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OVERLAPPING ADDITIVE SCHWARZ PRECONDITIONERS
FOR ELLIPTIC PDES ON THE UNIT SPHERE

Q. T. LE GIA, I. H. SLOAN, AND T. TRAN

Abstract. We present an overlapping domain decomposition technique for
solving elliptic partial differential equations on the sphere. The approximate
solution is constructed using shifts of a strictly positive definite kernel on the
sphere. The condition number of the Schwarz operator depends on the way we
decompose the scattered set into smaller subsets. The method is illustrated
by numerical experiments on relatively large scattered point sets taken from
MAGSAT satellite data.

1. Introduction

Partial differential equations on the sphere have many applications, for example
in weather forecasting models and geophysics. In this paper we consider an elliptic
equation on the unit sphere of the form

(1) −∆∗u + ω2u = f,

where ∆∗ is the Laplace-Beltrami operator and ω is some nonzero real constant.
This elliptic equation arises, for example, when one discretizes in time the diffusion
equation on the sphere.

When solving elliptic PDEs on the unit sphere based on scattered measured
data, with the approximate solution constructed using shifts of a strictly positive
definite kernel on the sphere, a very ill-conditioned linear system results, whether
a Galerkin method [8] or a collocation method [13] is used. This is due to the
separation radius of the scattered data [11], which can be very small for a large set
of scattered data.

In this paper, we propose a way of partitioning a given scattered data set into
smaller subsets. This method of partitioning is based on the property that data
sites along the track of a satellite form a sequence of discrete points, see Figure 1,
and this sequence covers the globe (except for two small polar caps, in this case of
radius about 0.1 radian) over a period of time. This happens because the Earth is
rotating around its own axis, while the satellite traverses from near the North pole
to near the South pole then back to the North pole in an elliptical path.

Based on those overlapping subsets of scattered data, we define an additive
Schwarz operator for solving (1). We prove a theorem which gives a bound on the
condition number of the Schwarz operator. The method is illustrated by numerical
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experiments on relatively large scattered point sets taken from MAGSAT satellite
data (see [10]).

It is noted that for the interpolation problem in R
n using radial basis functions,

the idea of dividing the scattered data set into smaller subsets for the purpose of
defining the Schwarz alternating algorithm has been proposed in [1]. However, in
that paper it is proved only that the Schwarz alternating method is a contraction.
Moreover, the method is not used there as a preconditioner, and the problem to
which it is applied, namely interpolation with thin plate splines in R

n, is different
from that studied here.

Work on applying the multiplicative Schwarz alternating algorithm using spher-
ical splines has also been carried out in [5], but in that work the data points are
not scattered, and again the Schwarz method is not used as a preconditioner.

The structure of the paper is as follows. In Section 2, we will review spherical
harmonics and Sobolev spaces on the unit sphere. Then, in Section 3, the elliptic
partial differential equation is presented. The abstract framework for the additive
Schwarz preconditioner is reviewed in Section 4. In Section 5, we present the main
theoretical results of the paper. The final two sections describe the algorithm
and present numerical results based on real scattered data. In the paper, generic
constants are denoted by c, c1, c2, c3 . . ..

2. Preliminaries

In this section, we will review spherical harmonics, function spaces on the unit
Euclidean sphere Sn ⊂ R

n+1, and spherical basis functions.

2.1. Spherical harmonics. Spherical harmonics are the restriction of homoge-
neous harmonic polynomials in R

n+1 to the unit sphere Sn. We denote an orthonor-
mal (with respect to the L2(Sn) inner product) basis for the spherical harmonics
of degree � by

{Y�,k : k = 1, . . . , N(n, �)}, � = 0, 1, . . . ,

where N(n, �) is the dimension of the space of all spherical harmonics of degree �;
the values of N(n, �) are (see [14]):

N(n, 0) = 1 and N(n, �) =
(2� + n − 1)Γ(� + n − 1)

Γ(� + 1)Γ(n)
for � ≥ 1.

The asymptotic behavior of N(n, �) for fixed n and increasing � is O(�n−1). The
spherical harmonics {Y�,k : � = 0, 1, . . . ; k = 1, . . . , N(n, �)} form a complete or-
thonormal basis for L2(Sn). Correspondingly, for a given function f ∈ L2(Sn), we
define its Fourier coefficients by

f̂�,k =
∫

Sn

f(x)Y�,k(x)dS(x),

where dS is the surface measure of the sphere Sn, and represent f as a Fourier
series,

f =
∞∑

�=0

N(n,�)∑
k=1

f̂�,kY�,k,

in which the equals sign is understood in the L2(Sn) sense.
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Spherical harmonics of degree � are eigenfunctions of the Laplace-Beltrami op-
erator ∆∗ on Sn, with eigenvalues −λ�, with

(2) λ� = �(� + n − 1),

i.e.,
∆∗Y�,k = −λ�Y�,k.

The addition formula for spherical harmonics of the same degree � (see [14]) is

(3)
N(n,�)∑

k=0

Y�,k(x)Y�,k(y) =
1
ωn

N(n, �)P�(n + 1; x · y),

where P�(n + 1; t) is the normalized Legendre polynomial of degree � in R
n+1 and

ωn is the surface area of the unit sphere Sn. Recall from [14] that P�(n + 1; 1) = 1
and

(4)
∫ +1

−1

P�(n + 1; t)Pk(n + 1; t)(1 − t2)(n−2)/2dt =
ωn

ωn−1N(n, �)
δ�,k,

where ωn−1 is the surface area of the sphere Sn−1, and δ�,k is the Kronecker delta.
For a given s ≥ 0, the Sobolev space Hs(Sn) on the unit sphere is defined in

terms of the eigenvalues of the Laplace-Beltrami operator (see [12]),

(5) Hs(Sn) :=

⎧⎨⎩f ∈ L2(Sn) :
∞∑

�=0

N(n,�)∑
k=1

(1 + λ�)s|f̂�,k|2 < ∞

⎫⎬⎭ .

The norm of a function f in this space is defined to be

‖f‖Hs(Sn) =

⎛⎝ ∞∑
�=0

N(n,�)∑
k=1

(1 + λ�)s|f̂�,k|2
⎞⎠1/2

.

2.2. Sobolev spaces on the sphere through a specific atlas. Sobolev spaces
on Sn can also be defined using local charts (see [12]). Here we use a specific atlas
of charts, as in [6].

Let a spherical cap of radius α centered at p ∈ Sn be defined by

(6) C(p, α) := {x ∈ Sn : θ(p, x) ≤ α},
where θ(p, x) = cos−1(p · x) is the geodesic distance between two points x, p ∈ Sn.
The interior of C(p, α) is denoted by Co(p, α). Let n̂ = (0, . . . , 0, 1) and ŝ =
(0, . . . , 0,−1) denote the north and south poles of Sn, respectively. Then a simple
cover for the sphere is provided by

(7) U1 = Co(n̂, θ0) and U2 = Co(ŝ, θ0), where θ0 ∈ (π/2, 2π/3).

