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ON THE CONSTANT IN THE MERTENS PRODUCT FOR
ARITHMETIC PROGRESSIONS. II: NUMERICAL VALUES

A. LANGUASCO AND A. ZACCAGNINI

Abstract. We give explicit numerical values with 100 decimal digits for the
constant in the Mertens product over primes in the arithmetic progressions
a mod q, for q ∈ {3, . . . , 100} and (a, q) = 1.

1. Introduction

In our recent paper [6] we found a new expression for the constant C(q, a) defined
implicitly by

(1) P (x; q, a) =
∏
p≤x

p≡a mod q

(
1 − 1

p

)
=

C(q, a)
(log x)1/ϕ(q)

(1 + o(1))

as x → +∞, where, here and throughout the present paper, q ≥ 3 and a are fixed
integers with (a, q) = 1, p denotes a prime number, and ϕ(q) is the usual Euler
totient function. When q ∈ {1, 2} the value of C(q, a) can be deduced from the
classical Mertens Theorem. In particular, we proved that

(2) C(q, a)ϕ(q) = e−γ
∏
p

(
1 − 1

p

)α(p;q,a)

,

where α(p; q, a) = ϕ(q) − 1 if p ≡ a mod q and α(p; q, a) = −1 otherwise, and γ is
the Euler constant. The infinite product is convergent, though not absolutely, by
the Prime Number Theorem for Arithmetic Progressions.

In our paper [7] we gave a simpler proof of (2) and proved that the constants
C(q, a) satisfy some interesting identities but, unfortunately, these are not suitable
for numerical computations. Here we derive further identities, involving Dirichlet L-
functions, that enable us to compute numerically the values of C(q, a) with many
digits for comparatively small q. Details of these identities are given in §2, and
the results of our numerical computations are collected in §3; some sample values,
truncated to 40 decimal digits, are shown in Tables 1–3. Finch [5] has done some
numerical work in the case q ∈ {3, 4}.

The problem of computing the values of constants defined by means of products
of the form

(3)
∏
p>A

(
1 − f1(p)

f2(p)

)
,
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where f1 and f2 are monic polynomials in Z[x] with deg(f2) ≥ deg(f1) + 2, is very
common in number theory, the most famous instance being probably the twin-prime
constant. The first step is writing it as an infinite product of powers of “partial
zeta functions” (see equation (4) below), which converges provided that A is larger
than some explicit bound. A systematic treatment of this problem can be found
in Moree’s paper [9], whereas earlier treatments of individual cases were given by
Wrench [11] and by Lindqvist and Peetre [8], for instance. In a similar fashion,
one should be able to evaluate a product such as (3), where the condition p > A is
replaced by p ≡ a mod q: for example, see §2.3 of the book by Finch [4] for the case
of the Landau–Ramanujan constant. This is essentially what happens for C(q, a),
given identity (2).

2. Theoretical framework

In this section we concentrate on the numerical computation of the values of the
constant C(q, a) for comparatively small values of q, starting from our formula (2),
and give the theoretical framework for the results in §3. We adhere to the notation
in the books by Henri Cohen [1, 2].

We will use the following convention: for any real positive constant A and for
any Dirichlet L-function, we write

(4) LA(χ, s) =
∏
p>A

(
1 − χ(p)

ps

)−1

,

and do similarly for other Euler products. We want to compute

ϕ(q) log C(q, a) = −γ + log
q

ϕ(q)
−

∑
χ mod q
χ �=χ0

χ(a)
∑
m≥1

1
m

∑
p

χ(p)
pm

.

Notice that the last sum over p is ∼ χ(2)2−m when m is large. We compute the
sum over p by Möbius inversion. Let A be a fixed positive constant. Then∑

p

χ(p)
pm

=
∑

p≤Aq

χ(p)
pm

+
∑
k≥1

µ(k)
k

log(LAq(χk, km)).

