
MATHEMATICS OF COMPUTATION
Volume 78, Number 265, January 2009, Pages 591–613
S 0025-5718(08)02162-5
Article electronically published on June 16, 2008

BIMONOTONE ENUMERATION

MICHAEL EISERMANN

Abstract. Solutions of a diophantine equation f(a, b) = g(c, d), with a, b, c, d
in some finite range, can be efficiently enumerated by sorting the values of f

and g in ascending order and searching for collisions. This article considers
functions f : N×N → Z that are bimonotone in the sense that f(a, b) ≤ f(a′, b′)
whenever a ≤ a′ and b ≤ b′. A two-variable polynomial with non-negative
coefficients is a typical example. The problem is to efficiently enumerate all
pairs (a, b) such that the values f(a, b) appear in increasing order. We present
an algorithm that is memory-efficient and highly parallelizable. In order to
enumerate the first n values of f , the algorithm only builds up a priority
queue of length at most

√
2n + 1. In terms of bit-complexity this ensures that

the algorithm takes time O(n log2 n) and requires memory O(
√

n log n), which
considerably improves on the memory bound Θ(n log n) provided by a näıve
approach, and extends the semimonotone enumeration algorithm previously
considered by R.L. Ekl and D.J. Bernstein.

1. Introduction and statement of results

1.1. Motivation. Given polynomial functions f, g : N × N → Z, how can we ef-
ficiently enumerate solutions of the equation f(a, b) = g(c, d)? One standard
way to do this is to sort the sets F = { (f(a, b), a, b) | 1 ≤ a, b ≤ N } and
G = { (g(c, d), c, d) | 1 ≤ c, d ≤ N } into ascending order with respect to the
first coordinate and to look for collisions. As stated, this requires storing all el-
ements before sorting, which consumes memory Θ(n log n), where n = N2 is the
number of values to enumerate, and time between Ω(n log n) and O(n log2 n).

The present article develops a less memory consuming algorithm under the hy-
pothesis that f and g are bimonotone, that is, monotone in each variable. This is
sufficiently often the case to be of interest, for example, when f and g are given
by polynomials with non-negative coefficients. Given a bimonotone function f ,
Algorithm 4, discussed below, produces a stream x1, x2, x3, . . . enumerating all pa-
rameters xi = (ai, bi) in the domain of f such that f(x1) � f(x2) � f(x3) �
Having at hand such sorted enumerations for f and g, one can easily enumerate
solutions of the equation f(x) = g(y): start with i = 1 and j = 1; whenever
f(xi) < g(yj), increment i; whenever f(xi) > g(yj), increment j. If eventually
f(xi) = g(yj), then output the solution (xi, yj) and continue searching.

Received by the editor July 27, 2005 and, in revised form, June 22, 2007.
2000 Mathematics Subject Classification. Primary 68P10; Secondary 11Y50, 68W10, 11Y16,

11D45.
Key words and phrases. Sorting and searching, diophantine equation, bimonotone function,

sorted enumeration, semimonotone enumeration, bimonotone enumeration.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

591

592 MICHAEL EISERMANN

1.2. Main result. The idea of sorted enumeration was applied by D.J. Bernstein
[1] with great success to equations of the special form p(a)+ q(b) = r(c)+ s(d). We
generalize his approach to arbitrary bimonotone functions. The main result can be
stated as follows:

Theorem 1. Suppose that f : N × N → Z is bimonotone and proper in the sense
that for every z ∈ Z only finitely many pairs (a, b) satisfy f(a, b) ≤ z. Then
Algorithm 4 stated below produces a stream enumerating all pairs (a, b) ∈ N × N

such that the values f(a, b) appear in increasing order. While enumerating the first
n values, the algorithm only builds up a priority queue of length m ≤

√
2n+1. If f

is a polynomial, this ensures that the algorithm takes time O(n log2 n) and requires
memory O(

√
n log n).

The precise bound m ≤
√

2n + 1 is free of hidden constants and thus uniformly
valid for all bimonotone functions f . The less explicit bounds of time O(n log2 n)
and memory O(

√
n log n) concern the bit-complexity and the hidden constants nec-

essarily depend on f . We shall assume throughout that f behaves polynomially,
see §2.3.

To place this result into perspective, notice that the time requirement O(n log2 n)
is nearly optimal: enumerating n elements obviously needs n iterations, and one
log n factor is due to their increasing size. On the other hand, the standard ap-
proach would require memory Θ(n log n) to store all values before outputting them.
Here the stream approach can achieve considerable savings and reduce memory to
O(

√
n log n).

Example 2. Consider f(a, b) = p(a) + q(b) where p and q are non-decreasing
polynomial functions of degree α = deg p and β = deg q, respectively. Assuming
1 ≤ α ≤ β, Algorithm 4 builds up a priority queue of length m ∈ Θ(nε) with
ε = α

α+β ∈ [0, 1
2].

This illustrates that in the uniform bound m ∈ O(n1/2), stated in the theorem for
all bimonotone functions, the exponent 1

2 cannot be improved. Notwithstanding,
the algorithm performs better on certain subclasses of bimonotone functions, where
ε < 1

2 .

Remark 3. The predecessor of our algorithm is semimonotone enumeration, recalled
in §3. It was devised in [2, 1] for polynomials of the form f(a, b) = p(a)+q(b), where
it provides the desired memory bound O(

√
n log n). In the more general setting of

bimonotone functions, however, we show that it only guarantees the memory bound
O(n log n) and in general the exponent 1 cannot be improved. See §5 for a detailed
discussion.

As an additional benefit, our algorithm turns out to be highly parallelizable:

Remark 4. Algorithm 4 can be adapted to enumerate only those pairs (a, b) ∈
N×N for which the values f(a, b) lie in a given interval [z1, z2]. Time and memory
requirements are essentially the same as before; only initialization induces some
additional cost and can usually be neglected. This means that searching solutions
f(a, b) = g(c, d) can be split up into disjoint intervals and thus parallelized on
independent machines (see §6).

BIMONOTONE ENUMERATION 593

1.3. How this article is organized. Section 2 introduces the necessary nota-
tion and recalls the generic algorithm of sorted enumeration for an arbitrary map
f : X → Z, where X is a finite set. Section 3 discusses a refined algorithm,
essentially due to R.L. Ekl [2] and D.J. Bernstein [1], under the hypothesis that
f : A × B → Z is semimonotone, that is, monotone in the first variable. Section
4 develops a sorted enumeration algorithm for bimonotone functions, and Section
5 analyses the asymptotic complexity. Section 6 highlights the intrinsically par-
allel structure of such a search problem. Section 7 generalizes our algorithms to
functions f : X → Z restricted to suitable domains X ⊂ A × B that are of of
practical interest. Finally, Section 8 briefly indicates applications to diophantine
enumeration problems, such as the taxicab problem.

2. Sorted enumeration for arbitrary functions

Before discussing more sophisticated versions, let us first describe the general
problem of sorted enumeration and recall its generic solution.

2.1. The generic problem. Throughout this article we consider an ordered set
(Z, �). By order we always mean a reflexive, transitive relation that is complete
and antisymmetric, i.e. each pair z �= z′ in Z satisfies either z � z′ or z′ � z.
Without completeness we may have neither z � z′ nor z′ � z, in which case we
speak of a partial order. Without antisymmetry we may have both z � z′ and
z′ � z, in which case we speak of a preorder.

We assume that X is a finite or countably infinite set. An enumeration of X
is a stream x1, x2, x3, . . . in which each element of X occurs exactly once. Such
an enumeration is monotone or sorted with respect to f : X → Z if it satisfies
f(x1) � f(x2) � f(x3) � Whenever the function f is understood from the
context, we will simply speak of a sorted enumeration of X.

Remark 5. The map f : X → Z can be used to pull back the order � from Z
to the initially unordered set X. More explicitly, we define x � x′ if and only if
f(x) � f(x′). A sorted enumeration of X is thus a stream in which all elements of
X appear in increasing order with respect to the preorder �.

2.2. The generic algorithm. In the general setting, where X is finite and f has no
further structure, there is essentially only one way to produce a sorted enumeration:

Algorithm 1 Sorted enumeration for an arbitrary function
Requires: a function f : X → Z from a finite set X to an ordered set Z
Output: an enumeration of X, monotone with respect to f

1: Generate a list L of all pairs (f(x), x) with x ∈ X.
2: Sort the list L according to the first coordinate f(x).
3: Output the arguments x as sorted in the list L.

Algorithm 1 is obviously correct. Given a set X of size n, generating and reading
the list L takes n iterations, while sorting requires O(n log n) operations. Not much
optimization can be expected concerning these time requirements, since enumer-
ation (sorted or not) takes at least n iterations. Memory requirements, however,
may be far from optimal, and the more specialized algorithms discussed below will
mainly be concerned with minimizing the use of temporary memory.