The stereographic projection σn̂ of the punctured sphere Sn\{n̂} onto R
n is defined

as a mapping that maps x ∈ Sn\{n̂} to the intersection of the equatorial hyperplane
{z = 0} and the extended line that passes through x and n̂. The stereographic
projection σŝ based on ŝ can be defined analogously. We set

(8) ψ1 =
1

tan(θ0/2)
σŝ|U1 and ψ2 =

1
tan(θ0/2)

σn̂|U2 ,

so that ψk, k = 1, 2, maps Uk onto B(0, 1), the unit ball in R
n. We conclude that

A = {Uk, ψk}2
k=1 is a C∞ atlas of covering coordinate charts for the sphere. It is

known (see [19]) that the stereographic coordinate charts {ψk}2
k=1 as defined in (8)
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map spherical caps to Euclidean balls, but in general, concentric spherical caps are
not mapped to concentric Euclidean balls. The projection ψk, for k = 1, 2, does
not distort too much the geodesic distance between two points x, y ∈ Sn, as shown
in [9].

With the atlas so defined, we define the map πk which takes a real-valued function
g with compact support in Uk into a real-valued function on R

n by

πk(g)(x) =
{

g ◦ ψ−1
k (x), if x ∈ B(0, 1),

0, otherwise.

Let {χk : Sn → R}2
k=1 be a partition of unity subordinate to the atlas, i.e., a pair

of nonnegative infinitely differentiable functions χk on Sn with compact support in
Uk such that

∑
k χk = 1. For any function f : Sn → R, we can use the partition of

unity to write

f =
2∑

k=1

(χkf), where (χkf)(p) = χk(p)f(p), p ∈ Sn.

The Sobolev space H1(Sn) is defined to be the set

{f ∈ L2(Sn) : πk(χkf) ∈ H1(Rn) for k = 1, 2},
which is equipped with the norm

(9) ‖f‖H1(Sn) =

(
2∑

k=1

‖πk(χkf)‖2
H1(Rn)

)1/2

.

This H1(Sn) norm is equivalent to the H1(Sn) norm given in Section 2.1 (see [12]).

2.3. Spherical basis functions. In this section, we will review the necessary back-
ground on positive definite kernels on the unit sphere and spherical basis functions.

A real-valued kernel Φ in C(Sn×Sn) is termed positive definite on Sn if Φ(x, y) =
Φ(y, x) and if for every finite set of distinct points X = {x1, . . . , xN} on Sn, the
symmetric N × N matrix A with entries Ai,j = Φ(xi, xj) is positive semi-definite.
If the matrix A is positive definite, then Φ is called a strictly positive definite kernel
(see [20, 31]).

Let φ be a univariate function defined on [−1, 1] which can be expanded in terms
of Legendre polynomials as

(10) φ(t) =
1

ωn

∞∑
�=0

N(n, �)φ̂(�)P�(n + 1; t),

where

(11) φ̂(�) = ωn−1

∫ +1

−1

φ(t)P�(n + 1; t)(1 − t2)(n−2)/2dt.

Due to the addition formula (3), a kernel Φ defined by

(12) Φ(x, y) = φ(x · y)

can be represented as

(13) Φ(x, y) =
∞∑

�=0

N(n,�)∑
k=1

φ̂(�)Y�,k(x)Y�,k(y).
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In [3], a complete characterization of strictly positive definite kernels is established:
the kernel Φ is strictly positive definite if and only if φ̂(�) ≥ 0 for all � ≥ 0 and
φ̂(�) > 0 for infinitely many even values of � and infinitely many odd values of �;
see also [20] and [31].

The native space NΦ associated with the kernel Φ is defined by

(14) NΦ :=

⎧⎨⎩f ∈ L2(Sn) :
∞∑

�=0

N(n,�)∑
k=1

|f̂�,k|2

φ̂(�)
< ∞

⎫⎬⎭ .

If

(15) c1(1 + λ�)−s ≤ φ̂(�) ≤ c2(1 + λ�)−s,

where c1, c2 > 0 are some constants and s > n/2, the native space NΦ can be
identified with the Sobolev space Hs(Sn) defined in (5). Henceforth, the condition
(15) is shortened to φ̂(�) ∼ (1 + λ�)−s.

In the following we define a positive definite kernel Φ from a univariate function
φ satisfying (15) by using Wendland’s compactly supported radial basis functions
[27]. For any nonnegative integer j, let

ρj(r) =

{
(1 − r)j , 0 < r ≤ 1,

0, r > 1,

and let

Iρj(r) =
∫ ∞

r

sρj(s)ds, r ≥ 0.

We define, for any nonnegative integer m,

ρn+1,m(r) = Imρm+�n+1
2 �+1(r).

The radial basis function Ψn+1,m is defined in R
n+1 as

Ψn+1,m(x) = ρn+1,m(‖x‖),
where ‖ · ‖ denotes the Euclidean norm in R

n+1. It is shown in [28, Corollary 2.3]
that Ψn+1,m ∈ C2m(Rn+1). For any given N and any set of N pairwise distinct
points {x1, . . . , xN} in R

n+1, the matrix

(16) [Ψn+1,m(xi − xj)]Ni,j=1

is positive definite; see [29, Theorem 9.13]. Since ‖x − y‖ =
√

2 − 2x · y for any
x, y ∈ Sn, the kernel Φ defined by (12) with

(17) φ(t) = ρn+1,m(
√

2 − 2t)

is related to the above radial basis function Ψn+1,m by

Φ(x, y) = Ψn+1,m(x − y), x, y ∈ Sn.

Since the matrix (16) is positive definite, Φ is a strictly positive definite kernel on
the sphere Sn. Moreover, the asymptotic behavior of the Fourier coefficients φ̂(�)
is, see [15, Proposition 4.6],

φ̂(�) = O(�−2m−n−1).

Using (2), we deduce that φ satisfies (15) with

(18) s = m + (n + 1)/2.
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With this kernel Φ, we can now establish a set of spherical basis functions (SBFs)
{Φ1, . . . , ΦN} associated with a set X = {x1, . . . , xN} of scattered and distinct
points on Sn, where

Φi(x) := Φ(xi, x).

The finite-dimensional space spanned by these SBFs is denoted by VX :

(19) VX := span {Φi : i = 1, . . . , N}.

