
We know that m ≥ 1, since we maximize over a compact set. Now suppose that
m ≤ n + 1 to reach a contradiction. First, we have f(zi) �= 0, since otherwise
δn = 1, which contradicts the result δn < 1 from Theorem 2.2. We now use Lemma
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2.4: we denote by Di the disk with center zi and radius εi defined in the lemma.
By compactness, we have

sup
z∈K−(

⋃
Di)∩K

∣∣∣∣s∗n(z) − f(z)
s∗n(z) + f(z)

∣∣∣∣ < δn.

Then there exists a neighborhood U of s∗n such that for any s in U ,

sup
z∈K−(

⋃
Di)∩K

∣∣∣∣s(z) − f(z)
s(z) + f(z)

∣∣∣∣ < δn,

and in addition, because s is in the neighborhood U of s∗n, we have by continuity

sup
z∈K

∣∣∣∣s(z) − f(z)
s(z) + f(z)

∣∣∣∣ = sup
z∈(

⋃
Di)∩K

∣∣∣∣s(z) − f(z)
s(z) + f(z)

∣∣∣∣ .
For sufficiently small ε, by Lemma 2.4 there exists t ∈ [εt0, t0] such that s∗n + ts is
in U , and we have ∥∥∥∥s∗n + ts − f

s∗n + ts + f

∥∥∥∥
∞

< δn,

which is a contradiction, since we found a polynomial s∗n + ts which is a better
approximation than s∗n to f . �

Theorem 2.6 (Uniqueness). Suppose l = 0 and K compact. The solution s∗n of
(2.2) is unique for all n ≥ 0.

Proof. We first show that the set of best approximations is convex: let s∗n and s̃∗n
be two polynomials of best approximation, θ a real number between 0 and 1, and
let s = θs∗n + (1 − θ)s̃∗n. Then for any z in K, s∗

n

f (z) and s̃∗
n

f (z) are contained in
D(1, δn), which is a disk since δn < 1, and hence convex. Thus for any z in K, s

f (z)
is also in D(1, δn), which means that

∥∥ s−f
s+f

∥∥
∞ ≤ δn. Since δn is the infimum over

all polynomials of degree n, we must have
∥∥ s−f

s+f

∥∥
∞ = δn and s is therefore also a

polynomial of best approximation: the set of best approximations is convex. Now
we choose n + 2 points z1, . . . , zn+2 among the points of equioscillation of s. By
definition s

f (zj) is on the boundary C(1, δn) for all j = 1, 2, . . . , n + 2; but at the

same time, s∗
n

f (zj) and s̃∗
n

f (zj) are in D(1, δn). The set D(1, δn) is, however, strictly
convex, and thus a barycenter of two points can only be on the boundary if the
points coincide,

s∗n(zj)
f(zj)

=
s̃∗n(zj)
f(zj)

=
s(zj)
f(zj)

, j = 1, 2, . . . , n + 2.

The difference s∗n − s̃∗n therefore has at least n + 2 roots, and since the polynomials
are of degree at most n, they must coincide. �

Next we study local best approximations. We define a map on Pn by

h(s) =
∥∥∥∥s − f

s + f

∥∥∥∥
∞

, s ∈ Pn,

and we search for the local minima of h.

Theorem 2.7 (Local minima). Let s∗ be a strict local minimum for h. Then s∗ is
the global minimum of h on Pn.
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Proof. We introduce a family of closed subsets of Pn for any δ > 0 by

D̃δ = {s ∈ Pn, h(s) ≤ δ}.

These sets fulfill several properties:

(i) For any δ < 1, D̃δ is a convex set. To see this, let s and s̃ be in D̃δ, and
θ in [0, 1]. For any z in K, s

f (z) and s̃
f (z) are in D(1, δ) which is convex

by Lemma 2.1. Hence θ s
f (z) + (1− θ) s̃

f (z) is in D(1, δ), which implies that

θ s
f + (1 − θ) s̃

f is in D̃δ.

(ii) The map δ �→ D̃δ is increasing, as one can infer directly from its definition.

We now conclude the proof of the theorem: let (s∗, δ∗) be a strict local minimum
for h, and let (s∗∗, δ∗∗) be another local minimum, with δ∗ ≥ δ∗∗, and s∗ �= s∗∗.
Then there exists a convex neighborhood U of s∗, such that for any s in U different
from s∗, h(s) > δ∗. Since s∗∗ ∈ D̃δ∗∗ ⊂ D̃δ∗ , by the convexity of D̃δ∗ , we have
[s∗, s∗∗] ⊂ D̃δ∗ . For ε small enough, we thus have sε = s∗ + ε(s∗∗ − s∗) in D̃δ∗

and at the same time in U . This implies that h(sε) ≤ δ∗ and at the same time
h(sε) > δ∗, which is a contradiction. �

2.2. Analysis of the case l > 0. We now consider the best approximation problem
(2.2) with a parameter l > 0, on a closed set K, not necessarily compact.

Theorem 2.8 (Existence). Let K be a closed set in C, containing at least n + 2
points. Let f : K → C be a continuous function such that for every z in K,
�f(z) > 0 and

(2.6) �f(z) −→ +∞ as z −→ ∞ in K.

Then δn(l) < 1 for all n ≥ 0, and for l small enough, there exists a polynomial s∗n
solution to (2.2).

Proof. By a standard compactness argument, property (2.6) implies that there ex-
ists α > 0, such that for all z ∈ K, we have �f(z) ≥ α > 0. Now,

∣∣ 1−f(z)
1+f(z)e

−lf(z)
∣∣ ≤∣∣1−f(z)

1+f(z)

∣∣e−lα, and since �f(z) > 0, we have
∣∣1−f(z)
1+f(z)

∣∣ < 1. Furthermore, 1 ∈ Pn for
all n ≥ 0, which implies that

δn(l) ≤
∥∥∥1 − f

1 + f
e−lf

∥∥∥
∞

≤ e−lα < 1,

which proves the first part of the theorem.
For the second part, let (sk

n)k∈N be a minimizing sequence. Then for all ε, there
exists a k0, such that for all k ≥ k0 we have

(2.7) δn(l) ≤
∥∥∥sk

n − f

sk
n + f

e−lf
∥∥∥
∞

≤ δn(l) + ε,

and if we choose ε ≤ 1−δn(l)
2 , we have∥∥∥sk

n − f

sk
n + f

e−lf
∥∥∥
∞

≤ 1 + δn(l)
2

< 1.

Let β > α and Kβ = K ∩ {z, α ≤ �f(z) ≤ β}. By property (2.6), Kβ is a closed
set, and for β large enough, it contains at least n + 2 points. On this compact set,
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we obtain the estimate∥∥∥sk
n−f

sk
n+f

∥∥∥
L∞(Kβ)

=
∥∥∥sk

n−f

sk
n+f

e−lfelf
∥∥∥

L∞(Kβ)
≤

∥∥∥sk
n−f

sk
n+f

e−lf
∥∥∥

L∞(Kβ)
elβ ≤ 1+δn(l)

2
elβ ,

and since 1+δn(l)
2 < 1, if l is such that 1+δn(l)

2 elβ < 1, we get∥∥∥sk
n − f

sk
n + f

∥∥∥
L∞(Kβ)

< 1,

which shows that the numerical sequence ‖sk
n‖L∞(Kβ) is bounded. Since Kβ con-

tains at least n+2 points , ‖·‖L∞(Kβ) induces a norm on the finite dimensional vector

space Pn. Hence a subsequence s
φ(k)
n converges to a s∗n in L∞(Kβ). Since on Pn all

norms are equivalent, for any z in K, | s
∗
n(z)−f(z)

sk
n(z)+f(z)

e−lf(z)| = limk| s
φ(k)
n (z)−f(z)

s
φ(k)
n (z)+f(z)

e−lf(z)|,
which is smaller than δn(l)+ε for any ε by using (2.7). This proves the existence. �

The equioscillation property is shown as in the case l = 0: we first have the
results analogous to Lemma 2.3 and Lemma 2.4 (the proofs are identical):

Lemma 2.9. Let the assumptions of Theorem 2.8 be verified. Then for a given
vector w = (w1, . . . , wm), m ≤ n + 1, such that any wi is in K and wi �= wj for
i �= j, the mapping

Aw : Uw → C
m, s �→

(
s(wi) − f(wi)
s(wi) + f(wi)

e−lf(wi)

)
1≤i≤m

is a submersion. Furthermore, its derivative with respect to s is continuous with
respect to s and w.

Lemma 2.10. Let s∗n be a solution of (2.2) for l > 0, and let z = (z1, . . . , zm) be
a vector of m distinct points in K, m ≤ n + 1. We have

(1) s∗n is in Uz ,
(2) let s̃ in Pn such that A′

z(s∗n) s̃ = −Az(s∗n). Then for any ε > 0, there
exist positive (ε1, . . . , εm), and t0 ∈]0, 1[, such that for any t ∈ [εt0, t0] and
for any z such that |z − zi| < εi for some i,∣∣∣∣s∗n(z) + ts̃(z) − f(z)

s∗n(z) + ts̃(z) + f(z)
e−lf(z)

∣∣∣∣ ≤ (1 − ε
t0
2

)δn.

Theorem 2.11 (Equioscillation). With the assumptions of Theorem 2.8, if s∗n is a
solution of problem (2.2) for l > 0, then there exist at least n+2 points z1, . . . , zn+2

in K such that ∣∣∣∣s∗n(zi) − f(zi)
s∗n(zi) + f(zi)

e−lf(zi)

∣∣∣∣ =
∥∥∥∥s∗n − f

s∗n + f
e−lf

∥∥∥∥
∞

.

Proof. Using the fact that

δn(l) ≤
∥∥∥∥s∗n − f

s∗n + f
e−lf

∥∥∥∥
∞

≤ δne−l infK �f < 1,

the proof of the theorem follows as in the case where l = 0. �

To prove uniqueness in the general case, we need to assume the compactness
of K:
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Theorem 2.12 (Uniqueness). With the assumptions of Theorem 2.8, if K is a
compact set and l satisfies

(2.8) δn(l)e l supz∈K �f(z) < 1,

then problem (2.2) has a unique solution s∗n for all n ≥ 0.

Proof. We first prove that the set of best approximations is convex: let s∗n and s̃∗n
be two polynomials of best approximation, θ in [0, 1] and let s = θs∗n + (1 − θ)s̃∗n.
For any z in D, s∗

n

f (z) and s̃∗
n

f (z) are in D(1, δn(l)el�f(z)), which is convex since

δnel�f(z) ≤ δnel supK �f(z) < 1

by condition (2.8). Thus for any z in K, s
f (z) is in D(1, δn(l)el�f(z)), which means

that
∥∥∥ s−f

s+f e−lf
∥∥∥
∞

≤ δn(l). Since δn(l) is the infimum, we have
∥∥∥ s−f

s+f e−lf
∥∥∥
∞

= δn(l),
and s is also a best approximation. The conclusion follows now as in the proof of
Theorem 2.6. �

2.3. The symmetric case. Now we derive specific results for the best approxi-
mation problems arising in the context of waveform relaxation methods:

Definition 2.13. The symmetric case of the homographic best approximation
problem (2.2) is the case where K is a closed set, symmetric with respect to the
real axis, containing at least n + 2 points, and for any z in K, f(z̄) = f(z).

Theorem 2.14. In the symmetric case of Definition 2.13, if K is a compact set
and l is zero or sufficiently small in order to satisfy (2.8), then the polynomial of
best approximation s∗n of f in K has real coefficients.

Proof. If s∗n is the polynomial of best approximation for f , we have

supK

∣∣∣ s∗
n(z)−f(z)

s∗
n(z)+f(z)e

−lf(z)
∣∣∣ = supK

∣∣∣ s∗
n(z̄)−f(z̄)

s∗
n(z̄)+f(z̄)e

−lf(z̄)
∣∣∣

= supK

∣∣∣ s∗
n(z̄)−f(z)

s∗
n(z̄)+f(z)

e−lf(z)
∣∣∣ = supK

∣∣∣ s∗
n(z̄)−f(z)

s∗
n(z̄)+f(z)

e−lf(z)
∣∣∣ ,

which shows that s∗n(z̄) = s∗n(z) for every z in K by uniqueness, and hence proves
that s∗n has real coefficients. �

We denote by τ the complex involution z �→ z̄. From now on, K1 is a closed set in
the upper half-plane �z ≥ 0, and K = K1 ∪ τ (K1). We consider the minimization
problem on K1 restricted to the space Pr

n of polynomials with real coefficients, with
the functional

(2.9) hr
l (s) =

∥∥∥∥s − f

s + f
e−lf

∥∥∥∥
L∞(K1)

,

and the real best approximation problem

(2.10) sup
z∈K1

∣∣∣∣sr,∗
n (z) − f(z)

sr,∗
n (z) + f(z)

e−lf(z)

∣∣∣∣ = inf
s∈Pr

n

sup
z∈K1

∣∣∣∣s(z) − f(z)
s(z) + f(z)

e−lf(z)

∣∣∣∣ .
Theorem 2.15. In the symmetric case of Definition 2.13, suppose that K1 is
compact, l is zero or is sufficiently small to satisfy (2.8). Then any strict local
minimum of hr

l in Pr
n is a global minimum in Pr

n, and is unique.