594 MICHAEL EISERMANN

2.3. Time and memory requirements. Throughout this article we use standard
asymptotic notation, as in [3, §9]. It is customary to consider the cost for storing
and handling elements x and f(x) to be constant. This is no longer realistic when
the size n = |X| grows without bound. As a typical example, consider a polynomial
function f : N → Z restricted to X = {1, . . . , n}. If each element x ∈ X is stored
in binary form, the maximal memory required is Θ(log n). Likewise, the maximal
time to calculate, copy, and compare values f(x) is Θ(log n), neglecting factors of
order log log n or less. Most elements require nearly maximum cost, so we shall
only consider the worst case.

In general, we say that f behaves polynomially if the bit-complexity per element
is Θ(log n), as above. In this case we arrive at the following more realistic account:

Proposition 6. In order to enumerate a set X of size n, the generic Algorithm 1
builds up a list of size m = n, and thus requires time O(n log2 n) and memory of
size Θ(n log n). �

3. Sorted enumeration for semimonotone functions

In this section we consider a semimonotone function f : A × B → Z. By this
we mean that (A, �) is an ordered set and a � a′ implies f(a, b) � f(a′, b) for all
b ∈ B. This is the same as saying that f is monotone with respect to the partial
order (a, b) ≤ (a′, b′) defined by the condition a � a′ and b = b′.

3.1. The idea of semimonotone enumeration. We will first assume that A
and B are finite sets. This entails that (A, �) is isotonic to an interval {1, . . . , l}
of integers. The minimal and maximal element of A is denoted by amin and amax,
respectively, and the successor function is denoted by a �→ σa. Of course amax

cannot have a successor in A, so by convention we set σamax = +∞.
We equip X = A × B with the partial order ≤ as defined above. Given a

subset Xi ⊂ X, we denote by Mi = Min(Xi) the set of its minimal elements.
Conversely, Mi defines its upper set M+

i = {x ∈ X | m ≤ x for some m ∈ Mi }.
Figure 1 shows a subset Xi (indicated by crosses) together with its set of minima
Mi (circled crosses). In this example Xi is saturated in the sense that Xi = M+

i .

A

B

3

4

5

6

7

8

9

1 2 3 987654 1110 12 13 14 15

1

2

Figure 1. A subset of A × B and its minima with respect to ≤

Since f is monotone with respect to ≤, the minimum of f(Xi) is attained on Mi.
It thus suffices to find xi ∈ Mi realizing f(xi) = min f(Mi). We can then output xi

BIMONOTONE ENUMERATION 595

and continue with the set Xi+1 = Xi � {xi}. Notice that Xi+1 is again saturated
and Mi+1 can be easily constructed from Mi. This is the idea of Algorithm 2 below.

3.2. Suitable data structures. The following algorithm has been independently
developed by R.L. Ekl [2] and D.J. Bernstein [1], and formalizes the above approach:
instead of handling the entire set Xi, it operates on two smaller sets, M = Min(Xi)
and F = f(M). In order to efficiently find xi ∈ M realizing f(xi) = min f(M), we
store the set of images f(M) in a priority queue F . Recall that a priority queue F
for elements of (Z, �) provides the following elementary operations:

• Inserting an element z ∈ Z into F (“push”).
• Reading and removing a minimal element of F (“pop”).

Priority queues are typically implemented using a heap or a binary tree; in
either case the elementary operations need O(log m) steps, where m is the number
of elements in the priority queue. For a general presentation see Knuth [7, §5.2.3].

3.3. The semimonotone enumeration algorithm. Instead of f : A × B → Z
it is more convenient to work with the map f∗ : A × B → Z × A × B defined by
f∗(a, b) = (f(a, b), a, b). In our formulation of Algorithm 2 we thus use a priority
queue F for elements in Z × A × B, sorted by the first coordinate.

Algorithm 2 Sorted enumeration for a semimonotone function
Requires: a semimonotone function f : A × B → Z
Output: an enumeration of A × B, monotone with respect to f

1: Start with an empty priority queue F , then insert f∗(amin, b) for all b ∈ B.
2: while F is non-empty do
3: Remove a minimal element f∗(a, b) from F and output (a, b).
4: if σa < +∞ then insert f∗(σa, b) into F end if
5: end while

Remark 7. All algorithms presented here can be regarded as templates, to be in-
stantiated for the given map f : A×B → Z. Alternatively, one could consider them
as taking the sets A and B and the map f as input data. In this case, of course,
we do not pass the entire sets A and B as parameters, nor the map f , say as some
subset of A × B × Z: for finite sets this would be as inefficient as Algorithm 1; for
infinite sets it is simply impossible.

Instead, it suffices to call some function that calculates f(a, b) for any given pair
of parameters a ∈ A and b ∈ B. To represent the sets A and B, all we need is
the usual iterator concept, providing a pointer to the first (and possibly the last)
element of the set and a method for incrementing, denoted by a �→ σa above.
(Algorithms 5 and 7 also decrement, denoted by b �→ πb.)

One can easily add suitable specifications when passing to concrete implemen-
tations. For the present general exposition, however, we shall maintain the slightly
coarser description, trying to strike a balance between general concepts and imple-
mentation details.

Algorithm 2 is obviously correct. The point is, as motivated above, that it
usually uses less memory than the generic Algorithm 1.

596 MICHAEL EISERMANN

Proposition 8. In order to enumerate a set X = A × B of size n, Algorithm 2
only builds up a priority queue of size m = |B|. Let f : N × N → Z be a semi-
monotone map that behaves polynomially. Applied to subsets A = {1, . . . , l} and
B = {1, . . . , m} with m ≥ 2, the algorithm thus takes time O(n log n log m) and
requires memory Θ(m log n).

Proof. The algorithm needs memory to hold m elements f∗(a, b) in the priority
queue F . Since most elements need memory of size Θ(log n), we arrive at a to-
tal memory cost of Θ(m log n). During each one of the n iterations, the most
time consuming operation is updating the priority queue F which requires time
O(log n log m). Here m is the size of the queue and log n is the typical size of its
elements. �
Remark 9. Notice that in the degenerate case |B| = 1, Algorithm 2 simply enu-
merates A in increasing order, which takes time O(n log n) and memory Θ(log n).
In the opposite extreme |A| = 1, it sorts B with respect to f via heap-sort. We
thus fall back on the generic Algorithm 1, which takes time O(m log2 m) and space
Θ(m log m).

3.4. Enumerating infinite sets. Sorted enumeration can be generalized from
finite to infinite sets. First of all, in order to be amenable to enumeration, A must
be either finite or isotonic to the natural numbers. Moreover, we have to require
that f : A × B → Z be a proper map in the sense that for every z ∈ Im(f) only
finitely many pairs (a, b) satisfy f(a, b) ≤ z. (This condition actually implies that
A is finite or isotonic to N.) Of course, we also have to assume that comparisons
and all other operations are computable; as before their cost will be assumed to be
of order O(log n).

Proposition 10. Suppose that A is an infinite ordered set and B is a finite set
of size m. Let f : A × B → Z be a proper semimonotone map. Then Algorithm 2
produces a stream enumerating all pairs (a, b) ∈ A × B such that the values f(a, b)
appear in increasing order. Producing the first n values takes time O(n log n log m)
and requires memory Θ(m log n).

Proof. For every z ∈ Im(f) the set { (a, b) ∈ A × B | f(a, b) ≤ z } is finite, and
thus contained in some finite product [amin, a1] × B. Hence Algorithm 4 correctly
enumerates all parameters (a, b) with f(a, b) ≤ z as in the finite case. Since this
is true for all z, the enumeration exhausts A × B. Bit-complexity behaves as in
Proposition 8. �

We wish to adapt semimonotone enumeration to the case where both A and B are
infinite. Algorithm 2 is certainly not suited for this task, because the initialization
will get stuck in an infinite loop. As a necessary restriction we require that f : A×
B → Z be proper, and as before we assume that f is monotone with respect
to A. For every z ∈ Im(f), we can thus enumerate the finite set {f � z} :=
{(a, b) ∈ A × B | f(a, b) � z} by applying Algorithm 2 to the relevant finite set
B(z) = pr2{f � z} = {b ∈ B | f(amin, b) ≤ z}.

