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ON THE COMPUTATION OF CLASS NUMBERS
OF REAL ABELIAN FIELDS

TUOMAS HAKKARAINEN

Abstract. In this paper we give a procedure to search for prime divisors of
class numbers of real abelian fields and present a table of odd primes < 10000
not dividing the degree that divide the class numbers of fields of conductor
≤ 2000. Cohen–Lenstra heuristics allow us to conjecture that no larger prime
divisors should exist. Previous computations have been largely limited to
prime power conductors.

1. Introduction

Class numbers of real abelian fields are at least by present-day knowledge very
hard to compute in practice. This is because they are so closely related to the fun-
damental units, which are difficult to compute or even estimate. Rough estimates
that exist in turn lead to poor upper bounds for class numbers. Only for fields
of small conductors can one bound class numbers decently with Odlyzko’s tables
of discriminant bounds; using them F. van der Linden [14] was able to determine
(assuming GRH in some cases) the class numbers of all the real abelian fields of
conductor ≤ 163. On the other hand, R. Schoof [20] recently predicted, using a
heuristic assumption, that class numbers of real abelian fields of prime conductor
are most likely very small compared to known upper bounds.

In his work Schoof also presented and applied an efficient method to compute
class number divisors in the case of prime conductors. Koyama and Yoshino [11]
presented another approach that allows practical computation. The methods also
apply to prime power conductors, but for composite conductors (i.e., conductors
having different prime divisors) the Galois module structure of (Hasse’s) cyclotomic
units is more complicated, due to the fact that different subfields may have different
conductors, and thus generalizing the method in this direction is more difficult.

Our approach is to study previously known results that allow computations
for composite conductors and to combine them with some ideas from the works
mentioned above. We present a method to compute class number divisors for any
real abelian field and produce a table of such divisors. By heuristic assumptions
similar to Schoof’s we predict it to contain all odd prime divisors not dividing the
degree of the field in question.

H.-W. Leopoldt in his article [13] generalized Kummer’s classical results on the
divisibility of class numbers to any real abelian field. His main result is that if an
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odd prime p not dividing the degree of the field is a divisor of the class number, then
a certain rational product of generalized Bernoulli numbers is divisible by p. By
applying the p-adic class number formula, W. Schwarz [21] was able to give a simple
computational criterion equivalent to Leopoldt’s criterion, and he computed for all
real abelian fields of conductor f ≤ 500 a table of all primes p < 100000 which
possibly divide the class number. The table shows that for a fixed conductor there
are usually roughly 5 to 20 primes satisfying Leopoldt’s condition. But Leopoldt
actually proved a somewhat deeper fact to be able to state his result, and this is
what we apply to sharpen the results of Schwarz. Our procedure also makes it
possible to sieve out the actual class number divisors from Schwarz’s table.

We will first discuss the group theoretic background of Leopoldt’s method by
applying some earlier results of Leopoldt [12]. This will shed more light on the
method of Schwarz. Then we present an additional technique to check if the primes
found with Schwarz’s method actually come from class numbers. We limit the
computation to prime divisors not dividing 2[K : Q], since the primes dividing the
degree of the field do not behave similarly and since for the prime 2 there are better
techniques available. We mention here however that Schwarz’s method could also
be used for some primes dividing the degree; indeed, in many cases one could at
least prove that a prime dividing the degree does not divide the class number.

For a broader exposition of the present work, see the author’s thesis [8].

2. Decomposition of class number

Leopoldt in his thesis [12] presented an arithmetic characterization of a real
abelian field, continuing work of Hasse. A main idea was to apply the Wedderburn
decomposition of the rational (and later p-adic) Galois group ring to the group
of units of an abelian field. Leopoldt was able to reduce the study of the class
groups of abelian fields with noncyclic Galois group essentially to the cyclic subfields
corresponding to the classes of conjugate characters of the field. We review here
only the definitions and results necessary for our study.

Let K be a real abelian field of conductor f with Galois group G of order g. For
χ ∈ Ĝ, denote by χ̂ a rational-irreducible character of K, i.e., χ̂ =

∑
k χk, where

the sum is over the Q-conjugacy class χ̃ = {χk | (k, ord χ) = 1} of a character χ
of K. The values of χ̂ are in Z. Denote by fχ, gχ and Kerχ, respectively, the
common conductor, order and kernel of the Q-conjugates of χ. There is a one-to-
one correspondence between the Q-conjugacy classes of the character group and the
cyclic subfields of K, given by χ̃ ←→ 〈χ〉; denote the cyclic field corresponding to χ̃
by Kχ. Its degree is gχ, its conductor fχ, and Gal(Kχ/Q) = Gχ � G/Kerχ � 〈χ〉.

The group algebra Q[G] = {
∑

σ∈G aσσ | aσ ∈ Q} admits the Wedderburn de-
composition

Q[G] =
⊕

χ̃

Q[G]eχ̃ �
⊕

χ̃

Q(ζgχ
)

via the rational orthogonal idempotents eχ̃ = 1
g

∑
σ∈G χ̂(σ−1)σ. Here and hereafter

we use the notation ζm = e2πi/m for any m ∈ N. The maximal order of Q[G] is⊕
χ̃ Z[G]eχ̃ �

⊕
χ̃ Z[ζgχ

] and Z[G] is of finite index g ·QG in it as a subgroup, with
QG ∈ Z containing only primes dividing g.

On tensoring by Q, the unit group EK of K may be regarded as a Q[G]-module;
thus it decomposes similarly in the form EK =

⊕
χ̃ E

eχ̃

K . Rather than studying this
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decomposition directly, one introduces a subgroup EK+ of EK of finite index; see
below. Let NKχ/k denote the norm from Kχ to any subfield k, and define in EKχ

the group of χ-relative units

Eχ = {ε ∈ EKχ
| NKχ/k(ε) = ±1 ∀ k � Kχ}

(cf. [8, p. 14]; Leopoldt uses the notation E+
χ̃ and the term narrow χ̃-relative units).

This is a subgroup of the units of Kχ of rank ϕ(gχ) (where ϕ is the Euler function),
and it has a subgroup of χ-relative cyclotomic units

Fχ = 〈−1, ητ | τ ∈ Gχ〉
with finite index

hχ = [Eχ : Fχ].
Here the element η is defined as follows: Let H be the subgroup of (Z/fχZ)×

corresponding to Gal(Q(ζfχ
)/Kχ), and let H+ ⊂ Z be a system of representatives

of H/{±1}. Define

(2.1) Θχ =
∏

a∈H+

(ζa
2fχ

− ζ−a
2fχ

), Λχ =
∏
�|gχ

(1 − σgχ/�),

where � runs through all the prime divisors of gχ and σ is a fixed generator of Gχ;
then Θσ−1

χ is a unit of Kχ and η = ΘΛχ
χ .