We note that the SBFs Φi, i = 1, . . . , N , depend only on the geodesic distance
between the points x and xi. The set X is characterized by its mesh norm hX and
separation radius qX , defined by

hX := sup
y∈Sn

min
xi∈X

θ(xi, y) and qX :=
1
2

min
i �=j

θ(xi, xj).

The kernel Φ being strictly positive definite, the interpolation problem in VX of
scattered points using spherical basis functions is always solvable. Given a function
f whose values f(xj) for j = 1, . . . , N are known, the interpolant IXf of f is
defined as a linear combination of the SBFs which satisfies (IXf)(xj) = f(xj) for
all j = 1, . . . , N . It is observed in [11] that the matrix A with entries Ai,j = Φi(xj)
arising from this interpolation problem is ill-conditioned. More fully, it is shown
there that the least eigenvalue of the matrix A depends on the separation radius
qX of the set X, which can be very small for a large set of scattered data, and also
on the smoothness of the kernel Φ. (The smoother the kernel the smaller the least
eigenvalue of A.)

3. The elliptic partial differential equation on spheres

We consider the following elliptic partial differential equation on the unit sphere:

−∆∗u + ω2u = f,

where f is some given function and ω �= 0 is a real constant. This type of elliptic
partial differential equations arises when one discretizes in time the heat equation
on the surface of the sphere. To set up a weak formulation, we introduce the bilinear
form

a(u, v) :=
∞∑

�=0

N(n,�)∑
k=1

(λ� + ω2)û�,kv̂�,k.

A natural weak formulation of the elliptic PDE is

a(u, v) = 〈f, v〉 ∀v ∈ H1(Sn),

where 〈u, v〉 =
∫

Sn uvdS. The bilinear form is bounded and coercive by the following
lemma.

Lemma 3.1. For u, v ∈ H1(Sn), there are positive constants A0 ≤ 1 and A1 ≥ 1
such that

a(u, v) ≤ A1‖u‖H1(Sn)‖v‖H1(Sn) and a(u, u) ≥ A0‖u‖2
H1(Sn).
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Proof. In terms of Fourier series, we have

a(u, v) =
∞∑

�=0

N(n,�)∑
k=1

(λ� + ω2)û�,kv̂�,k

≤ max{1, ω2}
∞∑

�=0

N(n,�)∑
k=1

(λ� + 1)û�,kv̂�,k

≤ A1

⎛⎝ ∞∑
�=0

N(n,�)∑
k=1

(λ� + 1)|û�,k|2
⎞⎠1/2⎛⎝ ∞∑

�=0

N(n,�)∑
k=1

(λ� + 1)|v̂�,k|2
⎞⎠1/2

= A1‖u‖H1‖v‖H1 ,

where A1 = max{1, ω2}. For the second inequality, we have

a(u, u) =
∞∑

�=0

N(n,�)∑
k=1

(λ� + ω2)|û�,k|2

≥ min{1, ω2}
∞∑

�=0

N(n,�)∑
k=1

(λ� + 1)|û�,k|2

= A0‖u‖2
H1(Sn),

where A0 = min{1, ω2}. �

We remark that a direct consequence of the lemma is that a(u, u) ∼ ‖u‖2
H1(Sn).

The Ritz-Galerkin approximation problem is:

(20) Find uX ∈ VX such that a(uX , v) = 〈f, v〉 ∀v ∈ VX .

The problem will reduce to the problem of solving the following linear system:

(21) Bc = f ,

where the entries of the matrix B are given as Bi,j = a(Φi, Φj) and the vector f is
given as f = [fj ]Nj=1 in which fj = 〈f, Φj〉 for i, j = 1, . . . , N .

The following lemma, which is a variant of the Funk-Hecke formula (see [14]),
facilitates the computation of each entry of the matrix B.

Lemma 3.2. For any two zonal functions ψ(t) and φ(t) of the form (10), we have
the following relation:∫

Sn

ψ(x · z)φ(z · y)dS(z) =
1
ωn

∞∑
�=0

N(n, �)ψ̂(�)φ̂(�)P�(n + 1; x · y).

Proof. From the definition, ψ(x · z) and φ(y · z) have the following expansions in
terms of spherical harmonics:

ψ(x · z) =
∞∑

�=0

N(n,�)∑
k=1

ψ̂(�)Y�,k(x)Y�,k(z),

φ(y · z) =
∞∑

�=0

N(n,�)∑
k=1

φ̂(�)Y�,k(y)Y�,k(z).
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Then, by using the orthogonality of spherical harmonics and the addition formula
(3), we obtain∫

Sn

ψ(x · z)φ(z · y)dS(z) =
∞∑

�=0

N(n,�)∑
k=1

ψ̂(�)φ̂(�)Y�,k(x)Y�,k(y)

=
1
ωn

∞∑
�=0

N(n, �)ψ̂(�)φ̂(�)P�(n + 1; x · y).

�

If the supports of Φi and Φj do not overlap, then Bi,j = 0. This follows from
a(Φi, Φj) =

〈
−∆∗Φi + ω2Φi, Φj

〉
, together with the fact that the support of ∆∗Φi

is the same as that of Φi. (This follows from the second-order differential operator
form of the Laplace-Beltrami operator.) If the supports of Φi and Φj overlap, then,
by applying Lemma 3.2 we have

Bi,j =
∫

Sn

(−∆∗ + ω2)φ(xi · x)φ(xj · x)dS(x)

=
1

ωn

∞∑
�=0

N(n, �)(λ� + ω2)[φ̂(�)]2P�(n + 1; xi · xj).(22)

4. The abstract framework of additive Schwarz methods

Additive Schwarz methods provide fast solutions to equation (20) by solving, at
the same time, problems of smaller size. Let the space VX be decomposed as

(23) VX = V0 + · · · + VJ ,

where Vj , j = 0, . . . , J , are subspaces of VX , and let Pj : VX → Vj , j = 0, . . . , J ,
be projections defined by

(24) a(Pjv, w) = a(v, w) ∀v ∈ VX , ∀w ∈ Vj .

If we define

(25) P := P0 + · · · + PJ ,

then the additive Schwarz method for equation (20) consists of solving, by an
iterative method, the equation

(26) PuX = g,

where the right-hand side is given by g =
∑J

j=0 gj , with gj ∈ Vj being solutions of

(27) a(gj , w) = 〈f, w〉 , for any w ∈ Vj .

The well-known equivalence of (20) and (26) was discussed explicitly in [25]. In
fact, if uX is a solution of (20), then from the definition of Pj and gj we deduce

a(PjuX , w) = a(uX , w) = 〈f, w〉 = a(gj , w) for any w ∈ Vj ,

i.e. PjuX = gj . Hence PuX = g. On the other hand, if P : VX → VX is invertible
and uX is the solution of (26), then by using successively the symmetry of P and
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(24) and (27), we obtain

a(uX , v) = a(P−1g, v) = a(g, P−1v)

=
J∑

j=0

a(gj , P
−1v) =

J∑
j=0

a(gj , PjP
−1v)

=
J∑

j=0

〈
f, PjP

−1v
〉

= 〈f, v〉 for any v ∈ VX .

