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LOCAL SAMPLING THEOREMS FOR SPACES GENERATED
BY SPLINES WITH ARBITRARY KNOTS

WENCHANG SUN

Abstract. Most of the known results on sampling theorems, e.g., regular and
irregular sampling theorems for band-limited functions, are concerned with
global sampling. That is, to recover a function at a point or on an interval, we
have to know all the samples, which are usually infinitely many. On the other
hand, local sampling, which invokes only finitely many samples to reconstruct
a function on a bounded interval, is practically useful since we only need to
consider a function on a bounded interval in many cases and hardware can
process only finitely many samples. In this paper, we give a characterization
of local sampling sequences for spaces generated by B-splines with arbitrary
knots.

1. Introduction and main results

One of the main applications of sampling theorems is to reconstruct functions
from sampled values. Specifically, for a certain function space V and a sequence of
sampling points {xk : k ∈ Z}, there is a sequence of functions {Sk(x) : k ∈ Z} ⊂ V
such that for any f ∈ V ,

f(x) =
∑
k∈Z

f(xk)Sk(x).

The sampling theorem is one of the most powerful tools in signal analysis and
it is therefore very useful to characterize sampling sequences for a given function
space. For the space of band-limited functions, the theory is well understood by
the work of Beurling [5], Landau [15], Jaffard [13], Ortega-Cerdà and Seip [18],
and several others. For the sampling on general shift invariant subspaces, however,
many questions remain.

Note that in many cases (e.g., in the Shannon sampling theorem for band-limited
functions [20] and many other sampling theorems for shift invariant subspaces [1,
2, 3, 4, 6, 10, 12, 16]), Sk is not compactly supported. That means, to recover
the function at a point or on a finite interval, we have to know all the (infinitely
many) samples. On the other hand, since hardware can handle only finitely many
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data, it is practically useful to consider local sampling. That is, given a function
space V and an interval [a, b], we want to find conditions on the sampling sequence
{xk : 0 ≤ k ≤ K − 1} ⊂ [a, b] such that there is a sequence of functions {Sk : 0 ≤
k ≤ K − 1} with

f(x) =
K−1∑
k=0

f(xk)Sk(x), ∀f ∈ V, x ∈ [a, b].

As far as we know, the only result in this aspect is the periodic nonuniform
sampling theorem for cardinal B-spline subspaces. Specifically, let Wm be the shift
invariant subspace generated by the cardinal B-spline χ[0,1] ∗ · · · ∗ χ[0,1] (m + 1
terms) and let 0 ≤ x0 < x1 < · · · < xm < 1 be fixed. Then we can find compactly
supported S0, S1, . . . , Sm ∈ Wm such that

f(x) =
∑
k∈Z

∑
0≤p≤m

f(xp + k(m + 1))Sp(x − k(m + 1)), ∀f ∈ Wm.

In this case, f(x) is determined by finitely many samples near x. However, the
distribution of sampling points is bad. There are m + 1 sampling points in every
interval such as [k(m + 1), k(m + 1) + 1) while there is no sampling point in the
subsequent intervals of length m.

In [24], the authors studied local sampling problems on spaces generated by
cardinal B-splines and gave a characterization of local sampling sequences for these
spaces. In this paper, we consider the same problem but with more general settings.
Specifically, we consider spline spaces with arbitrary knot sequences.

Let Γ = {tk : k ∈ Z} be a sequence of real numbers such that

(1.1) tk ≤ tk+1 and tk < tk+m, k ∈ Z,

where m ≥ 1 is a fixed integer. Note that the above inequalities show that each
point can appear at most m times in the sequence. Let ϕn be the m-degree B-spline
with knots (tn, tn+1, . . ., tn+m+1) and

Vm =
{ ∑

n∈Z

cnϕn : cn ∈ C

}
.

Observe that Vm stands for a large class of function spaces. For example, for
Γ = Z, ϕn is exactly the m-degree cardinal B-spline, i.e., ϕn = Bm(· − n), where
Bm = χ[0,1] ∗ · · · ∗ χ[0,1] (m + 1 terms).

Another interesting example is Γ = {�n/r� : n ∈ Z}, where 1 ≤ r ≤ m and we
use the notation �x� := max{n ∈ Z : n ≤ x}. In this case,

(1.2) V (r)
m =

{ ∑
n∈Z,1≤l≤r

cn,lψl(· − n) : cl,n ∈ C

}
,

where ψl is the normalized B-spline with knots
(
�l/r�, �(l + 1)/r�, . . . ,

�(l + m + 1)/r�
)
. These splines are investigated in the study of wavelets of multi-

plicity r. We refer to [11, 17] for details.
For convenience, we introduce the following definitions. Given a knot sequence

{tk : k ∈ Z}, we define

L(k) := LΓ(k) = min{k′ ≤ k : tk′ = tk},
R(k) := RΓ(k) = max{k′ ≥ k : tk′ = tk}.
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For simplicity, we write L(k) and R(k) instead of LΓ(k) and RΓ(k), respectively. It
is easy to see that tk appears exactly R(k)−L(k)+1 times in Γ. By (1.1), we have

(1.3) 0 ≤ R(k) − L(k) ≤ m − 1, ∀k ∈ Z.