In order to formulate an explicit algorithm, we assume that the set B is ordered
and that f2 : B → Z, f2(b) = f(amin, b) is non-decreasing. This is strictly weaker
than demanding f to be bimonotone, because we require monotonicity in b only on
the axis {amin} × B. This technical condition ensures that we can easily construct
the relevant finite set B(z). In fact, the monotonicity of f2 is not at all restrictive,

BIMONOTONE ENUMERATION 597

because we can choose the order on B, for example by pulling back the order on Z
via f2 to a preorder on B, and then refining to an order by arbitrating collisions. In
other words, the order on B is just a convenient way to encode some preparatory
analysis of the proper map f2 : B → Z.

This idea is formalized in Algorithm 3, which is a slight variation of Algorithm
2. The only difference is that it automatically adapts the relevant interval B(z) =
[bmin, bmax[according to the level z attained during the enumeration.

Algorithm 3 Sorted enumeration for a semimonotone function
Requires: a proper semimonotone function f : A × B → Z
Output: an enumeration of A × B, monotone with respect to f .
1: Initialize the priority queue F ← 〈 f∗(amin, bmin) 〉 and set bmax ← bmin.
2: while F is non-empty do
3: Remove a minimal element f∗(a, b) from F and output (a, b).
4: if σa < +∞ then insert f∗(σa, b) into F end if
5: if b = bmax then
6: Set bmax ← σbmax.
7: if bmax < +∞ then insert f∗(amin, bmax) into F end if
8: end if
9: end while

Here we have formulated Algorithm 3 so that it applies to finite and infinite sets
alike. If A or B is infinite, then σa < +∞ or bmax < +∞, respectively, is always
true and the corresponding test can be omitted.

Proposition 11. Suppose that both A and B are infinite ordered sets and that
f : A × B → Z is a proper semimonotone function. We also assume that b �→
f(amin, b) is non-decreasing. Then Algorithm 2 provides a sorted enumeration of
A×B. While enumerating the first n values, it builds up a priority queue of length
m ≤ n + 1. This ensures that the algorithm takes time O(n log2 n) and memory
O(n log n). �

Semimonotone functions are tailor-made for applications where we have mono-
tonicity in a but not necessarily in b. They are halfway towards bimonotone func-
tions, which are more restrictive but support much better algorithms. These will
be discussed next.

4. Sorted enumeration for bimonotone functions

In this section we finally turn to bimonotone functions f : A × B → Z. By this
we mean that both (A, �) and (B, �) are ordered sets, and that a ≤ a′ and b ≤ b′

implies f(a, b) ≤ f(a′, b′). This is the same as saying that f is monotone with
respect to the partial order (a, b) ≤≤ (a′, b′) defined by a � a′ and b � b′.

4.1. The idea of bimonotone enumeration. We will first assume that both sets
A and B are finite. Given a subset Xi ⊂ X we denote by Mi = Min(Xi) the set
of its minimal elements with respect to ≤≤. Conversely, Mi defines its upper set
M#

i = {x ∈ X | m≤≤ x for some m ∈ Mi }. Figure 2 shows a subset Xi (indicated
by crosses) together with its set of minima Mi (circled crosses). In this example Xi

is saturated in the sense that Xi = M#
i .

598 MICHAEL EISERMANN

A

B

3

4

5

6

7

8

9

1 2 3 987654 1110 12 13 14 15

1

2

Figure 2. A subset of A × B and its minima with respect to ≤≤

Since f is monotone with respect to ≤≤, the minimum of f(Xi) is attained on Mi.
It thus suffices to find xi ∈ Mi realizing f(xi) = min f(Mi). We can then output xi

and continue with the set Xi+1 = Xi � {xi}, which is again saturated. Moreover,
it is possible to construct Mi+1 directly from Mi, without having to construct Xi

or Xi+1. (See Algorithm 4 below.) Thus, instead of searching the entire set Xi, we
only need to keep track of Mi, the set of minimal elements.

4.2. Suitable data structures. According to the previous remark, the bimono-
tone enumeration algorithm will operate on two sets: M = Min(Xi) and F = f(M).
The set M can profitably be implemented as a list 〈 (a1, b1), (a2, b2), . . . , (am, bm) 〉
with ai ∈ A and bi ∈ B. During the algorithm, the list M will always be ordered
in the sense that a1 < a2 < · · · < am and b1 > b2 > · · · > bm, as already indicated
in Figure 2. We call (ak, bk) the predecessor of (ak+1, bk+1) in M , and conversely
(ak+1, bk+1) the successor of (ak, bk) in M . By convention the predecessor of (a1, b1)
is (−∞, +∞), and the successor of (am, bm) is (+∞,−∞).

Given an element (a, b) in the list M , the required operations are:
• Finding the successor or predecessor of (a, b) in M .
• Inserting an element into M right after (a, b).
• Removing (a, b) from M .

The cost of these operations can be assumed to be O(log n), which is the typical
cost for storing and handling one of the elements of the set X = A×B of size n. In
particular, the cost is independent of the size m = |M |. For details on bidirectional
lists see Knuth [6, §2.2.5], or any other textbook on algorithms and data structures.

As before, the set F = f(M) will be implemented as a priority queue containing
the values f(a, b) for all (a, b) in M . It is recommendable to store f(a, b) together
with a pointer to the element (a, b) in the list M . This allows us to extract (a, b),
and, moreover, we can directly address (a, b) in M without searching the list. For
notational convenience we will not explicitly mention this pointer in the sequel.

4.3. The bimonotone enumeration algorithm. Having suitable data struc-
tures at our disposal, it is an easy matter to formalize bimonotone enumeration
(Algorithm 4).

The only subtlety of this algorithm is updating the list M . We want to remove
(a, b), of which we know that it is a minimal element of Xi. The set of elements

BIMONOTONE ENUMERATION 599

Algorithm 4 Sorted enumeration for a bimonotone function
Requires: a bimonotone function f : A × B → Z
Output: an enumeration of A × B, monotone with respect to f

1: Initialize M ← 〈 (amin, bmin) 〉 and F ← 〈 f(amin, bmin) 〉.
2: while F is non-empty do
3: Remove a minimal element f(a, b) from F and output (a, b).
4: Let (a∗, b∗) be the successor of (a, b) in the list M .
5: if σa < a∗ then
6: Insert (σa, b) into M right after (a, b) and insert f(σa, b) into F .
7: end if
8: Let (a∗, b

∗) be the predecessor of (a, b) in the list M .
9: if σb < b∗ then

10: Insert (a, σb) into M right after (a, b) and insert f(a, σb) into F .
11: end if
12: Remove (a, b) from the list M .
13: end while

strictly greater than (a, b) is given by

{(a, b)}# � {(a, b)} = { (a, σb), (σa, b) }#.

Hence, removing (a, b) creates at most two new minima, (a, σb) and (σa, b). It is
easy to check whether they are actually minimal for Xi � {(a, b)}: since our list M
of minima is ordered, it suffices to compare (a, σb) to the predecessor (a∗, b

∗), and
(σa, b) to the successor (a∗, b∗).

To illustrate the different possibilities, we consider Figure 2 again. The following
table indicates, for each possible minimum (a, b), how the list M has to be modified
in order to obtain a new ordered list of minima satisfying M# = Xi � {(a, b)}:

(a, b) (a∗, b∗) (σa, b) insert? (a∗, b
∗) (a, σb) insert?

(3, 9) (5, 8) (4, 9) yes (−∞, +∞) (3, +∞) no
(5, 8) (7, 7) (6, 8) yes (3, 9) (5, 9) no
(7, 7) (8, 5) (8, 7) no (5, 8) (7, 8) no
(8, 5) (9, 2) (9, 5) no (7, 7) (8, 6) yes
(9, 2) (12, 1) (10, 2) yes (8, 5) (9, 3) yes
(12, 1) (+∞,−∞) (13, 1) yes (9, 2) (12, 2) no

Lemma 12. Algorithm 4 is correct: if A and B are finite ordered sets and f : A×
B → Z is a bimonotone map, then Algorithm 4 produces a stream enumerating all
pairs (a, b) ∈ A × B such that the values f(a, b) appear in increasing order.

Proof. At the beginning of the i-th iteration of the algorithm we denote M by Mi,
and F by Fi, and the set of remaining parameters by Xi := M#

i . The initialization
states that M1 = 〈 (amin, bmin) 〉 and F1 = 〈 f(amin, bmin) 〉, so X1 = A × B.

By induction we can assume that the set Xi is of size n − i + 1 and saturated,
with Mi = Min(Xi) and Fi = f(Mi). Furthermore, we can assume that the list
representing Mi is ordered in the sense that 〈 (a1, b1), (a2, b2), . . . , (am, bm) 〉 satis-
fies a1 < a2 < · · · < am and b1 > b2 > · · · > bm. It is straightforward to verify that
the i-th iteration of our algorithm ensures the following assertions:

600 MICHAEL EISERMANN

• The output xi satisfies f(xi) = min Fi = min f(Mi) = min f(Xi).
• The set Xi+1 = Xi � {xi} is saturated and of size n − i.
• We have Mi+1 = Min(Xi+1) and Fi+1 = f(Mi+1).
• The new list representing the set Mi+1 is again ordered.