A practical method to solve (26) is the conjugate gradient method; the addi-
tive Schwarz method (see Section 6) can be viewed as a preconditioned conjugate
gradient method.

Bounds for λmin(P ) and λmax(P ), the minimum and maximum eigenvalues of
the additive Schwarz operator P , can be obtained by using the following lemma;
see [17, 30].

Lemma 4.1. (i) Assume that there exists a constant c1 > 0 such that, for any
u ∈ VX satisfying u =

∑J
j=0 uj with uj ∈ Vj for j = 0, . . . , J the following inequality

a(u, u) ≤ c1

J∑
j=0

a(uj , uj)

holds. Then
λmax(P ) ≤ c1.

(ii) Assume that there exists a constant c2 > 0 such that any u ∈ VX has a decom-
position u =

∑J
j=0 uj, uj ∈ Vj, satisfying

J∑
j=0

a(uj , uj) ≤ c2a(u, u).

Then
λmin(P ) ≥ c−1

2 .

5. Additive Schwarz method for elliptic PDEs on the unit sphere

In this section we will define a subspace decomposition of the form (23), and in
this way define the additive Schwarz operator for problem (20). We will then present
the main theoretical result of the paper, namely an estimate for the condition
number of the additive Schwarz operator.

5.1. Subspace decomposition. Let α be a fixed number satisfying 0 < α < π/2,
and let X0 := {pj : j = 1, . . . , J} be a subset of X such that

(28) Sn =
J⋃

j=1

C(pj , α).

Assume that the support of Φ(p, ·), which is a spherical cap centered at p, has
radius γ. (In the case of SBF constructed from Wendland’s radial basis functions,
γ = π/3.)

For j = 1, . . . , J , the subset Xj is defined as

(29) Xj := {xk ∈ X : θ(xk, pj) ≤ α}.
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The sets Xj may have different numbers of elements and may overlap each other.
Because of (28) it is clear that X is decomposed into J overlapping subsets {Xj :
j = 1, . . . , J} of discrete points such that

X =
J⋃

j=1

Xj .

We define Vj = VXj
, j = 0, . . . , J ; i.e., Vj = span {Φk : xk ∈ Xj}, so that

VX = V0 + · · · + VJ . The Schwarz operator P is then defined by (24) and (25).
Functions in Vj have supports in Γj , where

Γj := C(pj , α + γ), j = 1, . . . , J.

We assume that:

Assumption 5.1. We can partition the index set {1, . . . , J} into M (for 1 ≤ M ≤
J) sets Jm, for 1 ≤ m ≤ M such that if i, j ∈ Jm and i �= j, then Γi ∩ Γj = ∅.

The partitioning problem mentioned in Assumption 5.1 is related to the graph
coloring problem [2]. We can define an undirected graph G = (V, E) in which the
set of vertices V = {ν1, . . . , νJ} is identified with the set of caps Γj , and E is the set
of edges, where if Γi ∩Γj �= ∅, then there is an edge between νi and νj . A partition
satisfying Assumption 5.1 is equivalent to a coloring of the vertices of G so that
adjacent vertices have different colors. The minimal number of colors needed is
called the chromatic number of G and is denoted by δ(G). In general, it is difficult
to determine the chromatic number of a graph. However, it is easy to see that

δ(G) ≥ ω(G),

where ω(G) is the maximal order of a complete subgraph of G; that is, it is the
maximal number of vertices all of which are mutually connected. In terms of the
caps, every point on the sphere Sn lies in at most ω(G) spherical caps Γj .

An upper bound of δ(G) is given in [2, Theorem 3, Chapter 5]: when G is
neither a complete graph nor an odd cycle, then δ(G) ≤ ∆(G), with ∆(G) being
the maximal degree of G. In terms of our spherical caps, each cap Γj intersects at
most ∆(G) other caps.

Therefore, for a given set X0 and parameters α, γ, we can compute the lower
bound M1 := ω(G) and the upper bound M2 := ∆(G) so that

(30) 1 ≤ M1 ≤ M ≤ M2 ≤ J.

5.2. A bound for λmax(P ). We now state a lemma that will lead to an upper
bound of the maximum eigenvalue λmax(P ).

Lemma 5.1. There exists a positive constant c independent of the set X such that
for any u ∈ VX satisfying u =

∑J
j=0 uj with uj ∈ Vj for j = 0, . . . , J ,

a(u, u) ≤ cM

J∑
j=0

a(uj , uj).

Proof. Using the inequality |a + b|2 ≤ 2(|a|2 + |b|2), we have

‖u‖2
H1(Sn) ≤ 2

⎛⎜⎝‖u0‖2
H1(Sn) +

∥∥∥∥∥∥
J∑

j=1

uj

∥∥∥∥∥∥
2

H1(Sn)

⎞⎟⎠ .
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From the definition of the Sobolev norm (9),

(31)

∥∥∥∥∥∥
J∑

j=1

uj

∥∥∥∥∥∥
2

H1(Sn)

=

∥∥∥∥∥∥
J∑

j=1

π1(χ1uj)

∥∥∥∥∥∥
2

H1(Rn)

+

∥∥∥∥∥∥
J∑

j=1

π2(χ2uj)

∥∥∥∥∥∥
2

H1(Rn)

.

Now, from the fact that uj ∈ Vj together with Assumption 5.1 we can partition the
index set {1, . . . , J} into M sets of indices Jm so that if i, j ∈ Jm, then supp ui ∩
supp uj = ∅. Then, in this proof only, let gj = π1(χ1uj). By using the Cauchy-
Schwarz inequality, we have

(32)

∥∥∥∥∥∥
J∑

j=1

gj

∥∥∥∥∥∥
2

H1(Rn)

=

∥∥∥∥∥∥
M∑

m=1

∑
j∈Jm

gj

∥∥∥∥∥∥
2

H1(Rn)

≤ M

M∑
m=1

∥∥∥∥∥∥
∑

j∈Jm

gj

∥∥∥∥∥∥
2

H1(Rn)

.

Since the supports of gi and gj are disjoint for i, j ∈ Jm, i �= j,∥∥∥∥∥∥
∑

j∈Jm

gj

∥∥∥∥∥∥
2

H1(Rn)

=
∑

j∈Jm

‖gj‖2
H1(Rn).

