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A SIMPLIFIED GENERALIZED GAUSS-NEWTON METHOD
FOR NONLINEAR ILL-POSED PROBLEMS

PALLAVI MAHALE AND M. THAMBAN NAIR

Abstract. Iterative regularization methods for nonlinear ill-posed equations
of the form F (x) = y, where F : D(F ) ⊂ X → Y is an operator between
Hilbert spaces X and Y , usually involve calculation of the Fréchet derivatives
of F at each iterate and at the unknown solution x†. In this paper, we suggest
a modified form of the generalized Gauss-Newton method which requires the
Fréchet derivative of F only at an initial approximation x0 of the solution
x†. The error analysis for this method is done under a general source con-
dition which also involves the Fréchet derivative only at x0. The conditions
under which the results of this paper hold are weaker than those considered by
Kaltenbacher (1998) for an analogous situation for a special case of the source
condition.

1. Introduction

In this paper, we are interested in finding an approximate solution for a nonlinear
ill-posed equation

(1.1) F (x) = y,

where F : D(F ) ⊂ X → Y is an operator between Hilbert spaces X and Y with
inner product and corresponding norm denoted by 〈·, ·〉 and ‖ · ‖, respectively, and
y ∈ Y . We assume that (1.1) has a unique solution x†. For δ > 0, let yδ ∈ Y be an
available noisy data with

(1.2) ‖y − yδ‖ ≤ δ.

As the given operator equation is ill-posed, its solution need not depend continu-
ously on the data; i.e., small perturbations in the data can cause large deviations
in the solutions. In order to overcome this problem, regularization methods are
used so as to obtain stable approximate solutions. Iterative regularization methods
are one such class of regularization methods. An iterative method with iterations
defined by

xδ
k+1 = Φ(xδ

0, x
δ
1, . . . , x

δ
k; yδ), xδ

0 := x0,

for a known function Φ together with a stopping rule which determines a stopping
index kδ ∈ N is called an iterative regularization method if ‖xδ

kδ
−x†‖ → 0 as δ → 0.

Here, x0 ∈ D(F ) is a known initial approximation of the solution x†.
Assuming that F possesses Fréchet derivatives F ′(x) in a neighbourhood of x†,

Bakushinskii [1] proposed an iterative method, namely, the iteratively regularized
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Gauss-Newton method, in which the iterations are defined by

(1.3) xδ
k+1 = xδ

k − (αkI +A∗
k,δAk,δ)−1[A∗

k,δ(F (xδ
k)−yδ)+αk(xδ

k −x0)], xδ
0 := x0,

where Ak,δ := F ′(xδ
k) and (αk) is a sequence of real numbers satisfying

(1.4) αk > 0, 1 ≤ αk

αk+1
≤ µ1 and lim

k→0
αk = 0

for some constant µ1 > 1. The convergence analysis for (1.3) has been done in [1]
under a Hölder-type source condition

x0 − x† = A∗Aw, A := F ′(x†)

for some w ∈ X. In [4], Blaschke et al. carried out an error analysis for the above
method with stopping index kδ such that

(1.5) ‖F (xδ
kδ

) − yδ‖ ≤ cδ < ‖F (xδ
k) − yδ‖, k = 0, 1, . . . , kδ − 1

for an appropriate c > 1. It is shown in [4] that the Hölder-type source condition

(1.6) x0 − x† = (A∗A)νw, 0 < ν ≤ 1,

yields the convergence rate

(1.7) ‖xδ
kδ

− x†‖ =

{
o(δ

2ν
2ν+1 ) if 0 < ν < 1

2 ,

O(
√

δ) if ν = 1/2.

In [5] and [6], Hohage also considered the iteratively regularized Gauss-Newton
method (1.3) under the logarithmic-type source condition

(1.8) x0 − x† = fν(A∗A))w,

where fν(λ) := log(1/λ)−ν , ν > 0, with stopping index kδ as in (1.5), and obtained
the error bound as

‖xδ
kδ

− x†‖ = O(log(1/δ)−ν).

Recently, Langer and Hohage [8] extended the analysis in [5] and [6] by consider-
ing (1.3) with the stopping rule (1.5) under a general source condition of the form

(1.9) x0 − x† = f(A∗A)w,

yielding the error estimate

‖xδ
kδ

− x†‖ = O(f(u−1(δ))).

Here, f : [0, ‖A‖2] → [0,∞) is a monotonically increasing continuous function
satisfying f(0) = 0 and u(λ) = λ1/2f(λ). Here, we want to state that in all the
above-mentioned error estimates, the results hold for the limit δ → 0.