The algorithm stops after n iterations when it reaches Xn+1 = ∅, hence Mn+1 = ∅
and Fn+1 = ∅. We conclude that the output sequence x1, x2, . . . , xn is an enumer-
ation of A × B satisfying f(x1) � f(x2) � . . . � f(xn). �

Since the sorted enumeration algorithm outputs one element xi at each iteration,
the loop is repeated exactly n = |A| · |B| times. At the i-th iteration, the algorithm
occupies memory of size mi = |Mi| to store the list Mi and the priority queue Fi.
Let m = max mi be the maximum during the entire execution.

Lemma 13. In order to enumerate a set X = A × B of size n, Algorithm 4 only
builds up a priority queue of length m ≤ min{|A|, |B|}, which entails, in particular,
m ≤

√
n.

Proof. During the enumeration algorithm the list representing M is always strictly
increasing in a and strictly decreasing in b. In particular, the projections M → A
and M → B are both injective. The required memory m is thus bounded by
min{|A|, |B|}. �

Proposition 14. Let f : N × N → Z be a bimonotone map that behaves polynomi-
ally. Applied to subsets A = {1, . . . , l} and B = {1, . . . , m} with m ≥ 2, Algorithm
4 takes time O(n log2 n) and requires memory O(

√
n log n).

Proof. The loop is repeated n times. The most time consuming operation is up-
dating the priority queue Fi to Fi+1 which requires time O(log n log mi), where mi

is the size of the queue Fi and its elements are typically of size Θ(log n). The total
cost is time O(n log n log m) and memory Θ(m log n). With m ≤

√
n we obtain the

stated bounds. �

Example 15. The following extreme cases illustrate Algorithm 4 and the possible
behaviour of the memory bound m. We consider f : A × B → N where A =
{1, . . . , k} and B = {1, . . . , l} are two intervals of integers, with k ≥ l ≥ 2 say.

The best case occurs for f(a, b) = la + b, where Algorithm 4 enumerates A × B
in lexicographic order. During the i-th iteration of the algorithm the set of minima
Mi contains only 1 or 2 elements, so that m = 2, independent of the sizes |A| and
|B|.

The worst case occurs for f(a, b) = a+b. Having enumerated all elements xi with
f(xi) ≤ l, the list M contains exactly l elements, namely (1, l), (2, l − 1), . . . , (l, 1).
Thus the upper bound m = min{|A|, |B|} is actually attained.

4.4. Enumerating infinite sets. As with semimonotone enumeration, bimono-
tone enumeration can be generalized from finite to infinite sets. The interesting
point is that now both sets A and B can be infinite, and the algorithm applies
without change.

Theorem 16. Suppose that A and B are ordered sets and that f : A × B → Z is
a proper bimonotone map. Then Algorithm 4 produces a stream enumerating all
pairs (a, b) ∈ A×B such that the values f(a, b) appear in increasing order. In order
to enumerate the first n values, the algorithm builds up a priority queue of length

BIMONOTONE ENUMERATION 601

at most
√

2n + 1. If f behaves polynomially, the algorithm takes time O(n log2 n)
and requires memory O(

√
n log n).

Proof. For every z ∈ Im(f) the set { (a, b) ∈ A×B | f(a, b) ≤ z } is finite, it is thus
contained in some finite product [amin, a1]× [bmin, b1]. Hence Algorithm 4 correctly
enumerates all parameters (a, b) with f(a, b) ≤ z as in the finite case. Since this is
true for all z, the enumeration exhausts A × B.

Let us suppose that, after n outputs, the list M holds m pairs (ai, bi) ordered
such that a1 < a2 < · · · < am and b1 > b2 > · · · > bm. This obviously implies
n ≥ 1

2m(m − 1), whence m ≤
√

2n + 1. The time needed for n outputs is thus
O(n log n log

√
n) = O(n log2 n), while the required memory is O(

√
n log n). �

Example 17. Again the worst case occurs for the map f : N×N → Z with f(a, b) =
a + b, where m ∼

√
2n. The best case occurs for f(a, b) = max{a, b}, where m ≤ 4.

This example shows that for bimonotone enumeration the memory bound m ∈
O(

√
n) is best possible: there exist bimonotone functions f for which Algorithm

4 actually requires temporary memory m ∼
√

2n. Notwithstanding, the algorithm
performs significantly better on certain subclasses of bimonotone functions:

Proposition 18 (separate variables). Consider f : N×N → Z with f(a, b) = p(a)+
q(b), where p and q are non-decreasing polynomial functions of degree α = deg p
and β = deg q, respectively. Assuming 1 ≤ α ≤ β, the bimonotone enumeration
algorithm requires memory m ∈ Θ(nε) with exponent ε = α

α+β .

For example, sorted enumeration of f(a, b) = a3 + b7 requires memory m ∈
Θ(n3/10), while the a priori bound of Theorem 16 only tells us m ∈ O(n1/2).

Proof. Let f : N × N → N be defined by f(a, b) = aα + bβ with 1 ≤ α ≤ β. The
general case f(a, b) = p(a) + q(b) works essentially the same, but the notation is
more cumbersome.

Suppose that the n-th output xn has attained the level f(xn) = z, and the list
M holds m parameters (a1, b1), . . . , (am, bm). Then we have a1 = 0 and f(a1, b1) =
bβ
1 ≥ z. On the other hand, (a1, b1 − 1) has already been output, which means

(b1−1)β ≤ z. We conclude that β
√

z ≤ b1 ≤ β
√

z+1, whence b1 ∼ β
√

z. Analogously,
α
√

z ≤ am ≤ α
√

z + 1, whence am ∼ α
√

z. This situation is depicted in Figure 3. In
the sequel we set a := am and b := b1.

a

b

x

y

f>z

f<z

Figure 3. Estimating the size of the set Min≤≤{aα + bβ ≥ z}

602 MICHAEL EISERMANN

The upper bound n ≤ (a + 1)(b + 1) is clear. Since f is convex, we also have the
lower bound n > 1

2ab. To see this, apply Pick’s theorem to count integer points
in the triangle ∆ = [(0, 0), (a, 0), (0, b)]. Both inequalities together imply that
n ∈ Θ(z(α+β)/αβ), or equivalently, z ∈ Θ(nαβ/(α+β)).

The upper bound m ≤ b + 1 is clear, and it remains to establish a lower bound.
We will assume α < β. (The symmetric case α = β is easier and will be examined
more closely in Example 27 below.) There exists a unique point (x, y) ∈ R2

+ on
the contour whose normal vector points in the direction (1, 1): this is the solution
of xα + yβ = z and αxα−1 = βyβ−1. It is easy to see that m ≥ b − �y� and
m ∼ (a − x) + (b − y) as indicated in Figure 3. We have x = cy(β−1)/(α−1) with
c = α−1

√
β/α, whence cαyα(β−1)/(α−1) + yβ = z. Since α(β − 1)/(α − 1) > β we

deduce that y ∈ o(β
√

z). The bounds b − �y� ≤ m ≤ b + 1 thus entail m ∼ β
√

z,
whence m ∈ Θ(nα/(α+β)). �

We remark that in the above examples semimonotone enumeration achieves the
same asymptotic bounds. This warrants a more detailed analysis, which we en-
deavour next.

5. Asymptotic complexity

We are now ready to address the crucial question: is bimonotone enumeration
(Algorithm 4) better than semimonotone enumeration (Algorithm 3)? We shall
compare the size m of the priority queue built up during the algorithm. The test
class consists of all proper bimonotone functions f : N × N → Q, which is where
both algorithms apply. First of all, the following observation is worth emphasizing:

Remark 19. Bimonotone enumeration is at least as good as semimonotone enu-
meration. More explicitly, both algorithms have to trace the contour of the finite
set

{f � z} := {(a, b) ∈ A × B | f(a, b) � z}
and construct the set of minima of the complement, Min{f > z}. To this end
semimonotone enumeration uses the partial order (a, b) ≤ (a′, b′) defined by a � a′

and b = b′. (Here we are ordering with respect to a for fixed b; since f is bimono-
tone, we could also order with respect to b for fixed a, whichever is advantageous.)
Bimonotone enumeration uses the partial order (a, b) ≤≤ (a′, b′) defined by a � a′

and b � b′. This entails the inclusion

Min≤≤{f > z} ⊂ Min≤{f > z}.
This means that the priority queue for bimonotone enumeration is a subset of the
queue for semimonotone enumeration, and consequently the required memory is
less or equal.