Proof. With condition (2.8), the proof is the same as in Theorem 2.7. �
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Corollary 2.16. Under the assumptions in Theorem 2.15, any strict local mini-
mum of hr

l in Pr
n is the global minimum for the complex best approximation problem

(2.2) on K.

Proof. By Theorem 2.14, the solution of the complex problem (2.2) is real, and is
therefore a global minimum for hr

l . But if there is a strict local minimum for hr
l , it

is the only global minimum of hr
l , and therefore coincides with the solution of the

complex problem (2.2). �

In the noncompact case, there is no such result available, but we will only need
to solve a particular problem. We introduce the notation P+

1 = {s = p + qz, p ≥
0, q ≥ 0} and C+ = {z,�z ≥ 0,�z ≥ 0} and consider the problem of finding s+,∗

1

in P+
1 such that

(2.11) sup
z∈K1

∣∣∣∣∣s+,∗
1 (z) − f(z)

s+,∗
1 (z) + f(z)

e−lf(z)

∣∣∣∣∣ = inf
s∈P+

1

sup
z∈K1

∣∣∣∣s(z) − f(z)
s(z) + f(z)

e−lf(z)

∣∣∣∣ .
Theorem 2.17. Suppose K1 ⊂ C+, then any strict local minimum of hr

l in P+
1 is

a global minimum.

Proof. The proof is an extension of the proof of Theorem 2.7. We introduce a
family of subsets of P+

1 for any δ > 0 by

D̃l
δ = {s ∈ P+

1 , hr
l (s) ≤ δ}.

The only difference compared to the proof of Theorem 2.7 is the proof of property
(i), which states that for any δ < 1, D̃l

δ is a convex set. To show this, let s and
s̃ be in D̃l

δ. For any z in K1, s(z) and s̃(z) are in D(f(z), δel�f(z)) ∩ C+. If
δel�f(z) < 1, D(f(z), δel�f(z)) is convex by Lemma 2.1, whereas if δel�f(z) ≥ 1,
since f(z) ∈ C+, C+ ⊂ D(f(z), δel�f(z)), and C+ ∩D(f(z), δel�f(z)) = C+. In any
case D(f(z), δel�f(z)) ∩ C

+ is convex. Then, for any z in K1, such that �z > 0,
we have 1

2 (s(z) + s̃(z)) is in D(f(z), δel�f(z)) ∩ C
+. Thus 1

2 (s + s̃) is in D̃l
δ which

proves the convexity, since D̃l
δ is a closed set. Having established convexity, the

result follows as in Theorem 2.7. �

Remark 2.18. It is tempting at this stage to believe that the number of equioscil-
lation points for the real problem (2.10) or (2.11) is also ≥ n + 2. We will prove in
Section 4 that this is true for our special problem, when n = 1 and the size of K1

is sufficiently large in C+. However, it is not true in general, and we will show a
counterexample at the end of Section 4.1.1.

3. Model problem and Schwarz waveform relaxation algorithms

The homographic best approximation problem (2.1, 2.2) we studied in Section
2 is important for solving evolution problems in parallel. To define a parallel algo-
rithm in space-time, Schwarz waveform relaxation algorithms use a decomposition
of the spatial domain into subdomains, and then iteratively compute subdomain
solutions in space-time, which are becoming better and better approximations to
the solution on the whole space-time domain; see [22]. Our guiding example here
is the advection reaction diffusion equation in RN ,

∂tu + (a · ∇)u − ν∆u + bu = f.
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The analysis we present here is for the decomposition into two half-spaces only, but
our numerical experiments in Section 6 show that the theoretical results are also
relevant for more than two subdomains. We define Ω = R×R

N−1 with coordinate
(x, y) = (x, y1, . . . , yN−1), and use for the advection vector the notation a = (a, c),
which leads to

(3.1) Lu = ∂tu + a∂xu + (c · ∇y)u − ν∆u + bu = f, in Ω × (0, T ).

The diffusion coefficient ν is strictly positive, and we assume that a and b are
constants which do not both vanish simultaneously. The case of the heat equation
needs special treatment and can be found in [13]. Without loss of generality, we
can assume that the advection coefficient a in the x direction is nonnegative, since
a < 0 amounts to changing x into −x. We can also assume that the reaction
coefficient b is nonnegative. If not, a change of variables v = ue−ζt, with ζ + b > 0
will lead to (3.1) with a positive reaction coefficient. We split Ω = R

N into two
subdomains Ω1 = (−∞, L) × RN−1 and Ω2 = (0,∞) × RN−1, L ≥ 0. A Schwarz
waveform relaxation algorithm then consists of solving iteratively subproblems on
Ω1 × (0, T ) and Ω2 × (0, T ) using general transmission conditions at the interfaces
Γ0 = {0} × R

N−1 and ΓL = {L} × R
N−1, i.e. defining a sequence (uk

1 , uk
2), for

k ∈ N, such that
(3.2)

Luk
1 = f in Ω1 × (0, T ), Luk

2 = f in Ω2 × (0, T ),
uk

1(·, ·, 0) = u0 in Ω1, uk
2(·, ·, 0) = u0 in Ω2,

B1u
k
1 = B1u

k−1
2 on ΓL × (0, T ), B2u

k
2 = B2u

k−1
1 on Γ0 × (0, T ),

where B1 and B2 are linear operators in space and time, possibly pseudo-differential,
and an initial guess B2u

0
1(0, ·, ·) and B1u

0
2(L, ·, ·), t ∈ (0, T ), needs to be provided.

The classical Schwarz waveform relaxation algorithm is obtained by choosing B1

and B2 equal to the identity, as in the case of the Schwarz domain decomposition
methods for elliptic problems [37, 30]. With this choice, the algorithm is convergent
only with overlap. This algorithm has been studied in [15] and [31] for the present
model problem; for earlier studies, see [21, 23, 22].

A better choice, which leads to faster algorithms, and can be convergent even
without overlap, is

(3.3) Bj = ∂x + Sj(∇y, ∂t), j = 1, 2 ,

where the Sj are ordinary linear pseudo-differential operators in (y, t), related to
their total symbols σj(η, ω) by [25]

Sj(∇y, ∂t)u(y, t) = (2π)−n/2

∫
σj(η, ω)û(η, ω)ei(η · y+ωt) dη dω.

The best operators Sj are related to transparent boundary operators, which have
first been exploited in [4] for stationary problems, and in [17] for time dependent
problems. They can be found by the following analysis. Let ek

i be the error in Ωi,
i.e. ek

i = uk
i − u. Using a Fourier transform in time with parameter ω and in y

with parameter η, the Fourier transforms êk
j in time and y of ek

j are solutions of
the ordinary differential equation in the x variable

−ν
∂2ê

∂x2
+ a

∂ê

∂x
+

(
i(ω + c · η) + ν|η|2 + b

)
ê = 0.
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The characteristic roots are

r+ =
a +

√
d

2ν
, r− =

a −
√

d

2ν
, d = a2 + 4ν(i(ω + c · η) + ν|η|2 + b).

The complex square root in this text is always with strictly positive real part. In
order to work with at least square integrable functions in time and space, we look
for solutions which do not increase exponentially in x. Since �r+ > 0 and �r− < 0,
we obtain

(3.4) êk
1(x, η, ω) = αk

1(η, ω)er+(x−L), êk
2(x, η, ω) = αk

2(η, ω)er−x.

Inserting (3.4) into the transmission conditions (3.3), we find that for any k ≥ 2,

αk+1
j = ρ αk−1

j , j = 1, 2,

with the convergence factor

(3.5) ρ =
r− + σ1

r+ + σ1
· r+ + σ2

r− + σ2
e(r−−r+)L, ∀ω ∈ R, η ∈ R

N−1.

Hence, if the symbols σj are chosen to be

(3.6) σ1 = −r−, σ2 = −r+,

then algorithm (3.2) converges in 2 steps, independently of the initial guess. This
is an optimal result, since the solution on one subdomain necessarily depends on
the right-hand side of function f on the other subdomain, and hence at least one
communication is necessary for convergence. The choice in (3.6), however, leads to
nonlocal operators Sj , since r+ and r− are not polynomials in the dual variables,
and nonlocal operators are less convenient to implement and more costly to use
than local ones. It is therefore of interest to approximate the optimal choice σj

in (3.6) corresponding to the optimal transmission operators by polynomials in
(ω, η), which leads to differential operators Sj . We suppose in the sequel that the
Sj , j = 1, 2, are chosen in a symmetric way, i.e. their symbols are of the form

σ1 =
−a + s

2ν
, σ2 =

−a − s

2ν
,

where s is a polynomial in the dual variables. Defining the complex function z of
(ω, η) by

(3.7) z = 4ν
(
i(ω + c · η) + ν|η|2

)
,

we obtain for the convergence factor (3.5),

(3.8) ρ(z, s) =

(
s(z) −

√
a2 + 4νb + z

s(z) +
√

a2 + 4νb + z

)2

e−
L
ν

√
a2+4νb+z.

In numerical computations, the frequencies ω and η are bounded, i.e. |ω| ≤ ωmax

and |ηj | ≤ ηj,max where ωmax is a discrete frequency which can be estimated by
ωmax = π/∆t, where ∆t is the time step, and similarly ηj,max = π/∆yj . In the
nonoverlapping case, we define the compact set

K = {z ∈ C, |ω| ≤ ωmax, |ηj | ≤ ηj,max, j = 1, . . . , N − 1}.

In the overlapping case, we shall also consider ωmax = ∞ and ηj,max = ∞, which
leads to a noncompact set K.
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For any integer n we search for s∗n in Pn, the complex space of polynomials of
degree less than or equal to n with complex coefficients, such that

(3.9) sup
z∈K

|ρ(z, s∗n)| = inf
s∈Pn

sup
z∈K

|ρ(z, s)|.

Problem (3.9) is a special case of (2.2) with

(3.10) f(z) =
√

ξ2
0 + z, l =

L

2ν
, ξ0 =

√
a2 + 4νb,

and the assumptions on f in Section 2 are verified with �f(z) ≥ ξ0 > 0.
Next we focus on first order approximations, i.e. s = p + qz, which leads to first

order optimized Schwarz waveform relaxation algorithms (3.2) with transmission
conditions
(3.11)

S = p + 4qν(∂t + (c · ∇y)− ν∆y), B1 = ∂x −
a

2ν
+

1
2ν

S, B2 = ∂x −
a

2ν
− 1

2ν
S.

The case of zeroth order transmission conditions, q = 0, was studied in [15] for
one-dimensional problems, and existence and convergence proofs together with nu-
merical experiments were shown in [31] for two-dimensional problems. Using the
general results from Section 2, we now solve the best approximation problem with
first degree polynomials in one dimension.

4. Study and optimization of the convergence factor

We start with the one-dimensional case, for which the conditions of Section 2.3
hold, with K1 = i[0, ωmax]. We proved in Theorem 2.14 that the polynomial of best
approximation in the complex domain K has real coefficients, and we established in
Corollary 2.16 the connection between the complex problem and the real problem,
for ωmax < +∞. In this section, we give more precise results on equioscillation
properties for the real problem, in both the overlapping and nonoverlapping cases,
which allows us to compute the optimal choice for the coefficients p and q in the op-
timized Schwarz waveform relaxation algorithm (3.2) with transmission conditions
(3.11).

If p, q ∈ R, then the modulus of the convergence factor (3.8) is

(4.1) R(ξ, p, q, ξ0, L) =
(ξ − p)2 + (ξ2 − ξ2

0)(2qξ − 1)2

(ξ + p)2 + (ξ2 − ξ2
0)(2qξ + 1)2

e−
L
ν ξ,

where we have used the change of variables

(4.2) ξ = �(
√

a2 + 4ν(b + iω)),

and ξ0 =
√

a2 + 4νb from (3.10). We first propose and analyze a low frequency
approximation for the first order transmission conditions, and then solve the best
approximation problem, to derive optimized parameters p and q. In both cases,
we analyze the performance of the overlapping (L > 0) and nonoverlapping case
(L = 0).

4.1. Low frequency approximation. As a simple approach, a low frequency
approximation of the optimal transmission conditions (3.6) can be used to determine
the two parameters p and q. We call this case T1 for Taylor of order one. Using
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a Taylor expansion of the square root
√

a2 + 4ν(b + iω) in (3.6) about ω = 0, we
find √

a2 + 4ν(b + iω) =
√

a2 + 4νb +
2ν√

a2 + 4νb
iω + O(ω2),

and hence for the parameters p and q the values

(4.3) p = pT =
√

a2 + 4νb and q = qT =
1

2
√

a2 + 4νb
.

4.1.1. The nonoverlapping case. For L = 0, p = pT and q = qT , the convergence
factor (4.1) becomes

(4.4) R(ξ, pT , qT , ξ0, 0) =
(

ξ − ξ0

ξ + ξ0

)2

.

The bound on the frequency parameter ω given before, |ω| ≤ ωmax = π/∆t, gives
a bounded range ξ0 ≤ ξ ≤ ξmax, where

(4.5) ξmax =

√√
ξ4
0 + 16ν2ω2

max + ξ2
0

2
.