Note that the source condition (1.9) includes the cases (1.6) and (1.8).
In [2], Bakushinskii genearalized the procedure in [1] by considering a generalized

form of the regularized Gauss-Newton method in which the iterations are defined
by

(1.10) xδ
k+1 = x0 − gαk

(A∗
k,δAk,δ)A∗

k,δ[F (xδ
k) − yδ − Ak,δ(xδ

k − x0)], xδ
0 := x0,

where Ak,δ = F ′(xδ
k) and each gα for α > 0 is a piecewise continuous function and

(αk) is a sequence of real numbers satisfying (1.4). In [3], Kaltenbacher considered
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the above generalized procedure under the stopping rule in which the stopping
index k0 is chosen such that

(1.11) max{‖F (xδ
k0−1) − yδ‖, β̂k0} ≤ τδ < max{‖F (xδ

k−1) − yδ‖, β̂k}
for all k ∈ {1, 2, . . . , k0 − 1} and for some τ > 1, where

β̂k := ‖F (xδ
k−1) − yδ + Ak−1,δ(xδ

k − xδ
k−1)‖, k = 1, 2, ..., k0,

and the error estimate is obtained under the Hölder-type source condition (1.6).

1.1. The new method and the new stopping rule. We observe that in the
iterative procedure (1.3) as well as its generalization (1.10) it is necessary to calcu-
late the Fréchet derivative at each iterate. In this paper we define a new iteration
procedure

(1.12) xδ
k+1 = x0 − gαk

(A∗
0A0)A∗

0[F (xδ
k) − yδ − A0(xδ

k − x0)], xδ
0 := x0,

where A0 := F ′(x0), (αk) is the sequence satisfying (1.4) and each gα for α > 0
is a positive real-valued piecewise continuous function defined on [0, M ] with M ≥
‖A0‖2. As iterations in (1.12) involve the Fréchet derivative of F only at one point
x0, the calculations in (1.12) are simpler than in (1.10). Due to the simplicity of
(1.12), we name this iteration as a simplified generalized Gauss-Newton method. We
choose the stopping index kδ for this iteration as the positive integer which satisfies
(1.13)
max{‖F (xδ

kδ−1) − yδ‖, β̃kδ
} ≤ τδ < max{‖F (xδ

k−1) − yδ‖, β̃k}, 1 ≤ k < kδ.

Here τ > 1 is a sufficiently large constant not depending on δ, and

β̃k := ‖F (xδ
k−1) − yδ + A0(xδ

k − xδ
k−1)‖.

We also observe that the source condition (1.9), as well as its special cases (1.6),
(1.8), involves the Fréchet derivative at the exact solution x† which is practically
an unknown quantity. So, in analogy to (1.9), we shall consider a source condition
which depends on the Fréchet derivative of F only at x0.

2. Basic assumptions

In this section we consider some of the basic assumptions under which the results
of the subsequent sections hold. First we consider the source condition.

Assumption 2.1. (i) There exists a continuous, strictly monotonically increasing
function ϕ : (0, M ] → (0,∞) with M ≥ ‖F ′(x0)‖2 satisfying lim

λ→0
ϕ(λ) = 0 and

ρ > 0 such that

(2.14) x0 − x† = [ϕ(A∗
0A0)]1/2 w, A0 := F ′(x0)

for some w ∈ X with ‖w‖ ≤ ρ.
(ii) The function ψ : (0, ϕ(M)] → (0, Mϕ(M)] defined by

(2.15) ψ(λ) = λϕ−1(λ), λ ∈ (0, ϕ(M)],

is strictly monotonically increasing and convex.

We observe that the source condition (2.14) represents a class of source con-
ditions and it is also suitable for both mildly and severely ill-posed problems, in
particular, Hölder-type source conditions, i.e., with ϕ(λ) = λν , and logarithmic
source conditions, i.e., with ϕ(λ) = [log(1/λ)]−ν (see [5]). We also note that the
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source condition (2.14) involves the known quantity x0 whereas the other source
conditions (1.6) and (1.8) as well as their generalization (1.9) require the knowledge
of the unknown quantity x†.

Next we make an assumption on the operator F .

Assumption 2.2. (a) The operator F possesses Fréchet derivatives F ′(x) in
Br(x0) := {x ∈ D(F ) : ‖x − x0‖ < r} where r ≥ 2‖x† − x0‖.

(b) There exists a constant C0 > 0, and for each u, v ∈ Br(x0) there exists a
linear operator Rv

u : Y → X such that

(2.16) F ′(v) = Rv
uF ′(u), ‖I − Rv

u‖ ≤ C0.

Assumptions similar to (2.16) are considered by several authors for convergence
analysis of the nonlinear ill-posed equations (cf. [3], [4], [5]). It is shown in these
references that several parameter identification problems useful in applications sat-
isfy (2.16). But, for many ill-posed problems, it is an open question whether such
conditions are satisfied.

For each α > 0, let gα : (0, M ] → (0,∞) be a piecewise continuous function,
involved in the method given by (1.12). We shall also assume that ϕ and gα, α ≥ 0,
have some additional properties as given in the following two assumptions.

Assumption 2.3. There exists a positive integer µ2 > 1 such that

(2.17) 1 ≤ ϕ(αn)
ϕ(αn+1)

≤ µ2, ∀n ∈ N

We note that the Hölder-type source condition, i.e., with ϕ(λ) = λν , and the
logarithmic source condition, i.e., with ϕ(λ) = [log(1/λ)]−ν , satisfy (2.17) for µ2 =
µν

1 and µ2 = 1, respectively.

