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GENUS TWO CURVES WITH QUATERNIONIC
MULTIPLICATION AND MODULAR JACOBIAN

JOSEP GONZÁLEZ AND JORDI GUÀRDIA

Abstract. We describe a method to determine all the isomorphism classes of
principal polarizations of the modular abelian surfaces Af with quaternionic
multiplication attached to a normalized newform f without complex multi-
plication. We include an example of Af with quaternionic multiplication for
which we find numerically a curve C whose Jacobian is Af up to numerical
approximation, and we prove that it has quaternionic multiplication and is
isogenous to Af .

1. Introduction

During the last years, abelian surfaces have emerged in arithmetic geometry in
different contexts, illustrating interesting phenomena and providing examples for
practical applications. While the general theory of abelian surfaces is well known,
explicit methods are quite recent and not completely developed. For an irreducible
abelian surface over a number field, the problem of determining explicitly all the
genus two curves whose Jacobian is isomorphic to the given surface is not solved in
general.

We began the study of this problem for irreducible principally polarized abelian
surfaces in [GJGG02]. Afterwards, in [GGR05] we developed the theoretical results
related to the problem for irreducible polarized abelian surfaces, considering specif-
ically nonprincipal polarizations. In both cases, we applied our ideas to modular
abelian surfaces, since the apparition of new algorithms for the description of the
Jacobians of modular curves makes possible the generation of explicit examples.
Unfortunately, the numerical nature of these algorithms leads only numerically
tested examples.

We now consider the interesting case of abelian surfaces with quaternionic mul-
tiplication, whose rich endomorphism algebra allows the combined application of
further well-known techniques. After describing these techniques, we provide an
example of a modular abelian surface presented as the Jacobian of a hyperelliptic
curve for which, although numerically determined, we can determine its endomor-
phism ring and prove that it is isogenous to the given surface.
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2. General facts

Let f =
∑

n>0 anqn be a normalized newform of S2(Γ0(N)) without complex
multiplication such that the abelian variety Af/Q attached by Shimura in [Shi71]
has dimension 2. The Q-algebra End0(Af ) := EndQ(Af ) ⊗ Q can only be the real
quadratic field generated by the Fourier coefficients an, the matrix algebra M2(Q) or
an indefinite quaternion algebra (a,b

Q
). We restrict ourselves to the most interesting

case that Af has quaternionic multiplication. Indeed, we will see that if there is a
principal polarization not defined over Q, Af can be presented as the Jacobian of a
genus two-curve C defined over an imaginary quadratic field which does not admit
descent over Q. Then, there are two possibilities: either C is isomorphic to its
complex conjugate C and, thus, with rational Igusa invariants or the isomorphism
classes of the canonical principal polarizations of both curves are different.

We denote by E = Q(
√

m) the real quadratic number field generated by
{an, n > 0}, where m is a square-free integer. It is well known that every Hecke
operator provides an endomorphism of Af for which f is an eigenvector and that
we identify with the eigenvalue of f . So we have a natural injection Z[{an}] ↪→
EndQ(Af ) ⊂ End0

Q(Af ) � E which lets us interpret the coefficients an as endomor-
phisms of Af .

An inner twist of f is a Dirichlet character χ of conductor dividing N such that
σf = f ⊗ χ for some nontrivial σ ∈ Gal(Q/Q), i.e. ap = χ(p) σap for all primes
p � N . Since f has trivial Nebentypus, χ must be quadratic (cf. [Rib80]); we will
write K = Q

ker χ
. By Proposition 8 of [Shi73] there is uχ ∈ End0

K(Af ) sending
f and σf to g(χ)σf and g(χ)f , respectively, where g(χ) denotes the Gauss sum
relative to the conductor of χ. Of course, u2

χ = disc K. From [Rib80], we have the
following characterization.

Proposition 2.1. The abelian surface Af has quaternionic multiplication if and
only if there is an inner twist χ such that its conductor is not a norm of the number
field E. In this case, the quadratic number field K = Q(

√
δ ) = Q

ker χ
is imaginary

and End0(Af ) = End0
K(Af ) = Q(uχ, Tp) �

(
δ,m
Q

)
, where Tp is the Hecke operator

at a prime p such that ap /∈ Z.

Let k be a subfield of a fixed algebraic closure Q of Q, let Gk be the absolute
Galois group Gal(Q/k) and let A be an abelian variety defined over k. The class
of an invertible sheaf L (not necessarily defined over k) in the Néron-Severi group
NS(AQ) is defined over k if it is invariant by Gk. Every invertible sheaf L ∈
NS(AQ)Gk defines a morphism ϕL : A→Â over k given by ϕL(P ) = τ∗

P (L) ⊗ L−1,
where τP denotes the translation by P . This morphism is an isogeny if and only
if L is nondegenerate. A polarization on A defined over k is the class of algebraic
equivalence of an ample invertible sheaf L ∈ NS(AQ)Gk . Equivalently, a polarization
on A over k is an isogeny λ : A→Â defined over k such that λ ⊗ k = ϕL for some
ample line bundle L on AQ. The polarization L is called principal when the degree
of ϕL is 1.

We proceed to present the results that we will use for our computations.

Proposition 2.2 (cf. [Wei57]). Let A/k be an abelian surface with a principal po-

larization L defined over k. If A is simple over Q, then (A,L)
k� (Jac(C),L(ΘC)),
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where C/k is a smooth curve of genus two and L(ΘC) denotes the canonical prin-
cipal polarization for Jac(C).