Let #E denote the cardinality of a sequence E.

Definition 1.1. We call a sequence E an m-spread sequence on [tN1 , tN2 ] with
respect to {tk : k ∈ Z} if E ⊂ [tN1 , tN2 ] consists of distinct points and satisfies the
following:

#E ≥ L(N2) − R(N1) + m,(1.4)
#

(
E ∩ [tN1 , tn)

)
≥ R(n) − R(N1), N1 ≤ n ≤ N2,(1.5)

#
(
E ∩ (tn, tN2 ]

)
≥ L(N2) − L(n), N1 ≤ n ≤ N2,(1.6)

#
(
E ∩ (tn1 , tn2)

)
≥ R(n2) − L(n1) − m, N1 ≤ n1 ≤ n2 ≤ N2.(1.7)

Definition 1.2. We call a sequence E := {xk : 0 ≤ k ≤ K − 1} a local sampling
sequence for Vm on [tN1 , tN2 ] if E ⊂ [tN1 , tN2 ], and there is a sequence of functions
{Sk : 0 ≤ k ≤ K − 1} such that

(1.8) f(x) =
K−1∑
k=0

f(xk)Sk(x), ∀f ∈ Vm, x ∈ [tN1 , tN2 ].

We only need to consider local sampling sequences consisting of distinct points.
In fact, if E is a local sampling sequence, then the largest subsequence of E which
contains only distinct points is also a local sampling sequence and vice visa.

Note that there is not a local sampling sequence for band-limited functions. In
fact, since a band-limited function is the restriction of an analytical function on the
real line, if f(x) =

∑K−1
k=0 f(xk)Sk(x) holds on some interval, then f is determined

on the whole real line, which is impossible since a band-limited function is not
determined by finitely many samples in general.

For the case of spaces generated by B-splines, however, such a local sampling
sequence does exist. In fact, we have the following.

Theorem 1.1. A sequence of distinct points is a local sampling sequence for Vm

on [tN1 , tN2 ] if and only if it is an m-spread sequence with respect to {tk : k ∈ Z}
on the same interval.

By setting tn = �n/r�, we get a characterization of local sampling sequences for
the space V

(r)
m defined by (1.2).

Corollary 1.2. A sequence of distinct points is a local sampling sequence for V
(r)
m

on [N ′
1, N

′
2] if and only if it satisfies the following:

#E ≥ r(N ′
2 − N ′

1 − 1) + m + 1,(1.9)
#

(
E ∩ [N ′

1, N
′
1 + k)

)
≥ rk, 0 ≤ k ≤ N ′

2 − N ′
1,(1.10)

#
(
E ∩ (N ′

2 − k, N ′
2]

)
≥ rk, 0 ≤ k ≤ N ′

2 − N ′
1,(1.11)

#
(
E ∩ (n′

1, n
′
2)

)
≥ r(n′

2 − n′
1 + 1) − m − 1, N ′

1 ≤ n′
1 ≤ n′

2 ≤ N ′
2.(1.12)

By setting r = 1, we get [24, Theorem 1.1].
We give the proof of Theorem 1.1 in Section 2. As applications, we give several

local sampling theorems for V
(r)
m in Section 3.



228 WENCHANG SUN

2. Proof of main results

We begin with a result on m-spread sequences.

Lemma 2.1. Let E be an m-spread sequence on [tN1 , tN2 ] with respect to {tk : k ∈
Z}. Then there is a subsequence E′ ⊂ E such that #E′ = L(N2)−R(N1) + m and
E′ is also an m-spread sequence on [tN1 , tN2 ].

Proof. (i) Assume that K := #E ≥ L(N2) − R(N1) + m + 1. Let

an = #
(
E ∩ [tN1 , tn)

)
− (R(n) − R(N1)),

bn = #
(
E ∩ (tn, tN2 ]

)
− (L(N2) − L(n)), N1 ≤ n ≤ N2.

Then we see from (1.5) and (1.6) that

(2.1) an, bn ≥ 0, N1 ≤ n ≤ N2.

Let

na = min{n : N1 ≤ n ≤ N2 and al ≥ 1, n ≤ l ≤ N2},(2.2)
nb = max{n : N1 ≤ n ≤ N2 and bl ≥ 1, N1 ≤ l ≤ n}.(2.3)

(ii) Prove that N1 + 1 ≤ na ≤ nb + 1.
Since aN1

= 0 and aN2
≥ K − 1− (R(N2)−R(N1)) ≥ L(N2)− R(N2) + m ≥ 1,

thanks to (1.3), we have N1 + 1 ≤ na ≤ N2. By (2.2), we have ana−1 = 0.
Consequently,

#
(
E ∩ [tN1 , tna−1)

)
= R(na − 1) − R(N1).

Therefore,

(2.4) #
(
E ∩ [tna−1, tN2 ]

)
= K − (R(na − 1) − R(N1)).

For N1 ≤ n < L(na − 1), we have tn < tna−1. By (1.7) and (2.4),

#
(
E ∩ (tn, tN2 ]

)
= #

(
E ∩ (tn, tna−1)

)
+ #

(
E ∩ [tna−1, tN2 ]

)
≥ (R(na − 1) − L(n) − m) + (K − (R(na − 1) − R(N1)))
= K − L(n) + R(N1) − m.