Both Eχ and Fχ depend only on χ̃ and thus are independent of the choice of
K containing Kχ. The groups of absolute values, |Eχ| � Eχ/{±1} and |Fχ| �
Fχ/{±1}, are modules over Z[Gχ]eχ̃ � Z[ζgχ

]. Another characterization of the χ-
relative units is that they are the units ε ∈ EKχ

satisfying |ε|eχ̃ = |ε|. In particular,
|ε| ∈ E

eχ̃

K .
When considering Eχ as a subgroup of the units of K, we see that the direct

sum EK+ =
⊕

χ̃|Eχ| over all the rational characters of K forms a group of units of
finite index, say Q+

K , in the group EK . Using this decomposition of the unit group
and a similar decomposition of the regulator of K, we may split the class number
of K in the form (see [12, p. 41])

hK =
Q+

K

QG

∏
χ̃

hχ,

where Q+
K and QG are rational integers as explained above, and the product runs

through the Q-conjugacy classes χ̃ of K. It is in general difficult to compute the
number Q+

K in practice. The quotient Q+
K/QG is usually not integral. The numbers

Q+
K and QG are comprised only of primes dividing 2g, and since we assumed that

p is not a divisor of 2g, we may conclude that the p-part of the class number hK of
K is equal to the product of the p-parts of hχ:

hK,p =
∏
χ̃

hχ,p.

Remark 2.1. Leopoldt also shows that the numbers hχ are norms of some ideals in
Z[ζgχ

]. It follows that once p divides hχ, then also pfp divides hχ, where fp is the
residue class degree of p.

For p � 2g, we have g−1 ≡ ak (mod pk) for some ak ∈ Z with k = 1, 2, . . .. By
defining α1/g = αak for α ∈ Clp of order pk, we may split the p-primary part Clp of
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the class group ClK as a module over Z[G] through the idempotents eχ̃. We obtain
the decomposition (see [12, p. 44])

(2.2) Clp =
⊕

χ̃

Clχ,p,

where Clχ,p = Cleχ̃
p and #Clχ,p = hχ,p, the p-part of hχ. The Z[ζgχ

]-module Clχ,p

depends only on Kχ and can also be characterized as the group of ideal classes of
order a power of p in Kχ that satisfy the following condition: any ideal in the ideal
class becomes principal under the relative norm map to any subfield L � Kχ (see
[13]). Thus the values hχ also provide structural information on the class group.

Leopoldt [13] showed the following fact when proving his theorem about the
class number divisibility referred to in the introduction. The proof is based on the
decomposition of the p-class group, the reflection theorem and the Stickelberger
theorem.

Lemma 2.2. Let p be an odd prime dividing neither the conductor nor the degree
of the real abelian field K and let χ be a character of K. If Clχ,p �= 1, then∏

ψ∈χ̃

Bp−1,ψ ≡ 0 (mod p),

where Bk,ψ is the kth generalized Bernoulli number associated to ψ.

Note that the above product over the Q-conjugacy class χ̃ of χ is rational.
Leopoldt also obtained a result in the ramified case p | f , p2� f , but we omit it

from this study for the sake of simplicity; in the computations we dealt with the
case p | f using another method.

Remark 2.3. There exist more recent results on the decomposition of the class group
through rational p-adic characters that could allow more precise computations; see
for example an article of Aoki [1] on the structure of p-adic parts of the class group.
But computations with p-adic numbers may be more difficult or even impossible
to perform in practice (cf. [10]). In order to preserve efficiency of our algorithms,
we prefer the rational approach. Schoof, on the other hand, bases his method
on Gras’s conjecture about the relationship between the p-adic parts of the class
groups and of the units modulo cyclotomic units, while all his computations are
in rational numbers. Gras’s conjecture was proved by R. Greenberg in the case p
not dividing the degree; he in fact showed that the orders of the p-adic parts of the
class group and units modulo cyclotomic units coincide. This gives a connection
between Schoof’s method and ours.

3. The algorithm

We first give an outline of the method. As presented in the preceding section,
we will omit the prime 2 and the primes dividing the degree g of the field K in
question. To check if a prime p � 2g divides the class number of K, it suffices to
run the test for all the hχ,p separately, i.e., it is sufficient to study only cyclic fields
Kχ and cyclic modules |Fχ| of cyclotomic units. When computing hχ, we always
choose K = Kχ and g = gχ.

The method consists of three parts. First we put an upper bound for the primes
to be tested. For each prime below this bound, we apply Lemma 2.2 and the method
of Schwarz [21], and we are left with a small number of primes that must be tested
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further; for all the other primes p, the χ-class number is not divisible by p. In view
of Leopoldt’s result, Schwarz’s method not only gives the primes p possibly dividing
the class number hK , but also specifies the hχ that may admit the divisor p.

The second step consists of a search for cyclotomic units that are pth powers in
the unit group, extending an idea of van der Linden [14]. In this way we are able
to eliminate most of the remaining primes; they do not divide hχ.

Passing these tests is a necessary condition for the p-divisibility, and after them
we have a strong belief that p could divide the χ-class number, but this is still not
a proof. To verify the divisibility, we finally check whether the pth root of a unit
found in the second step is in Kχ. We use a method presented in an article of
G. Gras and M.-N. Gras [5].

Moreover, we provide a method to check whether hχ is divisible by a higher
power of p. This is also based on [5].

We limited the search to the fields of conductor f ≤ 2000 and to the primes
p < 10000. In theory there could be larger primes dividing these class numbers,
but we will see that the heuristics of Cohen and Lenstra [3] and the results of the
computations (the largest prime factor found was 379) show this to be very unlikely.

4. Schwarz’s method

We now describe the first step of the computation. Let K0 = Q(ζf +ζ−1
f ) be the

maximal real abelian field of conductor f . As is clear from the preceding discussion,
to study the p-divisibility of the class numbers of real abelian fields of conductor
f , we have to compute the (χ, p)-parts hχ,p of the class number of K0 for all the
Q-conjugacy classes of characters χ of K0.

Let χ be a character of K0. Since hχ is independent of the choice of the field
containing Kχ, we may always assume f to be chosen minimal, i.e., f = fχ. In the
first step we also assume p � f ; the primes dividing f will be checked in the second
step of the algorithm. We choose a bound for the primes p � 2fgχ to test.

Denote by [a] the integer part of a > 0. We begin with a lemma [21, pp. 45–46].

Lemma 4.1. If χ is a character of conductor f and order n and p � 2f is a prime,
then

(4.1) Bp−1,χ ≡ −χ(p)
f−1∑
i=1

χ(i)
[ pi

f ]∑
ν=1

ν−1f−1 (mod Pχ)

for a prime ideal Pχ | p in Z[ζn].

Proof. We sketch a proof. Fix an embedding of the field of all algebraic numbers
in an algebraic closure Ωp of the p-adic field Qp and regard all algebraic elements
as being in Ωp. The congruence α ≡ β (mod pn) with α, β ∈ Ωp means that the
p-exponent of α − β is ≥ n. Write shortly ζf = ζ.

By using properties of p-adic L-functions Lp(s, χ) we have

Bp−1,χ ≡ Lp(2 − p, χ) ≡ Lp(1, χ) (mod p).