A nondegenerate invertible sheaf L on A defined over k induces an anti-involution
on the algebra of endomorphisms

∗ : Q ⊗ Endk A
∼→ Q ⊗ Endk A, t �→ ϕL

−1 · t̂ · ϕL.

Let Ends
k A = {β ∈ Endk A, β∗ = β} denote the subgroup of symmetric endomor-

phisms and let Ends
k+ A be the set of positive symmetric endomorphisms of A.

Theorem 2.1 (Proposition 2.1 and Theorem 2.3 of [GGR05]). Let A/k be an
abelian variety and let L ∈ NS(AQ)Gk be nondegenerate. Then:

(i) For any endomorphism t ∈ Ends
k A, there exists a unique L(t) ∈ NS(AQ)Gk

such that ϕL(t) = ϕL · t. More precisely, if E and Et denote the alternating
Riemann forms attached to L and L(t), respectively. Then

Et(x, y) = E(x, ty) = E(tx, y) .

Moreover, if t is a totally positive element, then L is a polarization if and
only if L(t) is.

(ii) Assume A is principally polarized over k. For any choice of a principal
polarization L0 on A defined over k, there is an isomorphism of groups

ε : NS(AQ)Gk
∼→ Ends

k A

L �→ ϕ−1
L0

· ϕL

such that L ∈ NS(AQ)Gk is a polarization if and only if ε(L) ∈ Ends
k+ A and

it is principal if and only if ε(L) ∈ Auts
k+ A. Moreover, ε−1(t) = L(t)

0 and
the set of all k-isomorphism classes of principal polarizations on A defined
over k is the set ε−1(Auts

k+ A/ ∼), where β1 ∼ β2 means that β1 = β∗β2β
for some β ∈ Autk A.

(iii) Let L be a polarization on A over k of degree d ≥ 1. Then, A is principally
polarizable over a number field k if and only if there exists γ ∈ Ends

k+(A)
satisfying deg γ = d2 and L(γ−1) ∈ NS(Ak)Gk .

Proof. Part (i) and part (ii) can be found in Proposition 2.1 and Theorem 2.3 of
[GGR05], respectively. Part (iii) follows from part (ii) by using the same arguments
as in Corollary 2.12 of [GGR05] and taking into account that degL = d is equivalent
to deg ϕL = d2. �

In the particular case that A is a surface and End0(A) is an indefinite quaternion
algebra, we have the following results.

Theorem 2.2 (Theorem 1.1 of [Rot03]). Assume that End(A) is a maximal order of
an indefinite quaternion algebra of discriminant D. Then, A is principally polarized
and the number π(A) of isomorphism classes of principal polarizations of A, is

π(A) =

⎧⎪⎨
⎪⎩

h(−4 D) + h(−D)
2

if D ≡ −1 (mod 4),
h(−4 D)

2
otherwise.
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Proposition 2.3 (Lemma 4.3 of [BFGR06]). Let A/Q be an abelian surface such
that End0

Q(A) is the real quadratic number field Q(
√

m) and End(A) is a maximal
order in a quaternion algebra of discriminant D. Then, A admits a polarization of
degree d > 0 defined over Q if and only if End0

k(A) � (−Dd,m
Q

). In particular, A is
the jacobian of a genus 2 curve defined over Q if and only if the algebra (−D,m

Q
)

ramifies exactly at the primes dividing D.

3. Determination of curves with Jacobian isomorphic to Af

Let us write E = Q(
√

m), K = Q(
√

δ) with m > 0, δ < 0 square-free integers.
We denote by i ∈ End0

Q(Af ) the (fractional) Hecke operator such that i2 = m. We
take j ∈ End0

K(Af ) as uχ if the discriminant of K is ≡ 1 (mod 4) and as or uχ/4
otherwise. Then j2 = δ and we set k := i · j = −j · i. Let us denote O the order
End(Af ).

In order to apply Theorem 2.1, we have to determine first the order O in Q(i, j).
Once we know Ends(Af ) and Ends

+(Af ), we are able to compute the number of
isomorphism classes of principal polarizations and we can determine hyperelliptic
equations for each one of these polarizations by applying the procedure described
in [GJGG02].

3.1. The ring of endomorphims of Af . Let A/k be an abelian variety of di-
mension n over a subfield k of C, {ω1, · · · , ωn} and let {c1, · · · , c2n} be arbitrary
bases of H0(A, Ω1

A/k) and of H1(A, Z), respectively. We can take as period lattice
for A:

Λ =
{(∫

c

ω1, · · · ,

∫
c

ωn

)∣∣∣∣ c ∈ H1(A, Z)
}

=
〈(∫

ci

ω1, · · · ,

∫
ci

ωn

)
, i ≤ 2n

〉
.

The period matrix Ω of A with respect to these bases ω1, · · · , ωn and c1, · · · , c2n is

Ω =
(∫

ci

ωj

)
1≤i≤2n , 1≤j≤n

=

⎛
⎜⎝

∫
c1

ω1 . . .
∫

c2n
ω1

...
...

...∫
c1

ωn . . .
∫

c2n
ωn

⎞
⎟⎠ .

An endomorphism φ : A → A defined over k induces an endomorphism φ∗ in the
k-vector space H0(A, Ω1

A/k) and an endomorphism φ∗ in the Z-module H1(A, Z).
The action of both endomorphisms is related by the equality

(1)
∫

φ∗(c)

ω =
∫

c

φ∗(ω) for all ω ∈ H0(A, Ω1) and c ∈ H1(A, Z) .