At this point we should clarify a possible ambiguity. Both Algorithms 3 and 4
have to choose one minimal element of the priority queue. In order to disambiguate
multiple minima, we choose the one with minimal B-coordinate. This ensures that
it belongs to both Min≤≤{f > z} and Min≤{f > z}, and the inclusion propagates
inductively.

Whether the bimonotone algorithm can achieve a significant improvement de-
pends on the function f . Let us begin with a trivial example where no savings are
possible:

BIMONOTONE ENUMERATION 603

Example 20 (linear contour). Consider f : N×N → N defined by f(a, b) = (a+b)γ

with γ ≥ 1. In this case Min≤≤{f > z} = Min≤{f > z} is given by the line
a + b = 1 + � γ

√
z�.

In general, however, the inclusion Min≤≤{f > z} ⊂ Min≤{f > z} is strict.
Generally speaking, bimonotone enumeration adapts better to the contour and
achieves savings whenever the contour deviates from being a straight line. We now
quantify this observation.

5.1. Polynomial functions. Consider f : N × N → Q defined by a polynomial
f(a, b) =

∑
i,j cija

ibj with rational coefficients cij ≥ 0. This condition ensures that
f is bimonotone.

Let f1(a) = f(a, 0) and f2(b) = f(0, b) be the induced polynomial functions on
the axes, and set α := deg f1 and β := deg f2. We assume that α, β ≥ 1, which
ensures that f is proper. Without loss of generality, we can also assume that α ≤ β.

Let γ := deg f = max{i + j | cij �= 0} be the total degree of f . We have
α ≤ β ≤ γ.

We denote by n := �{f � z} the number of values of f up to some level z, and
by m := � Min{f > z} the length of the priority queue at level z.

Proposition 21. Semimonotone enumeration of the set {f � z} requires memory
m ∈ Θ(β

√
z) whereas bimonotone enumeration requires memory m ∈ O(γ

√
z).

Whenever β < γ, bimonotone enumeration is thus significantly better than semi-
monotone enumeration. As an example, for f(a, b) = a4 + a3b4 + b5 semimonotone
enumeration requires memory m ∈ Θ(5

√
z), while bimonotone enumeration requires

only m ∈ O(7
√

z).

Proof. Assuming β ≥ α, it is advantageous to sort by a in the semimonotone
enumeration algorithm. In this case we see that m = 2+ b where b satisfies f2(b) ≤
z < f2(b + 1). We have f2(b) ∼ cbβ with some leading coefficient c > 0, whence
m ∼ β

√
z/c.

a

b

x

x

f<z

f>z

Figure 4. Estimating the size of the set Min≤≤{f ≥ z}

Evaluating f on the diagonal, we find f(x, x) = d0 + d1x + · · · + dγxγ with
non-negative coefficients dk ≥ 0 and dγ > 0. For x = 1 + � γ

√
z/dγ� we obtain

f(x, x) > z. This is illustrated in Figure 4, where the dotted line corresponds to
f = z, and black dots represent the elements of Min≤≤{f ≥ z}. We conclude that
m ≤ 1 + 2x, whence m ∈ O(γ

√
z). �

604 MICHAEL EISERMANN

5.2. Asymptotic bounds. In order to express the required memory m in terms
of the number n of enumerated values, we wish to relate n and z. For z → ∞
we can replace counting points (a, b) ∈ N2 satisfying f(a, b) ≤ z by the Lebesgue
measure of the set {(x, y) ∈ R2

+ | f(x, y) ≤ z}.

Proposition 22. Let f : R2
+ → R+ be a polynomial function given by

f(x, y) =
∑

(i,j)∈K

cijx
iyj with cij > 0 for all indices (i, j) ∈ K.

With f we associate the convex polygon D = {(u, v) ∈ R2 | iu+jv ≤ 1 for all (i, j) ∈
K}. Suppose that f is proper in the sense that for all z ∈ R+ the set

{f ≤ z} = {(x, y) ∈ R2
+ | f(x, y) ≤ z}

is compact. Then its Lebesgue measure satisfies λ({f ≤ z}) ∈ Θ(zδ log(z)d) where

δ := max{u + v | (u, v) ∈ D}
and d is the dimension of the set where this maximum is attained: either d = 0 for
a vertex, or d = 1 for a segment. (See Figure 5 below for examples.)

The proof is a nice application of the so-called “tropical” approach. The idea is
to identify R+ = {x ∈ R | x ≥ 0} and R̂ = R ∪ {−∞} via the natural logarithm
log : R+ → R̂, and to formally replace the semiring (R+, +, ·) by the semiring
(R̂, max, +). Of course, we have log(x · y) = log x + log y but for log(x + y) we only
obtain an inequality,

max(log x, log y) ≤ log(x + y) ≤ log 2 + max(log x, log y).

This means that log : R+ → R̂ is a quasi-isomorphism, i.e., its failure to be an
isomorphism is bounded by some constant. For asymptotic arguments this is usually
sufficient.

Proof of Proposition 22. As a logarithmic analogue of f we define

f̂ : R̂2 → R̂, f̂(x̂, ŷ) := max
(i,j)∈K

(ix̂ + jŷ) .

We can choose a constant c ∈ R+ such that cij ≥ e−c and (�K) · cij ≤ e+c for
all (i, j) ∈ K. A small calculation then shows that∣∣∣log f(x, y) − f̂(log x, log y)

∣∣∣ ≤ c.

The measure of the set {f ≤ z} equals the integral over the associated indicator
function [f ≤ z] and we can apply the change of variables x̂ = log x, ŷ = log y,
ẑ = log z:

F (z) :=
∫

R
2
+

[f(x, y) ≤ z] dx dy =
∫

R2
[log f(x̂, ŷ) ≤ ẑ] exp(x̂ + ŷ) dx̂ dŷ.

It is easier to calculate this integral with f̂ instead of f , so let us do this first.
Since f̂ is homogeneous, we perform another change of variables x̂ = uẑ and ŷ = vẑ
to obtain:

F̂ (z) :=
∫

R2

[
f̂(x̂, ŷ) ≤ ẑ

]
exp(x̂+ŷ) dx̂ dŷ = ẑ2

∫
R2

[
f̂(u, v) ≤ 1

]
exp(uẑ+vẑ) du dv.

BIMONOTONE ENUMERATION 605

We are now integrating over the convex polygon D := {(u, v) ∈ R2 | f̂(u, v) ≤ 1}.
The asymptotic behaviour of log F̂ (z) is easy to understand: for z → ∞ we obtain

log F̂ (z)
log z

= log

[
ẑ2/ẑ

(∫
D

exp(u + v)ẑ du dv

)1/ẑ
]
→ δ.

For z → ∞ the first factor ẑ2/ẑ → 1 plays no rôle. The remaining factor is the
ẑ-norm ‖ exp(u + v)‖ẑ and tends to the sup-norm ‖ exp(u + v)‖∞ = exp(δ) for
ẑ → ∞.

This shows that log F̂ (z) ∼ δ log z, but does not yet suffice to imply F̂ (z) ∼ zδ

for z → ∞. We thus have a closer look at the quotient

F̂ (z)
zδ

= log(z)2
∫

D

z(u+v−δ) du dv.

We change variables u = δ−t
2 − s and v = δ−t

2 + s so that u + v = δ − t and
du dv = ds dt: ∫

D

z(u+v−δ) du dv =
∫ ∞

0

(t)z−tdt

where
(t) is the length of the segment {(u, v) ∈ D | u + v = δ − t}. Since D is a
polygon, there exist a0, a1 ≥ 0 and T > 0 such that
(t) = a0 +a1t for all t ∈ [0, T].
We thus find∫ ∞

0

(t)z−tdt ∼ a0 log(z)−1 + a1 log(z)−2 for z → ∞.

Notice that a0 = 0 if and only if the maximum u + v = δ is attained in a single
vertex. We thus obtain F̂ (z) ∈ Θ(zδ log(z)d) where δ is the maximum of u + v on
D and d is the dimension of the maximising set. Since F̂ (e−cz) ≤ F (z) ≤ F̂ (e+cz),
we conclude that F (z) ∈ Θ(zδ log(z)d). �

Remark 23. It is clear that the proposition and its proof generalize to proper poly-
nomial functions f : Rn

+ → R+ with non-negative coefficients, in any number n of
variables. We have concentrated on n = 2, which is the case of interest to us here.

Example 24. For f(x, y) = x4 + y5 the set {f̂ ≤ 1} is depicted in Figure 5 on the
left. Here we obtain δ = 9

20 and d = 0 because the maximum is attained in a single
vertex.