Assumption 2.4. There exist positive real numbers ω > 0, ω1 > 0, c0 > 0 such
that

(i) sup
0<λ≤M

|[1 − λgα(λ)]
√

ϕ(λ)| ≤ ω
√

ϕ(α),

(ii) sup
0<λ≤M

|[1 − λgα(λ)]
√

λϕ(λ)| ≤ ω1

√
αϕ(α),

(iii) sup
0<λ≤M

√
λgα(λ) ≤ c0√

α
,

(iv) sup
0<λ≤M

|1 − λgα(λ)| ≤ 1.

As examples, let us consider some of the well-known regularization methods such
as

(a) Ordinary Tikhonov regularization: gα(λ) = 1/(λ + α),
(b) Iterated Tikhonov regularization of order m: gα(λ) = [1−αm/(λ+α)m]/λ,

(c) Regularized singular-value decomposition: gα(λ) =
{

1/λ, λ ≥ α,
1/α, λ ≤ α,

(d) Asymptotical regularization: gα(λ) = (1 − e−λ/α)/λ.
Let us consider the source functions associated with the Hölder-type source condi-
tions, and the logarithmic-type source conditions, namely, ϕ(λ) = λν and ϕ(λ) =
[log(1/λ)]−ν , respectively.

First let us consider the case of ϕ(λ) = λν , ν > 0. It can be seen that (i) and
(ii) in Assumption 2.4 hold for (a), (b), (c) with ω = 1 = ω1, and for (d) with
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ω = (ν/2)ν/2e−ν/2 and ω1 = ((ν + 1)/2)(ν+1)/2e−(ν+1)/2, and with ν satisfying
0 < ν ≤ 1 for (a), 0 < ν ≤ 2m − 1 for (b), and ν > 0 for (c) and (d). It can also
be verified that Assumption 2.4 (iii) holds for (a), (c), (d) with c0 = 1, and for (b)
with c0 = m. Now, in view of Lemma 3.13 in [6], which is the same as Lemma
4 in [7], we can also assert that the conditions in Assumption 2.4 are satisfied for
the source function ϕ(λ) = [log(1/λ)]−ν for all ν > 0. We may also observe that
regularization methods (a), (b), (c), (d) satisfy Assumption 2.4 (iv).

3. Error analysis

3.1. Background results. Now we discuss some of the results which are essential
for the error analysis of the simplified generalized Gauss-Newton method.

Throughout this section we use the following notation:

eδ
k := xδ

k − x†,

gk(λ) := gαk
(λ),

rk(λ) := 1 − λgk(λ),

βk := ‖A0rk−1(A∗
0A0)(x0 − x†)‖.

First we observe from Taylor’s formula that for u, v ∈ Br(x0),

(3.18) F (v) − F (u) − F ′(x0)(v − u) =
∫ 1

0

[F ′(u + t(v − u)) − F ′(x0)](v − u)dt.

Hence, by the Assumption 2.2, it follows that

F (v) − F (u) − F ′(x0)(v − u) =
∫ 1

0

(Ru+t(v−u)
x0

− I)F ′(x0)(v − u)dt

and

(3.19) ‖F (v) − F (u) − F ′(x0)(v − u)‖ ≤ C0‖F ′(x0)(v − u)‖.

Lemma 3.1. Let (1.2) hold and let the iterates xδ
k be defined by (1.12) with a real

sequence (αk) satisfying (1.4). Moreover, let Assumptions 2.2, 2.3, 2.4 hold and let
kδ be chosen according to the stopping rule (1.13). Then

(3.20) |βk − β̃k| ≤ δ + C0‖A0e
δ
k−1‖

and

(3.21) δ ≤ c1βk + c2‖A0e
δ
k−1‖, k ∈ {0, 1, . . . , kδ − 1},

where c1 = 1/(τ − 1), c2 = (1 + C0)/(τ − 1),

βk = ‖A0rk−1(A∗
0A0)(x0 − x†)‖ and β̃k = ‖F (xδ

k−1) − yδ + A0(xδ
k − xδ

k−1)‖.

Proof. We observe that

β̃k = ‖F (xδ
k−1) − yδ + A0(xδ

k − xδ
k−1)‖

= ‖rk−1(A0A
∗
0)(F (xδ

k−1) − yδ − A0(xδ
k−1 − x0))‖.
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Thus

|β̃k − βk| ≤ |‖rk−1(A0A
∗
0)(F (xδ

k−1) − yδ − A0(xδ
k−1 − x0))‖

− ‖A0rk−1(A∗
0A0)(x0 − x†)‖|

= ‖rk−1(A0A
∗
0)(F (xδ

k−1) − yδ + A0(x† − xδ
k−1))‖

≤ ‖rk−1(A0A
∗
0)(y − yδ)‖ + ‖rk−1(A0A

∗
0)[F (xδ

k−1) − y − A0(xδ
k−1− x†)]‖.

Hence, using (1.2), Assumption 2.4 (iv) and (3.19), we get |β̃k−βk| ≤ δ+C0‖A0ek−1‖,
proving (3.20).