Let us denote by T ∈ Mn(k) and M ∈ M2n(Z) the matrices of φ∗ and φ∗ with
respect to the chosen bases. It follows from (1) that

(2) tT · Ω = Ω · M .

Therefore,

(3) M =
(

ReΩ
Im Ω

)−1

.

(
Re(tT · Ω)
Im(tT · Ω)

)
.
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A C-linear endomorphism ψ on H0(A, Ω1) comes from some φ ∈ Q ⊗ End(A),
i.e., ψ = φ∗, if and only if ψ(Λ) is contained in Q ⊗ Λ, where ψ(Λ) is{

(
∫

c

ψ(ω1), · · · ,

∫
c

ψ(ωn)) | c ∈ H1(A, Z)
}

=
〈

(
∫

ci

ψ(ω1), · · · ,

∫
ci

ψ(ωn)) , 1 ≤ i ≤ 2n

〉
.

As an immediate consequence of equalities (2) and (3), we obtain the next cri-
terion.

Lemma 3.1. If T is the matrix of a C-linear endomorphism ψ of H0(A, Ω1) with
respect to the basis {ω1, · · · , ωn}, then ψ = φ∗ for some φ ∈ Q ⊗ End(A) if and
only if the matrix

MT :=
(

ReΩ
Im Ω

)−1

.

(
Re(tT · Ω)
Im(tT · Ω)

)
lies in M2n (Q) and, moreover,

tT.Ω = Ω.MT .

When this is the case, φ ∈ End(A) if and only if MT ∈ M2n (Z).

In our case A = Af , Proposition 2.1 gives an explicit description of the action of
End0(Af ) = Q(i, j) on H0(Af , Ω1). Then, to determine the order O in Q(i, j) we
will only use fractional endomorphisms and, thus, we will only need to check the
condition MT ∈ M2n (Z) for a finite number of matrices T ∈ Mn (K).

3.2. Principal polarizations. We chose a basis f1, f2 of the vector space 〈fσ, f〉
with rational Fourier coefficients. We take ωi = fi(q) dq/q, i ≤ 2, as a basis of
H0(Af , Ω1

Af /Q
). We compute with Magma ([BCP97]) the data necessary to describe

the subvariety Af : the modular symbols giving a basis of paths for the homology,
the period matrix of ω1, ω2 and the matrix ME of the alternating Riemann form E
(with respect to this basis) attached to the canonical polarization L of the Jacobian
of X0(N).

Since L is defined over Q, the Rosati involution ∗ attached to L acts on End0
Q(Af )

as the complex conjugation and hence

i∗ = i , (j∗)2 = δ , i · j∗ = −j∗ · i , k∗ = j∗ · i∗ .

Therefore, j∗ = ±j and k∗ = ∓k and Ends(Af ) is a free Z-module of rank 3. The
action of ∗ on End0(Af ) viewed as a subfield of M4(Q) � End(Q ⊗ H1(Af , Z)) is
the following:

M �→ (ME · M · M−1
E )t .

So, once we have determined a Z-basis of the order O, we have the corresponding
matrices Mi ∈ M4(Z) acting on H1(Af , Z) with respect to the basis chosen for this
Z-module. Then Ends(Af ) is given by the matrices

{M ∈ ZM1 ⊕ · · · ⊕ ZM4 : M t · ME = ME · M} ,

and Ends
+(Af ) is the subset corresponding to the matrices M with positive eigen-

values.
When the polarization L is of type (1, d) with d > 1, using part (iii) of Theo-

rem 2.1 we can check whether Af admits principal polarizations and compute all
isomorphism classes of them.
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3.3. Rational equations. Once we know that an irreducible abelian surface Af

is principally polarizable, we can realize it as the Jacobian variety of a hyperelliptic
curve over K. We find a K-rational model Y 2 = F (X) of this curve following the
procedure described in [GJGG02], with two slight corrections. First, the compu-
tation of the leading coefficient of the polynomial F can be sped up using directly
Thomae’s formula (cf. Theorem 11.1 in [Gua02]). Second, the polynomial F (X)
is determined up to a fourth root of unity in K (not only a sign, as stated in
[GJGG02]): the explicit determination of this unit is performed anyway as in loc.
cit.

4. Example: Af with only one principal polarization

Let us consider the abelian surface Af attached to the normalized newform in
S2(Γ0(243)):

f = q+
√

6q2 +4q4−
√

6q5 +2q7 +2
√

6q8−6q10 +
√

6q11−q13 +2
√

6q14 +4q16 + · · · .

We take the basis of regular differentials over Q given by

ω1 =
1
2
(f + σf)

dq

q
, ω2 =

1
2
√

6
(f − σf)

dq

q
.

The polarization L on Af induced by the canonical polarization on the Jacobian
of X0(243) has type [1, 2]. The period matrix of Af with respect to a symplectic
basis {c1, c2, c3, c4} of H1(Af , Z) and ω1, ω2 is Ω = (Ω1|Ω2) with

Ω1 =
(

12.3724 · · · + 21.4297 . . . I 13.5178 · · · + 7.8045 . . . I
−2.253 · · · + 3.9023 . . . I −12.3724 · · · + 7.1432 . . . I

)
,

Ω2 =
(

−12.3724 · · · + 21.4297 . . . I −15.609 . . . I
2.253 · · · + 3.9023 . . . I −14.2865 . . . I

)
,

where I =
√
−1. Over K = Q(

√
−3) the endomorphism algebra of Af is End0

K(Af )

=
(

6,−3
Q

)
= Q(i, j), with i2 = 6, j2 = −3. Applying formula (3) we determine the

matrices giving the action of the quaternions i, j on H1(Af , Z). We find:

i :

⎛
⎜⎜⎝

0 −2 0 −2
−1 0 1 0

0 4 0 −2
−2 0 −1 0

⎞
⎟⎟⎠ , j :

⎛
⎜⎜⎝

−1 0 −2 0
0 −1 0 2
2 0 1 0
0 −2 0 1

⎞
⎟⎟⎠ .