Proposition 4.1 (T1 convergence factor estimate without overlap). The conver-
gence factor in (4.4) is for ξ0 ≤ ξ < ξmax uniformly bounded by

(4.6) RT1(ξ0, ξmax) =
(

ξmax − ξ0

ξmax + ξ0

)2

.

For ∆t small, this maximum can be expanded as 1 − 2ξ0

√
2

νπ

√
∆t + O(∆t).

Proof. Since R(ξ, pT , qT , ξ0, 0) is a monotonically increasing function for ξ ≥ ξ0,
the bound for ξ0 ≤ ξ ≤ ξmax is attained at ξ = ξmax, which leads, using the variable
transform (4.2) and ωmax = π

∆t to the bound given in (4.6). �

Remark 4.2. The convergence factor estimate (4.6) for the first order Taylor trans-
mission conditions is the square of the convergence factor estimate found in [15] for
the zeroth order Taylor transmission conditions.

4.1.2. The overlapping case. With L > 0, p = pT and q = qT , and the change of
variables (4.2), the convergence factor (4.1) becomes

(4.7) R(ξ, pT , qT , ξ0, L) =
(

ξ − ξ0

ξ + ξ0

)2

e−
ξL
ν .

We first present a convergence factor estimate for ω in R.

Proposition 4.3 (T1 convergence factor estimate with overlap). The convergence
factor in (4.7) satisfies

R
∞

T1(ξ0, L) = max
ξ0≤ξ<+∞

R(ξ, pT , qT , ξ0, L)

=
(

ξ̄ − ξ0

ξ̄ + ξ0

)2

e−
Lξ̄
ν , with ξ̄ =

√
ξ2
0 +

4νξ0

L
.

(4.8)

For L small, this maximum can be expanded as 1 − 4
√

ξ0
ν

√
L + O(L).
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Proof. Taking a derivative of the convergence factor R(ξ, pT , qT , ξ0, L) defined in
(4.7) with respect to ξ shows that there is a unique maximum for ξ ≥ ξ0 at ξ = ξ̄
given in (4.8). Evaluating R for ξ = ξ̄ and expanding for L small leads to the
asymptotic result. �

In a numerical computation, the overlap L is in general not a fixed quantity;
one can only afford that a few grid cells overlap, L = C1∆x. In addition, there is
also often a relation between the time and space step of the form ∆t = C2∆xβ ,
β > 0, due to accuracy or stability constraints. There exists a limiting value of the
overlap, namely

(4.9) L1 =
8νξ0√

ξ4
0 + 16νωmax − ξ2

0

,

such that for L > L1, ξmax > ξ̄, and hence the contraction factor in (4.8) is relevant.
On the other hand, if L ≤ L1, then ξmax ≤ ξ̄ and hence numerically the contraction
factor in (4.8) becomes irrelevant. Numerically, the relevant bound is therefore by
monotonicity

RT1(ξ0, ξmax, L) = max
ξ0≤ξ≤ξmax

R(ξ, pT , qT , ξ0, L)

=

{
R

∞

T1(ξ0, L), if L > L1,(
ξmax−ξ0
ξmax+ξ0

)2

e−
Lξmax

ν , if L ≤ L1.

(4.10)

Proposition 4.4 (T1 discrete convergence factor estimate with overlap). If L =
C1∆x and ∆t = C2∆xβ with β > 0, then the bound in (4.10) on the convergence
factor has for ∆x small the expansion

RT1(ξ0, ξmax, L)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−4

√
C1ξ0

ν

√
∆x + O(∆x), if β > 1, or β=1 and C1

C2
> 2ξ0

π ,

1−
√

2(2C2ξ0+C1π)√
C2πν

√
∆x + O(∆x), if β = 1 and C1

C2
≤ 2ξ0

π ,

1−2ξ0

√
2C2
πν ∆x

β
2 + o(∆x

β
2 ), if 0 < β < 1.

(4.11)

Proof. Expanding (4.9) for ∆t small, we obtain

L1 =
2ξ0

π
∆t + O(∆t2),

and comparing with L = C1∆x, using that ∆t = C2∆xβ , we obtain the first case in
(4.11). For the second case, one can set β = 1 and directly expand the second case
of (4.10) to find the result given. For the last case, the expansion of the exponential
term gives

e−
Lξmax

ν = 1 − C1

√
2π

C2ν
∆x1− β

2 + O(∆x2−β),

and the coefficient in front of the exponential in (4.10) has the expansion

ξmax − ξ0

ξmax + ξ0
= 1 − ξ0

√
2C2

πν
∆x

β
2 + O(∆xβ).

Hence the result follows. �



A HOMOGRAPHIC BEST APPROXIMATION PROBLEM. . . 199

4.2. Optimization of the convergence factor. We now use the general results
from Section 2 on the homographic best approximation problem to optimize the
waveform relaxation algorithm with transmission conditions (3.11) for the overlap-
ping and nonoverlapping case. We will call this case O1 for optimized of order
one.

4.2.1. The nonoverlapping case. The domain of definition for f(z) =
√

ξ2
0 + 4νz

with z = iω is K = i[0, ωmax]∪−i[0, ωmax]. By Theorems 2.2 and 2.6, the problem
(3.9) in P1 has a unique solution s∗1 = p∗ + 4νiωq∗. By Theorem 2.14, s∗1 has real
coefficients. Therefore, (p∗, q∗) is the unique pair of real numbers such that

(4.12) inf
p,q∈R

sup
ξ0≤ξ≤ξmax

R(ξ, p, q, ξ0, 0) = sup
ξ0≤ξ≤ξmax

R(ξ, p∗, q∗, ξ0, 0),

and we denote by RO1 the maximum of the convergence factor,

RO1(ξ0, ξmax) = sup
ξ0≤ξ≤ξmax

R(ξ, p∗, q∗, ξ0, 0).

RO1(ξ0, ξmax) is equal to δ2
1 with the notation from Section 2.

Lemma 4.5. The solution (p∗, q∗) of the min-max problem (4.12) satisfies p∗ > 0
and q∗ ≥ 0.

Proof. Knowing from Theorem 2.2 that δ1 < 1, and taking ξ = ξ0 in (4.1), we first
see that p∗ > 0. Now for positive p and q, we see in (4.1) that R(ξ, p, q, ξ0, 0) ≤
R(ξ, p,−q, ξ0, 0), which proves that q∗ ≥ 0. �

Because of the symmetry of the domain K,
∥∥∥ s∗

1−f
s∗
1+f

∥∥∥ equioscillates at least twice
in [0, ωmax]. We show now that for sufficiently large ωmax, the solution actually
equioscillates three times on [0, ωmax], and we give implicit formulas for the solution
p∗ and q∗.

Theorem 4.6 (O1 convergence factor estimate without overlap). For ξmax suffi-
ciently large, the solution of (4.12) equioscillates three times, i.e. p∗ and q∗ are the
unique solution of the system of equations

(4.13) R(ξ0, p, q, ξ0, 0) = R(ξ̄(p, q), p, q, ξ0, 0) = R(ξmax, p, q, ξ0, 0)

where ξ̄(p, q) is the second of the three distinct ordered positive roots (for p >

(1 +
√

2)ξ0) of the bi-cubic polynomial
(4.14)
P (ξ) = 32q3ξ6 − 16q(−3qp + 4q2ξ2

0 + 1)ξ4

+ (8qξ2
0 + 32q3ξ4

0 − 24qp2 − 16q2ξ2
0p + 8p)ξ2 − 4(ξ0 − p)(ξ0 + p)(2qξ2

0 − p).

The optimal parameters and the bound on the convergence factor, which is the com-
mon value RO1(ξ, ξ0, ξmax) in (4.13) at point (p, q) = (p∗, q∗), have the expansions

(4.15) p∗ ∼ ξ
3
4
0 ξ

1
4
max, q̂∗ ∼ 1

2ξ
1
4
0

ξ
− 3

4
max, RO1(ξ0, ξmax) ∼ 1 − 4ξ

1
4
0 ξ

− 1
4

max.

Proof. We start this proof by studying the variation of R for fixed p and q: the
polynomial P given in (4.14) is the numerator of the partial derivative of R with
respect to ξ. Therefore its roots determine the extrema of R. Since P is a bi-cubic
polynomial with real coefficients, it has one, two or three positive distinct real roots.
In the first two cases, since R(0, p, q, ξ0, 0) = 1, R ≤ 1 for ξ ≥ ξ0 and R −→ 1 as
ξ −→ ∞, R reaches a unique minimum in [ξ0, ξmax], and therefore if p = p∗ and
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q = q∗, R equioscillates at points ξ0 and ξmax only. If there are three ordered
distinct positive real roots, then the second one, ξ̄, must correspond to a maximum
of R and the other ones to minima. The maximum of R can thus be attained at
the local maximum at ξ̄, or at the endpoints ξ0 and ξmax.

We now focus on the condition for these three points to give equioscillations
for R, i.e. on solving (4.13). We first prove that the equation R(ξ0, p, q, ξ0, 0) =
R(ξmax, p, q, ξ0, 0) has, for any p > (1+

√
2)ξ0, two positive solutions, and we define

a function q̂ by q̂(p) = q, the largest positive one. Then we prove in Lemma 4.7 that
for ξmax large and q = q̂(p), the polynomial P has precisely three distinct positive
roots, and we estimate ξ̄(p, q̂(p)). After this step, we deduce in Lemma 4.8 that for
ξmax sufficiently large there is at least one solution p∗ to

(4.16) R(ξ0, p, q̂(p), ξ0) = R(ξ̄(p, q̂(p)), p, q̂(p), ξ0).

We then expand (p∗, q∗ = q̂(p∗)) asymptotically as ξmax tends to infinity, and we
finally show that s1 = p∗ + 4iωνq∗ is a strict local minimum for hr

l defined in
(2.9), with l = 0, K1 = i[0, ωmax], and n = 1. Corollary 2.16 then states that
(p∗, q∗) = (p∗, q∗), which concludes the proof.

The equation R(ξ0, p, q, ξ0, 0) = R(ξmax, p, q, ξ0, 0) can be rewritten as an equa-
tion for the q variable,
(4.17)
−4pξ0(ξmax + ξ0)ξ2

maxq
2 + 2(ξmax + ξ0)(p2 + ξ2

0)ξmaxq + p(p2 − 2ξ0ξmax − ξ2
0) = 0.

The discriminant of (4.17) is

(4.18) ∆ = ξ2
max(ξmax + ξ0)

[
ξmax(p4 − 6ξ2

0p2 + ξ4
0) + ξ0

(
(p2 − ξ2

0)2 + 4p4
)]

,

and is positive for large ξmax under the assumption p > (1 +
√

2)ξ0. Since the sum
and the product of the roots in (4.17) is positive, there are two positive roots, and
we choose q = q̂(p) as the larger one, i.e.1

(4.19)

q̂(p)=
(ξ2

0+p2)
√

ξ0 + ξmax+
√

(5ξ0 + ξmax)p4 − 2ξ2
0(ξ0 + 3ξmax)p2 + ξ4

0(ξ0 + ξmax)
4pξ0ξmax

√
ξ0 + ξmax

.

Lemma 4.7. Let p be any positive real number with p > (1 +
√

2)ξ0, and let
q = q̂(p) be defined in (4.19). Then for sufficiently large ξmax, the polynomial P
in (4.14) has exactly three distinct real roots. As ξmax tends to infinity, the first
one has a limit equal to

√
(p2 − ξ2

0)/2, the second one, ξ̄(p, q̂(p)), is equivalent to√
pξmax/2q0, and the third one tends to infinity like ξmax/

√
2q0, where q0 depends

on p and ξ0, q0 =
(
ξ2
0 + p2 +

√
p4 − 6ξ2

0p2 + ξ4
0

)
/4pξ0.

Proof. From the formula for q in (4.19), we obtain that for fixed p, we have q ∼
q0

ξmax
as ξmax → +∞. We perform the change of variables χ = ξ2/ξ0ξmax, which

transforms the equation P (ξ) = 0 into P̃ (χ) = 0 with

P̃ (χ) ∼ 32ξ3
0q3

0χ3−16q0ξ
2
0(ξmax−3q0p)χ2+8ξ0(pξmax+q0ξ

2
0−3q0p

2)χ+4p(ξ2
0−p2).

P̃ has three real roots. Using the sum of the roots, we see that the largest one
tends to infinity like ξmax

2ξ0q2
0
, then by the second symmetric function of the roots, the

middle one tends to p
2ξ0q0

, and finally usingthe product of the roots, the smallest

1Formula (4.19) together with (4.16) can be useful to compute the optimal parameters, since
it reduces the problem to finding a root of a scalar equation.
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one tends to zero like p2−ξ2
0

2ξ0ξmax
. From these expressions the result follows by inverting

the change of variable. �

Lemma 4.8. For ξmax sufficiently large, there exists at least one solution p∗ >
(1 +

√
2)ξ0 to (4.16). Moreover, for any fixed p0, if ξmax is large, there is no

solution in [0, p0].