Hence

bn = #
(
E ∩ (tn, tN2 ]

)
− (L(N2) − L(n))

≥ (K − L(n) + R(N1) − m) − (L(N2) − L(n))
= K − L(N2) + R(N1) − m

≥ 1, N1 ≤ n < L(na − 1).

For L(na − 1) ≤ n ≤ na − 1, we see from (2.4) that

bn = #
(
E ∩ (tn, tN2 ]

)
− (L(N2) − L(n))

= #
(
E ∩ (tna−1, tN2 ]

)
− (L(N2) − L(na − 1))

≥ K − (R(na − 1) − R(N1)) − 1 − (L(N2) − L(na − 1))
≥ m − R(na − 1) + L(na − 1) ≥ 1.

By (2.3), nb ≥ na − 1.
(iii) Prove that #

(
E ∩ (tna−1, tna

)
)
≥ 1.
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Observe that

#
(
E ∩ [tN1 , tna

)
)

≥ R(na) − R(N1) + 1 ≥ R(na − 1) − R(N1) + 1

= #
(
E ∩ [tN1 , tna−1)

)
+ 1.

We have tna−1 < tna
. Hence

(2.5) R(na − 1) = na − 1 < na = L(na) ≤ R(na).

By (2.2), ana−1 = 0 and an ≥ 1 for na ≤ n ≤ N2. Hence

#
(
E ∩ [tna−1, tn)

)
(2.6)

= #
(
E ∩ [tN1 , tn)

)
− #

(
E ∩ [tN1 , tna−1)

)
≥ (R(n) − R(N1) + 1) − (R(na − 1) − R(N1))
= R(n) − R(na − 1) + 1, na ≤ n ≤ N2.

Therefore,

(2.7) #
(
E ∩ (tna−1, tn)

)
≥ R(n) − R(na − 1), na ≤ n ≤ N2.

By setting n = na, we get

#
(
E ∩ (tna−1, tna

)
)
≥ R(na) − R(na − 1) ≥ 1,

thanks to (2.5).
(iv) Take some y′ ∈ E ∩ (tna−1, tna

) and let E′ = E \ {y′}. Then E′ is an
m-spread sequence on [tN1 , tN2 ].

Since #E′ = K−1 ≥ L(N2)−R(N1)+m, we only need to show that E′ satisfies
(1.5)–(1.7).

For N1 ≤ n ≤ na − 1, we have

#
(
E′ ∩ [tN1 , tn)

)
= #

(
E ∩ [tN1 , tn)

)
= an + (R(n) − R(N1)) ≥ R(n) − R(N1).

For na ≤ n ≤ N2, we have

#
(
E′∩ [tN1 , tn)

)
= #

(
E∩ [tN1 , tn)

)
−1 = an +(R(n)−R(N1))−1 ≥ R(n)−R(N1).

On the other hand, for N1 ≤ n ≤ na − 1 ≤ nb,

#
(
E′ ∩ (tn, tN2 ]

)
= #

(
E ∩ (tn, tN2 ]

)
− 1

= bn + (L(N2) − L(n)) − 1 ≥ L(N2) − L(n).

For na ≤ n ≤ N2, we have

#
(
E′ ∩ (tn, tN2 ]

)
= #

(
E ∩ (tn, tN2 ]

)
= bn + (L(N2) − L(n)) ≥ L(N2) − L(n).

Hence (1.5) and (1.6) hold. Now it remains to prove that

#
(
E′ ∩ (tn1 , tn2)

)
≥ R(n2) − L(n1) − m, ∀N1 ≤ n1 ≤ n2 ≤ N2.

There are three cases.
Case 1. n1 ≥ na or n2 ≤ na − 1. In this case, we have

#
(
E′ ∩ (tn1 , tn2)

)
= #

(
E ∩ (tn1 , tn2)

)
≥ R(n2) − L(n1) − m.
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Case 2. n1 < L(na − 1) and n2 ≥ na. In this case,

#
(
E′ ∩ (tn1 , tn2)

)
= #

(
E′ ∩ (tn1 , tna−1)

)
+ #

(
E′ ∩ [tna−1, tn2)

)
= #

(
E ∩ (tn1 , tna−1)

)
+ #

(
E ∩ [tna−1, tn2)

)
− 1

≥ (R(na − 1) − L(n1) − m) + (R(n2) − R(na − 1))
= R(n2) − L(n1) − m,

thanks to (2.6).
Case 3. L(na − 1) ≤ n1 ≤ na − 1 and n2 ≥ na. By (2.7), we have

#
(
E′ ∩ (tn1 , tn2)

)
= #

(
E′ ∩ (tna−1, tn2)

)
= #

(
E ∩ (tna−1, tn2)

)
− 1

≥ R(n2) − R(na − 1) − 1
= R(n2) − R(n1) − 1
≥ R(n2) − R(n1) − m.