The criterion given in Lemma 3.1 shows that 1
2 i+ 1

6k, 1
2 + 1

2j, 1
3k are also endomor-

phisms of Af . Since O = 〈1, 1
2 i + 1

6k, 1
2 + 1

2j, 1
3k〉 is a maximal order in

(
6,−3

Q

)
,

it must be EndK(Af ) = O. Hence, by Theorem 2.2 there exists only one isomor-
phism class of principal polarizations on Af ; it is defined over K but not over Q by
Proposition 2.3. A principal polarization must be of the form L(γ−1) for a totally
positive symmetric endomorphism γ ∈ O with reduced norm 2. Indeed, we take

γ = 2 +
1
2
i − 1

6
k :

⎛
⎜⎜⎝

2 0 0 −2
0 2 1 0
0 2 2 0

−1 0 0 2

⎞
⎟⎟⎠ .
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The Riemann form attached to L(γ−1) is Eγ−1(x, y) = E(γ−1x, y) where E is the
Riemann form attached to L. Thus, in the basis {c1, c2, c3, c4} of H1(Af , Z) it is
given by the matrix

Eγ :

⎛
⎜⎜⎝

0 0 1 0
0 0 0 2

−1 0 0 0
0 −2 0 0

⎞
⎟⎟⎠ γ−1 =

⎛
⎜⎜⎝

0 −1 1 1
1 0 1 2

−1 −1 0 0
−1 −2 0 0

⎞
⎟⎟⎠ .

With respect to Eγ−1 , a symplectic basis is (c′1, c′2, c′3, c′4) = tM.(c1, c2, c3, c4), with

M =

⎛
⎜⎜⎝

0 1 1 0
0 −1 0 0

−1 0 0 1
0 −1 0 −1

⎞
⎟⎟⎠ ,

so that a period matrix for (Af ,L(γ−1)) is Ωγ := Ω.M . We can finally apply the
procedure described in [GJGG02] to this new period matrix to find a hyperelliptic

curve C over K with (Jac(C), Θ)
K� (Af ,L(γ−1)), where Θ denotes the canonical

principal polarization on Jac(C). We obtain Y 2 = F (X), where:

F (X) =
4

(
3 − 2

√
−3

)
9

X6 +
8(−1 +

√
−3)

3
X5 +

4(3 − 7
√
−3)

9
X4

+
2(7 + 23

√
−3)

27
X3 − (11 + 7

√
−3)

18
X2 +

(15 +
√
−3)

108
X +

(−2 +
√
−3)

324
.

As we know that there is only one isomorphism class of principal polarizations on
Af , by Torelli’s theorem, the curves C and C must be isomorphic. Thus, their
common Igusa invariants must lie in Q. Indeed, they are

{i1, i2, i3} = {218 · 415

33
, 212 · 3 · 413, 29 · 7 · 412 · 47}.

The curve C has been obtained up to numerical approximations. Next, we shall
prove that Jac(C) is K-isogenous to the abelian surface Af . We point out that the
procedure which we will use to determine the order End(Jac(C)) can be applied
when Jac(C) has a unique class of principal polarizations and its endomorphism
algebra has a quaternion of reduced norm equal to ±2.

Proposition 4.1. Let C : Y 2 = F (X) be the genus two curve given above. Then,
Jac(C) has multiplication by a maximal order of the quaternion algebra

(
6,−3

Q

)
and

is K-isogenous to the abelian variety Af .

Proof. We split the proof into five steps.
(i) C/K does not admit a descent to Q. It can be easily checked that Aut(C) =

〈w〉, where w denotes the hyperelliptic involution. Let C : Y = f(X), where f is
the complex conjugate of f . Then, the isomorphism ϕ : C −→ C given by

(4) (X, Y ) =
(
−1 +

√
−3 + (3 −

√
−3)X

2
√
−3 + 6(1 −

√
−3)X

,
24
√
−3 Y

(2
√
−3 + 6(1 −

√
−3)X)3

)

satisfies that ϕ ◦ ϕ = w. By Weil’s criterion, this implies that C does not admit a
descent over Q.
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(ii) K-linear relations between the entries of a period matrix of Jac(C). We will
prove that a period matrix for the curve C is
(5)

Ω =

⎛
⎜⎝α −1 +

√
−3

2
α − (3 −

√
−3)β

−1 +
√
−3

2
α +

3 −
√
−3

2
β

3 +
√
−3

2
β

β −3 +
√
−3

6
α − 1 −

√
−3

2
β

3 +
√
−3

12
α − 1 +

√
−3

2
β

3 −
√
−3

12
α

⎞
⎟⎠,

where (α, β) =
∫ x1

x3

(
dX
Y , X dX

Y

)
.