Therefore

ϕ(q) log C(q, a) = − γ + log
∏

p≤Aq

(
1 − 1

p

)α(p;q,a)

−
∑

χ mod q
χ �=χ0

χ(a)
∑
m≥1

1
m

∑
k≥1

µ(k)
k

log
(
LAq(χk, km)

)
.

(5)

Grouping the terms with the same value of km, we see that the last part is∑
m≥1

1
m

∑
k≥1

µ(k)
k

log
(
LAq(χk, km)

)
=

∑
n≥1

1
n

∑
k|n

µ(k) log
(
LAq(χk, n)

)
.

Notice that the Riemann zeta function is never computed at s = 1 in (5), since
km = 1 implies k = 1, and this in its turn implies χk = χ = χ0. For n > 1 we use

(6)
∣∣log

(
LAq(χk, n)

)∣∣ ≤ 1
(n − 1)(Aq)n−1

.
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This inequality is a consequence of the following lemma. We remark that a stronger
result is valid for small n, but the simple bound below suffices for our applications.

Lemma 1. Let χ mod q be any character and n ≥ 2 be an integer. If B ≥ 1 is an
integer, then ∣∣log

(
LB(χ, n)

)∣∣ ≤ B1−n

n − 1
.

Proof. By the triangle inequality,∣∣log
(
LB(χ, n)

)∣∣ =
∣∣∣∑
p>B

∑
m≥1

χm(p)
mpmn

∣∣∣ ≤ ∑
p>B

∑
m≥1

1
mpmn

≤
∑
k>B

1
kn

≤
∫ +∞

B

dt

tn
=

B1−n

n − 1
,

as required. �

We have thus reduced the task of the computation of log(C(q, a)) to computing
log

(
LAq(χk, n)

)
to 100 decimal places, say. In what follows we denote by χ a

generic Dirichlet character mod q and by n ≥ 1 an integer.
First step: We write

LAq(χ, n) = L(χ, n)
∏

p≤Aq

(
1 − χ(p)

pn

)

for a convenient value of A.
Second step: Reduction to primitive characters. Assume now that χ mod q is

induced by χf mod f , where f is the conductor of χ. Then we have the identity

L(χ, n) = L(χf , n)
∏
p|q

(
1 − χf (p)

pn

)
.

In particular, we recall that if χ = χ0 mod q, then

L(χ0, n) = ζ(n)
∏
p|q

(
1 − 1

pn

)
.

Third step: First case. Now assume that χ is a primitive character modulo f
and that χ(−1) = (−1)n. Then, by Proposition 10.2.4 of Cohen [2], we have the
explicit formula

(7) L(χ, n) =
1
2
(−1)n−1+(n+e)/2W (χ)

√
f
(2π

f

)n Bn(χ)
n!

,

where W (χ) denotes the root number of χ (see Definition 2.2.25 in [1]), e = 0 if χ
is even and e = 1 if χ is odd, and Bn(χ) denotes the χ-Bernoulli number which,
in its turn, is defined by means of the n-th Bernoulli polynomial Bn(x) (see [2],
Definition 9.1.1) as follows:

Bn(χ) = fn−1

f−1∑
a=0

χ(a)Bn

(a

f

)
.

This definition is valid both for primitive and imprimitive characters. This is the
last identity of Proposition 9.4.5 in Cohen [2].
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Third step: Second case. If χ is non-principal and χ(−1) = (−1)n+1, there are
two possibilities.

• Use the χ-Euler-MacLaurin summation formula (the number of steps is
proportional to q, but all terms are elementary); see Cohen [2], Corol-
lary 9.4.18.

• Use the functional equation, which is valid if χ is primitive: this would
take a smaller number of steps, of the order � √

q log q, but it needs the
computation of the incomplete Γ-function.

For q small, we use the Euler-MacLaurin summation formula. When computing
L(χ, n) with n large, the functional equation does not take into account the fact
that L(χ, n) = 1 + χ(2)2−n+ very much smaller terms.