Now, we get that E′ is an m-spread sequence on [tN1 , tN2 ].
(v) Using the above procedures repeatedly, we obtain some E′ ⊂ E such that

#E′ = L(N2) − R(N1) + m and E′ is an m-spread sequence on [tN1 , tN2 ]. �
Let x1 < x2 < · · · < xn be real numbers and f1, f2, . . . , fn be functions. Define

M

(
x1, x2, . . . , xn

f1, f2, . . . , fn

)
=

⎡
⎢⎢⎣

f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

· · · · · ·
f1(xn) f2(xn) · · · fn(xn)

⎤
⎥⎥⎦ .

Lemma 2.2. Let n, K be integers and K > 0. For any real numbers x0 < x1 <

· · · < xK−1, the matrix M

(
x0 x1 · · · xK−1

ϕn ϕn+1 · · · ϕn+K−1

)
is invertible if and only

if
ϕn+k(xk) 
= 0, 0 ≤ k ≤ K − 1.

Proof. This is a consequence of [19, Theorem 4.61]. �
Lemma 2.3. Suppose that E := {xk : 0 ≤ k ≤ K − 1} is an m-spread sequence
on [tN1 , tN2 ] with respect to {tk : k ∈ Z}, where K = L(N2)−R(N1) + m. Suppose
that xk−1 < xk, 1 ≤ k ≤ K − 1. Then the matrix

M

(
x0 x1 · · · xK−1

ϕR(N1)−m ϕR(N1)−m+1 · · · ϕL(N2)−1

)
is invertible.

Proof. By Lemma 2.2, we only need to show that

ϕR(N1)−m+k(xk) 
= 0, 0 ≤ k ≤ K − 1.

Assume that there is some 0 ≤ k0 ≤ K − 1 such that ϕR(N1)−m+k0
(xk0

) = 0.
Since ϕR(N1)−m+k0

(x) > 0 in (tR(N1)−m+k0 , tR(N1)+k0+1), there are only two cases.
Case 1. xk0

≤ tR(N1)−m+k0 . Then we have

tN1 ≤ xk ≤ xk0
≤ tR(N1)−m+k0 , 0 ≤ k ≤ k0.

Hence #
(
E ∩ [tN1 , tR(N1)−m+k0 ]

)
≥ k0 + 1. On the other hand, since

R(N1) − m + k0 ≤ R(N1) − m + K − 1 = L(N2) − 1 < N2,
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we see from (1.6) that

#
(
E ∩ (tR(N1)−m+k0 , tN2 ]

)
≥ L(N2) − L(R(N1) − m + k0)
≥ L(N2) − (R(N1) − m + k0)
= K − k0.

Hence #
(
E ∩ [tN1 , tN2 ]

)
≥ K + 1, which contradicts #E = K.

Case 2. xk0
≥ tR(N1)+k0+1. Then we have

tR(N1)+k0+1 ≤ xk0
≤ xk ≤ tN2 , k0 ≤ k ≤ K − 1.

Hence #
(
E ∩ [tR(N1)+k0+1, tN2 ]

)
≥ K − k0. But

#
(
E ∩ [tN1 , tR(N1)+k0+1)

)
≥ R(R(N1) + k0 + 1) − R(N1) ≥ k0 + 1,

thanks to (1.5). Hence #
(
E ∩ [tN1 , tN2 ]

)
≥ K + 1. Again, this contradicts #E =

K. �

Proof of the sufficiency of Theorem 1.1. Assume that E := {xk : 0 ≤ k ≤ K − 1}
is an m-spread sequence on [tN1 , tN2 ], where x0 < x1 < · · · < xK−1 and K ≥ K ′ :=
L(N2) − R(N1) + m. Let

(2.8) A =
[
ϕn(xk)

]
0≤k≤K−1, R(N1)−m≤n≤L(N2)−1

be a K × K ′ matrix. By Lemma 2.1, there is some subsequence E′ ⊂ E which
is also an m-spread sequence on [tN1 , tN2 ] such that #E′ = K ′. Denote E′ =
{yk : 0 ≤ k ≤ K ′ − 1}, where y0 < y1 < · · · < yK′−1. By Lemma 2.3, we have

A′ := M

(
y0 y1 · · · yK′−1

ϕR(N1)−m ϕR(N1)−m+1 · · · ϕL(N2)−1

)

is invertible. Hence, there is some constant α > 0 such that

‖A′c‖2 ≥ α‖c‖2, ∀c ∈ C
K′

.

Since A′ consists of K ′ rows of A, we have

(2.9) cT AT Ac = ‖Ac‖2
2 ≥ ‖A′c‖2

2 ≥ α2‖c‖2
2, ∀c ∈ C

K′
.

Hence AT A is invertible.
For any f ∈ Vm, there are some cn ∈ C such that f(x) =

∑
n∈Z

cnϕn(x). Observe
that supp ϕn = (tn, tn+m+1). We have supp ϕn ⊂ (−∞, tN1) for n ≤ R(N1)−m−1
and supp ϕn ⊂ (tN2 , +∞) for n ≥ L(N2). Hence ϕn(x) = 0 for x ∈ [tN1 , tN2 ] and
n 
∈ [R(N1) − m, L(N2) − 1]. Therefore,

f(x) =
∑
n∈Z

cnϕn(x) =
L(N2)−1∑

n=R(N1)−m

cnϕn(x), ∀x ∈ [tN1 , tN2 ].