Thus, ∥∥∥∥∥∥
J∑

j=1

gj

∥∥∥∥∥∥
2

H1(Rn)

≤ M

M∑
m=1

∑
j∈Jm

‖gj‖2
H1(Rn) = M

J∑
j=1

‖gj‖2
H1(Rn).

Hence, by using similar arguments for π2(χ2uj), we conclude∥∥∥∥∥∥
J∑

j=1

uj

∥∥∥∥∥∥
2

H1(Sn)

≤ M

⎛⎝ J∑
j=1

‖π1(χ1uj)‖2
H1(Rn) +

J∑
j=1

‖π2(χ2uj)‖2
H1(Rn)

⎞⎠
= M

J∑
j=1

‖uj‖2
H1(Sn).

Therefore,

‖u‖2
H1(Sn) ≤ cM

J∑
j=0

‖uj‖2
H1(Sn).

Using the fact that a(u, u) ∼ ‖u‖2
H1(Sn) we obtain the result. �

From this lemma and Lemma 4.1 it follows that

(33) λmax(P ) ≤ cM,

where c is a constant independent of M , J and the set X.

5.3. A bound for λmin(P ). We now find a lower bound for the minimum eigen-
value of P . In the finite element and boundary element literature, a lower bound
is usually obtained by using the interpolation operator and a partition of unity;
see, e.g., [23, 26]. More precisely, in the FEM and BEM cases a decomposition of
a function u ∈ VX satisfying the condition of Lemma 4.1 (ii) takes the following
form:

u0 = P0u, uj = ΠX(ϕj(u − u0)), j = 1, . . . , J,
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where P0 is the H1-projection onto V0, ΠX is the interpolation operator at the data
points, and {ϕj : j = 1, . . . , J} is a partition of unity satisfying supp ϕj ⊂ Γj . This
approach cannot be used in the present case because with radial basis functions
the support of ΠX(v) may be the whole sphere even though the support of v is
in Γj . The method of alternating projections [4, 18] will be used instead. Before
introducing this method we need the following definition.

Definition 5.1. Let V be a Hilbert space with inner product and norm denoted
by 〈·, ·〉 and ‖ · ‖, respectively. Assume that U1 and U2 are two closed subspaces of
V . The angle α between U1 and U2 is the angle in [0, π/2] whose cosine is given by

cos α = sup{〈v, w〉 : v ∈ U1 ∩ U⊥, w ∈ U2 ∩ U⊥, ‖v‖ ≤ 1, ‖w‖ ≤ 1},
where U = U1 ∩ U2, and U⊥ is its orthogonal complement, namely,

U⊥ := {f ∈ V : 〈f, v〉 = 0 ∀v ∈ U}.
The following result is standard; the proof is included for completeness.

Lemma 5.2. If U1 and U2 are two closed subspaces of a Hilbert space V, then

(U1 + U2)⊥ = U⊥
1 ∩ U⊥

2 .

Proof. It follows from the definition of the orthogonal complement that

(U1 + U2)⊥ = {f ∈ V : 〈f, v〉 = 0 ∀v ∈ U1 + U2}
= {f ∈ V : 〈f, v1〉 = 0 = 〈f, v2〉 ∀v1 ∈ U1 and v2 ∈ U2}
= U⊥

1 ∩ U⊥
2 . �

The following theorem is crucial in our estimate of the minimum eigenvalue of P .

Theorem 5.1 ([21, Theorem 2.2]). Let V1, . . . , VJ be closed subspaces of a Hilbert
space V, and Wi :=

⋂J
j=i Vj, i = 1, . . . , J . If Qi : V → Vi is the orthogonal

projection onto Vi, i = 1, . . . , J , and Q : V → W1 is the orthogonal projection onto
W1, then

‖Q̃lf − Qf‖ ≤ cl‖f − Qf‖, ∀f ∈ V , l = 1, 2, . . . ,

where Q̃ := QJ · · ·Q1 and

c2 = 1 −
J−1∏
i=1

sin2 αi,

with αi being the angle between Vi and Wi+1.

We shall apply Theorem 5.1 with V being VX , which is equipped with the inner
product a(·, ·) and induced norm ‖·‖a, and Vj being V ⊥

j , j = 1, . . . , J . If T is a
linear operator on VX , we denote by ‖T‖a the norm of T defined by ‖·‖a, i.e.,

‖T‖a = sup
v∈VX

‖v‖a≤1

‖Tv‖a.

Proposition 5.1. Let Q̃ := QJ · · ·Q1, where Qi is the orthogonal projection from
VX onto V ⊥

i , and let Wi :=
⋂J

j=i V ⊥
j , i = 1, . . . , J . Then

‖Q̃‖a ≤
(

1 −
J−1∏
i=1

sin2 αi

)1/2

< 1,

where αi is the angle between V ⊥
i and Wi+1.
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Proof. It follows from Lemma 5.2 that

W1 =
J⋂

j=1

V ⊥
j = (V1 + · · · + VJ )⊥ = V ⊥

X = {0},

which implies that the orthogonal projection Q from VX onto W1 is identically zero.
Theorem 5.1 with l = 1 then yields

‖Q̃‖a ≤
(

1 −
J−1∏
i=1

sin2 αi

)1/2

.

It remains to show that αi �= 0 for all i = 1, . . . , J − 1. Suppose that αi = 0 for
some i ∈ {1, . . . , J − 1}. Then noting that

(V ⊥
i ∩ Wi+1)⊥ = W⊥

i ,

we obtain from Definition 5.1,

sup{a(v, w) : v ∈ V ⊥
i ∩ W⊥

i , w ∈ Wi+1 ∩ W⊥
i , ‖v‖a ≤ 1, ‖w‖a ≤ 1} = 1.

The spaces being finite dimensional, by compactness there exist v ∈ V ⊥
i ∩W⊥

i and
w ∈ Wi+1 ∩ W⊥

i satisfying

‖v‖a = ‖w‖a = 1 and a(v, w) = 1.

It follows from the Cauchy-Schwarz inequality that v = w. Thus v ∈ V ⊥
i ∩Wi+1 =

Wi. On the other hand, v ∈ W⊥
i , which implies v = 0. This contradicts a(v, v) = 1,

proving the proposition. �

Lemma 5.3. For any u ∈ VX there exist uj ∈ Vj, j = 0, . . . , J , satisfying u =∑J
j=0 uj and

J∑
j=0

a(uj , uj) ≤
(

1 +
J

(1 − ‖Q̃‖a)2

)
a(u, u),

where Q̃ is defined in Proposition 5.1.