When using the Euler-MacLaurin formula we take a multiple N of q and for

(s) > 1 write

L(χ, s) =
∑
r<N

χ(r)
rs

+ B0(χ)
N1−s

s − 1

− 1
Ns

T∑
j=1

(−1)j−1Bj(χ)
j!

s(s + 1) · · · (s + j − 2)
N j−1

+ R(T ),

(8)

where

R(T ) = − 1
T !

s(s + 1) · · · (s + T − 1)
∫ +∞

N

BT (χ−, {t}χ)
dt

ts+T
,

BT (χ−, {t}χ) = fT−1
∑

r mod f

χ−(r)BT

({ t + r

f

})

and χ−(n) = χ(−n); see Definitions 9.4.2 and 9.4.10 in [2]. The asymptotic series
above is not convergent: we take terms until R(T ) reaches a small minimum, before
it starts growing again.

Notice that B0(χ) = 0 in (8) for non-principal χ by Proposition 9.4.5 of Cohen
[2] and the remarks immediately following it. This is indeed crucial for the rapidity
of convergence.

When χ(−1) = (−1)n we use (7) to estimate Bn(χ) � n!(q/(2π))n. If χ(−1) =
(−1)n+1, then Bn(χ) = 0.
Computation of the root number. If χ is a primitive character modulo q, then the
root number W (χ) is defined by means of

W (χ) =
τ (χ)
√

qie
, where χ(−1) = (−1)e and e ∈ {0, 1},

and τ (χ) =
∑q

r=1 χ(r)e(r/q) is the Gauss sum. It is well known that |W (χ)| = 1.
If χ2 = χ0, then χ is a Legendre symbol and W (χ) = 1.

For q small, this is all right. For q large, we use the functional equation, which
is valid for primitive χ, introduce

c(χ) =
∑
n≥1

χ(n)e−πn2

and notice that

W (χ) =
c(χ)

iec(χ)
.
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3. Description of the computer program

First of all, we need to generate the complete set of Dirichlet characters mod q
and also to compute their orders and conductors and whether they are primitive or
not. To this end we follow the argument in §4 of Davenport [3]: we first generate
the characters for any pα | q, paying particular attention to the case when q is an
even integer, and then we build by multiplication the characters to the modulus
pα
1 pβ

2 with p1 �= p2 and p1, p2 | q. To compute the order and the primitivity of this
character we use Proposition 2.1.34 of [1]. The conductor of a character is obtained
using the necessary and sufficient condition described in Lemma 2.1.32 of [1].

In order to evaluate (5) using a computer program we have to truncate the sums
over k and m and to estimate the error we are introducing. Let M , K > 1 be two
integers. We have

log
∏

p>Aq

(
1 − 1

p

)α(p;q,a)

= −
∑

χ mod q
χ �=χ0

χ(a)
∑

1≤m≤M

1
m

∑
p>Aq

χ(p)
pm

−
∑

χ mod q
χ �=χ0

χ(a)
∑

m>M

1
m

∑
p>Aq

χ(p)
pm

= −
∑

χ mod q
χ �=χ0

χ(a)
∑

1≤m≤M

1
m

∑
1≤k≤K

µ(k)
k

log(LAq(χk, km))

−
∑

χ mod q
χ �=χ0

χ(a)
∑

1≤m≤M

1
m

∑
k>K

µ(k)
k

log(LAq(χk, km))

−
∑

χ mod q
χ �=χ0

χ(a)
∑

m>M

1
m

∑
p>Aq

χ(p)
pm

= − S(q, a) − E1(q, a, A, K)− E2(q, a, A, M),

say. Using (6) and the trivial bound for χ, it is easy to see that

|E1(q, a, A, K)| ≤ 2Aq(ϕ(q) − 1)

2K(Aq − 1)
[
(Aq)K − 1

]
and

|E2(q, a, A, M)| ≤ Aq(ϕ(q)− 1)
M(M − 1)(Aq − 1)(Aq)M

.