Proof. For any fixed p, we have that R(ξ0, p, q̂(p), ξ0, 0) < 1 independently of ξmax,
and R(ξ̄(p, q̂(p)), p, q̂(p), ξ0, 0) tends to 1 as ξmax tends to infinity. Therefore, for
ξmax large, R(ξ0, p, q̂(p), ξ0, 0) − R(ξ̄(p, q̂(p)), p, q̂(p), ξ0, 0) is negative for any fixed
p. If p tends to infinity, we have

(4.20) R(ξ0, p, q̂(p), ξ0, 0) =
(

p − ξ0

p + ξ0

)2

∼ 1 − 4ξ0/p independently of ξmax.

On the other hand, for ξmax large and fixed, if p tends to infinity, we have

(4.21) R(ξ̄(p, q̂(p)), p, q̂(p), ξ0, 0) ∼
(

p − ξ̄

p + ξ̄

)2

∼ 1 − 4
ξ̄

p
.

Since ξ̄ > ξ0, R(ξ0, p, q̂(p), ξ0, 0) − R(ξ̄(p, q̂(p)), p, q̂(p), ξ0, 0) becomes positive for
large p. By continuity, there exist a p∗ for which this expression vanishes. �

We now expand p∗ and q̂(p∗) asymptotically: by Lemma 4.8, p∗ tends to infinity
with ξmax. Hence we can use (4.20), (4.21). Using the formula for q = q̂(p) in (4.19),
we have that for ξmax, as p tends to infinity, q̂(p) ∼ p/2ξ0ξmax and ξ̄(p, q̂(p)) ∼√

ξ0ξmax. Therefore, in order to match the two expansions in (4.20), (4.21), p has
to tend to infinity more slowly than

√
ξ0ξmax, which gives p∗ ∼ ξ

3/4
0 ξ

1/4
max. Inserting

this into (4.19) leads to q∗ = q̂(p∗) ∼ 1

2ξ
1
4
0

ξ
− 3

4
max. Finally, inserting p∗ and q∗ into

R(ξ0, p∗, q∗, ξ0, 0) and expanding for ξmax we obtain

(4.22) R(ξ0, p∗, q∗, ξ0, 0) ∼ 1 − 4
ξ0

p
∼ 1 − 4ξ

1
4
0 ξ

− 1
4

max.

Lemma 4.9. s1 = p∗ + 4νiωq∗ is a strict local minimum for hr
0 in Pr

1, with
K1 = i[0, ωmax].

Proof. For any (p, q), we define r = 1
q and

µ(p, q, ξ0, ξmax) = sup
ξ∈[ξ0,ξmax]

1 + R(ξ, p, q, ξ0, 0)
1 − R(ξ, p, q, ξ0, 0)

,

and write

R(ξ, p, q, ξ0, 0) − sup
ξ∈[ξ0,ξmax]

R(ξ, p, q, ξ0, 0) = 4q2 Q(ξ, p, r, µ)
(ξ + p)2 + (ξ2 − ξ2

0)(2ξq + 1)2
,

with

Q(ξ, p, r, µ) = ξ4 − µrξ3 + (
r2

2
− ξ2

0)ξ2 + µr(ξ2
0 − pr

2
)ξ + r2 p2 − ξ2

0

4
.

In what follows, we will consider Q as a polynomial in the independent variables
ξ, p, r and µ. (p∗, r∗, µ∗ = µ(p∗, q∗, ξ0, ξmax)) is a solution of the system of equations

Q(ξ0, p∗, r∗, µ∗)=0, Q(ξmax, p∗, r∗, µ∗)=0, Q(ξ̄, p∗, r∗, µ∗)=∂ξQ(ξ̄, p∗, r∗, µ∗)=0.
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Now for s1 to be a strict local minimum for hr
0, it is sufficient that there exists no

variation (δp, δr, δµ) with δµ < 0, such that Q(ξ, p∗+δp, r∗+δr, µ∗+δµ) < 0 for ξ =
ξ0, ξ̄ and ξmax. By Taylor’s formula, it suffices to prove this for δp∂Q

∂p (ξ, p∗, r∗, µ∗)+
δr ∂Q

∂r (ξ, p∗, r∗, µ∗) + δµ∂Q
∂µ (ξ, p∗, r∗, µ∗). Expanding the arguments of Q for ξmax

large, we have from the asymptotic results (4.22) the leading order terms. Including
the next higher order terms, we obtain

(4.23)

ξ̄(p∗, q∗) = ξ
1
2
0 ξ

1
2
max(1 + 1

2ξ
1
2
0 ξ

− 1
2

max + o(ξ−
1
2

max)),

p∗ = ξ
3
4
0 ξ

1
4
max(1 + 1

4ξ
1
2
0 ξ

− 1
2

max + o(ξ−
1
2

max)),

r∗ = 2ξ
1
4
0 ξ

3
4
max(1 + 3

4ξ
1
2
0 ξ

− 1
2

max + o(ξ−
1
2

max)),

µ∗ = 1
2ξ

− 1
4

0 ξ
1
4
max(1 + 5

4ξ
1
2
0 ξ

− 1
2

max + o(ξ−
1
2

max)),

where the expansion is best obtained using the elementary symmetric functions of
the roots, and then identifying terms in the expansions. The partial derivatives of
Q are

(4.24)

∂Q
∂p = r2

2 (p − µξ),
∂Q
∂r = −µξ3 + rξ2 + µ(ξ2

0 − pr)ξ + rp2

2 ,
∂Q
∂µ = −rξ3 + r(ξ2

0 − pr
2 )ξ.

Inserting the expansions (4.23) into (4.24), we obtain for the expansions of the
partial derivatives

(4.25)

∂Q
∂p ∼ ξ

5
4
0 ξ

7
4
max,

∂Q
∂r ∼ −1

2ξ
11
4

0 ξ
1
4
max,

∂Q
∂µ ∼ −2ξ

9
4
0 ξ

7
4
max, for ξ = ξ0,

∂Q
∂p ∼ −ξ

3
4
0 ξ

9
4
max,

∂Q
∂r ∼ +1

2ξ
5
4
0 ξ

7
4
max,

∂Q
∂µ ∼ −4ξ

7
4
0 ξ

9
4
max, for ξ = ξ̄,

∂Q
∂p ∼ −ξ

1
4
0 ξ

11
4

max,
∂Q
∂r ∼ −1

2ξ
− 1

4
0 ξ

13
4

max,
∂Q
∂µ ∼ −2ξ

1
4
0 ξ

15
4

max, for ξ = ξmax.

Let (δp, δr, δµ) such that δp∂Q
∂p (ξ, p∗, r∗, µ∗)+δr ∂Q

∂r (ξ, p∗, r∗, µ∗)+δµ∂Q
∂µ (ξ, p∗, r∗, µ∗)

< 0 for ξ = ξ0, ξ = ξ̄ and ξ = ξmax. Using the expansion (4.25), we have for large
ξmax,

(4.26)
ξ

3
2
maxδp − 1

2ξ
3
2
0 δr − 2ξ0ξ

3
2
maxδµ < 0,

−ξ
1
2
maxδp + 1

2ξ
1
2
0 δr − 4ξ0ξ

1
2
maxδµ < 0,

−ξ
1
2
0 δp − 1

2ξ
1
2
maxδr − 2ξ

1
2
0 ξmaxδµ < 0.

For δµ < 0, equations (4.26) imply
(4.27)(

ξmax
ξ0

) 3
2

δp − 1
2δr < 0, −

(
ξmax
ξ0

) 1
2

δp + 1
2δr < 0, −δp − 1

2

(
ξmax
ξ0

) 1
2

δr < 0.

Adding the first two inequalities in (4.27) yields (( ξmax
ξ0

)
3
2 − ( ξmax

ξ0
)

1
2 )δp < 0, which

implies δp < 0. From the second inequality we then obtain δr < 0, which together
contradict the last inequality in (4.27). �

By Corollary 2.16, we obtain (p∗, q∗) = (p∗, q∗), which concludes the proof of
Theorem 4.6. �

If the algorithm is discretized in time with a time step ∆t, then ξmax is indeed
large for ∆t → 0 and we obtain from (4.15):
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Corollary 4.10 (O1 discrete convergence factor estimate without overlap). For
∆t small, there is a unique solution of the min-max problem (4.12). The values of
p∗, q∗ and RO1(ξ0, ξmax) have the following asymptotic leading order term as ∆t
tends to 0:

p∗ ∼ ξ
3
4
0 (2πν)

1
8 ∆t−

1
8 , q∗ ∼ 1

2ξ
1
4
0 (2πν)

3
8

∆t
3
8 , RO1(ξ0, ξmax) ∼ 1 − 4ξ

1
4
0 (2πν)−

1
8 ∆t

1
8 .

Remark 4.11. In the course of Theorem 4.6, we have proved the first assertion
in Remark 2.18: for large ωmax, which corresponds to large K1, the number of
equioscillation points for the real problem (2.10) is actually equal to 3. For the
second assertion in that remark, we show now that, when ωmax tends to 0, or
equivalently ξmax tends to ξ0, there cannot be three equioscillations points for the
best approximation polynomial s∗1. Suppose there are three equioscillation points.
The study of R in the first part of the proof of Theorem 4.6 shows that two of them
have to be ξ0 and ξmax. Letting ξmax = ξ0(1 + ε), with ε > 0, we first see that p∗

has to tend to ξ0 with ξmax. On the one hand, we have

h(s∗1) ≤ h(ξ0) =
ξmax − ξ0

ξmax + ξ0
∼ ε

2
.

and on the other hand,

h(s∗1) ≥
∣∣∣∣f(0) − s∗1(0)
f(0) + s∗1(0)

∣∣∣∣ =
∣∣∣∣p∗ − ξ0

p∗ + ξ0

∣∣∣∣,
which proves that p∗ tends to ξ0. Therefore, it has the form p∗ = ξ0(1+Cε)+O(ε2)
with C ≤ 1. Inserting these values into the formula for the discriminant in (4.18)
gives ∆ ∼ 8ξ8

0(2C − 1)ε, which implies C ≥ 1/2. We now calculate from (4.19)
q∗ ∼ 1

2ξ0
. For p = ξ0 and q = 1

2ξ0
, the polynomial P is equal to 4

ξ3
0
ξ4(ξ2−ξ2

0), which
has ξ0 as a root. This shows that there is an extremum at ξ0, but it is a minimum
of R, since the derivative of P with respect to ξ is equal to 8ξ2

0 > 0.

4.2.2. The overlapping case. With the exponential weight, it is interesting to con-
sider first the best approximation problem for ω in R, since this gives insight for
the discrete case with limiting value ωmax. With the notation in Section 2, this cor-
responds to l > 0, K1 = iR+, K = iR. By Theorem 2.8, we know that a solution
exists, but we lose the uniqueness and the fact that the coefficients are real. We
therefore restrict our analysis to problem (2.11), and will use the ad hoc Theorem
2.17 to prove similar results as in the nonoverlapping case. With the notation in
(4.1) and (4.2), problem (2.11) is equivalent to finding (p∗∞, q∗∞) in (R+)2 such that

(4.28) inf
p≥0,q≥0

sup
ξ≥ξ0

R(ξ, p, q, ξ0, L) = sup
ξ≥ξ0

R(ξ, p∗∞, q∗∞, ξ0, L).

We denote the value of the infimum as R
∞

O1(ξ0, L). To simplify the notation, we set

ζ =
Lξ

ν
, ζ0 =

Lξ0

ν
, p̃ =

Lp

ν
, q̃ =

νq

L
,

so we remove the explicit dependence on the overlap parameter L and the parameter
ν of the convergence factor R given in (4.1). The value of R in the new variables
ζ, p̃, q̃ and ζ0, is

(4.29) R̃(ζ, p̃, q̃, ζ0) = R(ξ, p, q, ξ0, L) =
(ζ − p̃)2 + (ζ2 − ζ2

0 )(1 − 2ζq̃)2

(ζ + p̃)2 + (ζ2 − ζ2
0 )(1 + 2ζq̃)2

e−ζ .
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The new real best approximation problem is therefore to find (p̃∗∞, q̃∗∞) in (R+)2

such that

(4.30) inf
p̃≥0,q̃≥0

sup
ζ≥ζ0

R̃(ζ, p̃, q̃, ζ0) = sup
ζ≥ζ0

R̃(ζ, p̃∗∞, q̃∗∞, ζ0).

We now show that, for small overlap L, there is a unique solution, which equioscil-
lates at three points, and we obtain the analogue of Theorem 4.6.

Theorem 4.12 (O1 convergence factor estimate with overlap). For L sufficiently
small, the solution of (4.30) is unique and equioscillates three times, i.e. (p̃∗∞, q̃∗∞)
is the unique solution of

(4.31) R̃(ζ0, p̃, q̃, ζ0) = R̃(ζ2(p̃, q̃), p̃, q̃, ζ0) = R̃(ζ4(p̃, q̃), p̃, q̃, ζ0)

where ζ2(p̃, q̃) denotes the second and ζ4(p̃, q̃) the fourth of the four distinct positive
roots, ordered in increasing order, of the polynomial
(4.32)
P (ζ) = 16q̃4ζ8 − 32q̃3(q̃ζ2

0 + 1)ζ6

+ (16q̃ − 48q̃2p̃ + 16q̃4ζ4
0 + 4 + 64q̃3ζ2

0 + 8q̃2p̃2 + 8q̃2ζ2
0 − 16q̃p̃)ζ4

+ (16q̃ζ2
0 p̃ − 32q̃3ζ4

0 − 8q̃ζ2
0 +24q̃p̃2 − 4ζ2

0 − 8p̃+16q̃2ζ2
0 p̃ − 8q̃2ζ4

0 − 8q̃2ζ2
0 p̃2)ζ2

+ (ζ2
0 − p̃2)(ζ2

0 + 8q̃ζ2
0 − p̃2 − 4p̃).