It follows that

(2.10) F = Ac,

where
F = [f(x0), f(x1), . . . , f(XK−1)]

T

and
c = [cR(N1)−m, cR(N1)−m+1, . . . , cL(N2)−1]

T .
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Hence

(2.11) c = (AT A)−1AT F.

Let

(2.12) Φ =
[
ϕR(N1)−m, ϕR(N1)−m+1, . . . , ϕL(N2)−1

]T

and

(2.13)
[
S0, S1, . . . , SK−1

]T = A(AT A)−1Φ.

Then we have

(2.14) f(x) = cT Φ(x) =
K−1∑
k=0

f(xk)Sk(x), ∀x ∈ [tN1 , tN2 ].

Obviously, supp Sk ⊂ [tR(N1)−m, tL(N2)+m] since supp ϕn =
(
tn, tn+m+1

)
. �

Let T[tN1 ,tN2 ]f be the restriction of a function f on [tN1 , tN2 ], i.e., (T[tN1 ,tN2 ]f)(x)
= f(x)χ[tN1 ,tN2 ](x). Set

VN1,N2 = T[tN1 ,tN2 ]Vm := {T[tN1 ,tN2 ]f : f ∈ Vm}.

Lemma 2.4. {T[tN1 ,tN2 ]ϕn : R(N2) − m ≤ n ≤ L(N2) − 1} is a basis for VN1,N2 .

Proof. First, for any f ∈ VN1,N2 , there are constants cR(N1)−m, cR(N1)−m+1, . . .,
cL(N2)−1 such that

f(x) =
L(N2)−1∑

n=R(N1)−m

cnϕn(x) =
L(N2)−1∑

n=R(N1)−m

cnT[tN1 ,tN2 ]ϕn(x), x ∈ [tN1 , tN2 ].

Hence it suffices to show that {T[tN1 ,tN2 ]ϕn : R(N1) − m ≤ n ≤ L(N2) − 1} is
linearly independent, or equivalently, f(x) = 0 on [tN1 , tN2 ] implies that cn =
0, R(N1) − m ≤ n ≤ L(N2) − 1.

To see this, take 2m points in each interval of the form (tL(n), tR(n)+1), n ≥ N1.
Let E be the collection of all these points. It is easy to see that E is a local sampling
sequence on [tN1 , tN2 ] with respect to {tk : k ∈ Z}. Let A be defined as in (2.8).
Then we see from (2.11) that

cn = 0, R(N1) − m ≤ n ≤ L(N2) − 1,

since f(xk) = 0, 0 ≤ k ≤ K − 1. �

Proof of the necessity of Theorem 1.1. Suppose that E = {xk : 0 ≤ k ≤ K − 1} is
a local sampling sequence for Vm on [tN1 , tN2 ], where xk−1 < xk, 1 ≤ k ≤ K − 1.
Then there is some sequence of functions {Sk : 0 ≤ k ≤ K − 1} such that (1.8)
holds.

For any f ∈ VN1,N2 , f(x) =
∑K−1

k=0 f(xk)Sk(x) on [tN1 , tN2 ]. Hence dim VN1,N2

≤ K. On the other hand, we see from Lemma 2.4 that dim VN1,N2 = L(N2) −
R(N1) + m. Hence K ≥ L(N2) − R(N1) + m.

Next we prove that (1.5) holds. Otherwise, there is some N1 +1 ≤ n0 ≤ N2 such
that #

(
E ∩ [tN1 , tn0)

)
< R(n0) − R(N1). Then we have R(n0) ≥ R(N1) + 1 and

xR(n0)−R(N1)−1 ≥ tn0 . Consequently,

ϕn(xR(n0)−R(N1)−1) = 0, ∀R(N1) − m ≤ n ≤ R(n0) − m − 1,
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thanks to supp ϕn = (tn, tn+m+1). Therefore, the last row of the matrix

M

(
x0 x1 · · · xR(n0)−R(N1)−1

ϕR(N1)−m ϕR(N1)−m+1 · · · ϕR(n0)−m−1

)

is 0. Hence its rank is no greater than R(n0) − R(N1) − 1 < R(n0) − R(N1).
Therefore, we can find some cR(N1)−m, cR(N1)−m+1, . . . , cR(n0)−m−1, not all of which
are zeros, such that

R(n0)−m−1∑
l=R(N1)−m

clϕl(xk) = 0, 0 ≤ k ≤ R(n0) − R(N1) − 1.

Let

f(x) =
R(n0)−m−1∑
l=R(N1)−m

clϕl(x).

Then we have f(xk) = 0, 0 ≤ k ≤ R(n0) − R(N1) − 1. On the other hand,
since supp f ⊂ (−∞, tR(n0)) = (−∞, tn0) and xk ≥ xR(n0)−R(N1)−1 ≥ tn0 for
k ≥ R(n0)−R(N1)− 1, we also have f(xk) = 0 for k ≥ R(n0)−R(N1)− 1. Hence

f(xk) = 0, 0 ≤ k ≤ K − 1.