In order to ensure that S(q, a) is a good approximation of C(q, a), it is sufficient
that Aq, K and M are sufficiently large. Setting Aq = 9600 and K = M = 26
yields the desired 100 correct decimal digits.

Now we have to consider the error we are introducing during the evaluation of
the Dirichlet L-functions that appear in S(q, a). Notice that in the case involving
the Bernoulli numbers we use an exact formula: hence we just need to evaluate the
error introduced by the R(T ) term in the Euler-McLaurin summation formula (8).
In fact the Euler-McLaurin summation formula is used in about 1/4 of the total
cases, but we are now just looking for an upper bound and so we will sum |R(T )|
over m ≤ M and k ≤ K.
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Assume now that T ≥ 2 is an even integer and q | N . For any non-principal
character χk mod q, equation (8) implies that

LT,N (χk, km) =
∑
r<N

χk(r)
rkm

− 1
Nkm

T∑
j=1

(−1)j−1Bj(χk)
j!

km(km + 1) · · · (km + j − 2)
N j−1

,

and hence we get

LAq(χk, km) = Π
(
LT,N (χk, km) − E3(q, m, k, N, T, χk)

)
,

where Π denotes the finite products we wrote in the first and second step of §2.
Moreover it is clear that

∣∣E3(q, m, k, N, T, χk)
∣∣

≤ km(km + 1) · · · (km + T − 1)
T !

∫ +∞

N

|BT ((χk)−, {t}χk)| t−km−T dt.

Hence

∣∣log(LAq(χk, km)) − log
(
Π · LT,N (χk, km)

)∣∣ ≤ ∣∣∣∣E3(q, m, k, N, T, χk)
LT,N (χk, km)

∣∣∣∣ ,

and the total error arising in the computation of the Dirichlet L-functions can be
obtained by summing the previous estimate over m and k. For T even, trivial
estimates and Proposition 9.1.3 of [2] imply that

∣∣BT ((χk)−, {t}χk)
∣∣ ≤ fT−1

∑
r mod f

∣∣∣∣χk(−r)BT

({
t + r

f

})∣∣∣∣
≤ fT−1

∑
r mod f

∣∣∣∣∣∣
T∑

j=0

(
T

j

)
Bj

{
t + r

f

}T−j
∣∣∣∣∣∣ ≤ fT BT ,

where f | q is the conductor of χk and BT is the T -th Bernoulli number. Hence we
obtain

∣∣E3(q, m, k, N, T, χk)
∣∣ ≤ km(km + 1) · · · (km + T − 1)qT BT

T !
N1−km−T

km + T − 1

=
qT BT

T !
(km) · · · (km + T − 2)N1−km−T .

Moreover, let

U(q, M, K, N, T ) = min
χ mod q
χ �=χ0

min
1≤k≤K
1≤m≤M

|LT,N (χk, km)|.
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The total error arising in the computation of the Dirichlet L-functions is therefore

|E4(q, a, M, K, N, T )|

≤ (ϕ(q) − 1)qT BT

U(q, M, K, N, T )

∑
1≤m≤M

1
m

∑
1≤k≤K

1
k

(km) · · · (km + T − 2)
T !

N1−km−T

=
(ϕ(q) − 1)qT BT

U(q, M, K, N, T )T !

∑
1≤m≤M

∑
1≤k≤K

(km + 1) · · · (km + T − 2)N1−km−T

≤ (ϕ(q) − 1)(KM + T − 2)T−2qT BT

U(q, M, K, N, T )NT−1T !

∑
1≤m≤M

∑
1≤k≤K

N−km

≤ 2(ϕ(q) − 1)(KM + T − 2)T−2qT BT

(N − 1)U(q, M, K, N, T )NT−1T !
.