For L small, the optimal parameters and the bound R
∞

O1(ξ0, L) on the convergence
factor, which is the common value in (4.31) at point (p̃, q̃) = (p̃∗∞, q̃∗∞), have the
expansion

(4.33) p∗∞ ∼ ξ
4
5
0 ν

1
5 L− 1

5 , q∗∞ ∼ 1
2
ν− 3

5 ξ
− 2

5
0 L

3
5 , R

∞

O1(ξ0, L) ∼ 1 − 4ξ
1
5
0 ν− 1

5 L
1
5 .

Proof. We first examine the variations of R̃. For fixed p̃, q̃, the partial derivative of
R̃ with respect to ζ shows that the roots of P given in (4.32) determine the extrema
of R̃. Since P is a bi-quartic in ζ with real coefficients, it has at most four positive
real roots, and hence for ζ ≥ ζ0 ≥ 0, R̃ can have at most two interior maxima.
Using the change of variables χ = 2q̃ζ2, we obtain

P (ζ) = χ4 − 4χ3 + (
4
q̃
− 12p̃ − 4

p̃

q̃
+ 2p̃2 +

1
q̃2

)χ2 + (12p̃2 − 4
p̃

q̃
)χ + p̃2(p̃2 + 4p̃)

+ ζ2
0

[
−4q̃χ3 + (2 + 16q̃)χ2+(8q̃p̃ − 4q̃p̃2 − 2

q̃
− 4 + 8p̃)χ − 2p̃(p̃ + 4q̃p̃ + 2)

]
+ ζ4

0

[
4q̃2χ2 − 4q̃(1 + 4q̃)χ + 1 + 8q̃

]
.

The dominant part of P for q̃ sufficiently large, p̃q̃ sufficiently small, and for ζ0

sufficiently small, is

P0(χ) = χ4 − 4χ3 +
4
q̃
χ2 − 4p̃

q̃
χ + 4p̃3.

This polynomial has four real positive distinct roots χj , j = 1 . . . 4, ordered in
increasing order. If 1/q̃ and p̃q̃ tend to 0, we have χ1 ∼ q̃p̃2, χ2 ∼ p̃, χ3 ∼ 1/q̃,
χ4 ∼ 4. By a perturbation argument, it follows that for ζ0 sufficiently small (which
corresponds to L going to zero), P has 4 real positive distinct roots as well, with
the asymptotic behavior

ζ1 ∼ p̃√
2
, ζ2 ∼

√
p̃

2q̃
, ζ3 ∼ 1

q̃
√

2
, ζ4 ∼

√
2

q̃
.
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We now show that (4.31) has a solution (p̃∗, q̃∗) for ζ0 small. We add the as-
sumptions that ζ0 = o(p̃) as p̃ tends to 0, and we easily find asymptotic expansions
of the three terms in (4.31),

(4.34)

R0 = R̃(ζ0, p̃, q̃, ζ0) ∼ 1 − 4
ζ0

p̃
,

R2 = R̃(ζ2(p̃, q̃), p̃, q̃, ζ0) ∼ 1 − 4
√

2p̃q̃,

R4 = R̃(ζ4(p̃, q̃), p̃, q̃, ζ0) ∼ 1 − 2
√

2
q̃
.

The map (p̃, q̃) �→ (R2−R0, R4−R0) maps a domain (q0 < q̃ < p̃/2ζ2
0 , 0 < p̃q̃ < ε0)

for q0 large and ε0 small, onto a neighborhood of 0 in R2.
We now establish the asymptotic expansions for (p̃∗, q̃∗). They are easily found

by equating the expansions in (4.34). We solve

ζ0

p̃
=

√
2p̃q̃ =

1√
2q̃

,

from which we deduce

(4.35) p̃∗ ∼ ζ
4/5
0 , q̃∗ ∼ 1

2
ζ
−2/5
0 ,

and (4.33) by the change of variables. In particular, the assumption ζ0 = o(p̃) is
validated.

We now prove that for L sufficiently small, (p̃∗, q̃∗) is a strict local minimum for
the best approximation problem (4.30). The pair (p̃∗, q̃∗) is a strict local minimum if
there exists no variation (δp, δq) such that R̃(ζ, p̃∗+δp, q̃∗+δq, ζ0) < R̃(ζ, p̃∗, q̃∗, ζ0)
for ζ = ζ0, ζ2, ζ4. By the Taylor formula, it suffices to prove that there is no variation
(δp, δq), such that δp∂R̃

∂p (ζ, p̃∗, q̃∗, ζ0) + δq ∂R̃
∂q (ζ, p̃∗, q̃∗, ζ0) < 0 for ζ = ζ0, ζ2, ζ4. For

ζ0 small, expanding the arguments of R̃, we have from (4.2.2) and (4.35) the leading
order terms in the expansion. Including the next higher order terms, we find

p̃∗ ∼ ζ
4
5
0 (1 − 1

15ζ
2
5
0 ), q̃∗ ∼ 1

2ζ
− 2

5
0 (1 − 7

10ζ
2
5
0 ),

ζ2 ∼ ζ
3
5
0 (1 + 2

15ζ
2
5
0 ), ζ4 ∼ 2ζ

1
5
0 (1 + 1

10ζ
2
5
0 ).

Inserting these expansions into the expressions of the derivatives of R̃, we get

(4.36)

∂R̃
∂p (ζ0, p̃∗, q̃∗, ζ0) ∼ 4ζ

3
5
0 , ∂R̃

∂q (ζ0, p̃∗, q̃∗, ζ0) = 0,

∂R̃
∂p (ζ2, p̃∗, q̃∗, ζ0) ∼ −2ζ

3
5
0 , ∂R̃

∂q (ζ2, p̃∗, q̃∗, ζ0) ∼ −4ζ
3
5
0 ,

∂R̃
∂p (ζ4, p̃∗, q̃∗, ζ0) ∼ −1

2ζ
1
5
0 , ∂R̃

∂q (ζ4, p̃∗, q̃∗, ζ0) ∼ 4ζ
3
5
0 .

Let E be the set of vectors (δp, δq) such that δp∂R̃
∂p (ζ, p̃∗, q̃∗, ζ0)+δq ∂R̃

∂q (ζ, p̃∗, q̃∗, ζ0) <

0 for ζ = ζ0, ζ2, ζ4. We need to prove that E is empty. For small ζ0, E can be
obtained using the expansion (4.36):

(4.37) 4ζ
3
5
0 δp < 0, −2ζ

3
5
0 δp − 4ζ

3
5
0 δq < 0, −1

2
ζ

1
5
0 δp + 4ζ

3
5
0 δq < 0.

The first inequality in (4.37) implies δp < 0, while adding the second and the third
inequality in (4.37) yields δp > 0, which is a contradiction, and thus the set E is
empty.

Using the uniqueness in Theorem 2.17, we obtain (p̃∗∞, q̃∗∞) = (p̃∗, q̃∗), which
concludes the proof. �
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Figure 2. Convergence factors R(ξ, pT , qT , ξ0, L) (top curve) and
R(ξ, p∗∞, q∗∞, ξ0, L) (curve below) for an overlapping example from
the numerical section on the left, and zoom on [0, 5] showing the
equioscillation at the optimal solution on the right.

We show the convergence factors R(ξ, pT , qT , ξ0, L) and R(ξ, p∗∞, q∗∞, ξ0, L) in
Figure 2 as functions of ξ for an example with ξ0 = 1, L = 0.08 and ν = 0.2 from
the numerical section. One can see on the left the much better performance of the
optimized first order transmission conditions compared to the first order Taylor
transmission conditions, and also the equioscillation of the optimal choice on the
right, which makes the convergence factor rather small and flat, before the effects
of the exponential take over.

Theorem 4.12 gives the parameters p∗∞ and q∗∞ to choose in the first order trans-
mission conditions of the optimized Schwarz waveform relaxation algorithm at the
continuous level to get the best convergence factor, which is 1−O(L

1
5 ), and there-

fore is significantly better than the best result achievable with optimized Robin
conditions [15], which led to a convergence factor 1 − O(L

1
3 ).

In Figure 3, we show the first few iterations, at the end of the time interval, of
the classical and optimized Schwarz waveform relaxation algorithm with first order
optimized transmission conditions according to Theorem 4.12 for a model problem.
This experiment shows well that the new transmission conditions improve the con-
vergence behavior tremendously, they are very effective to transport the convected
solution from left to right across the artificial interfaces between subdomains.

As we have seen earlier, in a numerical setting, not all the frequencies are present.
We thus have to replace problem (4.29) by the min-max problem on the bounded
domain (ξ0, ξmax), which addresses the question if the maximum of the convergence
factor attained at ξ4 is relevant in a computation. Letting L = C1∆x and ∆t =
C2∆xβ , the maximum numerical frequency we can expect on the time discretization
grid leads from (4.5) to a bound on ζ, ζ0 ≤ ζ ≤ ζmax, where ζmax has the expansion

ζmax =
Lxmax

ν
= C1∆x

√√√√√
√

x4
0 +

(
4νπ

C2∆xβ

)2

+ x2
0

2
= C1

√
2π

νC2
∆x1− β

2 +O(∆x1+ β
2 ).
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Figure 3. From left to right, the iterates uk
1(x, T ) and uk+1

2 (x, T )
(dashed) at the end of the time interval t = T for k = 1, 3, 5 for
an example from the numerical section, together with the exact
solution (solid). Top row the classical Schwarz waveform relaxation
algorithm, and bottom row the optimized one.

Now ζ4 from the optimization in (4.31) satisfies for L (and thus ζ0) small

ζ4 ∼ 2ζ
1
5
0 = 2

(
ξ0C1

ν

) 1
5

∆x
1
5 .

Hence, if 1 − β
2 = 1

5 i.e., β = 8
5 and if C1 is equal to the critical value Cc =

ν
3
8 ξ

1
4
0

(
2C2
π

) 5
8 , the numerical ζmax and ζ4 from the optimization are asymptotically

at the same location. This represents the boundary between the usefulness of the
continuous optimization result (4.31) on an unbounded domain, and the optimiza-
tion on the compact set [0, ωmax]. For the latter, the analysis in Section 2.2 becomes
relevant, as we now show: by Theorems 2.8 and 2.12, problem (3.9) in P1 has a
unique solution s∗1 = p∗+4iωνq∗ for sufficiently small overlap L. By Theorem 2.14,
s∗1 has real coefficients. Therefore, (p∗, q∗) is the unique pair of real numbers such
that

(4.38) inf
p,q∈R

sup
ξ0≤ξ≤ξmax

R(ξ, p, q, ξ0, L) = sup
ξ0≤ξ≤ξmax

R(ξ, p∗, q∗, ξ0, L),

where we denote the infimum by RO1(ξ0, ξmax, L), which is also equal to
(
δ1( L

2ν )
)2.

Lemma 4.13. The solution (p∗, q∗) of the min-max problem (4.38) satisfies p∗ > 0
and q∗ ≥ 0.

Proof. By Theorems 2.2, 2.6 and 2.14, there is a unique real number p∗0 in P0 such
that

inf
p∈R

sup
ξ0≤ξ≤ξmax

R(ξ, p, 0, ξ0, 0) = sup
ξ0≤ξ≤ξmax

R(ξ, p∗0, 0, ξ0, 0),
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and the value of the infimum is δ2
0 . Furthermore, since δ0 < 1, p∗0 is positive. If

(p∗, q∗) is a solution of the min-max problem (4.30), we have

R(ξ0, p
∗, q∗, ξ0, L) =

(ξ0 − p∗)2

(ξ0 + p∗)2
e−

L
ν ξ0 ≤ max

ξ0≤ξ≤ξmax
R(ξ, p∗, q∗, ξ0, L)

≤ max
ξ0≤ξ≤ξmax

R(ξ, p∗0, 0, ξ0, L) ≤ max
ξ0≤ξ≤ξmax

R(ξ, p∗0, 0, ξ0, 0)e−
L
ν ξ0

≤ δ2
0e−

L
ν ξ0 < e−

L
ν ξ0 ,

with the notation from (2.1), which can only hold if p∗ > 0. To prove that q∗ ≥ 0,
we note that for negative q, we have for any ξ ≥ ξ0 from (4.1) R(ξ, p, q, ξ0, L) ≥
R(ξ, p,−q, ξ0, L), which can be seen by expanding the numerator of R(ξ, p, q, ξ0, L)−
R(ξ, p,−q, ξ0, L). �

Theorem 4.14 (O1 discrete convergence factor estimate with overlap). If L =
C1∆x and ∆t = C2∆xβ, for ∆x sufficiently small, we have the following asymptotic
behaviors:

(1) For β > 8
5 , or β = 8

5 and C1 > Cc,

RO1(ξ0, ξmax, L) ∼ 1−4
(

C1ξ0
ν

) 1
5

∆x
1
5 , p∗ ∼

(
ξ4
0ν
C1

) 1
5

∆x− 1
5 , q∗ ∼ 2C

3
5
1

(
ν
ξ0

) 2
5

∆x
3
5 ,

where Cc = ν
3
8 ξ

1
4
0

(
2C2
π

) 5
8 .