Proof. It follows from Proposition 5.1 that I − Q̃ is invertible and satisfies

‖(I − Q̃)−1‖a ≤ 1

1 − ‖Q̃‖a

,

where I is the identity operator on VX . We define, for any u ∈ VX ,

u0 = P0u, v = u − u0,

u1 = P1(I − Q̃)−1v,

uj = PjQj−1 · · ·Q1(I − Q̃)−1v, j = 2, . . . , J,

where Pi := I − Qi is the orthogonal projection from VX onto Vi, i = 0, . . . , J .
It is easy to check that

∑J
j=1 uj (being a telescoping sum) equals v, and therefore∑J

i=0 ui = u. The crude estimate

‖uj‖a ≤ ‖(I − Q̃)−1‖a‖v‖a ≤ ‖(I − Q̃)−1‖a‖u‖a, j = 1, . . . , J,

yields

a(uj , uj) ≤
1

(1 − ‖Q̃‖a)2
a(u, u), j = 1, . . . , J,
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resulting in

J∑
j=0

a(uj , uj) = a(u0, u0) +
J∑

j=1

a(uj , uj)

≤
(

1 +
J

(1 − ‖Q̃‖a)2

)
a(u, u),

proving the lemma. �

The above lemma and Lemma 4.1 yield the following estimate for the minimum
eigenvalue of P :

(34) λmin(P ) ≥
(

1 +
J

(1 − ‖Q̃‖a)2

)−1

.

This estimate is by no means sharp; in fact, the right-hand side is not an optimal
lower bound for λmin(P ), as can be seen in Table 1, because ‖Q̃‖a may be very
close to 1. In that table we present λ−1

min(P ), 1+
∑J

j=1 C2
j and 1+ J

(1−‖Q̃‖a)2
, where

for the middle term we explicitly compute Cj as the norm of the operator defining
uj , namely,

C1 = ‖P1(I − Q̃)−1‖a and Cj = ‖PjQj−1 · · ·Q1(I − Q̃)−1‖a, j = 2, . . . , J.

It is clear from Table 1 that (1 +
∑J

j=1 C2
j )−1 is a better approximant to λmin(P ).

Our experiments show that the projection Pj in the definition of uj plays a key role
in reducing the norm of (I − Q̃)−1, but we cannot account for this fact.

In Table 1 the norms of the operators were computed by using their matrix
representations. E.g., we computed ‖Q̃‖a as follows. Recalling the definition of
the positive definite matrix B (see (21)) and using the Cholesky factorization B =
LT L, we obtain for any u =

∑N
i=1 ciΦi ∈ VX ,

‖u‖2
a = cT Bc = ‖Lc‖2

�2 ,

where c = (c1, . . . , cN )T . On the other hand, by writing

Q̃Φi =
N∑

k=1

di,kΦk,

one can easily see that

‖Q̃u‖2
a = cT Q̃T BQ̃c = cT Q̃T LT LQ̃c = ‖LQ̃c‖2

�2 ,

where Q̃ is the matrix representation of Q̃ with the ith column being (di,1, . . . ,
di,N )T . Therefore,

‖Q̃‖a = sup
u∈VX

‖Q̃u‖a

‖u‖a
= sup

c∈RN

‖LQ̃c‖�2

‖Lc‖�2

= sup
c∈RN

‖LQ̃L−1c‖�2

‖c‖�2

= ‖LQ̃L−1‖�2 .
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Table 1. Upper bounds for λ−1
min(P )

N qX cos α cos β J λ−1
min(P ) 1 +

∑J
j=1 C2

j 1 + J/(1 − ‖Q̃‖a)2

1344 π/80 0.90 -0.90 44 120.41 1612.23 98914208.40
0.80 -0.93 23 285.80 461.67 4003258.71
0.70 -0.86 17 17.44 135.84 625605.77
0.60 -0.87 13 13.03 33.11 7481.56
0.50 -0.83 10 3.58 12.43 219.18

2133 π/100 0.90 -0.85 44 34.97 391.90 1684693.43
0.80 -0.89 24 20.16 69.22 57266.95
0.70 -0.89 17 6.56 24.09 712.68
0.60 -0.85 13 8.18 26.44 4745.12
0.50 -0.83 10 4.48 13.88 266.90

3458 π/140 0.90 -0.88 46 4.92 68.75 3662.59
0.80 -0.80 22 5.31 41.58 2649.72
0.70 -0.81 16 1.82 17.77 101.96
0.60 -0.85 13 1.02 13.31 47.03
0.50 -0.83 10 1.70 11.67 58.05

4108 π/160 0.90 -0.88 46 2.17 66.21 4023.85
0.80 -0.81 24 6.41 36.54 1043.01
0.70 -0.87 17 4.57 22.21 755.70
0.60 -0.86 14 1.26 15.31 86.07
0.50 -0.80 10 4.13 16.85 1388.24

7663 π/200 0.80 -0.89 23 1.37 27.47 154.84
0.70 -0.88 17 1.68 19.32 130.77
0.60 -0.81 11 5.54 17.35 609.86
0.50 -0.84 10 3.27 12.78 170.82

5.4. Main result. Estimates (33) and (34) yield an upper bound for the condition
number of the Schwarz operator.

Theorem 5.2. The condition number of the additive Schwarz operator P is bounded
by

κ(P ) ≤ cM

(
1 +

J

(1 − ‖Q̃‖a)2

)
,

where c is a constant independent of M , J and the set X, and Q̃ is defined as in
Proposition 5.1.

6. An overlapping additive Schwarz algorithm

As has been pointed out in [1], the essential ingredients for a domain decompo-
sition algorithm are:

(i) A method for subdividing the physical space.
(ii) An efficient and scale independent method for solving small subproblems.

The solutions to the small problems will be used to precondition the large
problem.
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Figure 1. Global scattered MAGSAT satellite data

(iii) A fast method for computing the action of the large matrices that occur at
various scales.

(iv) An outer iteration.

Suppose we number the scattered data following the satellite track as {1, . . . , N}.
Let α and β be parameters satisfying 0 < α < π/3 and α ≤ β ≤ π. The algorithm
to partition X can be described as follows.

(1) The first center is p1 = x1.
(2) Assume that the centers p1, . . . , pl have been chosen.
(3) If X =

⋃l
k=1 Xk (where Xk is defined by (29)), then stop the algorithm and

let J = l. Otherwise, choose the new center pl+1 as a point in X satisfying

θ(pl+1, pl) ≥ β and θ(pl+1, pk) ≥ α, k = 1, . . . , l − 1.

(4) Let l = l + 1 and repeat step (3).
Now X0 is defined by X0 := {p1, . . . , pJ}. The parameter β is included so that
the condition X =

⋃l
k=1 Xk in step (3) is quickly satisfied. In our experiments, for

a given value of α we chose an appropriate value of β by starting with the value
β = π, and decreased its value until the above-mentioned condition holds.

For j = 0, . . . , J , let Ij be a subset of the index set of {1, . . . , N} such that

m ∈ Ij ↔ xm ∈ Xj .