To prove (3.21) we consider two cases.
Case 1: Suppose ‖F (xδ

k−1) − yδ‖ ≥ β̃k. As the iteration is stopped according
to the rule (1.13), we have

τδ < ‖F (xδ
k−1) − yδ‖

≤ δ + (1 + C0)‖A0e
δ
k−1‖.

Thus, we get

(3.22) δ <
(1 + C0)‖A0e

δ
k−1‖

τ − 1
.

Case 2 : Suppose β̃k ≥ ‖F (xδ
k−1) − yδ‖. Then, by (3.20), we obtain

(3.23) τδ ≤ β̃k ≤ δ + C0‖A0e
δ
k−1‖ + βk

so that
(τ − 1)δ ≤ C0‖A0e

δ
k−1‖ + βk,

which gives

(3.24) δ ≤ βk

τ − 1
+

C0‖A0e
δ
k−1‖

τ − 1
.

From (3.22), (3.24), we get δ ≤ c1βk + c2‖A0ek−1‖, as required in (3.21). �

The following technical lemma is used in due course.

Lemma 3.2. Suppose τ > 1 +
√

µ1µ2 and

0 < C0 < min{1/2, [τ − 1 −√
µ1µ2 ]/τ

√
µ1µ2}.

Then
b :=

√
µ1µ2(c2 + C0) < 1

with c2 as in Lemma 3.1.

Proof. We have

b = (µ1µ2)1/2(c2 + C0)

≤ (µ1µ2)1/2

(
(1 + C0)
(τ − 1)

+ C0

)
= (µ1µ2)1/2(1 + τC0)/(τ − 1)

<
(µ1µ2)1/2

(τ − 1)

(
1 +

(τ − 1 −√
µ1µ2)√

µ1µ2

)
= 1. �
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The next proposition prescribes conditions which ensure, among other useful
estimates, xδ

k ∈ Br(x0) for k ∈ {0, 1, . . . , kδ}.

Proposition 3.3. Let the assumptions of Lemma 3.1 and Assumption 2.1 hold.
Let

a := ω1
√

µ1µ2(1 + c1)ρ, b =
√

µ1µ2(c2 + C0), C1 := a/ρ(1 − b)
with c1 and c2 as in Lemma 3.1. Assume further that τ and C0 satisfy the conditions
in Lemma 3.2, and

(3.25) (1 − b)
√

Mr ≤ 2a, 2[ω + c0(c1ω1 + c2C1 + C0C1)]ϕ(α0)1/2ρ < r.

Then for k ∈ {1, . . . , kδ} with kδ as in (1.13),

‖A0(xδ
k − x†)‖ ≤ C1ρ

√
αkϕ(αk),(3.26)

‖xδ
k − x†‖ < r/2,(3.27)

β2δ2/ρ2 ≤ αkϕ(αk−1),(3.28)

where β = 1/(ω1c1 + c2C1).

Proof. From (1.12), we have

eδ
k = xδ

k − x†

= x0 − x† − gk−1(A∗
0A0)A∗

0{F (xδ
k−1) − yδ − A0(xk−1 − x0)}

= rk−1(A∗
0A0)(x0 − x†) − gk−1(A∗

0A0)A∗
0{F (xδ

k−1) − yδ − A0e
δ
k−1}.(3.29)

Hence,

A0e
δ
k = A0rk−1(A∗

0A0)(x0 − x†) − gk−1(A0A
∗
0)A0A

∗
0{F (xδ

k−1) − yδ − A0e
δ
k−1}.

Thus, we get

‖A0e
δ
k‖ ≤ ‖A0rk−1(A∗

0A0)(x0−x†)‖+‖gk−1(A0A
∗
0)A0A

∗
0‖‖{F (xδ

k−1)−yδ−A0e
δ
k−1}‖.

Using (1.2), Assumption 2.4 (ii), and (3.19), we get

‖A0e
δ
k‖ ≤ ω1

√
αk−1ϕ(αk−1)ρ + δ + C0‖A0e

δ
k−1‖.

From (3.21), we have

‖A0e
δ
k‖ ≤ ω1

√
αk−1ϕ(αk−1)ρ + c1βk + c2‖A0e

δ
k−1‖ + C0‖A0e

δ
k−1‖.

Again using Assumptions 2.2, 2.4 (ii) we get

(3.30) ‖A0e
δ
k‖ ≤ ω1(1 + c1)

√
αk−1ϕ(αk−1)ρ + c2‖A0e

δ
k−1‖ + C0‖A0e

δ
k−1‖.

Dividing both sides of (3.30) by
√

αkϕ(αk), we get

‖A0e
δ
k‖√

αkϕ(αk)
≤ ω1(1 + c1)

√
αk−1ϕ(αk−1)ρ√

αkϕ(αk)
+

(c2 + C0)‖A0e
δ
k−1‖

√
αk−1ϕ(αk−1)√

αkϕ(αk)
√

αk−1ϕ(αk−1)
.

Using (1.4) and (2.17), we get

‖A0e
δ
k‖√

αkϕ(αk)
≤ ω1

√
µ1µ2(1 + c1)ρ +

(c2 + C0)‖A0e
δ
k−1‖

√
µ1µ2√

αk−1ϕ(αk−1)
.