(2) For β = 8
5 and C1 ≤ Cc,

RO1(ξ0, ξmax, L) ∼ 1 −
(

4C1ξ0

C̃pν

)
∆x

1
5 , p∗ ∼ C̃pν

C1
∆x− 1

5 , q∗ ∼ 2 ξ2
0C3

1

C̃3
pν2 ∆x

3
5 ,

where C̃p is the unique positive root of the polynomial

P̃ (ξ) = 2ν3C2ξ
4 + C1πξ2

0ξ − 2ξ3
0C4

1

√
2πC2

ν
.

(3) Finally, for 0 < β < 8
5 , we have

RO1(ξ0, ξmax, L)∼1−2
(

27C2ξ2
0

πν

) 1
8
∆x

β
8 , p∗∼

(
2πνξ6

0
C2

) 1
8
∆x− β

8 , q∗∼
(

(2ν)5C3
2

ξ2
0π3

) 1
8
∆x

3β
8 .

Proof. We use here the notation introduced for Theorem 4.12 (see (4.29)) and
consider the min-max problem in the form

(4.39) inf
p̃∈R,q̃∈R

sup
ζ0≤ζ≤ζmax

R̃(ζ, p̃, q̃, ζ0) = sup
ζ0≤ζ≤ζmax

R̃(ζ, p̃∗, q̃∗, ζ0).

The proof of the first case is a direct consequence of Theorem 4.12 for the non-
compact case with optimal parameters (p̃∗∞, q̃∗∞), since in the first case, ζmax >
ζ4(p̃∗∞, q̃∗∞).

For the two other cases, we have asymptotically ζ3(p̃∗∞, q̃∗∞) ≤ ζmax≤ζ4(p̃∗∞, q̃∗∞),
and the proof follows the same steps as before: we first show the existence of (p̃∗, q̃∗),
such that R̃(ζ, p̃, q̃, ζ0) equioscillates at the three points ζ0, ζ2(p̃, q̃) and ζmax. We
then determine the expansions of (p̃∗, q̃∗), ζ2(p̃∗, q̃∗), deduce that (p̃∗, q̃∗) is a strict
local minimum for hl in Pr

n, and finally conclude that (p̃∗, q̃∗) = (p̃∗, q̃∗).
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We work with ζ0 as the small parameter: let Cm = C1

(
2π

νC2

)1/2( ν
C1ξ0

)1−β/2, so

that ζmax ∼ Cmζ
1−β/2
0 . To prove the second and third result of the theorem, we

need to study solutions of

(4.40) R̃(ζ0, p̃, q̃, ζ0) = R̃(ζ2(p̃, q̃), p̃, q̃, ζ0) = R̃(ζ0, p̃, q̃, ζmax)

for ζ0 small. Let R0 := R̃(ζ0, p̃, q̃, ζ0), R2 := R̃(ζ2(p̃, q̃), p̃, q̃, ζ0) and Rmax :=
R̃(ζ0, p̃, q̃, ζmax). A direct computation gives for q̃ large, and p̃q̃ and ζ0 small,

Rmax ∼ 1 − 4
[

1
2qζmax

+
ζmax

4

]
∼ 1 − 4

[
1
2q

ζ
β/2−1
0

Cm
+

Cm ζ
1−β/2
0

4

]
.

Using the expansions from (4.34),

R0 ∼ 1 − 4
ζ0

p̃
, R2 ∼ 1 − 4

√
2p̃q̃,

we see first, by the Implicit Function Theorem, as in the proof of Theorem 4.12,
that there exists a solution (p̃∗, q̃∗) to (4.40). We find their behavior at infinity by
equaling R0, R2 and Rmax, which gives the system of equations

Cmζ
4−β/2
0 ∼ C2

m

4
p̃ζ4−β

0 + p̃4, q̃ ∼ ζ2
0

2p̃3
.

For β = 8/5, the two terms on the right in the first equation are balanced, which
leads to p̃∗ ∼ Cζ

4/5
0 , where C is the unique positive root2 of Cm = (C3 + C2

m/4)C
and q̃∗ ∼ 1

2C2 ζ
−2/5
0 . For β < 8/5, the dominant term is p̃4, from which we find

p̃∗ ∼ C
1/4
m ζ

1−β/2
0 . Using the second equation, we obtain q̃∗ ∼ 1

2C
−3/4
m ζ

−1+ 3β
8

0 .
We now expand the partial derivatives of R̃ to show that, for L sufficiently small,
(p̃∗, q̃∗) is a strict local minimum for the best approximation problem (4.39). For
R0, we obtain, since ζ0 is negligible with respect to p,

∂R̃

∂p̃
(ζ0, p̃∗, q̃∗, ζ0) ∼ 4C−1/2

m ζ
−1+β/4
0 ,

∂R̃

∂q̃
(ζ0, p̃∗, q̃∗, ζ0) = 0.

For R2, we use that ζ0 � p̃∗ � ζ2 � ζmax, and ζ2q̃∗ ∼ 1
2C

−1/4
m ζ

β/8
0 , to obtain

∂R̃

∂p̃
(ζ2, p̃∗, q̃∗, ζ0) ∼ −2C−1/2

m ζ
−1+β/4
0 ,

∂R̃

∂q̃
(ζ2, p̃∗, q̃∗, ζ0) ∼ −2C1/2

m ζ
1−β/4
0 .

For Rmax, we use ζmaxq̃∗ ∼ C′

2 ζ
−β/8
0 with C ′ = C

1/4
m for β < 8/5 and C ′ = Cm/C2

for β = 8/5,

∂R̃

∂p
(ζmax, p̃∗, q̃∗, ζ0) ∼ −ζ−3

maxq̃
−2
∗ ∼ −4C−1

m C ′−2ζ
−1+3β/4
0 ,

∂R̃

∂q
(ζmax, p̃∗, q̃∗, ζ0) ∼ 2ζ−1

maxq̃
−2
∗ ∼ 8CmC ′−2ζ

1−β/4
0 .

2This is a polynomial equation of fourth degree which is actually the first fourth degree equa-
tion which has been solved by Lodovico Ferrari in 1545. Note that all equations in the text
result in polynomials of degree at most 4, and as such can be solved by radicals, using Del
Ferro/Tartaglia/Cardan formulas [3].
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After proceeding as in the proof of Theorem 4.12, we use Corollary 2.16 to conclude
that (p̃∗, q̃∗) = (p̃∗, q̃∗), and we have the asymptotic expansion

RO1(ξ0, ξmax, L) ∼ 1 − 4
ζ

β/2
0

C
1/4
m

.

Finally, note that for any 0 < β < 8/5, the five extremal points of R̃(ζ, p̃∗, q̃∗, ζ0)
behave as follows:

ζ0, ζ1∼
C

1/4
m√
2

ζ
1−β/8
0 , ζ2∼C1/2

m ζ
1−β/4
0 , ζ3∼

√
2C3/4

m ζ
1−3β/8
0 , ζmax∼Cmζ

1−β/2
0 ,

�

4.3. Summary and extension to higher dimensions. To summarize the results
of this section, and to permit an easy search of the parameters p and q to be used
in practice, we show in Table 1 an overview of the performance one can obtain with
the various choices of the parameter p and q in the transmission conditions (3.11)
of the new Schwarz waveform relaxation algorithm in one dimension.

Table 1. Summary of the asymptotic convergence factors for the
parameter choices in the first order transmission conditions in one
dimension, for ∆t = ∆xβ .

method R parameter p and q

Taylor no overlap 1 − O(
√

∆t)
{

p =
√

a2 + 4νb
q = 2ν√

a2+4νb

Optimized no overlap 1 − O(∆t
1
8 )

{
p = (2νπ(a2 + 4νb)3)

1
8 ∆t−

1
8

q = (π3(a2 + 4νb))−
1
8 (2ν)

5
8 ∆t

3
8

Taylor overlap ∆x,

{
β ≥ 1
β < 1

1 − O(
√

∆x)
1 − O(∆x

β
2 )

{
p =

√
a2 + 4νb

q = 2ν√
a2+4νb

Optimized overlap ∆x,

⎧⎨⎩
β > 8

5

β < 8
5

1 − O(∆x
1
5 )

1 − O(∆x
β
8 )

{
p = (ν(a2 + 4νb)2)

1
5 ∆x− 1

5

q = 2ν
2
5 (a2 + 4νb)−

1
5 ∆x

3
5{

p = (2νπ(a2 + 4νb)3)
1
8 ∆x− β

8

q = (2ν)
5
8 (π3(a2 + 4νb))−

1
8 ∆x

3β
8

In higher dimension, without showing the details of the derivation, the Taylor
transmission conditions lead to the parameters pT =

√
a2 + 4νb and qT = 2ν√

a2+4νb

with associated convergence factor 1 − O(∆x) in the case without overlap, and
1 − O(

√
∆x) in the case with overlap O(∆x). Even if we do not have the com-

plete analysis in this general case for the optimized problem (i.e. the equivalent
of Theorems 4.6, 4.12 and Corollary 4.10), we can still give formally the order of
magnitude of the various quantities. The optimal parameters in the transmission
conditions are for the nonoverlapping case asymptotically given by p = Cp∆x− 1

4

and q = Cq∆x
3
4 , which leads to an optimized convergence factor 1 − O(∆x

1
4 ) of

the associated optimized Schwarz waveform relaxation algorithm. The constants
Cp and Cq depend on the problem parameters and the spatial dimension N ≥ 2
of the problem (3.1), as shown in Table 2. In the table, ζ represents the smallest
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positive root of the polynomial

P (ζ) = 3π2ν2(8ν − 1)ζ3 − 4π4(1 − 4ν − 100ν2 + 320ν3)ζ2

+128π6(48ν3 + 3 − 12ν − 10ν2)ζ − 1024π8(2ν − 1)2,

w =
√

π2ν2(N − 1)2 + 1, ν̄2 is the root of the equation

ν =
1
2
((a2 + 4νb)(N − 1))

1
4 − 1

8
((a2 + 4νb)(N − 1))

1
2 ,

which leads to the constants

ν̄1 =
√

N − 1
b
√

N − 1 +
√

b2(N − 1) + 16a2

32
,

ν̄2 ∼
a2

√
a
√

N − 1(4 −
√

a
√

N − 1)

2(4a2 − 2b
√

a
√

N − 1 + ab
√

N − 1)
,

ν̄3 =
1
32

π(N − 1),

ν̄4 =
π(N−1)

(
π5(N−1)5+80π3(N−1)3+512π(N−1)+

√
(3π2(N−1)2+16)(π2(N−1)2+16)4

)
16(π6(N−1)6+56π4(N−1)4+640π2(N−1)2+2048) ,

ν̄5 = 4096−2048π(N−1)+256π2(N−1)2+128π3(N−1)3−16π4(N−1)4−π6(N−1)6+
√

d
1024π3(N−1)3 ,

d = (π(N−1)−4)(π3(N−1)3 + 4π2(N−1)2 + 48π(N−1)−64)(π2(N−1)2+16)4.

Finally, ν̄6 = ν̄6(N) is defined by equalizing the constant Cp (or Cq) of the first
two cases of β = 2 in Table 2, and is shown graphically, together with the other
constants, in Figure 4.

0

0.2

0.4

0.6

0.8

2 4 6 8 10

ν

ν̄3

ν̄4

ν̄5

ν̄6

N
Figure 4. Regions in the N−ν plane where the different constants
Cp and Cq of the optimized parameters in dimension N ≥ 2 apply
according to Table 2.

In the case with overlap, the optimal parameters in the transmission conditions
are asymptotically given by p = Cp∆x− 1

5 and q = Cq∆x
3
5 , where the constants Cp

and Cq depend on the problem parameters, as shown in Table 3. The optimized
convergence factor of the associated algorithm with this choice is given by 1 −
O(∆x

1
5 ). It is interesting to note that in the case with overlap, the results are

independent of the dimension for N ≥ 2.
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Table 2. Summary of the constants in the asymptotically opti-
mized parameters p = Cp∆x− 1

4 and q = Cq∆x
3
4 in dimension

N ≥ 2 in the nonoverlapping case, for ∆t = ∆xβ , β = 1, 2. The
constants ν̄1 up to ν̄6, ζ and w are defined in the text.

