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TRACE OF TOTALLY POSITIVE ALGEBRAIC INTEGERS
AND INTEGER TRANSFINITE DIAMETER

V. FLAMMANG

Abstract. Explicit auxiliary functions can be used in the “Schur-Siegel-
Smyth trace problem”. In the previous works, these functions were constructed
only with polynomials having all their roots positive. Here, we use several
polynomials with complex roots, which are found with Wu’s algorithm, and
we improve the known lower bounds for the absolute trace of totally posi-
tive algebraic integers. This improvement has a consequence for the search
of Salem numbers that have a negative trace. The same method also gives a
small improvement of the upper bound for the integer transfinite diameter of
[0,1].

1. Introduction

1.1. The trace of totally positive algebraic integers. Let α be a totally pos-
itive algebraic integer of degree d ≥ 2 (i.e. its conjugates α1 = α, ..., αd are all
positive real numbers) and let P be its minimal polynomial. We define the absolute
trace of α as

Trace(α) =
1
d
trace(α) =

1
d

d∑
i=1

αi

and denote by T the set of all such Trace(α).
The “Schur-Siegel-Smyth trace problem” (so called by P. Borwein in his book

[B]) is the following: Fix ρ < 2. Then show that all but finitely many totally
positive algebraic integers α have Trace(α) > ρ.

Remark. Solving this problem is equivalent to proving that 2 is the smallest limit
point of T .

The problem was solved in 1918 by I. Schur for ρ <
√

e [Sc]; in 1943 by C. L.
Siegel for ρ < 1.7337 [Si] and in 1984 by C. J. Smyth for ρ < 1.7719 [Sm2]. More
recently, it was solved in 2004 by J. F. McKee and C. J. Smyth for ρ < 1.7783786
[MS], and in 2006 by J. Aguirre and J. C. Peral for ρ < 1.784109 [AP]. The method
of proof, as in [Sm1], uses an explicit auxiliary function of the following type:

(1.1) for x > 0, f(x) = x −
∑

1≤j≤J

cj log |Qj(x)| ≥ m,
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where the cj are positive real numbers and the polynomials Qj are nonzero elements
of Z[X]. Then

d∑
i=1

f(αi) ≥ md,

i.e.

trace(α) ≥ md +
∑

1≤j≤J

cj log |
d∏

i=1

Qj(αi)|.

We assume that P does not divide any Qj , then
∏d

i=1 Qj(αi) is a nonzero integer
because it is the resultant of P and Qj . Therefore, if α is not a root of Qj , we have

Trace(α) ≥ m.

On the other hand, J. P. Serre (see Appendix B in [AP]) showed that this method
does not give such an inequality for any ρ larger than 1.8983021.... Therefore, this
method cannot be used to prove that 2 is the smallest limit point of T . Nevertheless,
it is interesting to try to get lower bounds for Trace(α). For instance, this was used
for the search of Salem numbers of smallest degree with trace equal to −2 by J. F.
McKee and C. J. Smyth [MS]. We will explain in Section 1.2 the consequence of
our bound for the degree of Salem numbers of trace −3.

In this paper, we prove the following:

Theorem 1. If α is a totally positive algebraic integer, then, with a finite set of
explicit exceptions (see Table 1), we have

(1.2)
1
d
trace(α) ≥ 1.78702.

The main point is to find a good list of polynomials Qj which gives a value of m as
large as possible. In [Sm2] and [AP] the authors used an extended heuristic search
to get polynomials of the following type: all their roots are positive and they have
small absolute trace. Here we use a new approach relying on the auxiliary function
(1.1) to a generalization of the integer transfinite diameter. Our polynomials are
found by Wu’s algorithm [Wu]. Surprisingly we get a lot of polynomials with
some complex roots. This phenomenon has already been encountered by Habsieger
and Salvy [HS] when they were studying the integer transfinite diameter of [0,1].
Their exceptional polynomial (after a natural transformation) will appear during
our search but will not be used in the final result (1.2). The complete list of
polynomials Qj and coefficients cj is given in Table 2.