Letting

C̃(q, a) =

⎛
⎝e−γ

∏
p≤Aq

(
1 − 1

p

)α(p;q,a)

exp(−S(q, a))

⎞
⎠

1/ϕ(q)

and collecting the previous estimates, we have that∣∣∣C(q, a) − C̃(q, a)
∣∣∣ ≤ C̃(q, a)

∣∣∣∣exp
(
−E(q, a, A, M, K, N, T )

ϕ(q)

)
− 1

∣∣∣∣
≤ C̃(q, a)

|E(q, a, A, M, K, N, T )|
ϕ(q)

,

where E(q, a, A, M, K, N, T ) denotes E1(q, a, A, K) + E2(q, a, A, M) + E4(q, a,
M, K, N, T ).

Summing up, the final error we have in computing C(q, a) as C̃(q, a) is

Efinal(q, a, A, K, M, T, N) ≤ C̃(q, a)
|E(q, a, A, M, K, N, T )|

ϕ(q)
.

Practical experimentations for q ∈ {3, . . . , 100} suggested to use different ranges
for N and T to reach a precision of at least 100 decimal digits in a reasonable amount
of time. Using Aq = 9600, M = K = 26 and recalling that q | N and T is even, our
choice is N = (�16800/q + 1)q and T = 88 if q ∈ {3, . . . , 10}, while for q ∈ {90,
. . . , 100} we have to use N = (�40320/q + 1)q and T = 204. Intermediate ranges
are used for the remaining integers q.

The programs we used to compute the Dirichlet characters mod q and the values
of C(q, a) for q ∈ {3, . . . , 100}, 1 ≤ a ≤ q, (a, q) = 1, were written using the GP
scripting language of PARI/GP [10]; the C program was obtained from the GP one
using the gp2c tool. The actual computations were performed using several LinuX
PCs and one Apple MacMini computer for a total amount of computing time equal
to 1897.036096 hours = 79.043171 days.

A tiny part of the final results is collected in the following tables. The complete
set of results can be downloaded from www.math.unipd.it/~languasc/MCcomput.
html together with the source program in GP and the results of the verifications of
the identities (9) and (10) which are described in the section below.

www.math.unipd.it/~languasc/MCcomput.html
www.math.unipd.it/~languasc/MCcomput.html
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4. Verification of consistency

The set of constants C(q, a) satisfies many identities, and we checked our results
verifying that these identities hold within a very small error. The basic identities
that we exploited are two: the first one is

(9)
∏

a mod q
(a,q)=1

C(q, a) = e−γ q

ϕ(q)
.

This can be verified using either the definition (1) or the identity (2), taking into ac-
count the fact that primes dividing q do not occur in any of the products P (x; q, a).

The other identity is valid whenever we take two moduli q1 and q2 with q1 | q2

and (a, q1) = 1. In this case we have

(10) C(q1, a) =
n−1∏
j=0

(a+jq1,q2)=1

C(q2, a + jq1)
∏
p|q2

p≡a mod q1

(
1 − 1

p

)
,

where n = q2/q1. The proof depends on the fact that the residue class a mod q1

is the union of the classes a + jq1 mod q2, for j ∈ {0, . . . , n − 1}. If q1 and q2

have the same set of prime factors, the condition (a + jq1, q2) = 1 is automatically
satisfied, since (a, q1) = 1 by our hypothesis. On the other hand, if q2 has a prime
factor p that q1 lacks, then there are values of j such that p | (a + jq1, q2) and
the corresponding value of C(q2, a + jq1) in the right-hand side of (10) would be
undefined. The product at the far right takes into account these primes.