β ν Cp and Cq{
ν̄1 ≤ 1

2 and ν > 1
2

ν̄1 > 1
2 and ν > ν̄2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cp =

(
νπ(a2+4νb)

3
2
√

N−1
2

) 1
4

Cq =
(

8ν

π3(N−1)
3
2
√

a2+4νb

) 1
4

1 ν̄1 < ν ≤ 1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cp =

(
π
√

(a2+4νb)3(N−1)

4

) 1
4

Cq =
(

4

π3
√

(a2+4νb)(N−1)3

) 1
4

{
ν̄1 ≤ 1

2 and ν ≤ ν̄1

ν̄1 > 1
2 and ν ≤ ν̄2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cp =

(
8νπ(a2+4νb)2(N−1)

(8ν+
√

(a2+4νb)(N−1))2

) 1
4

Cq =
(

128ν

π3(N−1)(8ν+
√

(a2+4νb)(N−1))2

) 1
4

{
ν > 1

2 and N ≤ 5
ν > ν̄6 and N ≥ 6

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cp =

(
ν3(a2+4νb)3(ζ4+16π2)2

2(
√

ν2ζ4+π2+νζ2)(ζ2+4
√

ν2ζ4+π2−4νζ2)2

)1
8

Cq =
(
8(
√

ν2ζ4+π2+νζ2)3(ζ2+4
√

ν2ζ4+π2−4νζ2)6

ν(a2+4νb)(ζ4+16π2)6

)1
8

1
2 < ν ≤ ν̄6 and N ≥ 6

⎧⎪⎨⎪⎩
Cp =

(
πν3(a2+4νb)3(π2(N−1)2+16)2

2(π(N−1)(1−4ν)+4w)2(νπ(N−1)+w)

) 1
8

Cq =
(

8(π(N−1)(1−4ν)+4w)6(νπ(N−1)+w)3

π3ν(a2+4νb)(π2(N−1)2+16)6

) 1
8

2 ν̄5 < ν ≤ 1
2 and 2 ≤ N ≤ 5

⎧⎨⎩Cp = (2νπ(a2 + 4νb)3)
1
8

Cq =
(

1
2048(νπ)3(a2+4νb)

) 1
8

{
ν̄4 < ν ≤ ν̄5 and 2 ≤ N ≤ 5
ν̄4 < ν ≤ 1

2 and N ≥ 6

⎧⎪⎨⎪⎩
Cp =

(
πν(a2+4νb)3(π2(N−1)2+16)2

8(π(N−1)(1−4ν)+4w)2(νπ(N−1)+w)

) 1
8

Cq =
(

2(π(N−1)(1−4ν)+4w)6(νπ(N−1)+w)3

π3ν3(a2+4νb)(π2(N−1)2+16)6

) 1
8

ν ≤ ν̄4 and N ≥ 2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cp =

(
π
√

(N−1)(a2+4νb)3

4

) 1
4

Cq =
(

4

π3
√

(N−1)3(a2+4νb)

) 1
4
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Table 3. Summary of the constants in the optimized asymptotic
parameters p = Cp∆x− 1

5 and q = Cq∆x
3
5 for the case with overlap

L = ∆x in dimension N ≥ 2 for ∆t = ∆xβ .

β ν Cp Cq

1 ν > 1
2 ( 1

4ν(a2 + 4νb)2)
1
5

(
64ν2

(a2+4νb)

) 1
5

1 ν ≤ 1
2

(
(a2+4νb)2

8

) 1
5

(
16

a2+4νb

) 1
5

2 ν > 1
2 (2ν2(a2 + 4νb)2)

1
5

(
1

8ν(a2+4νb)

) 1
5

2 1
8 < ν ≤ 1

2 (ν(a2 + 4νb)2)
1
5

(
1

32ν3(a2+4νb)

) 1
5

2 ν ≤ 1
8

(
(a2+4νb)2

8

) 1
5

(
16

a2+4νb

) 1
5

5. Well-posedness and convergence of the Schwarz waveform

relaxation algorithms

For the analysis in this section, we rely on the theory of weak solution in Sobolev
spaces by a Galerkin method; see [2] and [29]. A weak solution of (3.1) is defined to
be a u ∈ C(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)), such that, for any v in H1(Ω), we have
(5.1)
d

dt
(u, v)+

1
2
(
((a · ∇)u, v)−((a · ∇)v, u)

)
+ν(∇u,∇v)+b(u, v) = (f, v), in D′(0, T ),

where (·, ·) denotes the inner product in L2(Ω). Problem (5.1) is completed by the
initial condition

(5.2) u(x, 0) = u0(x), in Ω.

The next two theorems show the well-posedness and the regularity of the problem.

Theorem 5.1 (Existence and uniqueness). Let Ω = RN . If the initial value u0 is
in L2(Ω), and the right-hand side f is in L2(0, T ; L2(Ω)), then there exists a unique
weak solution u of (5.1), (5.2) in L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)).

With the transmission conditions given by Bj in (3.11), we will need more reg-
ularity in our analysis, in the anisotropic Sobolev spaces defined in [29] by

Hr,s(Ω × (0, T )) = L2(0, T ; Hr(Ω)) ∩ Hs(0, T ; L2(Ω)).

Theorem 5.2. Let Ω = R
N , and m be an integer. If the initial value u0 is

in H2m+1(Ω), and the right-hand side f is in H2m,m(Ω × (0, T )), then the weak
solution u is in H2(m+1),m+1(Ω × (0, T )).

For the proofs of Theorems 5.1 and 5.2, and the trace theorems in Hr,s, we refer
to [29].

5.1. Well-posedness of the algorithm. We first need to study the well-posedness
of the subdomain problems with the new boundary conditions. As we saw in the
previous section, in order for the convergence factor to be smaller than 1 in mod-
ulus, we need p > 0, q ≥ 0. The special case where q = 0 can be found in [31],
and hence, in the sequel, we assume q �= 0. We show here only the analysis for
the subproblem on Ω1, the results for Ω2 can be found similarly by symmetry.
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The boundary of Ω1 is ΓL = {L} × RN−1. Using the boundary operators S and
B1 defined in (3.11), the problem consists of finding v in an adapted subspace of
C(0, T ; L2(Ω1)) ∩ L2(0, T ; H1(Ω1)) such that

(5.3)
Lv = f in Ω1 × (0, T ),

v(·, 0) = u0 in Ω1,
B1v = gL on ΓL × (0, T ).

For the variational formulation, we introduce for any real number s the space

Hs
s (Ω1) = {v ∈ Hs(Ω1), v |ΓL

∈ Hs(ΓL)},
where · |ΓL

denotes the trace operator on ΓL. The scalar product in L2(ΓL) is
denoted by (·, ·)ΓL

. The variational formulation is to find v ∈ H1
1 such that,

∀w ∈ H1
1 (Ω1),

d

dt

[
(v, w) + 2q(v, w)ΓL

]
+

1
2
(
((a · ∇)v, w) − ((a · ∇)v, w)

)
+ ν(∇v, ∇w) + b(v, w)

+
p

2
(v, w)ΓL

+ 2qν((c · ∇y)v, w)ΓL
+ 2qν2(∇yv, ∇yw)ΓL

= (f, v), in D′(0, T ).

Theorem 5.3. For p > 0 and q > 0, if f is in L2(0, T, L2(Ω1)), u0 is in H1
1 (Ω1),

and gL is in L2((0, T )×ΓL), then the subdomain problem (5.3) has a unique solution
v in L2(0, T, H2

2 (Ω1)) ∩ H1(0, T ; H0
0 (Ω1)).

Proof. The proof is based on a priori estimates: multiplying equation (5.3) by v
and integrating in space, and then using the boundary condition, we obtain
1
2

d

dt

[
‖v(·, t)‖2

L2(Ω1)
+ 2q‖v(·, t)‖2

L2(ΓL)

]
+ ν‖∇v(·, t)‖2

L2(Ω1)
+ b‖v(·, t)‖2

L2(Ω1)

+
p

2
‖v(·, t)‖2

L2(ΓL) + 2qν2‖∇yv(·, t)‖2
L2(ΓL) = (f(·, t), v(·, t)) + ν(g(·, t), v(·, t))ΓL

.

On the right-hand side we use the Cauchy-Schwarz inequality together with the
inequality

(5.4) αβ ≤ η

2
α2 +

1
2η

β2, for all α, β ∈ R, and η > 0.

If b = 0, we need in addition the Gronwall Lemma. We obtain by integration in
time a bound for v, with a constant C depending on the physical constants b, ν,
the parameters p and q, and the length of the time interval T :

‖v‖2
L∞(0,T,H0

0 (Ω1))
+ ‖v‖2

L2(0,T ;H1
1 (Ω1))

≤ C(‖f‖2
L2(0,T,L2(Ω1))

+ ‖g‖2
L2(0,T,L2(ΓL))).

(5.5)

To get further estimates, we multiply equation (5.3) by ∂tv, integrate in space, and
use the boundary condition to obtain
1
2

d
dt

[
b‖v(·, t)‖2

L2(Ω1)
+ν‖∇v(·, t)‖2

L2(Ω1)
+ p−a

2 ‖v(·, t)‖2
L2(ΓL)+qν2‖∇yv(·, t)‖2

L2(Γ)

]
+ ‖∂tv(·, t)‖2

L2(Ω1)
+ 2q‖∂tv(·, t)‖2

L2(ΓL) = (f(·, t), ∂tv(·, t)) + (g(·, t), ∂tv(·, t))ΓL

− ((a · ∇)v(·, t), ∂tv(·, t)) + 2qν((c · ∇y)v(·, t), ∂tv(·, t))ΓL
.

Using the Cauchy-Schwarz inequality together with (5.4) as before, integrating in
time and using (5.5), we obtain

‖v‖2
L∞(0,T,H1

1 (Ω1))
+ ‖∂tv‖2

L2(0,T ;H0
0 (Ω1))

≤ C ′(‖f‖2
L2(0,T,L2(Ω1))

+ ‖g‖2
L2(0,T,L2(ΓL))),
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where the constant C ′ depends also on a. We complete the result by using equation
(5.3), which gives

∆v ∈ L2(0, T ; L2(Ω1)), ∂xv − 2qν∆yv ∈ L2(0, T ; L2(ΓL)).

A regularity theorem proved in [39] asserts that this implies v ∈ L2(0, T ; H2
2 (Ω1)),

and gives a bound for the norm in L2(0, T ; H2
2 (Ω1)). Now we have altogether

a bound for v in L2(0, T, H2
2 ) ∩ H1(0, T ; H0

0 (Ω1)). This first proves uniqueness.
Using a Galerkin method, we obtain the existence result. �

The previous result suffices to define the algorithm in the nonoverlapping case.
The overlapping case however requires more regularity.

Theorem 5.4. For p > 0 and q > 0, let f be in H2,1(Ω1× (0, T )), u0 be in H3(Ω),
and gL be in H

3
2 , 3

4 (ΓL × (0, T )), with the compatibility condition

gL(·, 0) = ∂xu0(L, ·) +
p − a

2ν
u0(L, ·)

+ 2q(ν∂xxu0(L, ·) − a∂xu0(L, ·) − bu0(L, ·) + f(L, ·, 0)).
(5.6)

Then the solution v of the subdomain problem (5.3) is in H4,2(Ω1 × (0, T )). Fur-
thermore, the following compatibility property at x = 0 is satisfied:

lim
t→0+

B2v(0, ·, t) = ∂xu0(0, ·) − p + a

2ν
u0(0, ·)

− 2q(ν∂xxu0(0, ·) − a∂xu0(0, ·) − bu0(0, ·) + f(0, ·, 0)).

Proof. With the assumptions in the theorem, the solution u of (3.1) is indeed
in H4,2(Ω1 × (0, T )) by Theorem 5.2, and by the Trace Theorem in [29], g̃L =
B1u(L, ·, ·) is in H

3
2 , 3

4 (ΓL × (0, T )), and satisfies the compatibility condition (5.6).
Defining h = gL − g̃L, e = v − u is the solution of

(5.7)
Le = 0 in Ω1 × (0, T ),

e(·, 0) = 0 in Ω1,
B1e = h on ΓL × (0, T ).

Since h is in H
3
2 , 3

4 (ΓL × (0, T )), and h(·, 0) = 0, we can extend it in H
3
2 , 3

4 (ΓL ×R)
by h̃ vanishing on Γ × R−. Then we extend in time the first equation and the
boundary condition in (5.7) to ΓL × R. The solution ẽ of the extended problem
is an extension of e. We finally Fourier transform the resulting equation in time
and y . By (3.4), the Fourier transform of e is given in terms of F h̃, the Fourier
transform of h̃, by

(5.8) F ẽ(η, ω) =
2ν

f(z) + s(z)
F h̃(η, ω)e

a+f(z)
2ν (x−L),

with z = i(ω + c · η) + ν|η|2. We introduce τ = ω + c · η. With the definition of
f , and using that p > 0, q > 0, we obtain

Lemma 5.5. There exist positive constants D, D′ such that
2ν∣∣f(z) + s(z)

∣∣ ≤ D(τ2 + |η|4)−1/2,

ν

a + �f(z)
≤ D′(τ2 + |η|4)−1/4,
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For large τ and η, we have

|r+|2 ∼ 2(τ2 + |η|4)1/2.