Denoting γk = ‖A0e
δ
k‖/

√
αkϕ(αk), we get

γk ≤ ω1
√

µ1µ2(1 + c1)ρ + (c2 + C0)
√

µ1µ2γk−1 = a + bγk−1, k = 0, 1, . . . , kδ.
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Now by Lemma 3.2 we have b < 1 and the condition (1 − b)r
√

M ≤ 2a implies
‖A0e0‖ ≤ a/(1 − b). Hence, it follows that

γk ≤ a/(1 − b) k ∈ {0, 1, ..., kδ},
which gives

(3.31) ‖A0e
δ
k‖ ≤ C1

√
αkϕ(αk)ρ, k ∈ {0, 1, . . . , kδ}.

From (3.29), we have

eδ
k = rk−1(A∗

0A0)(x0 − x†) − gk−1(A∗
0A0)A∗

0{F (xδ
k−1) − yδ − A0e

δ
k−1}

= rk−1(A∗
0A0)ϕ(A∗

0A0)1/2w − gk−1(A∗
0A0)A∗

0{F (xδ
k−1) − yδ − A0e

δ
k−1}.

Using (1.2), Assumptions 2.2, (i) and (iii) in 2.4, we get

(3.32) ‖eδ
k‖ ≤ ω

√
ϕ(αk−1)ρ +

c0δ√
αk−1

+
c0C0‖A0e

δ
k−1‖√

αk−1
.

Now from (3.21), (3.31) we have

δ ≤ c1βk + c2‖A0e
δ
k−1‖

≤ ω1c1

√
αk−1ϕ(αk−1)ρ + c2C1

√
αk−1ϕ(αk−1)ρ

≤ (ω1c1 + c2C1)
√

αk−1ϕ(αk−1)ρ,

which gives

(3.33)
δ

√
αk−1

≤ (ω1c1 + c2C1)
√

ϕ(αk−1)ρ.

Using (3.31) and (3.33) in (3.32) we get

‖eδ
k‖ ≤ ω

√
ϕ(αk−1)ρ + c0(ω1c1 + c2C1)

√
ϕ(αk−1)ρ +

(c0C0)C1

√
αk−1ϕ(αk−1)ρ√
αk−1

= ω
√

ϕ(αk−1)ρ + c0(ω1c1 + c2C1)
√

ϕ(αk−1)ρ + c0C0C1

√
ϕ(αk−1)ρ.

Thus, using the condition (3.25), we have

‖xδ
k −x†‖ = ‖eδ

k‖ ≤ [ω+c0(ω1c1 +c2C1 +C0C1)]
√

ϕ(α0)ρ < r/2, k ∈ {1, . . . , kδ}.
From (3.21), we have

δ ≤ (c1βk + c2‖A0e
δ
k−1‖).

Using Assumption 2.4 (ii) and (3.31), we get

δ ≤ c1ω1ρ
√

αk−1ϕ(αk−1)+c2C1ρ
√

αk−1ϕ(αk−1) = (ω1c1 +c2C1)ρ
√

αk−1ϕ(αk−1),

which gives β2δ2/ρ2 ≤ αk−1ϕ(αk−1) as required. �
Remark 3.4. (a) We observe from the definition of ψ in (2.15) and the relation
(3.28) that

δ ≤ ρ
√

ψ(ϕ(αk−1))/β,

which gives

(3.34) ϕ−1ψ−1

(
β2δ2

ρ2

)
≤ αk−1 k ∈ {1, 2, ..., kδ}.

(b) We also note that the assumptions in Proposition 3.3 do not require any
a priori knowledge of the exact solution x† except that x† − x0 satisfies the source
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condition (2.14). Thus, the assumptions of Proposition 3.3 are more realistic than
the assumptions considered in the literature (see, e.g., [6], [4], [3]).

(c) We observe that for the particular case of ϕ(λ) = λ2ν , results in Lemma
3.1 and Proposition 3.3 are analogous to the results of Lemma 2.1 in [3]. But, if
we compare the assumptions of both under the framework of the present paper, we
note that the conditions in Lemma 2.1 in [3] are more stringent than the conditions
in Lemma 3.1 and Proposition 3.3. For example, in Lemma 3.1, we get the estimate
(3.21) with

c1 = 1/(τ − 1) and c2 = (1 + C0)/(τ − 1).

In [3], an estimate similar to (3.21) is obtained by replacing both c1 and c2 above
by c2. Note that c1 < c2. We note that in Proposition 3.3 we need b =

√
µ1µ2(c2 +

C0) < 1, where µ2 can be taken as µ2ν
1 . In place of the above inequality, Lemma

2.1 in [3] uses the inequality

(3.35) b̃ :=
√

µ1µ2(
c2

1 − C0
+

C0(1 + C0)
1 − C0

) < 1.

Note that

(3.36) b < b̃.