The figure in the middle shows {f̂ ≤ 1} for f(a, b) = a4 + a3b3 + b5. Here δ = 1
3

and d = 1, because the maximum is attained on a segment, so that n ∈ Θ(z1/3 log z).

v

u

(1/4,1/5)
v

u

(2/15,1/5)

(1/4,1/12)

v

u

(1/4,1/16)

Figure 5. Maximizing u + v under the constraint f̂(u, v) ≤ 1

606 MICHAEL EISERMANN

The figure on the right shows {f̂ ≤ 1} for f(a, b) = a4 + a3b4 + b5. Here
we find δ = 5

16 , which means that z ∈ Θ(n16/5). According to Proposition 21,
semimonotone enumeration requires memory m ∈ Θ(z1/5), whence m ∈ Θ(n16/25).

Notice, in particular, that 16
25 > 1

2 . This illustrates that, unlike bimonotone
enumeration, semimonotone enumeration cannot guarantee the memory bound m ∈
O(

√
n).

Corollary 25. The semimonotone enumeration algorithm guarantees the mem-
ory bound m ≤ n + 1, and as a uniform bound the exponent 1 is best possible:
enumerating the values of f(a, b) = aα + aαbβ + bβ with α < β requires memory
m ∈ Θ(nα/β). �
Proof. According to Proposition 22 the number of enumerated values up to level z
is n ∈ Θ(zδ) with δ = 1/α, and thus z ∈ Θ(nα). According to Proposition 21 the
required memory is m ∈ Θ(z1/β). We conclude that m ∈ Θ(nα/β). �
5.3. Constant factors. Proposition 21 exhibits many polynomial functions where
bimonotone enumeration is clearly worth the effort. Depending on the envisaged
application and the given function f , a finer analysis and a more modest conclusion
may be necessary:

Example 26. Consider polynomials of the form f(a, b) = p(a) + q(b), for which
semimonotone enumeration was initially devised [2, 1]. We obtain n ∈ Θ(zδ) with
δ = 1

α + 1
β , as already remarked in the proof of Proposition 18. Assuming α ≤ β,

bimonotone and semimonotone enumeration both require memory m ∈ Θ(nε) with
ε = α

α+β .

Even if memory requirements are of the same order of magnitude, we can usually
expect to gain a constant factor with the bimonotone algorithm:

Example 27. Reconsider f : N × N → Z defined by f(a, b) = aγ + bγ with γ > 1.
In this case semimonotone enumeration requires memory m ∼ γ

√
z, whereas bimono-

tone enumeration requires memory m ∼ cγ · γ
√

z with a factor cγ =
2(1 − γ

√
1/2) < 1.

Proof. For a = b = � γ
√

z� we have f1(a) = f2(b) ≤ z and f1(a + 1) = f2(b + 1) > z,
and semimonotone enumeration requires memory � Min≤{f > z} = 2 + b ∼ γ

√
z.

Choosing x = y = � γ
√

z/2� we find f(x, y) ≤ z and f(x + 1, y + 1) > z. As
indicated in Figure 3, we have m ∼ (a − x) + (b − y) ∼ cγ · γ

√
z. �

Though less impressive, for practical applications even a constant factor may be
a welcome improvement: reducing memory consumption means that we can scale
to considerably larger problems before running out of RAM. In our example we
have c2 ≈ 0.59, c3 ≈ 0.41, c4 ≈ 0.32, c5 ≈ 0.26, and cγ → 0 for γ → ∞.

6. Parallelization

Let us reconsider the application of sorted enumeration to a diophantine equa-
tion f(a, b) = g(c, d), where f, g : N × N → Z are proper bimonotone functions.
Suppose we are looking for solutions x = (a, b), y = (c, d) with values in some large
interval zmin ≤ f(x) = g(y) < zmax. This problem can be split into s independent
subproblems, namely searching solutions with zk−1 ≤ f(x) = g(y) < zk, where
zmin = z0 < z1 < z2 < · · · < zs = zmax is a subdivision of our search interval. This
allows us to distribute the search on several computers in parallel.

BIMONOTONE ENUMERATION 607

6.1. The initialization algorithm. To put the parallelization idea into practice,
Algorithm 5, stated below, initializes the enumeration stream to begin at level z.
Graphically speaking, it traces the contour of X = {f ≥ z} in order to determine
the set of minimal elements M = MinX. From M we can then immediately build
up the priority queue F = f(M).

As usual we require that f : A × B → Z be a proper bimonotone map. For
simplicity we first assume that both A and B are infinite. (We will treat the
general case in the next paragraph.) As before the successor function is denoted by
a �→ σa and b �→ σb, respectively. We also use the predecessor function, denoted
by b �→ πb.

Algorithm 5 Constructing the set of minima on X = A × B

Requires: a proper bimonotone function f : A × B → Z
Input: a level z ∈ Z
Output: the list of minima

Min{x ∈ X | f(x) � z } = 〈 (a1, b1), (a2, b2), . . . , (am, bm) 〉
Ensures: a1 < a2 < · · · < am and b1 > b2 > · · · > bm

1: Initialize M ← ∅ and a ← amin, b ← bmin

2: while f(a, b) < z do b ← σb end while
3: Insert (a, b) at the end of the list M ; continue with a ← σa, b ← πb
4: while b � bmin do
5: while f(a, b) < z do a ← σa end while
6: while b > bmin and f(a, πb) ≥ z do b ← πb end while
7: Insert (a, b) at the end of the list M ; continue with a ← σa, b ← πb
8: end while
9: return M

The reader is invited to apply Algorithm 5 to the example given in Figure 2, in
order to see how it traces the contour of X = {f ≥ z}. By the way, the method
applies to any set X ⊂ A × B that is saturated and has finite complement. We
shall give a detailed proof in the more general situation of Algorithm 7 below.

Remark 28. The loop in line 2 determines b ← min{ b ∈ B | f(amin, b) � z }. This
could, of course, be improved by replacing the linear search with a binary search,
provided that b can easily be incremented and decremented by integer values. The
same holds for the loops in lines 5 and 6. This optimization is straightforward to
implement whenever the application requires it.

Remark 29. Let M = 〈 (a1, b1), (a2, b2), . . . , (am, bm) 〉 be the list of minima. Then
building a priority queue from M requires time O(m log n). Moreover, let k =
#[amin, am] and l = #[bmin, b1], with k ≥ l, say. Then n ≥ k ≥ l ≥ m. Constructing
the list M itself requires time O(k log n) using linear search, and O(m log2 n) using
binary search. We cannot expect to do much better, because constructing a list of
length m requires at least m iterations.

6.2. Applications. Having initialized M and F , we can apply the bimonotone enu-
meration algorithm to produce a sorted enumeration x1, x2, . . . of the set
{f ≥ zk−1}. Applying the same method to g, we can produce a sorted enumeration
y1, y2, . . . of {g ≥ zk−1}. We can thus search for solutions f(x) = g(y) starting at
level zk−1 and ending at level zk.

608 MICHAEL EISERMANN

Expected speed-up. Concerning time requirements, initialization entails a reasonably
small overhead, so we can expect an amortized speed-up by a factor s. For each
k = 1, . . . , s, computer number k manages its own priority queues of length O(

√
n).

in order to produce enumeration streams for f and g, with values ranging from zk−1

to zk. As before, advancing from position n to position n + 1 takes time O(log2 n).

Robustness. The initialization procedure is already very useful on a single com-
puter, since it can make implementations much more robust: it is possible to con-
tinue searching, without much loss, after a shut-down or a power failure. This is
particularly important when carrying out a long-term search.

7. Enumerating bimonotone domains

Suppose we want to enumerate the values of a symmetric bimonotone function
f : N × N → Z, that is, f(a, b) = f(b, a) for all a, b ∈ N. It is often desirable to
enumerate only pairs (a, b) with a � b. In other words, we wish to restrict f to the
domain X = { (a, b) ∈ N×N | a � b } and enumerate only the values of f : X → Z.
Figure 6 shows a possible configuration during bimonotone enumeration.

B

3

4

5

6

7

8

9

1 2 3 987654 11 12

1

2

10 A13 14 15

Figure 6. Enumerating the domain X = { (a, b) ∈ N × N | a � b }

It is straightforward to adapt bimonotone enumeration (Algorithm 4) and ini-
tialization (Algorithm 5) to such a domain X. Still other restrictions are possible,
for example X = { (a, b) ∈ N × N | a ≤ b and b ≤ 2a } or more complicated cases
such as X = { (a, b) ∈ N × N | a ≤ b and b2 ≤ 1 + 10a }. This raises the question
as to what are “reasonable” domains X ⊂ A×B to which Algorithms 4 and 5 can
be efficiently applied.