1.2. Salem numbers of trace −3. A Salem number is a real algebraic integer
greater than 1 whose conjugates all lie in the closed disc |z| ≤ 1, with at least one on
the unit circle. Its minimal polynomial is a reciprocal polynomial of degree 2d ≥ 4.
Finding all Salem numbers of degree 2d and trace −3 is equivalent to finding all
totally positive algebraic integers α of degree d and trace 2d − 3 such that α > 4
and all other conjugates of α are in the interval ]0,4[. In fact, let

P (x) = xd − (2d − 3)xd−1 + . . . .

be the minimal polynomial of such a totally positive algebraic integer. The trans-
formation x = z + 1

z + 2 produces a reciprocal polynomial

Q(z) = z2d + 3z2d−1 + · · · + 3z + 1
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which is the minimal polynomial of a Salem number of degree 2d and trace −3
because the roots of P in the interval ]0,4[ give pairs of roots of Q on the unit circle
while the root of P in the interval ]4, +∞[ gives a pair of reciprocal real positive
roots of Q. We prove the following:

Theorem 2. If a Salem number has trace −3, then its degree is at least 30.

It is an easy consequence of Theorem 1. As 1.78702 > 25
14 , then there exists no

totally positive irreducible polynomial of degree 14 and trace 25 (corresponding or
not to a Salem number of trace −3). Thus, the next largest possible degree for such
a polynomial is 15 and so at least degree 30 for the corresponding Salem number.
The previous bound for the absolute trace of a totally positive algebraic integer was
1.784109 [AP]. This proved that the minimal degree for a Salem number of trace
−3 was at least 28.

1.3. The integer transfinite diameter. For a polynomial P ∈ Z[X] and a real
interval I = [a, b] we denote |P |∞,I = supz∈I |P (z)|. We define the integer transfi-
nite diameter of I by

(1.3) tZ(I) = lim inf
n≥1

n→+∞

inf
P∈Z[X]

deg(P )=n

|P |
1
n

∞,I .

Many authors have given lower and upper bounds of tZ(I), especially when
I = [0, 1] (see [AP] and [Pr] for an account of this). It is known that tZ([0, 1]) =
tZ([0, 1/4])1/2. To get an upper bound for tZ([0, 1/4]), it is sufficient to get an
explicit polynomial Q ∈ Z[X] and then to use the sequence of the successive powers
of Q. So we search a polynomial Q of degree r such that |Q|1/r

∞,I ≤ e−m. By the
change of variable x �→ 1

x+4 and taking the logarithm we get

(1.4) for x > 0, f(x) = log(x + 4) −
∑

1≤j≤J

cj log |Qj(x)| ≥ m,

where the numbers cj are positive rational numbers satisfying the condition∑
1≤j≤J cj deg Qj ≤ 1 and the polynomials Qj are obtained from the irreducible

factors of Q by the transformation above. It is plain that the algorithm given in
Section 2 for the auxiliary function (1.1) is also convenient for the function (1.4).
We get

Result 1.

(1.5) tZ([0, 1]) < 0.42291334.

This is a small improvement on the upper bound 0.42305209 given by Aguirre
and Peral [AP]. The best known lower bound 0.4213 was given by Pritsker [Pr].
Here we also have several factors of Q, including the polynomial of Habsieger and
Salvy, which has some complex roots.

In Section 2 we explain how to construct the auxiliary function (1.1) (the same
method is used to construct the function (1.4)). The numerical results are given in
Section 3. All the computations are done on an iBook Macintosh with the languages
Pascal, Maple and Pari.
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2. Construction of the explicit auxiliary function

2.1. Rewriting the auxiliary function. Inside the auxiliary function (1.1) we
replace the numbers cj by rational numbers.

So, we may write:

for x > 0, f(x) = x − t

r
log |Q(x)| ≥ m

where Q ∈ Z[X] is of degree r and t is a positive real number. We want to get a
function f whose minimum m on (0,∞) is as large as possible. Thus we search a
polynomial Q ∈ Z[X] such that

sup
x>0

|Q(x)|t/re−x ≤ e−m.