Also, in Proposition 3.3 we use the condition

θ := 2(‖x0 − x†‖ + c0(c1ω1 + c2C1 + C0C1)αν
0ρ) < r,

whereas Lemma 2.1 in [3] uses the condition

θ̃ := 2(‖x0 − x†‖ + c0(C0(1 + C0)C̃1 + c2C̃1 + (c2ω1)/(1 − C0))αν
0ρ) < r,

where C1 is as in Proposition 3.3 and C̃1 = ã/(1 − b̃)ρ with

ã :=
ω1

√
µ1µ2

1 − C0
(1 + c2/(1 − C0))ρ,

and b̃ is as in (3.35). From (3.36) and the fact that C1 < C̃1, we have θ < θ̃.
Thus, under the setting of the present paper, the conditions of Lemma 2.1 of [3]
are stronger than the conditions of Lemma 3.1 and Proposition 3.3.

Lemma 3.5. Let (1.2) and Assumption 2.2 be satisfied and let C0 < 1/2. Let
the iterations (1.12) be stopped according to the stopping rule (1.13) and for k ∈
{1, . . . , kδ}, let

f(δ, k) := max{‖F (xδ
k−1) − yδ‖, ‖F (xδ

k) − yδ‖}.

Then

(3.37) f(δ, kδ) ≤ τ0δ,

and for k ∈ {1, . . . , kδ − 1},

(3.38) f(δ, k) > τ1δ,

where

τ0 =
2C0 + τ

1 − 2C0
, τ1 =

τ (1 − C0) − 2C0

1 + C0
.



180 PALLAVI MAHALE AND M. THAMBAN NAIR

Proof. Let k ∈ {1, . . . , kδ}. We observe that

|‖F (xδ
k) − yδ‖ − β̃k| = |‖F (xδ

k) − yδ‖ − ‖F (xδ
k−1) + A0(xδ

k − xδ
k−1) − yδ‖|

≤ ‖F (xδ
k) − F (xδ

k−1) − A0(xδ
k − xδ

k−1)‖
≤ ‖F (xδ

k) − F (x†) − A0e
δ
k‖

+‖F (xδ
k−1) − F (x†) − A0e

δ
k−1‖

≤ C0(‖A0e
δ
k−1‖ + ‖A0e

δ
k‖).(3.39)

From (3.19), for any u, v ∈ X, we have

‖A0(v − u)‖ − ‖F (v) − F (u)‖ ≤ C0‖A0(v − u)‖,
which implies

(1 − C0)‖‖A0(v − u)‖ ≤ ‖F (v) − F (u)‖;
equivalently,

(3.40) ‖A0(v − u)‖ ≤ ‖F (v) − F (u)‖
1 − C0

.

Using (3.40) in (3.39), we have

|‖F (xδ
k) − yδ‖ − β̃k| ≤

C0‖F (xδ
k−1) − F (x†)‖
1 − C0

+
C0‖F (xδ

k) − F (x†)‖
1 − C0

= C ′
0(‖F (xδ

k) − F (x†)‖ + ‖F (xδ
k−1) − F (x†)‖)

≤ C ′
0(‖F (xδ

k) − yδ‖ + ‖F (xδ
k−1) − yδ‖ + 2δ),

where C ′
0 := C0/(1 − C0). From this we have

β̃k ≤ (1 + C ′
0)‖F (xδ

k) − yδ‖ + C ′
0‖F (xδ

k−1) − yδ‖ + 2C ′
0δ

≤ (1 + 2C ′
0)f(δ, k) + 2C ′

0δ.(3.41)

We also observe that

(3.42) ‖F (xδ
k−1) − yδ‖ ≤ (1 + C ′

0)‖F (xδ
k−1) − yδ‖ + C ′

0‖F (xδ
k) − yδ‖ + 2C ′

0δ.

Combining (3.41) and (3.42), we get

(3.43) max{β̃k, ‖F (xδ
k−1) − yδ‖} ≤ (1 + 2C ′

0)f(δ, k) + 2C ′
0δ.

We also have

−C ′
0(‖F (xδ

k) − yδ‖ + ‖F (xδ
k−1) − yδ‖ − 2δ) ≤ β̃k − ‖F (xδ

k) − yδ‖,
which gives

(1 − C ′
0)‖F (xδ

k) − yδ‖ − 2C ′
0δ ≤ β̃k + C ′

0‖F (xδ
k−1) − yδ‖

and

(3.44)
(1 − C ′

0)‖F (xδ
k) − yδ‖

(1 + C ′
0)

− 2C ′
0δ

1 + C ′
0

≤ max{β̃k, ‖F (xδ
k−1) − yδ‖}.

We also observe that
(1 − C ′

0)‖F (xδ
k−1) − yδ‖

(1 + C ′
0)

− 2C ′
0δ

(1 + C ′
0)

≤ ‖F (xδ
k−1) − yδ‖,

which gives

(3.45)
(1 − C ′

0)‖F (xδ
k−1) − yδ‖

(1 + C ′
0)

− 2C ′
0δ

(1 + C ′
0)

≤ max{β̃k, ‖F (xδ
k−1) − yδ‖}.
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From (3.44) and (3.45) we have

(3.46)
(1 − C ′

0)
(1 + C ′

0)
f(δ, k) − 2C ′

0δ

(1 + C ′
0)

≤ max{β̃k, ‖F (xδ
k−1) − yδ‖}.