It follows that we cannot reconstruct f on [tN1 , tN2 ] from {f(xk) : 0 ≤ k ≤ K − 1}
since, by virtue of Lemma 2.4, f is not identically 0 on [tN1 , tN2 ]. This contradicts
the hypothesis.

Similarly, we can prove that (1.6) holds.
Now, it remains to establish (1.7). If (1.7) does not hold, then there are some

N1 ≤ n1 < n2 ≤ N2 such that #
(
E ∩ (tn1 , tn2)

)
< R(n2) − L(n1) − m. Then we

have R(n2) − L(n1) − m ≥ 1. Therefore,

R(n2) − L(n1) ≥ m + 1.

There are two cases.
Case 1. #

(
E ∩ (tn1 , tn2)

)
= 0. In this case, we have

(2.15) xk ≤ tn1 or xk ≥ tn2 , 0 ≤ k ≤ K − 1.

Let f = ϕL(n1)
. Then we have supp f = (tL(n1), tL(n1)+m+1) ⊂ (tL(n1), tR(n2)) =

(tn1 , tn2). By (2.15), f(xk) = 0, 0 ≤ k ≤ K − 1. Since E is a local sampling
sequence, we have f = 0 on [tN1 , tN2 ], which is impossible since tL(n1)+m+1 −
tL(n1) > 0 and f > 0 in (tL(n1), tL(n1)+m+1).

Case 2. #
(
E ∩ (tn1 , tn2)

)
≥ 1.

Let

k1 = min{k : 0 ≤ k ≤ K − 1, xk ∈ E ∩ (tn1 , tn2)},
k2 = max{k : 0 ≤ k ≤ K − 1, xk ∈ E ∩ (tn1 , tn2)}.

Denote the (K − k1)×
(
L(N2)−L(n1)

)
matrix

[
ϕl(xk)

]
k1≤k≤K−1, L(n1)≤l≤L(N2)−1

by A =
( A1

A2

)
, where

A1 =
[
ϕl(xk)

]
k1≤k≤k2, L(n1)≤l≤L(N2)−1
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and
A2 =

[
ϕl(xk)

]
k2+1≤k≤K−1, L(n1)≤l≤L(N2)−1

.

Since there are k2 − k1 + 1 ≤ R(n2) − L(n1) − m − 1 rows in A1, we have

rank (A1) ≤ R(n2) − L(n1) − m − 1.

Observe that
supp ϕl ⊂ (−∞, tn2), l ≤ R(n2) − m − 1.

We have ϕl(xk) = 0 for l ≤ R(n2) − m − 1 and xk ≥ tn2 . Hence the first R(n2) −
L(n1) − m columns of A2 are 0. Thus

rank (A2) ≤ (L(N2) − L(n1)) − (R(n2) − L(n1) − m) = L(N2) − R(n2) + m.

Therefore,

rank (A) ≤ rank (A1) + rank (A2) ≤ L(N2) − L(n1) − 1 < L(N2) − L(n1).

Thus, we can find some cL(n1)
, cL(n1)+1, . . . , cL(N2)−1, not all of which are zeros,

such that
L(N2)−1∑
l=L(n1)

clϕl(xk) = 0, k1 ≤ k ≤ K − 1.

Let

f(x) =
L(N2)−1∑
l=L(n1)

clϕl(x).

Then we have f(xk) = 0, k1 ≤ k ≤ K − 1. On the other hand, since xk ≤ tn1 for
0 ≤ k ≤ k1 − 1 and supp f ⊂ (tn1 , +∞), we also have f(xk) = 0 for 0 ≤ k ≤ k1 − 1.
Now we get

f(xk) = 0, 0 ≤ k ≤ K − 1.

Hence, we cannot reconstruct f on [tN1 , tN2 ] from {f(xk) : 0 ≤ k ≤ K − 1} since
f 
= 0, thanks to Lemma 2.4. Again, we get a contradiction. This completes the
proof. �

Proof of Corollary 1.2. It suffices to show that, under the assumption tn = �n/r�,
conditions (1.9)–(1.12) are equivalent to (1.4)–(1.7).

Observe that for n = rN + l, 0 ≤ l ≤ r − 1,

L(n) = rN and R(n) = rN + r − 1.

First, we assume that (1.4)–(1.7) hold. Set N1 = rN ′
1 and N2 = rN ′

2. Then we
have tN1 = N ′

1 and tN2 = N ′
2. By (1.4),

#E ≥ L(N2) − R(N1) + m = r(N ′
2 − N ′

1 − 1) + m + 1.

For 0 ≤ k ≤ N ′
2 − N ′

1, we have

#
(
E ∩ [N ′

1, N
′
1 + k)

)
= #

(
E ∩ [trN ′

1
, trN ′

2+rk)
)

≥ R(rN ′
2 + rk) − R(rN ′

1) = rk.