The cardinality of the set Ij is denoted by sj and the m-th element of the set Ij

is denoted by Ij(m) . For a given vector v = (v1, . . . , vN )T , the restriction of v on
Xj is the vector u = (u1, u2, . . . , usj

)T defined as follows:

um := vIj(m), m = 1, . . . , sj ,

and we write u = Rj(v); thus the restriction operation to Xj is denoted by Rj .
Conversely, for a vector u = (u1, . . . , usj

)T , we extend u to v = (v1, . . . , vN )T as

vk :=

{
um if k = Ij(m) for 1 ≤ m ≤ sj ,

0 otherwise,

and write v = Ej(u), where Ej denotes the extension operation.
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A pseudocode.
INPUT
Input the scattered set X on the sphere, the right-hand side f , and the desired
accuracy ε.
SETUP

(1) Partition the scattered set X into J overlapping subsets Xj for j = 1, . . . , J
and construct the global coarse set X0.

(2) Set the initial residual vector r = f (see (21)).
(3) Set the initial pseudoresidual vector p = 0.
(4) Set the initial solution vector s = 0.
(5) Set the iteration counter iter = 0.

ITERATIVE SOLUTION
(1) while ‖r‖ > ε‖f‖
(2) Set p = 0.
(3) for j = 1 to J
(4) Construct the local matrix C with entries Cm,n = BIj(m),Ij(n).
(5) Set the restriction residual vector z = Rj(r).
(6) Solve the linear system Cy = z.
(7) Update the pseudoresidual vector p = p + Ej(y).
(8) end for
(9) Construct the coarse global matrix G with entries

Gm,n = BI0(m),I0(n).

(10) Set zg = R0(r).
(11) Solve the linear system Gyg = zg.
(12) Update the pseudoresidual vector p = p + E0(yg).
(13) If iter > 0, then set ζ0 = ζ1.
(14) Set ζ1 = p · r.
(15) Update the counter, iter = iter +1.
(16) If iter = 1, then define p = p else p = p + (ζ1/ζ0)p.
(17) Update the residual vector

r = r −
(

r · p
p · Bp

)
Bp.

(18) Update the solution vector

s = s +
(

r · p
p · Bp

)
p.

(19) end while

7. Numerical results

In this section, we present numerical experiments on S2 based on globally scat-
tered position data extracted from a very large data set collected by NASA’s satel-
lite MAGSAT. The scattered data sets X are extracted so that the separation radius
qX satisfies qX ≥ q, where 0 < q < π/3 is a given number. The code is written
in FORTRAN 90 and was run on computers equipped with dual Opteron 2.0 GHz
CPU and 4GB RAM.
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Figure 2. The set X0 with N = 10443, cosα = 0.98, and cosβ = −0.70

We wish to solve
(−∆∗ + I)u(x) = f(x), x ∈ S2,

with I being the identity operator. The function f is defined to be

f(x) = f(x3) = (−∆∗ + I)ρ3,2(
√

2 − 2x3), x3 ∈ [−1, 1],

with ρ3,2(r) = (1 − r)6+(35r2 + 18r + 3) so that the exact solution is

u = ρ3,2(
√

2 − 2x3).

The radial basis function Ψ3,2(x) = ρ3,2(‖x‖) is in C4(R3) (see Section 2.3).
In the first set of numerical experiments, the spherical basis functions are derived

from Wendland’s radial basis function Ψ3,3(x) = ρ3,3(‖x‖), which is in C6(R3) (see
Section 2.3),

φ(x · y) = ρ3,3(
√

2 − 2x · y), ρ3,3(r) = (1 − r)8+(32r3 + 25r2 + 8r + 1).

Recalling (22), and noting that with n = 2 we have N(n, �) = 2� + 1 and λ� =
�(� + 1), each entry of the matrix B is given by

Bi,j =
∫

S2
(−∆∗ + ω2)φ(xi · x)φ(xj · x)dS(x)

=
1
4π

∞∑
�=0

(2� + 1)(λ� + ω2)[φ̂(�)]2P�(3; xi · xj).

In our experiments, Bi,j is approximated by the partial sum of the first 3000 terms.
The Legendre coefficients of the univariate function φ̂(�) were computed by approx-
imating (11) by an appropriate Gaussian quadrature over the interval [−1, 1].

We then test the overlapping method as the preconditioner for the conjugate
gradient method with different values of cosα, and hence different values of J and
M . The stopping criterion for the iteration is

‖Bc(m) − f‖�2

‖f‖�2
≤ 10−6,
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where B and f are the stiffness matrix and the right-hand side vector as in (21). In
the following tables, κ(P ) is the condition number, the CPU time is measured in
seconds, and iter is the number of iterations. The results for the first experiment
are shown in Table 2. Here M1 and M2 are the lower and upper bounds on M from
(30).

Table 2. Condition numbers of the Schwarz operator using ρ3,3(r)
as RBF

N qX cos α cos β M1 M2 J λmin λmax κ(P ) CPU Iter.
10443 π

240 0.99 -0.52 140 367 420 0.009 44.37 4693.57 116.2 171
0.98 -0.70 86 205 223 0.053 29.48 559.95 68.4 93
0.97 -0.64 56 131 138 0.034 21.78 645.84 78.2 90
0.95 -0.63 43 91 94 0.122 17.62 145.04 70.0 51
0.85 -0.93 19 30 31 0.590 10.19 17.26 141.2 21
0.60 -0.86 13 14 15 1.076 9.02 8.38 865.0 16

13775 π
280 0.99 -0.40 141 374 429 0.031 44.39 1420.38 153.9 132

0.98 -0.51 85 206 226 0.092 29.20 316.61 103.4 76
0.97 -0.57 56 132 140 0.069 21.57 310.99 108.2 66
0.95 -0.62 44 93 96 0.210 18.23 86.94 124.9 45
0.85 -0.89 21 33 34 0.636 10.73 16.86 350.7 22
0.60 -0.77 11 12 13 0.909 8.38 9.22 1761.7 17

17078 π
320 0.99 -0.44 148 387 442 0.037 46.50 1272.70 222.6 128

0.98 -0.71 85 207 227 0.074 30.58 410.70 185.3 88
0.97 -0.52 59 137 146 0.070 23.29 333.57 196.2 72
0.95 -0.81 44 93 96 0.161 17.72 109.74 233.6 48
0.85 -0.92 20 31 32 0.477 10.47 21.97 702.0 24
0.60 -0.79 11 12 13 0.623 8.42 13.51 3924.0 20

In the second set of experiments, the spherical basis function is derived from a
less smooth radial basis function Ψ3,2 ∈ C4(R3),

φ(x · y) = ρ3,2(
√

2 − 2x · y), ρ3,2(r) = (1 − r)6+(35r2 + 18r + 3).