First, we remark that a symplectic basis for H1(C, Z) is given by the paths γ1,
γ2, γ3, γ4, enclosing, respectively, the segments [x1, x3], [x4, x5], [x1, x2], [x5, x6],
where

x1 = 0.085 · · · − 0.130 · · · I , x2 = 0.098 · · · − 0.181 · · · I ,
x3 = 0.146 · · · − 0.232 · · · I , x4 = 0.718 · · · + 0.253 . . . I ,
x5 = 0.751 · · · − 0.187 . . . I , x6 = 0.770 · · · − 0.018 . . . I ,

are the roots of the polynomial f(X) defining the curve C. It is well known how
to build a period matrix for C. For instance, we can take

Ω =

( ∫ x1

x3

dX
Y

∫ x5

x4

dX
Y

∫ x2

x1

dX
Y

∫ x6

x5

dX
Y∫ x1

x3

X dX
Y

∫ x5

x4

X dX
Y

∫ x2

x1

X dX
Y

∫ x6

x5

X dX
Y

)
,

where we integrate along the segments joining the different roots of f(X), and the
orientation of the paths and the determination of Y =

√
f(X) is taken so that

Ω =
(

35.97... − 7.80...I −22.45... −12.37... + 21.43...I 11.23... − 7.80...I
3.36... − 7.14...I −15.73... 2.25 + 3.90...I 7.87... − 7.14...I

)
.

Three ingredients will be used to find relations between the entries of this matrix:

a) The isomorphism ϕ : C −→ C given in (4).
b) A Richelot isogeny: If Jac(C) is simple over Q, then for every subgroup

G of its 2-torsion isomorphic to (Z/2Z)2, there is a genus two curve C ′ :
Y ′2 = G(X ′) and an isogeny φ : Jac(C) −→ Jac(C ′) whose kernel is G and
φ∗(X ′i dX ′/Y ′) = Xi dX/Y for 0 ≤ i ≤ 1. It is called the Richelot isogeny
attached to G (cf. Section 3.1 in [BoMe88]) or Chapter 9 in [CaFl96]).

c) We know (cf. p. 90 in [Vig80]) that in all maximal orders of an indefinite
quaternion algebra every integer d ∈ Z is a reduced norm. In particular, if
End(Jac(C)) is such an order, by taking d = 2 there is an endomorphism
of Jac(C) whose kernel G is isomorphic to (Z/2Z)2. Therefore, if Jac(C)
has a unique class of principal polarization, then C must be isomorphic to
the curve C ′ given by the Richelot isogeny attached to G.

In our case, to build a convenient Richelot isogeny, we take, following Bost and
Mestre in [BoMe88],

(P, Q, R) :=
(

4(3−2
√
−3)

9 (X − x1)(X − x3), (X − x2)(X − x6), (X − x4)(X − x5)
)

and ∆ equal to the determinant of the polynomials P, Q, R with respect to the basis
1, X, X2, which turns out to be ∆ = 1/6. We thus arrive at the genus two curve
C ′ : Y ′2 = 1/∆U(X ′) V (X ′) W (X ′) where U = [Q, R], V = [R, P ] and W = [P, Q],
whose Jacobian is isogenous to Jac C. More precisely, C ′ is given by the equation
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Y ′2 = G(X ′), with

G(X ′) =
4(2 −

√
−3)

3
X ′6 +

2(−9 + 7
√
−3)

3
X ′5 +

(2(5 − 9
√
−3)

3
X ′4

+
4(7 + 23

√
−3)

27
X ′3 +

4(−9 − 5
√
−3)

27
X ′2 +

8
27

X ′ +
−3 + 2

√
−3

243
.

Let
x′

1 = 0.040 · · · − 0.214 · · · I , x′
2 = 0.112 · · · − 0.184 · · · I ,

x′
3 = 0.149 · · · − 0.154 · · · I , x′

4 = 0.606 · · · − 0.024 · · · I ,
x′

5 = 0.808 · · · + 0.019 · · · I , x′
6 = 1.069 · · · − 0.059 · · · I ,

be the roots of the polynomial G(X ′) defining the curve C ′. The description of
the isogeny Jac C → Jac C ′ in terms of the periods of C and C ′ is given by the
equalities (i = 0, 1):

(6)

∫ x3

x1

Xi dX

Y
= 2

∫ x′
3

x′
2

X ′i dX ′

Y ′ ,

∫ x2

x1

Xi dX

Y
=

∫ x′
1

x′
3

X ′i dX ′

Y ′ ,∫ x6

x2

Xi dX

Y
= 2

∫ x′
4

x′
3

X ′i dX ′

Y ′ ,

∫ x5

x3

Xi dX

Y
=

∫ x′
5

x′
2

X ′i dX ′

Y ′ ,∫ x5

x4

Xi dX

Y
= 2

∫ x′
4

x′
5

X ′i dX ′

Y ′ ,

∫ x6

x5

Xi dX

Y
=

∫ x′
6

x′
4

X ′i dX ′

Y ′ .

The trick to prove these equalities is the following: by construction, six of the
integrals

∫ xk

xj

XidX
Y on the left must be equal to either an integral

∫ x′
k′

x′
j′

X′idX′

Y ′ or

2
∫ x′

k′
x′

j′
X′idX′

Y ′ for some j′, k′; since these are all different, only a match is possible

between the integrals on C and the integrals on C ′; evaluating all the integrals to
enough accuracy, we discard all but one possible equality, which must be true.

We can now relate the integrals
∫ x′

k′
x′

j′
X′idX′

Y ′ with the periods of C by using the

isomorphism φ : C −→ C ′ given by

(X, Y ) �→ (X ′, Y ′) =
(

1 −
√
−3

12 X
,

√
−3 Y

18 X3

)
.

We have

φ(x1) = x′
6, φ(x2) = x′

5, φ(x3) = x′
4, φ(x4) = x′

1, φ(x5) = x′
3, φ(x6) = x′

2,

and

φ∗
(

dX ′

Y ′

)
=

3 +
√
−3

2
X dX

Y
, φ∗

(
X ′dX ′

Y ′

)
=

3 −
√
−3

12
dX

Y
.