Metsänkylä [16] shows that

(4.2) Lp(1, χ) ≡ −
f−1∑
i=1

biχ(i) (mod p)
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whenever bi modulo p are rational integers satisfying

λ(ζ) =
(ζ − 1)p − (ζp − 1)

p(ζp − 1)
≡

f−1∑
i=1

biζ
i (mod p).

(By Schwarz, p. 43, the number λ(ζ) modulo p equals the Fermat quotient of ζp−1.)
Let a ∈ Z, a ≡ p−1 (mod f). Since 1

p

(
p
k

)
≡ 1

k (mod p), we may write

(1 − ζ)λ(ζa) ≡
f−1∑
µ=0

cµζµ (mod p)

with

cµ ≡
p−1∑
k=1

ak≡µ (mod f)

k−1 ≡
[ pµ

f ]∑
ν=[ p(µ−1)

f ]+1

ν−1f−1 (mod p).

Define the numbers bi for all i ∈ Z\fZ by periodicity modulo f . We have

(1 − ζ)λ(ζa) ≡ (1 − ζ)
f−1∑
i=1

bpiζ
i ≡

f−1∑
i=1

(bpi − bp(i−1))ζi (mod p).

Consequently, by choosing

bpi ≡
[ pi

f ]∑
ν=1

ν−1f−1 (mod p),

the bi satisfy the requirement. By the formula (4.2),

Lp(1, χ) ≡ −
f−1∑
i=1

bpiχ(pi) (mod p).

We conclude that the congruence (4.1) holds modulo p (in Ωp). The claim follows
since the numbers in (4.1) are p-integers in the field Q(ζn). �

Denote by Φn(x) the nth cyclotomic polynomial.

Proposition 4.1. Let f be the conductor and n the order of χ. Let

λ : (Z/fZ)× → {0, . . . , n − 1}

be defined by χ(i) = ζ
λ(i)
n . If the prime p � 2fn divides the χ-class number hχ, then

(4.3) GCDFp[x]

( f−1∑
i=1

(i,f)=1

aix
λ(i), Φn(x)

)
�= 1,

where ai ≡
∑[ pi

f ]

ν=1 ν−1f−1 (mod p) and GCDFp[x] denotes the greatest common di-
visor of the indicated polynomials, regarded as polynomials over Fp.

Proof. Assume p | hχ. By Lemma 2.2,
∏

χ∈χ̃ Bp−1,χ ≡ 0 (mod p). Hence it follows
from (4.1) that ∏

χ∈χ̃

f−1∑
i=1

aiχ(i) ≡ 0 (mod p).
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Since the conjugates χσ of χ satisfy χσ(i) = ζ
kλ(i)
n and the zeros of Φn(x) are ζk

n

for (k, n) = 1, we have

∏
χ∈χ̃

f−1∑
i=1

(i,f)=1

aiχ(i) =
n−1∏
k=1

(k,n)=1

f−1∑
i=1

(i,f)=1

aiζ
kλ(i)
n = Res

(
Φn(x),

f−1∑
i=1

(i,f)=1

aix
λ(i)

)
,

where Res(·, ·) denotes the resultant. Finally, p divides Res(f(x), g(x)) if and only
if GCDFp[x](f(x), g(x)) �= 1. The claim follows. �

The proof of the proposition is essentially found in Schwarz’s thesis. Schwarz also
shows that the computational complexity of the method is O(p + f + n2). He used
the result to produce a table of possible class number divisors p < 100000 for any
real abelian field of conductor f ≤ 500. By resorting to Leopoldt’s decomposition
of class number, the results become more transparent in the case of composite
conductor. In particular, we know explicitly the factor group of units that is of
order hχ.

Remark 4.2. The p-adic class number formula implies that the primes p � fgχ

satisfying (4.3) but not dividing the class number must satisfy vp(Rp(Kχ)) ≥ gχ,
where vp denotes the normalized p-adic valuation and Rp(Kχ) is the p-adic regulator
of the field Kχ (trivially vp(Rp(Kχ)) ≥ gχ − 1). In this way we obtain some
knowledge of the p-adic regulator without knowing the fundamental units. In many
cases one could also use the method and the p-adic class number formula to check
whether the class number is not divisible by a prime dividing the degree of the
field. With slight changes to the preceding method, one could also compute the
p-exponent of the (p-adic) product hKRp(K), thus obtaining an upper bound for
the p-exponent of the class number.

5. Second step

In [14] van der Linden introduced a method with which he could show by com-
putation that p � hK in some cases. However, his use of the group of units modulo
(Hasse’s) cyclotomic units is problematic in general, since one may need to combine
unit groups of subfields in order to obtain groups of full rank (see [22, p. 150]). We
avoid this problem by applying a similar procedure to the groups Eχ/Fχ.

To check if hχ,p �= 1, we need to analyze the structure of the group Eχ/Fχ. As
noted before, Eχ/{±1} and Fχ/{±1} are Z[ζgχ

]-modules. Recalling that (±ε)eχ̃ =
±ε for any ε ∈ Eχ and Z[Gχ]eχ̃ � Z[ζgχ

], we may also regard |Eχ| and |Fχ| as
Z[Gχ]-modules. Thus Fχ/F p

χ admits an Fp[Gχ]-module structure.
The map xFχ 
→ xpF p

χ defines an isomorphism (Eχ/Fχ)p � (Ep
χ ∩ Fχ)/F p

χ ,
where (Eχ/Fχ)p is the p-elementary subgroup (the group of elements of order 1 or
p). The group (Ep

χ ∩ Fχ)/F p
χ is an Fp[Gχ]-submodule of Fχ/F p

χ . If nontrivial, it
must contain a minimal submodule of Fχ/F p

χ . Let this be Fi/F p
χ ; then we have

Fi ⊆ Ep
χ. On the other hand, if Fj/F p

χ is any minimal submodule of Fχ/F p
χ such

that Fj ⊆ Ep
χ, then Fj/F p

χ is a submodule of (Ep
χ ∩ Fχ)/F p

χ . Since the intersection
of two different minimal submodules is zero, the p-exponent of hχ is at least the
number of minimal submodules Fi/F p

χ satisfying Fi ⊆ Ep
χ.

In order to prove that hχ,p = 1, it suffices to compute all the minimal submodules
of Fχ/F p

χ and to check that all of them contain elements that are not p th powers
of units. This is not difficult since the minimal submodules are cyclic and easily
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determined by the following proposition and remark. Recall that the Z[Gχ]-module
|Fχ| is generated by ±η = (±Θχ)Λχ , where Θχ and Λχ are defined by (2.1).

Proposition 5.1. Assume that p ≡ 1 (mod gχ). The minimal Fp[Gχ]-submodules
of Fχ/F p

χ are 〈ηΦgχ (σ)/(σ−i)〉, where i runs through all the zeros of Φgχ
(x) (mod p)

and σ is a generator of Gχ.