The results are shown in Table 3.
The numbers in both Tables 2 and 3 suggest that when cosα decreases (meaning

that α increases), M1, M2 and κ(P ) decrease, but the CPU time decreases then
increases. We note that a larger value of α results in a larger size of the overlap
and a smaller value of J (the number of subproblems to be solved), which in turn
implies larger sizes of the subproblems. As in the case of finite element methods,
this results in a smaller condition number κ(P ) because the preconditioner is closer
to the inverse of the stiffness matrix. However, for an optimal value of α in term of
CPU time, one has to balance between the number of subproblems and their sizes.
Our experiments show that any value of α so that cos α ≤ 0.60 is not recommended.
Optimal CPU times seem to occur when cosα = 0.98. The numbers in Tables 2
and 3 also suggest that the smoothness of the kernel does not affect the algorithm.

Table 4 shows the CPU time and condition number of the matrix B using the
conjugate gradient method without preconditioners. In all cases, both the condition
number and the CPU time are much worse than those in Tables 2 and 3.
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Table 3. Condition numbers of the Schwarz operator using ρ3,2(r)
as RBF

N qX cos α cos β M1 M2 J λmin λmax κ(P ) CPU Iter.
10443 π

240 0.99 -0.52 140 367 420 0.023 49.02 2171.42 100.3 137
0.98 -0.70 86 205 223 0.107 31.83 296.84 55.9 71
0.97 -0.64 56 131 138 0.059 23.02 391.40 64.9 70
0.95 -0.63 43 91 94 0.186 18.57 99.91 62.5 44
0.85 -0.93 19 30 31 0.862 10.50 12.19 127.6 19
0.60 -0.86 13 14 15 1.121 9.30 8.29 836.4 16

13775 π
280 0.99 -0.40 141 374 429 0.031 49.04 1592.04 150.7 112

0.98 -0.51 85 206 226 0.090 31.35 348.66 96.7 63
0.97 -0.57 56 132 140 0.199 22.93 115.35 83.6 46
0.95 -0.62 44 93 96 0.290 19.24 66.25 112.3 38
0.85 -0.89 21 33 34 0.815 11.03 13.55 322.5 20
0.60 -0.77 11 12 13 0.961 8.49 8.83 1732.7 17

17078 π
320 0.99 -0.44 148 387 442 0.044 51.27 1153.38 167.6 101

0.98 -0.71 85 207 227 0.188 32.72 173.62 121.0 60
0.97 -0.52 59 137 146 0.134 24.58 182.98 138.3 53
0.95 -0.81 44 93 96 0.335 18.66 55.69 171.1 36
0.85 -0.92 20 31 32 0.709 10.81 15.24 614.3 21
0.60 -0.79 11 12 13 0.805 8.51 10.58 3549.5 18

Table 4. Conjugate gradient method without preconditioners

N qX λmin λmax κ(B) CPU Iter.
10443 π

240 0.2585E-03 0.6767E+04 0.2618E+08 2204.98 3512
13775 π

280 0.3362E-04 0.8082E+03 0.2404E+08 2802.73 2845
17078 π

320 0.4090E-04 0.1022E+04 0.2499E+08 4545.70 2981

We also compute the discrete maximum errors and �2 errors over a set G = {xg}
of 19075 points over S2 by

err∞ = max
xg∈G

|uX(xg) − u(xg)|

and

err2 =
1
|G|

⎛⎝∑
xg∈G

|u(xg) − uX(xg)|2
⎞⎠1/2

,

where |G| = 19075 is the cardinality of G. Tables 5 and 6 summarize the computed
results.
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Table 5. Errors using ρ3,3(r) as RBF

N cos α cos β M1 M2 J err∞ err2
10443 0.99 -0.52 140 367 420 8.4101e-04 4.3393e-07

0.98 -0.70 86 205 223 8.4257e-04 4.3417e-07
0.97 -0.64 56 131 138 8.4283e-04 4.3421e-07
0.95 -0.63 43 91 94 8.4294e-04 4.3421e-07
0.85 -0.93 19 30 31 8.4320e-04 4.3420e-07
0.75 -0.90 14 18 19 8.4336e-04 4.3420e-07

13775 0.99 -0.40 141 374 429 7.9116e-04 3.9836e-07
0.98 -0.51 85 206 226 7.9160e-04 3.9836e-07
0.97 -0.57 56 132 140 7.9139e-04 3.9833e-07
0.95 -0.62 44 93 96 7.9172e-04 3.9838e-07
0.85 -0.89 21 33 34 7.9103e-04 3.9834e-07
0.75 -0.91 15 18 19 7.9144e-04 3.9836e-07

17078 0.99 -0.44 148 387 442 7.0749e-04 3.5143e-07
0.98 -0.71 85 207 227 7.0767e-04 3.5141e-07
0.97 -0.52 59 137 146 7.0722e-04 3.5151e-07
0.95 -0.81 44 93 96 7.0739e-04 3.5149e-07
0.85 -0.92 20 31 32 7.0728e-04 3.5144e-07
0.75 -0.91 15 18 19 7.0796e-04 3.5147e-07

Table 6. Errors using ρ3,2(r) as RBF

N cos α cos β M1 M2 J err∞ err2
10443 0.99 -0.52 140 367 420 1.0816e-03 4.5627e-07

0.98 -0.70 86 205 223 1.0802e-03 4.5629e-07
0.97 -0.64 56 131 138 1.0798e-03 4.5628e-07
0.95 -0.63 43 91 94 1.0796e-03 4.5624e-07
0.85 -0.93 19 30 31 1.0795e-03 4.5621e-07
0.75 -0.90 14 18 19 1.0794e-03 4.5623e-07

13775 0.99 -0.40 141 374 429 1.0601e-03 4.3020e-07
0.98 -0.51 85 206 226 1.0606e-03 4.3021e-07
0.97 -0.57 56 132 140 1.0603e-03 4.3013e-07
0.95 -0.62 44 93 96 1.0606e-03 4.3020e-07
0.85 -0.89 21 33 34 1.0605e-03 4.3016e-07
0.75 -0.91 15 18 19 1.0610e-03 4.3019e-07

17078 0.99 -0.44 148 387 442 9.6261e-04 3.7418e-07
0.98 -0.71 85 207 227 9.6174e-04 3.7406e-07
0.97 -0.52 59 137 146 9.6151e-04 3.7400e-07
0.95 -0.81 44 93 96 9.6209e-04 3.7400e-07
0.85 -0.92 20 31 32 9.6185e-04 3.7400e-07
0.75 -0.91 15 18 19 9.6209e-04 3.7406e-07
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