Similarly, we can prove that

#
(
E ∩ (N ′

2 − k, N ′
2]

)
= #

(
E ∩ [trN ′

2−rk, trN ′
2+r−1)

)
≥ rk

and
#

(
E ∩ (n′

1, n
′
2)

)
= #

(
E ∩ (trn′

1
, trn′

2
)
)
≥ r(n′

2 − n′
1 + 1) − m − 1.
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Next we prove the converse. Fix some N ′
1 < N ′

2. Observe that

trn−1 < trn = trn+1 = · · · = trn+r−1 < tr(n+1), ∀n ∈ Z.

We prove that (1.4)–(1.7) hold for N1 = rN ′
1 + l1 and N2 = rN ′

2 + l2, 0 ≤ l1, l2 ≤
r − 1. By (1.9),

#E ≥ r(N ′
2 − N ′

1 − 1) + m + 1 = rN ′
2 − (rN ′

1 + r − 1) + m

= L(N2) − R(N1) + m.

On the other hand, for n = rN ′
1 + rk + l, 0 ≤ k ≤ N ′

2 − N ′
1 and 0 ≤ l ≤ r − 1, we

have
#

(
E ∩ [tN1 , tn)

)
= #

(
E ∩ [N ′

1, N
′
1 + k)

)
≥ rk = R(n) − R(N1).

Similarly, we can show that for n = rN ′
2−rk+ l, 0 ≤ k ≤ N ′

2−N ′
1 and 0 ≤ l ≤ r−1,

#
(
E ∩ (tn, tN2 ]

)
≥ L(N2) − L(n).

Finally, for n1 = rN ′
1 + rn′

1 + l′1 and n2 = rN ′
2 + rn′

2 + l′2, where 0 ≤ l′1, l
′
2 ≤ r − 1,

we have

#
(
E ∩ [tn1 , tn2)

)
= #

(
E ∩ (N ′

1 + n′
1, N

′
1 + n′

2)
)

≥ rn′
2 − rn′

1 + r − m − 1 = R(n2) − L(n1) − m.

This completes the proof. �

3. Local reconstruction of functions from finitely many samples

In this section, we give some applications of Theorem 1.1. We show that under
certain conditions, we can reconstruct a function on an interval using only a finite
number of samples. For simplicity, we consider the function space V

(r)
m generated by

m-degree normalized B-splines ψl with knots
(
�l/r�, �(l+1)/r�, . . . , �(l+m+1)/r�

)
,

l ∈ Z, where 1 ≤ r ≤ m are fixed integers.

3.1. Irregular sampling. Irregular sampling is widely studied in literature. For
functions in the space V

(1)
m generated by the m-degree cardinal B-splines, Aldroubi

and Gröchening [2] proved that if the sampling sequence {xk : k ∈ Z} satisfies

(3.1) 0 < α ≤ xk+1 − xk ≤ β < 1, k ∈ Z,

then there are constants C1, C2 > 0 such that

(3.2) C1‖f‖p
p ≤

∑
k∈Z

|f(xk)|p ≤ C2‖f‖p
p, ∀f ∈ V (1)

m ∩ Lp(R)

and every f ∈ V
(1)
m ∩ Lp(R) can be reconstructed from {f(xk) : k ∈ Z}. The

standard procedure to reconstruct a function from sampled values is carried out
with the frame algorithm [2, 27].

In this subsection, we give a similar result for V
(r)
m . Moreover, our approach

allows us to reconstruct a function locally using only finitely many samples.

Theorem 3.1. Let {xk : k ∈ Z} ⊂ R be a sequence such that

xk+1 − xk > 0 and xk+r − xk ≤ β < 1, k ∈ Z.

Then for any integers N1 < N2, there are finitely many functions Sk, k1 ≤ k ≤ k2,
such that

f(x) =
∑

k1≤k≤k2

f(xk)Sk(x), ∀f ∈ V (r)
m , x ∈ [N1, N2].
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Proof. Denote E = {xk : k ∈ Z}. Take some integer N ′
2 such that N ′

2 − N1 ≥
(m + 1)β/(r(1 − β)). Let k1 = min{k ∈ Z : xk ≥ N1} and k2 =
max{k ∈ Z : xk ≤ N ′

2}.
Since xk+r − xk ≤ β, there are at least r points of E in every interval of length

β. It follows that

#
(
E

⋂
[N1, N

′
2]

)
≥

⌊
N ′

2 − N1

β

⌋
· r ≥

(
N ′

2 − N1

β
− 1

)
· r.

Since N ′
2 −N1 ≥ (m+1)β/(r(1−β)), we have #(E

⋂
[N1, N

′
2]) ≥ r(N ′

2 −N1 − 1)+
m+1. On the other hand, it is easy to see that E satisfies (1.10), (1.11) and (1.12).
By Corollary 1.2, E is a local sampling sequence for V

(r)
m on [N1, N

′
2]. Similarly to

(2.13) we can find functions Sk, k1 ≤ k ≤ k2, such that

f(x) =
∑

k1≤k≤k2

f(xk)Sk(x), ∀f ∈ V (r)
m , x ∈ [N1, N2]. �

Remark 3.1. If E := {xk : k ∈ Z} is a sampling sequence for V
(r)
m , i.e., there are

functions Sk such that

f(x) =
∑
k∈Z

f(xk)Sk(x), ∀f ∈ V (r)
m ,

then we see from the proof of the necessity of Theorem 1.1 that for any integers
n1 < n2,

#(E ∩ [n1, n2]) ≥ r(n2 − n1 + 1) − m − 1.