From (3.43) and (3.46) we get

(1 − C ′
0)

(1 + C ′
0)

f(δ, k) − 2C ′
0δ

(1 + C ′
0)

≤ max{β̃k, ‖F (xδ
k−1) − yδ‖}

≤ (1 + 2C ′
0)f(δ, k) + 2C ′

0δ.

Now, using the stopping rule (1.13),

(3.47)
(1 − C ′

0)
(1 + C ′

0)
f(δ, kδ) −

2C ′
0δ

(1 + C ′
0)

≤ max{β̃kδ
, ‖F (xδ

kδ−1) − yδ‖}

and

(3.48) τδ < max{β̃k, ‖F (xδ
k−1) − yδ‖} ≤ (1 + 2C ′

0)f(δ, k) + 2C ′
0δ.

From (3.47) and (3.48), we have

(1 − C ′
0)

(1 + C ′
0)

f(δ, kδ) −
2C ′

0δ

(1 + C ′
0)

≤ τδ < (1 + 2C ′
0)f(δ, k) + 2C ′

0δ.

Now, let

τ0 =
(

2C ′
0

1 + C ′
0

+ τ

)
(1 + C ′

0)
(1 − C ′

0)
=

2C0 + τ

1 − 2C0
,

τ1 = (τ − 2C ′
0)/(1 + 2C ′

0) =
τ (1 − C0) − 2C0

1 + C0
.

Note that, by the condition 0 < C0 < 1/2 and τ > 1 +
√

µ1µ2, we have τ0 > 0 and
τ1 > 0. Thus, we have

f(δ, kδ) ≤ τ0δ, τ1δ < f(δ, k).

This completes the proof. �

3.2. Main theorem. Now we prove the main theorem of this paper, which gives
an error estimate for the simplified generalized Gauss-Newton method (1.12) under
the stopping rule (1.13).

Theorem 3.6. Let the assumptions of Proposition 3.3 hold and let the iteration be
stopped according to the stopping rule (1.13). Then

‖xδ
kδ

− x†‖ ≤ ηρ
√

ψ−1(κδ2/ρ2),

where
κ := max{1, β2}, η := c0/β + ξ + c0C0(1 + τ0)/β(1 − C0)

with ξ := 1 + (1 + C0)[(1 + τ0)/(1 − C0)] and β as in Proposition 3.3.

Proof. We observe that

(3.49)
eδ
kδ

= xδ
kδ

− x† = rkδ−1(A∗
0A0)(x0 − x†)

− gkδ−1(A∗
0A0)A∗

0{F (xδ
kδ−1) − yδ − A0e

δ
kδ−1}.
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Thus,

‖eδ
kδ
‖ ≤ ‖rkδ−1(A∗

0A0)(x0 − x†)‖ + ‖gkδ−1(A∗
0A0)A∗

0(y
δ − y)‖

+‖gkδ−1(A∗
0A0)A∗

0‖(F (xδ
kδ−1) − F (x†) − A0e

δ
kδ−1)‖

≤ ‖rkδ−1(A∗
0A0)(x0 − x†)‖ +

c0δ√
αkδ−1

+
c0C0‖A0e

δ
kδ−1‖√

αkδ−1
.(3.50)

First, we estimate ‖rkδ−1(A∗
0A0)(x0 − x†)‖. For this, we observe, by the convexity

of ψ and Jensen’s inequality that

ψ

(
‖rkδ−1(A∗

0A0)(x0 − x†)‖2

‖w‖2

)
= ψ

(∫ M

0
ϕ(λ)r2

kδ−1(λ)d‖Eλw‖2∫ M

0
d‖Eλw‖2

)

≤
∫ M

0
ψ(ϕ(λ)r2

kδ−1(λ))d‖Eλw‖2∫ M

0
d‖Eλw‖2

≤
∫ M

0
ϕ(λ)r2

kδ−1(λ)ϕ−1(ϕ(λ)r2
kδ−1(λ))d‖Eλw‖2∫ M

0
d‖Eλw‖2

.(3.51)

By the relation 1−λgα(λ) ≤ 1 and monotonicity of ϕ−1 we have ϕ−1(ϕ(λ)r2
k−1(λ))

≤ λ. Hence, from (3.51) we get

ψ

(
‖rkδ−1(A∗

0A0)(x0 − x†)‖2

‖w‖2

)
≤

∫ M

0
λϕ(λ)r2

kδ−1(λ)d‖Eλw‖2∫ M

0
d‖Eλv‖2

=
‖(A∗

0A0)1/2rkδ−1(A∗
0A0)ϕ(A∗

0A0)1/2w‖2

‖w‖2

=
‖A0rkδ−1(A∗

0A0)(x0 − x†)‖2

‖w‖2
.(3.52)

Now, we estimate ‖A0rkδ−1(A∗
0A0)(x0−x†)‖. For this, first we observe from (3.49)

that

A0e
δ
kδ

= A0rkδ−1(A∗
0A0)(x0 − x†) − gkδ−1(A0A

∗
0)A0A

∗
0{F (xδ

kδ−1) − yδ − A0e
δ
kδ−1}.