7.1. Bimonotone domains. As usual we assume that A and B are isotonic to
finite intervals or to the natural numbers. Figure 7 shows a domain X ⊂ A × B
which will turn out to be well suited to bimonotone enumeration. Graphically
speaking, it is bounded by the graphs of two non-decreasing functions α : A → B
and β : B → A. We will show that this condition suffices to adapt our algorithms
to work on the domain X rather than the entire product A × B.

We say that X ⊂ A × B is bounded by functions α : A → B and β : B → A if

X = { (a, b) ∈ A × B | a � β(b) and b � α(a) }.

BIMONOTONE ENUMERATION 609

A

B

3

4

5

6

7

8

9

1 2 3 987654 1110 12 13 14 15

1

2

Figure 7. Enumerating a bimonotone domain X ⊂ A × B

For example, the domain X of Figure 7 is bounded by α(1) = · · · = α(12) = 1,
α(13) = 4, α(14) = 5, α(15) = 7, and β(1) = 1, β(2) = β(3) = 3, . . . , β(9) = 10.

Definition 30. We say that a domain X ⊂ A × B is bimonotone if it is bounded
by two functions α : A → B and β : B → A such that:

(1) The functions α and β are non-decreasing, that is,
a � a′ implies α(a) � α(a′), and b � b′ implies β(b) � β(b′).

(2) We have β(α(a)) � a for all a ∈ A, with equality only for a = amin,
and α(β(b)) � b for all b ∈ B, with equality only for b = bmin.

Condition (2) ensures that (a, α(a)) ∈ X for each a ∈ A, and (β(b), b) ∈ X for
each b ∈ B. In particular, α and β are determined by X via

α(a) = min{ b ∈ B | (a, b) ∈ X },
β(b) = min{ a ∈ A | (a, b) ∈ X }.

Moreover, (amin, bmin) is the smallest element of X. If both A and B are finite,
then (amax, bmax) is the greatest element of X.

The definition of X via bounding functions is easy to formulate and well suited
to implementation. It can also be reformulated in more geometric terms:

Proposition 31. A domain X ⊂ A × B is bimonotone if and only if it satisfies
pr1 X = A and pr2 X = B and the following two properties:

(1′) If (a1, b1) and (a2, b2) in X satisfy a1 � a2 and b2 � b1, then X contains
the entire rectangle { (a, b) ∈ A × B | a1 � a � a2 and b2 � b � b1 }.

(2′) If (a1, b1) and (a2, b2) in X satisfy a1 � a2 and b1 � b2, then we can go
from (a1, b2) to (a2, b2) within X by repeatedly incrementing a and b. �

The proof is not difficult and will be omitted.

7.2. Bimonotone enumeration. We are now in position to generalize our enu-
meration algorithm to a bimonotone domain. As before, Algorithm 6 processes a
bidirectional list M and a priority queue F .

610 MICHAEL EISERMANN

Algorithm 6 Sorted enumeration of a bimonotone domain
Requires: a bimonotone domain X ⊂ A × B and a proper bimonotone function

f : X → Z
Output: an enumeration of X, monotone with respect to f

1: Initialize M ← 〈 (amin, bmin) 〉 and F ← 〈 f(amin, bmin) 〉.
2: while F is non-empty do
3: Remove a minimal element f(a, b) from F and output (a, b).
4: if (a, b) is the last element of the list M then
5: if (σa, b) ∈ X then insert (σa, b) into M and f(σa, b) into F end if
6: else
7: Let (a∗, b∗) be the successor of (a, b) in the list M .
8: if σa < a∗ then insert (σa, b) into M and f(σa, b) into F end if
9: end if

10: if (a, b) is the first element of the list M then
11: if (a, σb) ∈ X then insert (a, σb) into M and f(a, σb) into F end if
12: else
13: Let (a∗, b

∗) be the predecessor of (a, b) in the list M .
14: if σb < b∗ then insert (a, σb) into M and f(a, σb) into F end if
15: end if
16: Remove (a, b) from the list M .
17: end while

Proposition 32. Algorithm 6 is correct.

Proof. The proof is essentially the same as for Algorithm 4. There are, however,
some modifications when updating the list M and the priority queue F :

• If the current minimum (a, b) is somewhere in the middle of the list M ,
then the previous arguments apply without change, because we still have

{(a, b)}# � {(a, b)} = { (a, σb), (σa, b) }#.

• If (a, b) is at the end of the list, then possibly (σa, b) /∈ X: in this case we
have {(a, b)}# � {(a, b)} = {(a, σb)}#, so we discard (σa, b).

• If (a, b) is at the beginning of the list, then possibly (a, σb) /∈ X: in this
case we have {(a, b)}# � {(a, b)} = {(σa, b)}#, so we discard (a, σb).

• If ever M = 〈 (a, b) 〉 and neither (a, σb) nor (σa, b) is in X, then (a, b) is
the greatest element of X and the algorithm terminates correctly.

Since f is proper, every element (a, b) ∈ X will eventually be enumerated. �

7.3. Initialization on a bimonotone domain. As for the unrestricted case X =
A × B, we want to formulate an initialization algorithm for a proper bimonotone
function f : X → Z defined on some bimonotone domain X ⊂ A × B. The idea is
essentially the same: Algorithm 7 traces the contour of X(z) = {x ∈ X | f(x) � z }
to construct the list M = Min X(z) of its minimal elements.

Remark 33. The loops in lines 3, 7, and 9 implement linear searches. This can be
improved by a binary search whenever the application requires such optimization.

Proposition 34. Algorithm 7 is correct.

BIMONOTONE ENUMERATION 611

Algorithm 7 Constructing the set of minima on a bimonotone domain
Requires: a bimonotone domain X ⊂ A × B and a proper bimonotone function

f : X → Z
Input: a level z ∈ Z
Output: the list of minima

Min{x ∈ X | f(x) � z } = 〈 (a1, b1), (a2, b2), . . . , (am, bm) 〉
Ensures: a1 < a2 < · · · < am and b1 > b2 > · · · > bm

1: Initialize M ← ∅ and a ← amin, b ← bmin

2: while (a, b) ∈ X and f(a, b) < z do
3: while f(a, b) < z and (a, σb) ∈ X do b ← σb end while
4: if f(a, b) < z then a ← σa end if
5: end while
6: while (a, b) ∈ X do
7: while (a, πb) ∈ X and f(a, πb) � z do b ← πb end while
8: Insert (a, b) at the end of the list M ; continue with a ← σa, b ← πb
9: while (a, b) ∈ X and f(a, b) < z do a ← σa end while

10: end while
11: return M

Proof. The first loop (lines 1–5) finds an element (a, b) ∈ X(z) with minimal a.
Beginning with a ← amin and b ← bmin, we repeatedly increment b in order to
arrive at f(a, b) � z. If this is not possible within X, then the candidate a is
eliminated, and we continue with a ← σa. If we never run out of the domain X,
then we finally end up with f(a, b) � z, because a or b increase and f is proper.

The only obstacle occurs when f(a, b) < z but neither (a, σb) nor (σa, b) are in
X. But in this case we have reached the greatest element of X, hence f(x) < z for
all x ∈ X. Thus X(z) = ∅ and we correctly return the empty list M = ∅. In any
case, the first loop terminates with either (a, b) /∈ X or f(a, b) � z, as desired.

When arriving at line 7 we know that (a, b) ∈ X(z)�M#, and a is minimal with
this property. The loop in line 7 minimizes b, so we know that (a, b) is a minimal
element of X(z). We thus add (a, b) to our list M and continue with a ← σa and
b ← πb. We then repeatedly increment a in order to arrive at f(a, b) � z. If this
is not possible in X, then X(z) = M# by the rectangle condition (1’), so we have
found all minimal elements of X(z). Otherwise, we obtain (a, b) ∈ X(z)�M#, and
a is minimal with this property. We can thus reiterate by looping back to line 7.

During each iteration, a is strictly increasing while b is strictly decreasing. We
conclude that the second loop terminates and produces the list M of minima, as
desired, ordered in the sense that a1 < a2 < · · · < am and b1 > b2 > · · · > bm. �

8. Applications to diophantine enumeration

Algorithms 6 and 7 for bimonotone enumeration have been implemented as a
class template in C++. This seems to be a good compromise between general
applicability, ease of use, and high performance. The source files are available on
the author’s homepage:

http://www-fourier.ujf-grenoble.fr/~eiserm/software
As an illustration of sorted enumeration, let us mention searching multiple values

of a polynomial function f : N × N → Z, f(a, b) =
∑

i,j cija
ibj with non-negative

612 MICHAEL EISERMANN

coefficients cij ∈ N. The cited implementation has been successfully tested to
reproduce some known results taken from Richard Guy’s Unsolved problems in
number theory [4].