Hence

lim sup
(n2−n1)→∞

#(E ∩ [n1, n2])
n2 − n1

≥ r.

That is, the average density of sampling points is r. Therefore, the hypothesis
xk+r − xk ≤ β < 1 in Theorem 3.1 is reasonable.

3.2. Average sampling. Average sampling theorems for shift invariant subspaces
have been established recently, e.g., see [1, 2, 21, 22, 23, 27] and references therein.
Again, all of these results consider global sampling. That is, to recover a function
on a bounded interval, we have to know all the averages near every sampling points.

In [10, Theorem 8.15], Feichtinger and Gröchenig proved that if δ :=
supk∈Z

(xk+1 − xk) < π
Ω , then every f with band limited to [−Ω, Ω] is uniquely

determined by averages 1
yk−yk−1

∫ yk

yk−1
f(x)dx, where yk = xk+xk+1

2 , k ∈ Z.

In this paper, we give a similar result for the space V
(r)
m . Moreover, we prove

that the standard averaging function can be replaced by any other one which is
supported in [yk−1, yk). Again, our approach allows us to reconstruct a function on
a finite interval using only finitely many samples.

Definition 3.1. We call u(x) an averaging function if u(x) ≥ 0 and
∫

R
u(x)dx = 1.

Theorem 3.2. Suppose that N1 = x0 < x1 < · · · < xK = N2 and

xk+r − xk < 1, 0 ≤ k ≤ K − r,

where K ≥ r(N2 − N1 − 1) + m + 1. Let {uk : 0 ≤ k ≤ K − 1} be a sequence of
averaging functions such that supp uk ⊂ [xk, xk+1), 0 ≤ k ≤ K − 1. Then there
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exist functions Sk ∈ V
(r)
m such that

f(x) =
K−1∑
k=0

〈f, uk〉Sk(x), ∀f ∈ V (r)
m , x ∈ [N1, N2].

Proof. Fix some real sequence {cl : l ∈ Z} and let f(x) =
∑

l∈Z
clψl(x).

Using the mean value theorem, for any 0 ≤ k ≤ K − 1, we can find some
yk ∈ supp uk ⊂ [xk, xk+1) such that

〈f, uk〉 = f(yk).

Using the hypotheses, it is easy to check that the point sequence {yk : 0 ≤ k ≤
K − 1} meets Corollary 1.2. Let

(3.3) A =
[
ψl(yk)

]
0≤k≤K−1, r+rN1−m−1≤l≤rN2−1

be a K × (r(N2 −N1 − 1) + m) matrix. We see from the proof of the sufficiency of
Theorem 1.1 that AT A is invertible. Observe that

f(yk) =
∑

r+rN1−m−1≤l≤rN2−1

clψl(yk) =
∑

r+rN1−m−1≤l≤rN2−1

cl〈ψl, uk〉.

We have

(3.4)
∑

0≤k≤K−1

|f(yk)|2 = cT AT Ac = cT BT Bc,

where c =
[
cr+rN1−m−1, cr+rN1−m, . . . , crN2−1

]T and

(3.5) B =
[
〈ψl, uk〉

]
0≤k≤K−1, r+rN1−m−1≤l≤rN2−1

.

Note that yk, and therefore A depends on the coefficients cl. Nevertheless, since
AT A is invertible, we see from (3.4) that

cT BT Bc > 0, ∀c ∈ R
r(N2−N1−1)+m \ {0}.

Hence BT B is also invertible.
Let F =

[
〈f, u0〉, 〈f, u1〉, . . . , 〈f, uK−1〉

]T . Then we have F = Bc and

c = (BT B)−1BT F.

Define [S0, S1, . . . , SK−1]T = B(BT B)−1Ψ, where

Ψ =
[
ψr+rN1−m−1, ψr+rN1−m, . . . , ψrN2−1

]T

.

Then we have

f(x) = cT Ψ(x) =
K−1∑
k=0

〈f, uk〉Sk(x), ∀x ∈ [N1, N2].

This completes the proof. �

The following is an immediate consequence.
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Corollary 3.3. Suppose that N1 = x0 < x1 < · · · < xK = N2 and

xk+r − xk < 1, 0 ≤ k ≤ K − r,

where K ≥ r(N2 −N1 − 1)+m+1. Then there exist functions Sk ∈ V
(r)
m such that

f(x) =
K−1∑
k=0

1
xk+1 − xk

∫ xk+1

xk

f(t)dt Sk(x), ∀f ∈ V (r)
m , x ∈ [N1, N2].

Remark 3.2. The point sequence xk = N1 + (N2 − N1)k/K, 0 ≤ k ≤ K, satisfies
the hypotheses of Theorem 3.2 and Corollary 3.3.
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MR1946982 (2003k:42001)

[8] C.K. Chui, An Introduction to Wavelets, Academic Press, New York, 1992. MR1150048
(93f:42055)

[9] I. Daubechies, Ten Lectures on Wavelets, SIAM Philadelphia, 1992. MR1162107 (93e:42045)
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