So, we have

A0rkδ−1(A∗
0A0)(x0 − x†) = A0e

δ
kδ

+ gkδ−1(A0A
∗
0)A0A

∗
0{F (xδ

kδ−1) − yδ − A0e
δ
kδ−1}.

Thus,

(3.53) ‖A0rkδ−1(A∗
0A0)(x0 − x†)‖ ≤ ‖A0e

δ
kδ
‖ + ‖{F (xδ

kδ−1) − yδ − A0e
δ
kδ−1}‖.

By (3.18), for j ∈ {kδ − 1, kδ}, we have

‖A0e
δ
j‖ = ‖F (xδ

j) − F (x†) −
∫ 1

0

(F ′(x† + t(xδ
j − x†)) − A0)(xδ

j − x†)dt‖.

Using Assumption 2.2, we have

‖A0e
δ
j‖ ≤ ‖y − yδ‖ + ‖F (xδ

j) − yδ‖ + C0‖A0e
δ
j‖

so that by (1.2) and Lemma 3.5, we get

(3.54) ‖A0e
δ
j‖ ≤ (1 + τ0)δ

(1 − C0)
.
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Using (1.2), (3.19) and (3.54) in (3.53), we get

(3.55) ‖A0rkδ−1(A∗
0A0)(x0 − x†)‖ ≤ (1 + τ0)δ

(1 − C0)
+ δ +

(1 + τ0)C0δ

(1 − C0)
= ξδ,

where ξ =
(
(1 + C0)

(1+τ0)
1−C0

+ 1
)
. Thus, using (3.55) in (3.52), we have

(3.56) ψ

(
‖rkδ−1(A∗

0A0)(x0 − x†)‖2

‖w‖2

)
≤ ξ2δ2

‖w‖2
.

Now, the relation (3.56) together with the monotonicity of ϕ−1 implies

ϕ−1

(
‖rkδ−1(A∗

0A0)(x0 − x†)‖2)
ξ2ρ2

)
≤ ϕ−1

(
‖rkδ−1(A∗

0A0)(x0 − x†)‖2

‖w‖2

)

=
‖w‖2

‖rkδ−1(A∗
0A0)(x0 − x†)‖2

ψ

(
‖rkδ−1(A∗

0A0)(x0 − x†)‖2

‖w‖2

)

≤ ξ2δ2

‖rkδ−1(A∗
0A0)(x0 − x†)‖2

.

Thus,

ψ

(
‖rkδ−1(A∗

0A0)(x0 − x†)‖2

ξ2ρ2

)
≤ δ2

ρ2
,

and hence we get

(3.57) ‖rkδ−1(A∗
0A0)(x0 − x†)‖ ≤ ξρ

√
ψ−1(δ2/ρ2).

Using (3.57) in (3.50), we get

‖eδ
kδ
‖ ≤ ξρ

√
ψ−1(δ2/ρ2) +

c0δ√
αkδ−1

+
c0C0‖A0e

δ
kδ−1‖√

αkδ−1
.

Using (3.54) and the inequality (3.34), we obtain

(3.58)

‖eδ
kδ
‖ ≤ ξρ

√
ψ−1(δ2/ρ2) +

c0δ√
ϕ−1ψ−1(β2δ2/ρ2)

+
c0C0(1 + τ0)δ

(1 − C0)
√

ϕ−1ψ−1(β2δ2/ρ2)
.

Observe that

ϕ−1ψ−1(β2δ2/ρ2) =
β2δ2

ρ2ψ−1(βδ2/ρ2)
so that

(3.59)
δ√

ϕ−1ψ−1(β2δ2/ρ2)
=

ρ
√

ψ−1(β2δ2/ρ2)
β

.

Using (3.59) in (3.58), we get

(3.60)
‖eδ

kδ
‖ ≤ ξρ

√
ψ−1(δ2/ρ2) + c0

ρ
√

ψ−1(β2δ2/ρ2)
β

+ c0C0
(1 + τ0)ρ

√
ψ−1(β2δ2/ρ2)

(1 − C0)β
.



184 PALLAVI MAHALE AND M. THAMBAN NAIR

Thus,

(3.61) ‖eδ
kδ
‖ ≤ ηρ

√
ψ−1(κδ2/ρ2),

where κ = max{1, β2} and η = c0/β + ξ + c0C0(1 + τ0)/β(1 − C0). �

4. Concluding remarks

In this paper, we have considered a simplified generalized Gauss-Newton method
(1.12) under a general source condition of the form (2.14). We obtained an order
optimal estimate, in the sense that an improved order estimate which is applicable
for the case of linear ill-posed problems as well is not possible (cf. [9]). As the
iterations (1.12) and the source condition involve the Fréchet derivative only at the
initial approximation x0 of the exact solution x† of (1.1), the calculations in this
method become simpler than the generalized regularized Gauss-Newton method
(1.10), where it is required to calculate the Fréchet derivative at each iterate. In
[3], the iterations are defined by (1.10), and the stopping rule (1.11) is used to get
the approximate solution for x†. But in the example of a parameter identification
problem in [3], for illustration, F ′(xδ

k) is replaced by an operator independent of k.
The same example in [3] illustrates the procedure of the present paper as well.
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