Proof. Consider the Fp[Gχ]-homomorphism

τ : Fp[Gχ] → Fχ/F p
χ , δ 
→ ηδF p

χ .

It is obviously well-defined and surjective. Its kernel is an Fp[Gχ]-module, i.e., an
ideal in the principal ideal ring Fp[Gχ] � Fp[x]/〈xgχ −1〉. Since Fχ is of finite index
in Eχ, the Z-rank of |Fχ| is equal to ϕ(gχ), thus the Fp-rank of Fχ/F p

χ is ϕ(gχ).
Trivially Θσgχ−1

χ = ±1. Write σgχ − 1 =
∏

d|gχ
Φd(σ). It follows that Λχ is

divisible by all the Φd(σ) with d �= gχ, whence ηΦgχ (σ) = ±1. Consequently, the
kernel Ker(τ ) = 〈Φgχ

(σ)〉.
By the assumption on p, the cyclotomic polynomial Φgχ

(x) factors completely
modulo p and we have the evident Fp[Gχ]-isomorphisms

Fp[Gχ]/〈Φgχ
(σ)〉 � Fp[x]/〈xgχ − 1, Φgχ

(x)〉 � Fp[x]/〈Φgχ
(x)〉 � Fϕ(gχ)

p .

The minimal submodules of Fϕ(gχ)
p are 〈(1, 0, . . . , 0)〉, . . . , 〈(0, . . . , 0, 1)〉. By the

isomorphism, they correspond to the modules 〈Φgχ
(σ)/(σ−i)〉 in Fp[Gχ]/〈Φgχ

(σ)〉,
where σ − i runs through the factors of Φgχ

(σ) (mod p). The claim follows. �

Remark 5.1. The proposition generalizes to all odd primes not dividing gχ. Indeed,
choose the smallest fp ≥ 1 such that pfp ≡ 1 (mod gχ). The gχth cyclotomic
polynomial factors over Fp into ϕ(gχ)/fp distinct polynomials fi(x) of degree fp,
hence Fp[Gχ]/〈Φgχ

(σ)〉 � (GF(pfp))ϕ(gχ)/fp . Then the minimal submodules of
Fχ/F p

χ are 〈ηΦgχ (σ)/fi(σ)〉.
Note that if a prime p of order fp modulo gχ divides hχ, then pfp also divides

hχ. This follows from Remark 2.1.

To examine if Fi ⊆ Ep
χ, it thus suffices to check whether ηΦgχ (σ)/fi(σ) is the pth

power of some ε ∈ Eχ. We explain how this will be done, following [14]. Later we
will also need the fact that ε �∈ Fχ; this follows from the nontriviality of Fi/F p

χ .
Choose a prime q ≡ 1 (mod 2p fχ) and some b ∈ Z satisfying the conditions

b2fχ ≡ 1 (mod q), b �≡ 1 (mod q). Then ζ2fχ
≡ b (mod Q) for some prime ideal

Q above q in Q(ζ2fχ
). By writing ηΦgχ (σ)/fi(σ) as a rational function r(ζ2fχ

), we
examine whether

(5.1) r(b)
q−1

p ≡ 1 (mod q).

Indeed, this must hold if r(ζ2fχ
) = εp. If the congruence holds, we choose another

pair (q, b) and repeat the test; if the congruence condition is not satisfied for some
pair, we conclude that Fi �⊆ Ep

χ. If for every submodule Fi there exists a pair (q, b)
not satisfying the congruence, we have the result p � hχ. Otherwise, if there is a
prime p and a submodule Fi which pass the congruence test for many pairs, this
gives strong evidence that p would divide the class number. But since this process
involves uncertainty, we still have to apply another method.
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Remark 5.2. Instead of ζ2fχ
, we may actually use fχth roots of 1 in the computa-

tions of the second step. In fact, it is an easy exercise to see that Θσ−1
χ may always

be written as a rational function of ζfχ
.

6. Third step

For some α = ηΦgχ (σ)/fi(σ) satisfying (5.1) for many pairs (q, b), we want to
verify that α is a pth power in Eχ. This is equivalent to showing that p

√
α is an

element of Kχ. As a unit of Kχ, the element α has gχ conjugates in Kχ. We
calculate an approximation of α and its conjugates ασ as real numbers by noting
that

ζa
2f − ζ−a

2f

ζ2f − ζ−1
2f

=
sin(aπ/f)
sin(π/f)

.

If the polynomial mp(x) =
∏

σ(x − p
√

ασ) has integral coefficients, then α is a
pth power; this is the minimum polynomial of p

√
α. Then also p

√
ασ = p

√
α σ and

p
√

α ∈ Kχ. But since we have used only approximations, this is still not a proof.
Denote by m̃p the polynomial that we have computed in this way to approximate

mp. If some coefficient of m̃p is not close to an integer, this shows that α is not a
pth power, given that the precision in the computations is adequate. Otherwise, if
all the coefficients of m̃p are very close to integers, we round off the coefficients to
obtain the supposed minimum polynomial mp(x) ∈ Z[x]. We then check whether
mp(x) | m(xp), where m(x) is the minimum polynomial of α. If this holds, it finally
proves that mp is the minimum polynomial of p

√
α and that p

√
α is an element of

Kχ.
Since we actually compute α in Fχ/F p

χ , note that we may minimize modulo p
the absolute values of the coefficients of Φgχ

(x)/fi(x) ∈ Z[x] in order to prevent
coefficient explosion.

7. Higher powers of p

Suppose that using the preceding method we have found a prime p with p | hχ.
We want to check whether hχ is divisible by a higher power of p. G. Gras and M.-N.
Gras [5] introduced a method with which this verification is in principle possible.

The following lemma describes the correspondence we found between our and
Gras’s approach. By combining this result with our method as shown later, we were
able to check all the cases with p ≡ 1 (mod gχ) encountered in the computations.

Lemma 7.1. Let n ≥ 2 and assume p ≡ 1 (mod n). Let k ∈ Z be a zero of Φn(x)
modulo p. We have

Φn(ζn)
ζn − k

≡ ±N(ζn − k)
ζn − k

(mod pZ[ζn]),

where N(γ) denotes the absolute norm of γ ∈ Z[ζn].

Proof. By the assumption on p, all the zeros of Φn(x) (mod p) are of the form kj ,
where (j, n) = 1. Thus the prime ideals of Z[ζn] above p are Pj = 〈p, ζn − kj〉,
(j, n) = 1. Write the claim in the form

n∏
j=2

(j,n)=1

(ζn − kj) ≡ ±
n∏

j=2
(j,n)=1

(ζj
n − k) (mod pZ[ζn]).
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Since ζn ≡ k (mod P1), this congruence holds modulo P1. Moreover, since the
automorphisms ζn 
→ ζj

n, (j, n) = 1, permute the prime ideals, we see for any i �= 1
that both products contain a factor divisible by Pi. �

Assume p | hχ and p ≡ 1 (mod gχ) and let σ be a fixed generator of Gχ.
Let N(σ − k) =

∏gχ

j=1,(j,gχ)=1(σ
j − k) ∈ Z[Gχ]. By the isomorphism Z[ζgχ

] �
Z[Gχ]/〈Φgχ

(σ)〉 and the lemma, we write in Z[Gχ],

(7.1)
Φgχ

(σ)
σ − k

≡ ±N(σ − k)
σ − k

(mod p, Φgχ
(σ)).