From (5.8), for the norm of the second derivative of e in time, we obtain

‖∂2
t ẽ‖2

L2(Ω1×R) =
∫ L

−∞

∫
Rn−1

∫
R

4ν2ω4∣∣f(z) + s(z)
∣∣2 |F h̃(η, ω)|2e2�r+(x−L)dx dη dω,

or after integration in the x variable,

‖∂2
t ẽ‖2

L2(Ω1×R) =
∫

Rn−1

∫
R

4ν2ω4∣∣f(z) + s(z)
∣∣2 ν

a + �f(z)
|F h̃(η, ω)|2dη dω.

We have by Lemma 5.5, for large τ and η,
4ν2ω4∣∣f(z)+s(z)

∣∣2 ν
a+�f(z) ≤ D2D′(τ − c · η)4(τ2 + |η|4)5/4

= D2D′ (τ−c · η)4

(τ2+|η|4)2 (τ2 + |η|4)3/4.

Since h̃ is in H
3
2 , 3

4 (ΓL × R), we obtain

‖∂2
t ẽ‖2

L2(Ω1×R2) ≤ D′′‖h̃‖2

H
3
2 , 3

4 (ΓL×R)
.

For the spatial derivatives, we proceed as before, and we have for j + k ≤ 4,

‖∂k
x∂j

yl
ẽ‖2

L2(Ω1×R) =
∫

Rn−1×R

4ν2r2k
+ η2j

l∣∣f(z) + s(z)
∣∣2 ν

a + �f(z)
|F h̃(ω)|2dη dω.

From the bound on the integrand for large τ and η,

4ν2r2k
+ η2j

l∣∣f(z) + s(z)
∣∣2 ν

a + �f(z)
≤ D2D′2k(τ2 + |η|4)(k+j)/2,

we conclude as before that all space derivatives up to order 4 are square integrable,
and finally we have

‖ẽ‖H4,2(Ω1×R) ≤ D̄‖h̃‖
H

3
2 , 3

4 (ΓL×R)
.

Taking the infimum over all extensions h̃ gives

‖e‖H4,2(Ω1×(0,T )) ≤ C‖h‖
H

3
2 , 3

4 (ΓL×(0,T ))
.

Similarly, we see that

‖S ẽ(0, ·, ·)‖2

H
3
2 , 3

4 (ΓL×R)

=
∫

Rn−1×R

4ν2|z|2(1 + ω2)
3
2 (1 + |η|2)3∣∣f(z) + s(z)

∣∣2 e−2�r+L |F h̃(ω)|2dη dω ,

and therefore Se(0, ·) is in H
3
2 , 3

4 (ΓL × (0, T )), with

‖Se‖2

H
3
2 , 3

4 (ΓL×(0,T ))
≤ Ce−

aL
ν ‖h‖

H
3
2 , 3

4 (ΓL×(0,T ))
.

For the compatibility property, since h̃ is supported in ΓL × R+, F h̃ is analytic in
the half-plane �ω < 0, and by (5.8) and the Paley-Wiener Theorem [36], ẽ(0, ·, ·) is
supported in ΓL ×R+ as well. Since e is in H4,2(Ω1 × (0, T )), ∂xe is in H

5
2 , 5

4 (ΓL ×
(0, T )), and hence all quantities in B2e are continuous on [0, T ], and therefore
limt→0+ B2e(0, ·, t) = 0, which completes the proof of the theorem. �



A HOMOGRAPHIC BEST APPROXIMATION PROBLEM. . . 217

We are now ready to show the well-posedness of the algorithm: let gL be given
on ΓL and let g0 be given on Γ0 = {0}×RN−1, and let p > 0 and q > 0. We define
for k = 1, 2, . . . the iterations by algorithm (3.2), initialized by

(5.9) B1u
1
1=gL on ΓL × (0, T ), B2u

1
2=g0 on Γ0 × (0, T ).

Consider first the nonoverlapping case: L = 0. Then it is easy to obtain:

Theorem 5.6. Let L = 0, gL and g0 be given in L2(Rn−1 × (0, T )), p > 0 and
q > 0. Then, for k = 1, 2, . . ., the algorithm (3.2) with the transmission operators
given in (3.11), initialized with (5.9) defines a unique sequence of iterates (uk

1 , uk
2)

in L2(0, T, H2
2 (Ω1)) ∩ H1(0, T ; H0

0 (Ω1)) × L2(0, T, H2
2 (Ω2)) ∩ H1(0, T ; H0

0 (Ω2)).

In the overlapping case, we need to use the compatibility condition in Theorem
5.4:

Theorem 5.7. Let L > 0, p > 0 and q > 0, let f be in H2,1(Ω1 × (0, T )), u0 in
H3(Ω), and let g0 and gL be given in H

3
2 , 3

4 (Rn−1 × (0, T )), with the compatibility
conditions

gL(·, 0) = ∂xu0(L, ·) +
p − a

2ν
u0(L, ·)

+ 2q(ν∂xxu0(L, ·)−a∂xu0(L, ·) − bu0(L, ·)+f(L, ·, 0)),

g0(·, 0) = ∂xu0(0, ·) − p + a

2ν
u0(0, ·)

− 2q(ν∂xxu0(0, ·) − a∂xu0(0, ·)−bu0(0, ·)+f(0, ·, 0)).

Then, for k = 1, 2, . . ., the algorithm (3.2) with the transmission operators given
in (3.11), initialized by (5.9) defines a unique sequence of iterates (uk

1 , uk
2) in

H4,2(Ω1 × (0, T )) × H4,2(Ω2 × (0, T )).

5.2. Convergence of the algorithm.

Theorem 5.8. For p > 0 and q > 0, under the conditions of existence of the
algorithm, the sequence (uk

1 , uk
2) converges to (u |Ω1 , u |Ω2).

Proof. We return to the analysis in Section 3, which has been validated by the
previous theorems. The Fourier transforms in time and y of the errors satisfy

ê2k+1
1 (x, η, ω) = ρkê1

1(x, η, ω), ê2k
1 (x, η, ω) = ρk−1ê1

2(x, η, ω),

ê2k+1
2 (x, η, ω) = ρkê1

2(x, η, ω), ê2k
2 (x, η, ω) = ρk−1ê1

1(x, η, ω).

For p and q strictly positive, we have |ρ| < 1 for all (ω, η) in (R × Rn−1). By the
Lebesgue Theorem, we conclude the proof. �

Remark 5.9. The results in this section generalize the analysis from [31] to the
case when the operator S contains the transverse Laplace operator ∆y. In [31],
however, the proof of convergence in the nonoverlapping case is based on clever
energy estimates, and extends to variable coefficients.

6. Numerical results

We perform in this section one-dimensional numerical experiments to measure
the convergence factors of the numerical implementation of the various Schwarz
waveform relaxation algorithms analyzed at the continuous level in this paper. We
use the parabolic model problem (3.1) on the domain Ω = (0, 6). We impose
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homogeneous boundary conditions, u(0, t) = 0 and u(6, t) = 0, and use various
initial conditions u(x, 0), x ∈ Ω.

6.1. Experiments with two subdomains. We first use a decomposition of the
domain Ω into the two subdomains Ω1 = (0, L2) and Ω2 = (L1, 6), L1 ≤ L2, and
hence L = L2 − L1. We denote by one iteration here a double iteration of the
respective algorithms, since for two subdomains, one can perform all the iterations
in an alternating fashion and thus obtain the even iterates on one subdomain and
the odd ones on the other, without having to compute the remaining ones. We show
only results of numerical experiments for the algorithm with overlap, since with
overlap, we can compare the results to the classical Schwarz waveform relaxation
algorithm with Dirichlet transmission conditions, which does not converge without
overlap. We choose for the problem parameters ν = 0.2, a = 1, b = 0. We discretize
(3.1) using an upwind finite difference discretization in space with mesh parameter
∆x = 0.02, and a backward Euler discretization in time, with time step ∆t = 0.005.
We choose L1 = 2.96 and L2 = 3.04, which means the overlap is L = 0.08, and we
compute the numerical solution in the time interval [0, T = 2.5]. Using as initial
condition

u(x, 0) = e−3(1.2−x)2 ,

we have already shown in Figure 3 for this example the first few iterations at the
end of the time interval T = 2.5, where we started the algorithm with a zero initial
guess, both for the classical and the optimized waveform relaxation algorithm. In
Figure 5 on the left, one can see how the error decreases as the iteration progresses
for the classical algorithm, the one with first order Taylor conditions, p = pT = 1
and q = qT = 0.4, and with optimized parameters, which were found to be p =
p∗ = 1.366061845 and q = q∗ = 0.1363805228 using Theorem 4.12. By error we
denote here the discrete L2 norm in time of the difference between the converged
solution and the current iteration at the interface of Ω1. It is important to realize
that the computational cost per iteration of all these algorithms is the same: a
change in the transmission conditions does not affect the local solver cost on each
subdomain.

In Figure 5 on the right, we performed five iterations of the optimized Schwarz
waveform relaxation algorithm with first order transmission conditions, varying the
free parameters p and q, and show the base 10 logarithm of the error obtained. We
indicate by a star the optimal parameters p∗, q∗ predicted by Theorem 4.12. This
shows that the continuous analysis predicts the optimal choice very well.

To illustrate the asymptotic results given in Theorem 4.4 for the Taylor condi-
tions and in Theorem 4.14 for the optimized ones, we choose the same problem
parameters as before, but start now with a coarser mesh both in space and time,
∆x = 0.04 and ∆t = 0.01, and we fix the overlap to be L = ∆x. We then run
the optimized Schwarz waveform relaxation algorithm with first order Taylor and
optimized transmission conditions until the error becomes smaller than 10−14, and
count the number of iterations. We repeat this experiment dividing ∆x and ∆t by
2 several times. This corresponds for the first order Taylor conditions to the case in
Theorem 4.4 where the convergence factor should behave like 1−O(

√
∆x), and for

the first order optimized conditions to the case in Theorem 4.14 where the conver-
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Figure 5. Left: convergence curves of the classical Schwarz wave-
form relaxation algorithm with Dirichlet transmission conditions
compared to the same algorithm with the new first order transmis-
sion conditions. Right: the error obtained running the algorithm
with first order transmission conditions for 5 steps and various
choices of the free parameters p and q, and indicated by a star the
choice p∗, q∗ predicted by the theory.

gence factor should behave like 1 − O(∆x
1
8 ), almost independent of ∆x. Figure 6

shows on the left the results obtained from these experiments. One can see that
the asymptotic analysis predicts very well the numerical behavior of the algorithms.
Next, we perform a similar experiment, starting with the same values for ∆x and
∆t, but now we divide ∆x by 2 each time and ∆t only by

√
2 (such a refinement is

admissible, since our scheme is implicit), which implies ∆t = O(
√

∆x). While this
does not change anything for the classical algorithm, which still has the same bad
convergence factor 1 − O(∆x), for the algorithm with Taylor first order transmis-
sion conditions now case 3 of Theorem 4.4 applies, and the algorithm should show
the much better convergence factor 1 − O(∆x

1
4 ). The optimized Algorithm has

according to Theorem 4.14 now the even better convergence factor 1 − O(∆x
1
16 ),

virtually independent of ∆x. In Figure 6 on the right, one can clearly see that this
is the case. The algorithm has different asymptotic convergence factors with the
same overlap, depending on the discretization in time, as predicted.

6.2. Experiments with eight subdomains. We now show experiments which
indicate that the results we obtained for two subdomains are also relevant for many
subdomains. Using the same model problem as before, we now decompose the
domain into eight subdomains. In Figure 7, we show in the top row the first 3
iterations of the classical Schwarz waveform relaxation algorithm, and below the
same iterations for the algorithm with optimized first order transmission conditions.
This clearly shows how important the transmission conditions are in the many
subdomain case. We show the corresponding convergence factors in Figure 8 on
the left, and on the right we perform the same asymptotic experiments as in Figure
6 on the left, but now with eight subdomains, which indicates that the results of
Theorems 4.4 and 4.14 also hold for more than two subdomains.
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Figure 7. From left to right, the first, second and third iterates
uk

j (x, T ), j = 1, . . . , 8 (dashed) at the end of the time interval
t = T together with the exact solution (solid) for the same model
problem as before with eight subdomains: top row the classical
and bottom row the optimized algorithm.
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Figure 8. Left: convergence factor comparison for the eight sub-
domain case. Right: Asymptotic behavior as the mesh is re-
fined with an overlap L = ∆x for the eight subdomain case, with
∆t = O(∆x), together with the predicted rates from the two sub-
domain analysis.

7. Conclusions

While zeroth order transmission conditions were optimized by direct analysis in
[15] for an optimized Schwarz waveform relaxation algorithm applied to advection
reaction diffusion problems, the solution of the homographic best approximation
problem in this paper allowed us to find optimized first order transmission condi-
tions, which lead to even better performance of the algorithm, at the same cost per
iteration.

Similar homographic best approximation problems also occur in the design of
optimized Schwarz methods for steady problems, and so far these problems have
always been treated by direct analysis; see for example [26, 28, 27, 9] for advection
diffusion problems, [7, 6, 19, 16] for indefinite Helmholtz problems, and [12] for the
positive definite Helmholtz case. Our results here also apply to homographic best
approximation problems from the steady case, and will thus be useful for the further
development of optimized Schwarz methods; we currently study the application to
indefinite Helmholtz problems.
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