From these relations we obtain, for instance

∫ x′
1

x′
3

dX ′

Y ′ =
3 +

√
−3

2

∫
φ−1[x′

1,x′
3]

X dX

Y
.

The transformed path φ−1[x′
3, x

′
1] is drawn on the following graphic:
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0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.2

-0.1

0.1

0.2

Hence, it is homologically equivalent to the path [x4, x6] + [x6, x5], so that∫ x′
3

x′
1

dX ′

Y ′ =
3 +

√
−3

2

(∫ x6

x4

+
∫ x5

x6

)
X dX

Y
.

Taking into account relations (6), we obtain∫ x2

x1

dX

Y
=

3 +
√
−3

2

(∫ x6

x4

+
∫ x5

x6

)
X dX

Y
.

In a similar way one can prove the following equalities:
∫ x2

x1

dX

Y
=

3 +
√
−3

2

(∫ x6

x4

+

∫ x5

x6

)
X dX

Y
,

∫ x2

x1

X dX

Y
=

3 −
√
−3

12

(∫ x6

x4

+

∫ x5

x6

)
dX

Y
,

∫ x5

x4

dX

Y
= −3 +

√
−3

2

∫ x3

x2

X dX

Y
,

∫ x5

x4

X dX

Y
= −3 +

√
−3

12

∫ x3

x2

dX

Y
,

∫ x6

x5

dX

Y
= −3 +

√
−3

2

∫ x3

x1

X dX

Y
,

∫ x6

x5

X dX

Y
= −3 +

√
−3

12

∫ x3

x1

dX

Y
.

The last line gives immediately the expression of the last column of the period
matrix Ω in terms of the first column. To relate the third column with the first
and second columns of Ω, we substitute the equalities

∫ x3

x2
=

∫ x1

x2
−

∫ x3

x1
and

∫ x6

x4
=∫ x5

x4
+

∫ x6

x5
in the first two equalities above, and look at the resulting equalities as a

linear system of equations with respect to the integrals
∫ x2

x1
. Solving it, we find:

∫ x2

x1

dX

Y
=

3 +
√
−3

2

∫ x5

x4

X dX

Y
+

∫ x3

x1

X dX

Y
,

∫ x2

x1

X dX

Y
=

−3 +
√
−3

12

∫ x5

x4

dX

Y
+

∫ x3

x1

dX

Y
.

Hence, we have proved that

(7) Ω =

⎛
⎜⎝ α δ −β +

3 +
√
−3

2
γ

3 +
√
−3

2
β

β γ −α +
−3 +

√
−3

12
δ

3 −
√
−3

12
α

⎞
⎟⎠ ,
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for some α, β, δ, γ ∈ C. Unfortunately, we do not obtain more information when we
make a similar treatment from the intermediate equalities. At this point, the first
ingredient of our proof plays its role, and the isomorphism ϕ : C → C. Note that

(8)
∫ x5

x4

XidX

Y
=

∫ x5

x4

X
i
dX

Y
,

and we can pull back the last integrals to periods of C by means of ϕ. The path
ϕ−1[x4, x5] is homologous to −[x1, x2] + [x2, x3] = −2 [x1, x2] + [x1, x3], as seen in
the following graphic:

0.2 0.3 0.4 0.5 0.6 0.7

-0.2

-0.1

0.1

0.2

We obtain:∫ x5

x4

X
i
dX

Y
=

∫
ϕ−1[x4,x5]

ϕ∗X
i
dX

Y
=

(
−2

∫ x2

x1

+
∫ x3

x1

)
ϕ∗X

i
dX

Y
,

where

ϕ∗ dX

Y
=−1 +

√
−3

2
dX

Y
+2

√
−3

X dX

Y
, ϕ∗XdX

Y
=

−
√
−3

3
dX

Y
− 1 −

√
−3

2
X dX

Y
.

Substituting these equalities in (8) and equating real and imaginary parts, we obtain
four independent linear equations in the variables Re(α), Im(α), Re(β), Im(β),
Re(δ), Im(δ), Re(γ) and Im(γ). The solution of this system depending on the
variables Re(α), Im(α), Re(β) and Im(β) yields the equality (5).

(iii) The ring EndK(Jac(C)) is a maximal order of
(

6,−3
Q

)
. It can be checked

now that the matrices

T6 =
(

0 1
6 0

)
, T−3 =

( √
−3 0
0 −

√
−3

)
satisfy T 2

6 = 6, T 2
−3 = −3, T6 · T−3 = −T−3 · T6 and, by using (5), we have that

Ω ·

⎛
⎜⎜⎝

−2 −2 1 0
−2 2 −1 −1
−2 0 0 −2
−2 2 −4 0

⎞
⎟⎟⎠ = tT6 · Ω , Ω ·

⎛
⎜⎜⎝

3 −2 −2 2
2 −3 0 2
4 4 −1 2
0 −4 2 1

⎞
⎟⎟⎠ = tT−3 · Ω ,

which implies that there are i, j ∈ EndK(Jac(C)) such that the matrices with their
actions on H0(C, Ω1) with respect to the basis {dX/Y, X dX/Y } are T6 and T−3,
respectively (see Lemma 3.1). Moreover, it is easy to check that the maximal order
〈1, 1

2 i+ 1
6k, 1

2 + 1
2j, 1

3k〉 of Q(i, j) is contained in EndK(Jac(C)). To assert that this
maximal order is the full ring endomorphisms of Jac(C), we only need to prove that
C is not isogenous to a square of an elliptic curve with complex multiplication; but,
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it follows from the fact that the reduction of C at a prime of K dividing to 7 (resp.
13) is isogenous to the square of an ordinary elliptic curve with multiplication by
Q(

√
−6) (resp. Q(

√
−51)).