Hence the isomorphism induced by τ in the proof of Proposition 5.1 implies that
ηΦgχ (σ)/(σ−k) is a pth power in Eχ only if ηN(σ−k)/(σ−k) is a pth power in Eχ. We
know that N(σ−k) ≡ pm (mod Φgχ

(σ)) with p � m (if p | m, change k to some k+tp
until p � m; this was possible in all the cases we confronted in the computations).
Thus we have ηpm/(σ−k) = εp for some ε ∈ Eχ\Fχ (see the paragraph after Remark
5.1). From this it follows that εσ−k = ηm.

Let F
′

χ = 〈−1, ετ | τ ∈ Gχ〉. Then |F ′

χ| is a Z[Gχ]-module. Since ε �∈ Fχ,
but εp ∈ Fχ and εσ = εkηm, we have [FχF

′

χ : Fχ] = p. On the other hand,
p � [FχF

′

χ : F
′

χ] since ηm ∈ F
′

χ and F
′

χ is closed under σ-conjugation. Knowing that
p | [FχF

′

χ : Fm
χ ], we thus deduce [F

′

χ : Fm
χ ] = pu with some u ∈ Z, p � u. Finally,

since [Eχ : Fm
χ ] = [Eχ : Fχ][Fχ : Fm

χ ] < ∞, we conclude that [Eχ : F
′

χ] < ∞ and
that the p-exponent of [Eχ : F

′

χ] is equal to the p-exponent of hχ/p.
Now we run the third step using F

′

χ in place of Fχ. Proposition 5.1 holds with ε

in place of η. We thus check whether εΦgχ (σ)/(σ−j) is a pth power for any j satisfying
Φgχ

(j) ≡ 0 (mod p). By (7.1), this is equivalent to checking whether εN(σ−j)/(σ−j)

is a pth power. We may compute ε = p
√

ηN(σ−j)/(σ−j) and its conjugates εσk

with
a sufficient precision. It follows that we may compute an approximation of any
conjugate of εΦgχ (σ)/(σ−j).

In fact, one knows a priori that it suffices to check only those minimal submodules
of F

′

χ/F
′p
χ that correspond to the minimal submodules of Fχ/F p

χ found to contain
pth powers. Indeed, assume

ε ∈ Eχ\Fχ, εp = ηN(σ−i)/(σ−i); ρ ∈ Eχ\F
′

χ, ρp = εN(σ−j)/(σ−j),

where i �= j. Let ε1 be the real number defined by εp
1 = ηN(σ−j)/(σ−j). If N(σ−i) =

p m1 with p � m1, we have ηm1 = εσ−i, so εm1
1 = ρσ−i ∈ Eχ. Since trivially εp

1 ∈ Eχ

and (p, m1) = 1, we conclude ε1 ∈ Eχ.
This method seems to fail for p �≡ 1 (mod gχ). Indeed, the second step only

gives us pth powers explicitly, although we know by the theory that there also
exist pfpth powers, where fp is the residue class degree. Nevertheless, if we find in
the second step that p | hχ, we may check whether the number ε ∈ R satisfying
εpfp = ηN(fi(σ))/fi(σ) belongs to Eχ\Fχ for some i. In this way we may still find a
pfpth power in Eχ, but whether this happens remains theoretically unproven since
there is no result similar to (7.1). In the computations this was possible in all
the cases we confronted; indeed, the results in [5] give evidence that this should
always be the case. Choose again 〈−1, ετ | τ ∈ Gχ〉 = F

′

χ. A similar reasoning as
above shows that the p-exponent of [Eχ : F

′

χ] is equal to the p-exponent of hχ/pfp .
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Finally, using the second and third steps (with F
′

χ in place of Fχ), we can check
whether p | (hχ/pfp).

In this way we were able to verify that among the fields of conductor at most
2000 there are only the following two cases in which hχ contains pfp more than
once (both with fp = 1). The 17-class number of a 16-degree field of conductor
1921 is 173 and the 3-class number of the quadratic field of prime conductor 1129
is 32. The latter is also found in Schoof’s table [20]. Additionally, we verified that
all the other higher powers of p found in his table could also be determined with
our method.

Remark 7.2. G. Gras and M.-N. Gras [5] computed class numbers of real abelian
fields of small degree using a method quite similar to our method of finding pth
powers. They also used Leopoldt’s condition similar to Schwarz’s method to limit
the number of possible divisors. The tables [6] and [7] were computed using this
method. The aim in [5] was to compute class numbers of real abelian fields using
explicit upper bounds that are practical only in fields of small degree; hence the
efficiency of the algorithm was not as crucial as in our computations. On the other
hand, the efficiency might be improved using first the congruence method as in the
second step. Gras’s method essentially consists of a search of units of EP

χ belonging
to Fχ, where P is a prime ideal of Z[ζgχ

] above p; this amounts to searching for
units of the form (ηN(fi(σ))/fi(σ))1/pfp with P = 〈p, fi(ζgχ

)〉. This suggests that
our method could similarly be generalized to search (by the isomorphism Z[ζgχ

] �
Z[Gχ]/〈Φgχ

(σ)〉) for Pth powers in Eχ. This would settle more naturally the case
of a larger residue class degree. One possibility would be to investigate the group
(Eχ/Fχ)P (the P-part will be defined later in this work).

8. An example of the calculation

The following example shows how the calculations were done. Choose f =
1261 = 13 · 97. Let K = Q(ζf + ζ−1

f ). There are 47 real cyclic fields of conductor
f corresponding to the nontrivial Q-conjugacy classes of characters of K.

We run for any hχ the first step of the method by checking whether the condition
(4.3) holds. All the necessary information for the computation may be gathered
from the knowledge of the corresponding Q-conjugacy class χ̃. This is the lengthy
part of the calculation since we check all the primes 2 < p < 10000, p � f , for all the
47 different hχ. We find out that there are in total 68 primes (counted with multi-
plicity) that satisfy (4.3) for some hχ, of which 10 primes divide gχ. We continue
to the second step only with the primes not dividing gχ (the 10 discarded primes
of course would also contain some information of the class number divisibility, but
they would require another method). Usually the number of primes satisfying (4.3)
was found to be roughly proportional to the number of different hχ.