To prove (10), let P (x; q, a) be defined by the relation on the far left of (1),
without restrictions on q and a. Then, for (a, q1) = 1 and x ≥ q2, write

P (x; q1, a) =
n−1∏
j=0

P (x; q2, a + jq1) =
n−1∏
j=0

(a+jq1,q2)=1

P (x; q2, a + jq1) Π(x; q2, q1, a),

say. The primes p ≤ x such that p ≡ a mod q1 and p � q2 appear in the product
in the right-hand side above, since there is exactly one value of j such that p ≡
a + jq1 mod q2 and for any such prime it is obvious that (a + jq1, q2) = 1. The
only primes that are left are those lying in the residue class a mod q1 and that
divide q2. Hence Π(x; q2, q1, a) is exactly the product on the far right of (10). Now
(10) follows from multiplying by a suitable power of log x and taking the limit as
x → +∞.

The validity of (9) was checked immediately at the end of the computation of
the constants C(q, a), for a fixed q and for every 1 ≤ a ≤ q with (a, q) = 1 by
the same program that computed them. These results were collected in a file, and
a different program checked that (10) holds within a very small error by building
every possible relation of that kind for every q2 ∈ {3, . . . , 100} and q1 | q2 with
1 < q1 < q2. The total number of identities checked is

100∑
q=3

∑
d|q

1<d<q

ϕ(d) =
100∑
q=3

(q − 1 − ϕ(q)) = 1907.

These identities are not independent of one another, but we did not bother to elim-
inate redundancies since the total time requested for this part of the computation
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is absolutely negligible. The number of independent identities is
100∑
q=3

∑
p|q
p<q

ϕ
(q

p

)
=

100∑
n=2

π
(100

n

)
ϕ(n) = 1408,

where p denotes a prime in the sum on the left.

Table 1. Some numerical results: the first column contains the mod-
ulus q, the second the residue class a, the third the computed value
of C(q, a), and the fourth is the number of correct decimal digits we
obtained. The table shows the values truncated to 40 decimal digits.

q a C(q, a) digits

3 1 1.4034774468278563951360958591826816440307. . . 104
3 2 0.6000732161773216733074128367849176047200. . . 104
4 1 1.2923041571286886071091383898704320653429. . . 104
4 3 0.8689277682343238299091527791046529122939. . . 104
5 1 1.2252384385390845800576097747492205275405. . . 103
5 2 0.5469758454112634802383012874308140377519. . . 104
5 3 0.8059510404482678640573768602784309320812. . . 104
5 4 1.2993645479149779881608400149642659095025. . . 103
...

...
...

...
9 1 1.1738495868654491902701394683919739604995. . . 103
9 2 0.5455303829342851960446307443914437164832. . . 104
9 4 1.1336038613343693249917335959075962374233. . . 103
9 5 0.9412310917798332515572574704874703583166. . . 103
9 7 1.0547066156548587451082819988401491024340. . . 103
9 8 1.1686623008402869661248081381642176283145. . . 103
...

...
...

...
15 1 1.1617073088517756555676638861655356817964. . . 103
15 2 0.5531662836641193792434413294289420522197. . . 104
15 4 1.1368510737193937042392719219836177668605. . . 103
15 7 0.9888090824844727678176951687669703243697. . . 103
15 8 1.1248826700801117041084787027689447040760. . . 103
15 11 1.0546877248711663022320456767412694068618. . . 103
15 13 1.0747134726382660587745323674368168616132. . . 103
15 14 1.1429505393911402552425384830238885435764. . . 103
...

...
...

...
21 1 1.1141670280743936828731735756576813156065. . . 103
21 2 0.5383301255587159174351133305605833477678. . . 104
21 4 1.1185837991946284893102162561180399170905. . . 103
21 5 0.8804463747350350872193530732768812838973. . . 103
21 8 1.0809444954913878156248769107211013330026. . . 103
21 10 1.0855302392682037293388720447231438521276. . . 103
21 11 1.0128344672130266463968855892485398266065. . . 103
21 13 1.0371155725767642823358797876916780548258. . . 103
21 16 1.1035547306497255785825571380877055652196. . . 103
21 17 1.0486412692857397440465915448981610476825. . . 103
21 19 1.0574758123265342759648524359814135750529. . . 103
21 20 1.1027671924237418176511972126578877947364. . . 103
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Table 2. Some numerical results: the first column contains the mod-
ulus q, the second the residue class a, the third the computed value
of C(q, a), and the fourth is the number of correct decimal digits we
obtained. The table shows the values truncated to 40 decimal digits.