(iv) Jac(C) is K-isomorphic to an abelian surface A/Q with EndQ(A) � Z[
√

6].
Let u = 1/2− j/2 + k/3 ∈ Aut(Jac(C)). Let ι be the isomorphism obtained as the
composition of the following isomorphisms:

Jac(C) u−→ Jac(C)
ϕ∗−→ Jac(C),

where ϕ is as in (i). The matrix of the morphism

ι∗ : H0(Jac(C), Ω1
Jac(C)/K

) −→ H0(Jac(C), Ω1
Jac(C)/K)

with respect the bases {dX/Y , X dX/Y } and {dX/Y, X dX/Y } is the identity ma-
trix. Therefore, ι ◦ ι = 1 and, then, by the Weil criterion there is an abelian
surface A/Q and an isomorphism µ : Jac(C) −→ A defined over K such that
µ = µ ◦ ι−1. Since ν = µ ◦ i ◦ µ−1 is invariant under the complex conjugation, it
must be Z[ν] ⊆ EndQ(A). Due to the fact that ν2 = 6 and Z[

√
6] is a maximal

order, it follows that Z[ν] = EndQ(A).
(v) A is Q-isogenous to Af . The conductor of Jac(C) is the integer ideal of K

generated by 38. By the recent progress with respect to the generalized Shimura-
Taniyama-Weil Conjecture (cf. [KW06]), A is modular and, thus, there exists a
newform g of level M such that A is Q-isogenous to Ag. Since g must have an
inner-twist by the Dirichlet character χ attached to K, i.e. g ⊗ χ = σg, we have

ResK/Q(Jac(C)) = ResK/Q(A) Q∼ Ag × Ag⊗χ = A2
g .

By applying Milne’s formula for the conductor of the Weil restriction (cf. Proposi-
tion 1 in [Mil72]) and the fact that cond (Ag) = M2 (cf. [Car86]), we obtain that
cond (Ag) = 310. The assertion is obtained by checking that in the level 243 = 35

the unique normalized newforms g such that Ag is a quaternionic surface are f and
its Galois conjugate. �

Remark 4.1. As 2 divides the discriminant of the quaternion algebra End0(Jac(C)),
there is a unique ideal of norm 2 in any of its maximal orders. So, all quaternions
of reduced norm 2, viewed as endomorphisms of Jac(C), have the same kernel and,
thus, only one of the 15 curves obtained through a Richelot isogeny is isomorphic
to C.

5. Example: Af with no principal polarizations

We can apply the same process to the normalized newform in S2(Γ0(972)):

f = q + 3
√

2q5 + 2q7 + 3
√

2q11 − q13 − 3
√

2q17 + 5q19 + · · · .

The canonical polarization on J0(N) induces a polarization L on Af of type [1, 6].
The endomorphism algebra of Af is EndK(Af ) = 〈1, 3

2 i + 1
2k, 1

2 + 1
2 j, k〉, with

i2 = 2, j2 = −3. It has index 3 with respect to a maximal order in End0
K(Af ). Since

there are no symmetric totally positive elements of reduced norm 6, we conclude
that Af admits no principal polarizations.



GENUS TWO CURVES WITH QUATERNIONIC MULTIPLICATION 587

6. Example: Af with two principal polarizations

Let us finally consider the abelian surface Af attached to the normalized newform
in S2(Γ0(1568)),

f = q +
√

7q3 − 3q5 + 4q9 −
√

7q11 − 4q13 − 3
√

7q15 + · · ·

which corresponds to the entry labelled S1568L in Table II. Now i2 = 7, j2 = −1,
and we find that EndK(Af ) = Z〈1, 1

2 + 1
2 i + 1

2j + 1
2k, j, k〉 is a maximal order in

Q(i, j). The polarization L on Af induced by the canonical polarization on J0(1568)
is of type [1, 14]. By Theorem 2.2, there are two isomorphism classes of principal
polarizations on Af over K = Q(

√
−1), and by Lemma 2.3, they are not defined

over Q. Thus, there exist two C1, C2 over K with Jac(Ci) � Af . They correspond
to the principal polarizations L(γ−1

1 ) and L(γ−1
2 ), where

γ1 = 7 + 2 i + k and γ2 = 7 − 2 i + k .

A priori, both C1 and C2 could be K-isomorphic to their respective complex con-
jugates as above; if this is not the case, then they must be complex conjugates.
Indeed, computations reveal that we are in this second case: the Igusa invariants
of C1 and C2 are

⎛
⎝ i1(C1)

i2(C1)
i3(C1)

⎞
⎠ =

⎛
⎜⎜⎝

(1+I)14(−7+8I)5(28+5I)5

(2+I)12

(1+I)10(3+10I)2(7−8I)3(28+5I)3

(2+I)8

(1+I)12(−2+3I)(8+7I)2(28+5I)2(320+1383I)
(2+I)8

⎞
⎟⎟⎠ =

⎛
⎜⎝ i1(C2)

i2(C2)
i3(C2)

⎞
⎟⎠ .

A rational equation for C1 is

Y 2 =
1372 − 539I

5

(
X6 +

332 + 208I

181
X5 +

1173 + 2148I

1267
X4 +

376 + 8060I

8869
X3

−705 − 1992I

8869
X2 − 1228 − 1612I

62083
X − 607 − 492I

434581

)
.