In the second step we check all the remaining 58 cases. We also check for all
different hχ the primes 13 and 97 dividing f . There are a total of 152 pairs (hχ, p)
to check. For instance, we have the prime candidate 2689 in the field of degree
96 corresponding to the character χ = χ1

13χ
9
97 (in an obvious notation). Since

2689 ≡ 1 (mod 96), there are 96 minimal submodules corresponding to the various
αi = ηΦ96(σ)/(σ−i). We choose a pair (q, b) and check the congruence (5.1). For
instance, the pair (74598239, 46979) is appropriate. For this pair, the congruence
(5.1) is not satisfied for any αi, thus 2689 � hχ. All the primes are checked similarly;
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we can handle all the primes not dividing the class number in this way. An example
of a prime dividing the class number is given in the following.

Let p = 97 and χ = χ2
13χ

10
97. We compute 10 appropriate pairs (q, b) and notice

that (5.1) is always satisfied for the minimal submodule corresponding to fi(σ) =
σ + 48 (the specific minimal submodule depends on the choice of the generator
σ of Gχ; we had σ defined by ζf 
→ ζ19

f ). We move on to the third step and
compute a real approximation of ηΦ96(σ)/(σ+48) and its conjugates. Its minimum
polynomial has huge coefficients, thus it is first important to reduce the coefficients
of Φ96(σ)/(σ + 48) ∈ F97[Gχ]. Choosing the coefficients with the smallest absolute
value modulo p seems to be adequate; denote by α the element thus obtained.
The precision we needed in this case was over 5000 digits in order to be able to
compute the minimum polynomial m(x) of α. The choice of the coefficients of α was
probably not ideal. Nevertheless, this was still possible to handle with a computer.
The minimum polynomial mp(x) of p

√
α was computed in the same manner; it had

much smaller coefficients, the largest with 54 digits. Finally, we checked that mp(x)
divides m(xp). Moreover, we used the method of higher powers of p to verify that
p2 � hχ.

There were altogether three pairs (hχ, p) with p not dividing f (indeed, with
p = 5 or 7; see the table) for which we could not find any pairs (q, b) failing to
satisfy (5.1). They were all verified to be actual class number divisors using the
third step.

The computing time of all the above was approximately one hour using Mathe-
matica 4.1 [24] on an AMD Athlon 2000+.

9. Cohen–Lenstra heuristics

Schoof [20] showed, based on a speculative extension of the Cohen–Lenstra
heuristics [3], that the class numbers of real abelian fields of prime conductor are
most likely relatively small. The same holds for prime power conductors; see Buhler
et al. [2]. We see from Section 2 how to treat class groups of fields of any conductor.
It would be natural to assume that the predictions given by Schoof on the size of
the class groups hold in our case as well. We will show that this is indeed the case.

Cohen and Lenstra give conjectural heuristic assumptions on the properties of
finite modules over direct products of Dedekind domains. In particular, the as-
sumptions apply to the modules over the (unique) maximal order of the group ring
Q[G]/〈

∑
σ∈G σ〉 with G abelian. Their examples include probabilities for proper-

ties of the class groups of quadratic fields and real abelian fields. The p-parts of
the class groups with p dividing the degree had to be excluded; recently Wittmann
[23] presented heuristics for such primes in some special cases.

To apply the heuristics, one should originally have a large collection of fields
of varying conductor and fixed degree. Since our computations are limited to the
fields of conductor at most 2000 and of varying degree, the situation is different.
But as is mentioned in [2] and [20], the heuristics and the computed results together
support the conjecture that the class groups of real abelian fields are usually very
small.

We assume for the rest of the section that p � #G. The decomposition (2.2)
allows us to define the p-class groups as modules over

⊕
χ̃ �=1̃ Z[ζgχ

]; since Cl1,p = 1
for the trivial character 1 = χ0, we may drop the corresponding part from the
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direct sum. Since the above sum is isomorphic to the maximal order of the group
ring Q[G]/〈

∑
σ∈G σ〉 = Q[G]/e1Q[G], the heuristics may be applied in our case.

For a finite module A over a Dedekind domain R, there is a decomposition
A =

⊕
P AP , where the sum is taken over the prime ideals P of R and

AP = {a ∈ A | AnnRa is a power of P}.

Only finitely many AP �= 0. Now by [3, Example 5.10], assuming the heuristics,
the probability that AP = 0 is equal to

∏∞
k=2(1 − NP−k), where the norm NP =

#(A/P). The probabilities for the different P will be assumed independent.
Let us show how to apply the above probability in our case. Note first that the

prime ideals of
⊕

χ̃ �=1̃ Z[ζgχ
] are of the form

⊕
χ̃ �=1̃,ψ̃ Z[ζgχ

] ⊕ P, where ψ̃ is any
nontrivial Q-conjugacy class of characters and P runs through the prime ideals of
Z[ζgψ

]. Their norms are equal to the norms of P. There are ϕ(gχ)/fp prime ideals
of Z[ζgχ

] above any unramified prime p and their common norm is pfp , where fp

is the order of p modulo gχ. The number of different Z[ζgχ
] in the decomposition

of the rational group ring of a real cyclotomic field is equal to the number of Q-
conjugacy classes. Their number might be calculated, for instance, by the following
result by Perlis and Walker [19]: If G is a finite abelian group of order g, we have
Q[G] �

⊕
d|g

nd

ϕ(d)Q(ζd), where nd is the number of elements of order d in G.
The probability that the class group is trivial (excluding the primes dividing

2gχ) is therefore

P (Cl = 1) =
∏
χ̃

∏
p∈P′

∏
P|p

P (Clχ,P = 1) =
∏
χ̃

∏
p∈P′

( ∏
k≥2

(1 − p−kfp)
)ϕ(gχ)/fp

,

where P
′

denotes the set of all prime numbers p � 2gχ. Having computed all the
p-parts of the class groups for 2 < p < 10000, we assume p > 10000. Then by
taking the logarithm and using the estimates

−ln
(

1 − 1
pkfp

)
<

1 + 10−8

pkfp
(k ≥ 2),

∑
k≥2

p−kfp =
1

pfp(pfp − 1)
≤ 1 + 10−4

p2fp
,

we obtain

−ln
(
P (Clχ,p = 1 ∀ p > 104)

)
< 1.00011ϕ(gχ)

∑
p>104

1
fpp2fp

.

The series is dominated by the terms with fp = 1, i.e., p ≡ 1 (mod gχ); the re-
mainder is smaller than

∑
p>104 p−4 < 10−13 (this is estimated via the “prime

zeta function” (9.1)). By the prime number theorem for arithmetic progressions,
the number of primes p < n satisfying p ≡ 1 (mod gχ) equals approximately
#{p ∈ P | p < n}/ϕ(gχ) for large n. Thus with many different gχ we have, at
least on average,

∑
p>104

1
fpp2fp

< 10−13 +
∑

p>104

p≡1 (mod gχ)

p−2 ≈ 1
ϕ(gχ)

∑
p>104

p−2.
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We assumed that 10−13 is insignificant; this holds, when the numbers gχ are of
the magnitude we confronted in the computations. The series over primes may
be approximated from its expression in terms of values ζ(m) of the Riemann zeta
function, m ≥ 2. Indeed, we have

(9.1)
∑
p∈P

1
pm

=
∞∑

k=1

µ(k)
k

ln ζ(km)

as the Möbius inversion of the logarithm of the Euler product for ζ(m) (see, e.g., [4]).
This gives

∑
p∈P p−2 ≈ 0.452247. Consequently, we obtain

∑
p<104 p−2 ≈ 0.452238.