8.1. The quest for the sixth taxicab number. As an illustrative example we
briefly sketch the taxicab problem. The kth taxicab number, denoted by taxicab(k),
is the least positive integer that can be expressed as a sum of two positive cubes in
k distinct ways, up to order of summands. That is, it is the smallest k-fold value
of f(a, b) = a3 + b3 defined on X = { (a, b) ∈ N × N | 1 ≤ a ≤ b }.

G. H.Hardy and E. M. Wright [5, Thm. 412] proved that, for every k ≥ 1, there
exist such k-fold values. This guarantees the existence of a least k-fold value, that
is, the kth taxicab number. Unfortunately, the construction given in the proof is
of no help in finding the least k-fold value. Apart from (variants of) exhaustive
search, no such method is known today. The first taxicab number is trivially

taxicab(1) = 2 = 13 + 13.

The next taxicab numbers are:

taxicab(2) = 1729 = 13 + 123 = 93 + 103,

(re)discovered by Ramanujan according to Hardy’s famous anecdote, but previously
published by Bernard Frénicle de Bessy in 1657,

taxicab(3) = 87 539 319

= 1673 + 4363 = 2283 + 4233 = 2553 + 4143,

discovered by John Leech [8] in 1957,

taxicab(4) = 6 963 472 309 248 = 24213 + 190833 = 54363 + 189483

= 102003 + 180723 = 133223 + 166303,

discovered by E. Rosenstiel, J.A. Dardis, and C.R. Rosenstiel [9] in 1991,

taxicab(5) = 48 988 659 276 962 496 = 387873 + 3657573 = 1078393 + 3627533

= 2052923 + 3429523 = 2214243 + 3365883 = 2315183 + 3319543,

discovered independently by D.W.Wilson [10] in 1997 and shortly afterwards by
D.J. Bernstein [1] in 1998. Finally, the smallest known 6-fold value is

T = 24 153 319 581 254 312 065 344

= 289062063 + 5821623 = 288948033 + 30641733 = 286574873 + 85192813

= 270932083 + 162180683 = 265904523 + 174924963 = 262243663 + 182899223,

found by R.L. Rathbun in 2002. Is this actually the sixth taxicab number, or is
there a smaller solution?

8.2. Feasibility of an exhaustive search. In order to verify that T is indeed
the smallest 6-fold value, there are exactly n = 369 039 037 733 393 < 4 · 1014 pairs
(a, b) ∈ N×N to be checked with a3 + b3 ≤ T and a ≤ b. Such counting results can
easily be obtained from Algorithm 7 tracing the contour of the set X = {f ≤ z}:
as a by-product, the initialization can be used to determine the sizes n = �{f ≤ z}
and m = � Min{f > z}.

Memory requirements are, fortunately, no problem. In the worst case we would
have to check all n parameters, which would finally build up a priority queue of

BIMONOTONE ENUMERATION 613

size m = 5 963 352 < 6 · 106. Notice that each entry requires 32 bytes: 12 bytes
for the value f(a, b), 4 bytes for a and 4 bytes for b, plus 4 bytes for each of the
three pointers. In the worst case the priority queue thus requires 180 megabytes
of memory, which fits nicely in a PC with 256 megabytes RAM. Such memory
requirements seem acceptable; on today’s PCs such a task can reasonably be run
in the background.

Time requirements, however, are on the edge of being feasible. Updating a
priority queue of 2 · 106 entries, say, takes about 4000 CPU cycles. On a PC
running at 2GHz, we can expect to process about 500 000 steps per second, that
is, around 4 · 1010 steps per day. This is not too far away from 4 · 1014, but on a
single computer the search would still require about 10 000 days, roughly 25 years.
On 25 computers, however, we would be done within a year, possibly earlier.

Partial results. Up to June 2005, I have run the search on a few available PCs
at the Institut Fourier, but the use of parallelization has still been rather limited
(to a dozen PCs). As a result I obtained the lower bound taxicab(6) > 5 · 1020 by
sorted enumeration of the 2.8 ·1013 smallest values of f(a, b) = a3 + b3. (At a speed
of 500 000 values per second this takes about 650 days on a single computer.) This
leaves us with the inequality

5 · 1020 < taxicab(6) ≤ T ≈ 2.42 · 1022.

It will now be a matter of sufficient hardware and patience to find the exact answer.

Acknowledgement

I thank the anonymous referee for his thorough critique, harsh but fair, which
substantially contributed to improve this exposition.

References

1. D. J. Bernstein, Enumerating solutions to p(a) + q(b) = r(c) + s(d), Math. Comp. 70 (2001),
no. 233, 389–394. MR2001f:11203

2. R. L. Ekl, Equal sums of four seventh powers, Math. Comp. 65 (1996), no. 216, 1755–1756.
MR97a:11050

3. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, Addison-Wesley Pub-
lishing Co., Reading, Massachusetts, 1989. MR1001562 (91f:00001)

4. R. K. Guy, Unsolved problems in number theory, third ed., Problem Books in Mathematics,
Springer-Verlag, New York, 2004. MR2076335

5. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, third ed., The
Clarendon Press, Oxford University Press, New York, 1954. MR0067125 (16,673c)

6. D. E. Knuth, The art of computer programming, volume 1: fundamental algorithms, second
ed., Addison-Wesley Publishing Co., Reading, Massachusetts, 1969. MR0286317 (44:3530)

7. , The art of computer programming, volume 3: sorting and searching, second ed.,
Addison-Wesley Publishing Co., Reading, Massachusetts, 1998. MR0445948 (56:4281)

8. J. Leech, Some solutions of Diophantine equations, Proc. Cambridge Philos. Soc. 53 (1957),
778–780. MR0090602 (19,837f)

9. E. Rosenstiel, J. A. Dardis, and C. R. Rosenstiel, The four least solutions in distinct positive
integers of the Diophantine equation s = x3 + y3 = z3 + w3 = u3 + v3 = m3 + n3, Bull. Inst.

Math. Appl. 27 (1991), no. 7, 155–157. MR1125858 (92i:11134)
10. D. W. Wilson, The fifth taxicab number is 48 988 659 276 962 496, J. Integer Seq. 2 (1999),

Article 99.1.9, HTML document (electronic). MR1722364 (2000i:11195)

Institut Fourier, Université Grenoble I, France

E-mail address: Michael.Eisermann@ujf-grenoble.fr

URL: http://www-fourier.ujf-grenoble.fr/~eiserm

http://www.ams.org/mathscinet-getitem?mr=2001f:11203
http://www.ams.org/mathscinet-getitem?mr=97a:11050
http://www.ams.org/mathscinet-getitem?mr=1001562
http://www.ams.org/mathscinet-getitem?mr=1001562
http://www.ams.org/mathscinet-getitem?mr=2076335
http://www.ams.org/mathscinet-getitem?mr=0067125
http://www.ams.org/mathscinet-getitem?mr=0067125
http://www.ams.org/mathscinet-getitem?mr=0286317
http://www.ams.org/mathscinet-getitem?mr=0286317
http://www.ams.org/mathscinet-getitem?mr=0445948
http://www.ams.org/mathscinet-getitem?mr=0445948
http://www.ams.org/mathscinet-getitem?mr=0090602
http://www.ams.org/mathscinet-getitem?mr=0090602
http://www.ams.org/mathscinet-getitem?mr=1125858
http://www.ams.org/mathscinet-getitem?mr=1125858
http://www.ams.org/mathscinet-getitem?mr=1722364
http://www.ams.org/mathscinet-getitem?mr=1722364

	1. Introduction and statement of results
	1.1. Motivation
	1.2. Main result
	1.3. How this article is organized

	2. Sorted enumeration for arbitrary functions
	2.1. The generic problem
	2.2. The generic algorithm
	2.3. Time and memory requirements

	3. Sorted enumeration for semimonotone functions
	3.1. The idea of semimonotone enumeration
	3.2. Suitable data structures
	3.3. The semimonotone enumeration algorithm
	3.4. Enumerating infinite sets

	4. Sorted enumeration for bimonotone functions
	4.1. The idea of bimonotone enumeration
	4.2. Suitable data structures
	4.3. The bimonotone enumeration algorithm
	4.4. Enumerating infinite sets

	5. Asymptotic complexity
	5.1. Polynomial functions
	5.2. Asymptotic bounds
	5.3. Constant factors

	6. Parallelization
	6.1. The initialization algorithm
	6.2. Applications

	7. Enumerating bimonotone domains
	7.1. Bimonotone domains
	7.2. Bimonotone enumeration
	7.3. Initialization on a bimonotone domain

	8. Applications to diophantine enumeration
	8.1. The quest for the sixth taxicab number
	8.2. Feasibility of an exhaustive search

	Acknowledgement
	References