It is worth mentioning that up to level N ≤ 2500, there are only two modular
abelian surfaces, Af1 and Af2 , with quaternionic multiplication and more than one
isomorphism class of principal polarizations. Both newforms have level N = 1568
and, moreover, each of them is the twist of the other by the quadratic Dirichlet
character of conductor 28.

7. Table of quaternionic abelian surfaces

Using a program made by J. Quer for Magma we have found all quaternionic
abelian surfaces Af which appear as subvariety of some J0(N) with N ≤ 7000. In
Table I below, we list for every level N the number of factors Af with attached
number fields E, K. The reduced discriminant of End0(Af ) is denoted by D.
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For the Af in Table I with level N ≤ 2500, we describe its endomorphism
algebra and its principal polarizations in Table II. We follow the labelling of Magma
to denote the Af ; for instance, S243,D denotes the fourth Q-irreducible factor of
J0(243). For every Af we describe the quadratic fields E = Q(

√
m), K = Q(

√
δ),

the endomorphism algebra EndK(Af ), its index n with respect to a maximal order
in End0

K(Af ) and the numbers πQ, πK of polarizations over Q and K, respectively.
For those Af admitting principal polarizations, we provide elements γ originating
them.

Table I

N E K D #Af

243 Q(
√

6) Q(
√
−3) 6 1

675 Q(
√

2) Q(
√
−3) 6 2

972 Q(
√

2) Q(
√
−3) 6 1

1323 Q(
√

6) Q(
√
−3) 6 2

1568 Q(
√

7) Q(
√
−1) 14 2

1568 Q(
√

3) Q(
√
−1) 6 2

1849 Q(
√

6) Q(
√
−43) 6 1

2592 Q(
√

6) Q(
√
−1) 6 2

2592 Q(
√

3) Q(
√
−1) 6 2

2601 Q(
√

2) Q(
√
−51) 6 1

2700 Q(
√

10) Q(
√
−3) 10 2

3136 Q(
√

3) Q(
√
−1) 6 2

N E K D #Af

3136 Q(
√

7) Q(
√
−1) 14 2

3886 Q(
√

6) Q(
√
−3) 6 1

3886 Q(
√

2) Q(
√
−3) 6 1

3969 Q(
√

15) Q(
√
−7) 15 1

5184 Q(
√

3) Q(
√
−1) 6 2

5184 Q(
√

6) Q(
√
−3) 6 2

5292 Q(
√

10) Q(
√
−3) 10 2

5408 Q(
√

11) Q(
√
−1) 22 2

5408 Q(
√

3) Q(
√
−13) 6 2

6075 Q(
√

6) Q(
√
−3) 6 2

6400 Q(
√

6) Q(
√
−1) 6 4

Table II

Af (m, δ) d EndK(Af ) n πQ πK γ

S243D (6,−3) 2 〈1, 1
2
i + 1

6
k, 1

2
+ 1

2
j, 1

3
k〉 1 0 1 2 + 1

2
i − 1

6
k

S675L (2,−3) 2 〈1, 1
2
i + 1

2
k, 1

2
+ 1

2
j, k〉 1 1 1 2 + i

S675P (2,−3) 2 〈1, 1
2
i + 1

2
k, 1

2
+ 1

2
j, k〉 1 1 1 2 + i

S972E (2,−3) 6 〈1, 3
2
i + 1

2
k, 1

2
+ 1

2
j, k〉 3 0 0

S1323U (6,−3) 6 〈1, 1
2
i + 1

2
k, 1

2
+ 1

2
j, k〉 3 0 0

S1323V (6,−3) 6 〈1, 1
2
i + 1

2
k, 1

2
+ 1

2
j, k〉 3 0 0

S1568L (7,−1) 14 〈1, 1
2

+ 1
2
i + 1

2
j + 1

2
k, j, k〉 1 0 2

7 + 2i + k
7 − 2i + k

S1568N (7,−1) 14 〈1, 1
2

+ 1
2
i + 1

2
j + 1

2
k, j, k〉 1 0 2

7 + 2i + k
7 − 2i + k

S1568S (3,−1) 6 〈1, 1
2

+ 1
2
i + 1

2
j + 1

2
k, j, k〉 1 0 1 3 + k

S1568U (3,−1) 6 〈1, 1
2

+ 1
2
i + 1

2
j + 1

2
k, j, k〉 1 0 1 3 + k

S1849E (6,−43) 258 〈1, 1
2
i + 1

2
k, 1

2
+ 1

2
j, k〉 43 0 0
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[Gua02] J. Guàrdia, Jacobian nullwerte and algebraic equations, Journal of Algebra 253
(2002), 112-132. MR1925010 (2004a:14032)

[KW06] C. Khare and J-P. Winterberger, Serre’s modularity conjecture (I), preprint (2006).
MR2254626 (2007e:11060)

[Mil72] J. S. Milne, On the arithmetic of abelian varieties, Invent. Math., 17 (1972), 177–190.
MR0330174 (48:8512)

[Rib80] K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math.

Ann. 253 (1980), no. 1, 43–62.
[Rot03] V. Rotger, Quaternions, polarization and class numbers, J. Reine Angew. Math. 561

(2003), 177–197.
[Shi71] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publi-

cations of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers,
Tokyo, 1971, Kanô Memorial Lectures, No. 1.

[Shi73] G. Shimura, On the factors of the jacobian variety of a modular function field,
J. Math. Soc. Japan 25 (1973), 523–544.
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