It follows that
P (Clχ,p = 1 ∀ p > 104) ≈ 0.999990.

It is interesting to note that this estimate does not depend on gχ.
We computed all the (χ, p)-parts of the class groups for 2 < p < 10000, p � gχ,

fχ ≤ 2000. For fχ ≤ 500, we even went up to the bound p < 100000 utilizing
Schwarz’s tables [21]. For any fixed p, there are a total of 9339 different Z[ζgχ

]-
modules Clχ,p for 500 < f ≤ 2000 (1679 for fχ ≤ 500). When substituting this
information in the above formulas, one obtains from the heuristics that the pre-
dicted number of occurrences of nontrivial class group parts Clχ,p (dropping out
from the study all the primes dividing 2gχ) for the fields of conductor fχ ≤ 2000
would be approximately 443, and that the class number would not contain larger
primes for 500 < fχ ≤ 2000 with probability ≈ 91% (for fχ ≤ 500 with ≈ 99%).
We might exclude from the calculation all the class group parts corresponding to
the fields of small degree since there exist extensive tables for them; then the above
probability for 500 < fχ ≤ 2000 rises to at least 93%. Given that all the computa-
tions have produced only relatively small prime divisors compared to the degree of
the field, we find it reasonable to believe that the class number divisors found are,
in fact, all the primes dividing hχ for any fχ ≤ 2000, excluding the primes dividing
2gχ.

We found 231 nontrivial χ-parts of class groups, which is less than the expected
number 443, but which is still of the same order of magnitude when compared to
the number of all the χ-parts. This supports the belief, stated by Schoof [20], that
the heuristics would slightly overestimate the chance of a nontrivial class group
when the conductor is relatively small.

10. Table

In the enclosed table we present all the prime divisors 2 < p < 10000 of the
class numbers of the real abelian fields of composite conductor 500 < f ≤ 2000
and the prime divisors p < 100000 for f ≤ 500, excluding the primes dividing the
degree of the field. The first column indicates the conductor fχ of Kχ. A character
defining the field Kχ is written in the second column. We use the notation χ�ν

for the generating character modulo �ν with � > 2 a prime. Let ω4 modulo 4 be
defined by ω4(−1) = −1. For ν ≥ 3, define χ2ν modulo 2ν by χ2ν (5) = ζ2ν−2 and
χ2ν (−1) = 1. The representatives of the Q-conjugacy classes of characters were
chosen as in [21].

The third column gives the degree gχ of Kχ and the last column shows the
prime divisor p of the χ-class number hχ. We did not encounter any hχ having
more than one prime divisor. The occasional exponent of p is the residue class
degree of p modulo gχ, except for one case. This is a field of conductor 1921 for
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which we found two different submodules containing 17th powers. The search for
higher powers of p showed that the class number is exactly divisible by 173. We
computed, using PARI [18], that the 17-class group is of type Z/172Z × Z/17Z.
Note that 17 divides 1921. In general, the case where p divides the conductor seems
to occur very often. For the fields of prime power conductor, recall that Vandiver’s
conjecture (verified up to a very large conductor) states that such primes never
divide the class numbers.

For any real field K of conductor f , one may read the p-part of hK for any
p < 10000, p � 2[K : Q], by combining the entries of the table (together with
Schoof’s table of the fields of prime conductor in [20]) for all the cyclic subfields
Kχ of K of conductor fχ | f . The p-class structure is given by (2.2).

For example, let K = Q(ζf + ζ−1
f ) with f = 1304 = 8 · 163. Our table gives for

hK twice the prime factor 19 coming from fields with conductor f and f/2 = 652
(both of degree 18). By (2.2), the 19-class group is of type Z/19Z × Z/19Z. In
addition, there is a prime factor 3 coming from a quadratic subfield with conductor
f . Since 3 divides the degree 324 of K, the 3-class group of K remains unknown;
in fact, it could be possible that 3 � hK

1. Since the class number of Q(ζ8 + ζ−1
8 ) is

1 and that of Q(ζ163 + ζ−1
163) is 4 (see [14]), we find that all the other possible odd

prime factors of hK must be larger than 10000.
The results were checked to agree with the tables of real cyclic fields of degree

at most 6 (cf. [17], [6], [7], [9], [15]). All the class number divisors of the fields
of degree at most 20 were also confirmed with PARI. The results in the case of a
prime conductor (omitted from this table) were found to agree with the tables of
Schoof [20] and Koyama and Yoshino [11].

1One can show that, in fact, 3 | hK (personal communication by C. Greither).
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fχ χ gχ p