q a C(q, a) digits
39 1 1.0558043473142841979273107487867952159449. . . 103
39 2 0.5203026628809482277529964233919621231701. . . 103
39 4 1.0467551202397323195593324251885584436643. . . 103
39 5 0.8477108709928609050405112584700448177533. . . 103
39 7 0.9131634445753290856338897033232908456824. . . 103
39 8 1.0491976120090375508070956898591030898489. . . 103
39 10 1.0644889181790139210569905090072544013982. . . 103
39 11 0.9611802851802015744645440449091664544815. . . 103
39 14 1.0471282217602293552090665345631733882042. . . 103
39 16 1.0694449785599316393966557136726680120488. . . 103
39 17 1.0027080336857767080150127190485342860222. . . 103
39 19 1.0063790089466405557887479935647072297591. . . 103
39 20 1.0467993224064620442361201103591601719183. . . 103
39 22 1.0521884311669460927257333479303503936214. . . 103
39 23 1.0114747946261577434516887836293420101981. . . 103
39 25 1.0597693417994788378992764465883123963780. . . 103
39 28 1.0529671095629036217092386664444649064610. . . 103
39 29 1.0267423753797454160121131413618162768076. . . 103
39 31 1.0297283934645776984576326942483733223668. . . 103
39 32 1.0482866374125031516972329668035300513497. . . 103
39 34 1.0472581549429544593781995140831083054063. . . 103
39 35 1.0562593819557667826211305540931669587921. . . 103
39 37 1.0385638656749415055234884100430210797446. . . 103
39 38 1.0674150481593719996424991312912670083485. . . 103
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Table 3. Some numerical results: the first column contains the mod-
ulus q, the second the residue class a, the third the computed value
of C(q, a), and the fourth is the number of correct decimal digits we
obtained. The table shows the values truncated to 40 decimal digits.

q a C(q, a) digits
84 1 1.0762168747360169189445984481112147917766. . . 103
84 5 0.8423464320992898808305526411222358430753. . . 103
84 11 0.9670462929845278524311619985091112662169. . . 103
84 13 0.9746953940834972813365085898448043371424. . . 103
84 17 0.9978335235521385853486954919220491056500. . . 103
84 19 1.0042721918535182457015722654932145385404. . . 103
84 23 1.0128902359146896167524723309894756202191. . . 103
84 25 1.0625109746049189658962532302336200526631. . . 103
84 29 1.0217856732501917185719533836132834670012. . . 103
84 31 1.0324778423499473481419749332801549343076. . . 103
84 37 1.0448633446823406686188909998297275362347. . . 103
84 41 1.0483511545557197512968002104563579599259. . . 103
84 43 1.0352625518417795493214543003655548678836. . . 103
84 47 1.0452307283367875092541042542165185077145. . . 103
84 53 1.0473484822398583732227792995221792774100. . . 103
84 55 1.0640407032516661060398721577715786126086. . . 103
84 59 1.0509180585081298515408918851194537493615. . . 103
84 61 1.0529772913206146375443030010561915545034. . . 103
84 65 1.0629584657266981779431184953028111293016. . . 103
84 67 1.0527738780397628191309530077617335181157. . . 103
84 71 1.0578974865179095395282678213164071324168. . . 103
84 73 1.0513835694502728488866738616694632680665. . . 103
84 79 1.0561713512739106221130859861434109044623. . . 103
84 83 1.0519063079499187595778933301342325552061. . . 103
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