212 ω1
4χ13

53 4 5

316 ω1
4χ39

79 2 3

321 χ1
3χ53

107 2 3

427 χ3
7χ15

61 4 5

469 χ3
7χ33

67 2 3

473 χ5
11χ21

43 2 3

481 χ2
13χ4

37 18 19

551 χ9
19χ7

29 4 5

556 ω1
4χ23

139 6 7

568 χ1
8χ14

71 10 11

ω1
4χ1

8χ35
71 2 3

629 χ8
17χ2

37 18 19

χ4
17χ18

37 4 5

651 χ1
3χ3

7χ6
31 10 11

652 ω1
4χ9

163 18 19

676 ω1
4χ3

169 52 53

692 ω1
4χ43

173 4 5

697 χ8
17χ20

41 2 3

703 χ9
19χ1

37 36 37

χ3
19χ9

37 12 13

728 χ1
8χ3

7χ3
13 4 5

753 χ1
3χ25

251 10 11

756 ω1
4χ2

27χ1
7 18 19

763 χ3
7χ9

109 12 13

779 χ9
19χ1

41 40 41

785 χ2
5χ78

157 2 3

793 χ1
13χ55

61 12 37

808 ω1
4χ1

8χ25
101 4 5

817 χ9
19χ21

43 2 5

819 χ1
9χ1

7χ2
13 6 7

832 ω1
4χ1

64χ3
13 16 72

869 χ5
11χ1

79 78 79

889 χ3
7χ21

127 6 7

892 ω1
4χ111

223 2 3

916 ω1
4χ57

229 4 5

923 χ3
13χ7

71 20 61

928 ω1
4χ1

32χ7
29 8 17

935 χ1
5χ5

11χ4
17 4 5

940 ω1
4χ2

5χ23
47 2 3

944 ω1
4χ1

16χ29
59 4 5

fχ χ gχ p

976 ω1
4χ1

16χ15
61 4 5

980 ω1
4χ1

5χ6
49 28 29

985 χ2
5χ98

197 2 3

988 ω1
4χ2

13χ3
19 6 7

993 χ1
3χ165

331 2 3

999 χ2
27χ16

37 9 37

1016 ω1
4χ1

8χ63
127 2 3

1025 χ1
25χ7

41 40 41

1036 ω1
4χ2

7χ5
37 36 73

1048 χ1
8χ26

131 10 11

1080 χ1
8χ1

27χ1
5 36 37

1101 χ1
3χ183

367 2 3

1105 χ1
5χ9

13χ8
17 4 5

1113 χ1
3χ2

7χ13
53 12 13

1116 ω1
4χ2

9χ25
31 6 7

1132 ω1
4χ47

283 6 7

1139 χ2
17χ6

67 88 89

1141 χ2
7χ36

163 9 19

1159 χ2
19χ10

61 18 73

1172 ω1
4χ73

293 4 13

1197 χ2
9χ5

7χ15
19 6 7

1207 χ1
17χ35

71 16 17

1211 χ2
7χ86

173 6 7

1235 χ1
5χ4

13χ15
19 12 13

χ2
5χ3

13χ9
19 4 5

1241 χ4
17χ18

73 4 5

1243 χ2
11χ14

113 40 41

1257 χ1
3χ209

419 2 3

1261 χ2
13χ10

97 48 97

χ2
13χ64

97 6 7

χ6
13χ24

97 4 5

χ4
13χ64

97 3 7

1271 χ2
31χ24

41 15 31

χ10
31χ20

41 6 7

χ6
31χ24

41 5 11

1287 χ1
9χ2

11χ3
13 60 61

1295 χ2
5χ2

7χ10
37 18 19

1304 χ1
8χ18

163 18 19

ω1
4χ1

8χ81
163 2 3

1308 ω1
4χ1

3χ18
109 6 7

fχ χ gχ p

1311 χ1
3χ2

19χ11
23 18 19

1313 χ6
13χ20

101 10 31

1332 ω1
4χ1

9χ6
37 6 7

1339 χ3
13χ17

103 12 13

1343 χ1
17χ39

79 16 17

1345 χ2
5χ134

269 2 3

1353 χ1
3χ1

11χ12
41 10 11

1355 χ2
5χ30

271 18 37

1359 χ1
9χ125

151 6 7

1360 ω1
4χ1

16χ1
5χ12

17 4 5

1376 ω1
4χ1

32χ7
43 24 52

1384 χ1
8χ86

173 2 3

1385 χ2
5χ46

277 6 7

χ1
5χ207

277 4 5

1387 χ2
19χ18

73 36 172

χ2
19χ22

73 36 37

χ2
19χ8

73 9 19

1393 χ3
7χ99

199 2 5

1404 ω1
4χ1

27χ8
13 18 19

1407 χ1
3χ3

7χ6
67 22 23

1420 ω1
4χ2

5χ7
71 10 11

1421 χ3
49χ11

29 28 29

1424 ω1
4χ1

16χ11
89 8 17

1435 χ1
5χ1

7χ10
41 12 13

1436 ω1
4χ179

359 2 3

1455 χ1
3χ1

5χ6
97 16 17

1460 ω1
4χ1

5χ54
73 4 5

1461 χ1
3χ27

487 18 19

1465 χ1
5χ219

293 4 32

1477 χ3
7χ21

211 10 11

χ1
7χ35

211 6 7

1496 ω1
4χ1

8χ1
11χ8

17 10 11

1509 χ1
3χ251

503 2 3

1513 χ1
17χ11

89 16 17

χ8
17χ22

89 4 13

1516 ω1
4χ1

379 378 379

1525 χ2
25χ24

61 10 11

1547 χ1
7χ1

13χ12
17 12 37

1575 χ1
9χ2

25χ5
7 30 31

1576 ω1
4χ1

8χ49
197 4 32
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fχ χ gχ p

1591 χ18
37χ

2
43 42 43

1592 ω1
4χ1

8χ
11
199 18 19

ω1
4χ1

8χ
33
199 6 7

1620 ω1
4χ2

81χ
1
5 108 109

1623 χ1
3χ

45
541 12 13

1629 χ2
9χ

18
181 30 31

χ2
9χ

50
181 18 109

1640 ω1
4χ1

8χ
2
5χ

5
41 8 32

1641 χ1
3χ

273
547 2 5

1643 χ5
31χ

13
53 12 13

1651 χ1
13χ

63
127 12 52

1665 χ1
9χ

1
5χ

24
37 12 13

1676 ω1
4χ19

419 22 23
1687 χ2

7χ
80
241 3 13

1688 χ1
8χ

42
211 10 31

1708 ω1
4χ1

7χ
50
61 6 7

ω1
4χ3

7χ
30
61 2 3

1729 χ2
7χ

3
13χ

3
19 12 52

χ1
7χ

5
13χ

12
19 12 13

χ1
7χ

2
13χ

15
19 6 7

1735 χ1
5χ

173
347 4 5

1736 ω1
4χ1

8χ
2
7χ

15
31 6 7

1739 χ9
37χ

23
47 4 5

1749 χ1
3χ

5
11χ

2
53 26 53

1751 χ1
17χ

51
103 16 17

1755 χ2
27χ

1
5χ

3
13 36 73

1756 ω1
4χ219

439 2 5
1761 χ1

3χ
293
587 2 7

1765 χ2
5χ

176
353 2 3

1772 ω1
4χ221

443 2 3
1853 χ8

17χ
6
109 18 19

fχ χ gχ p

1855 χ2
5χ

3
7χ

13
53 4 5

1865 χ1
5χ

93
373 4 5

1872 χ1
16χ

2
9χ

10
13 12 13

1885 χ1
5χ

6
13χ

1
29 28 29

χ2
5χ

3
13χ

3
29 28 113

χ1
5χ

6
13χ

7
29 4 5

1887 χ1
3χ

4
17χ

27
37 4 5

1891 χ3
31χ

21
61 20 41

χ2
31χ

28
61 15 31

χ6
31χ

6
61 10 11

1897 χ3
7χ

135
271 2 5

1903 χ5
11χ

1
173 172 173

1904 χ1
16χ

3
7χ

3
17 16 97

ω1
4χ1

16χ
1
7χ

12
17 12 13

1921 χ4
17χ

8
113 28 29

χ1
17χ

35
113 16 17 · 172

1929 χ1
3χ

321
643 2 3

1935 χ2
9χ

1
5χ

7
43 12 13

χ2
9χ

1
5χ

21
43 12 13

1937 χ1
13χ

111
149 12 109

χ6
13χ

74
149 2 3

1957 χ9
19χ

51
103 2 3

1965 χ1
3χ

2
5χ

13
131 10 11

1971 χ2
27χ

4
73 18 19

1972 ω1
4χ

2
17χ

7
29 8 32

1976 χ1
8χ

6
13χ

2
19 18 19

χ1
8χ

1
13χ

3
19 12 13

1988 ω1
4χ

2
7χ

5
71 42 43

ω1
4χ

1
7χ

14
71 30 31

1995 χ1
3χ

2
5χ

2
7χ

3
19 6 7

1996 ω1
4χ249

499 2 5
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