If we suppose that t is fixed, we need to get an effective upper bound for the quantity

tZ,ϕ([0,∞)) = lim inf
r≥1

r→+∞

inf
P∈Z[X]

deg(P )=r

sup
x>0

(
|P (x)| t

r ϕ(x)
)

in which we use the weight ϕ(x) = e−x.
It is clear that this quantity is closely related to the usual integer transfinite

diameter of an interval given by (1.3).

2.2. How to find the polynomials Qj. We first take an initial value of t, say
t0 = 1 and a set E0 of 50 control points uniformly distributed on [0, 2.5]. With
Wu’s algorithm [Wu], we compute a polynomial Q of degree at most 10 which is
small on E0. We define Q1 as the irreducible factor of Q of smallest degree and we
take the best value of c1 to get the best auxiliary function f1. We deduce from this
the value t1 = c1 deg(Q1). We add to the set E0 the points of [0, +∞) where f1 has
a local minimum (including those greater than 2.5) to get a new set E1 of control
points. With Wu’s algorithm we compute a polynomial Q of degree 10 + deg Q1

which is a multiple of Q1 of small norm on E1 and take Q2 as another irreducible
factor of Q. We optimize (c1, c2) to get the best function f2. This gives t2. We get
the set E2 from E1 adding the local minima of f2. Then we search a polynomial Q
which is a multiple of Q1Q2 of degree 10 + deg Q1 + deg Q2 and we continue this
process until two consecutive steps produce no new polynomial.

Remark. The previous algorithm is used repeatedly with the constant 10 replaced
successively by 11 to 20.

We give a numerical example of search for degree 13.
We start with E0 and t0 defined as above. We search a polynomial Q of de-

gree 13 such that xQ(x) is small on E0. LLL produces the polynomial Q(x) =
x7(x − 1)4(2x − 1)(3x − 1). We optimize the auxiliary function

f1 = x − c1 log x − c2 log |x − 1| − c3 log |2x − 1| − c4 log |3x − 1|.

Only c1 and c2 are nonzero. We deduce the value of t1 = c1 deg(x)+c2 deg(x−1) =
1.606. We add to the set E0 the two points where f1 has a local minimum and we
get a new set E1 of control points. We repeat LLL and now search for a polynomial
Q such that x8(x − 1)4Q(x) is small on E1. At the 8th step, LLL produces the
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polynomial

Q(x) = (x − 1)(x2 − 3x + 1)(x5 − 9x4 + 27x3 − 31x2 + 12x − 1)

(x5 − 8x4 + 22x3 − 25x2 + 10x − 1).

The underlined polynomial is related to the exceptional polynomial (i.e. with
some complex roots) obtained by Habsieger and Salvy as explained in Section 3.
We test the two new polynomials in the auxiliary function. Both have nonzero
exponents. At this point, we have 1

d trace(α) ≥ 1.762. The polynomials used in the
auxiliary function are the polynomials 1, 2, 3, 4, 6, 7, 11, 12, 14 in Table 1 and the
underlined polynomial above.

2.3. Optimization of the cj. For the optimization of the auxiliary function we
use the semi-infinite linear programming method introduced into number theory
by Smyth [Sm1]. We recall it briefly. We define by induction a sequence of finite
sets Xn, n ≥ 0, with Xn ⊂ [0, +∞). We start with an arbitrary set of points X0

of cardinal greater than J . At each step n ≥ 0, we compute the best values for
cj by linear programming on the set Xn. We get a function fn whose minimum
mn = minx∈Xn

fn(x) is greater than m′
n = minx>0 fn(x). We add to Xn the points

of [0, +∞) where fn has a local minimum smaller than mn + εn, where (εn)n≥0 is
a decreasing sequence of positive numbers tending to 0 when n is increasing and
chosen such that the set Xn does not increase too quickly. We stop, for instance,
when mn − m′

n < 10−6. If k steps are necessary, we take m = m′
k.

3. Numerical results

The method described above gives, among others, the 35 polynomials listed in
Table 1 and the 28 polynomials listed in Table 2. Among these polynomials, 17 are
new.

Four of them are minimal polynomials of totally positive algebraic integers.
The last thirteen polynomials have at least two complex roots. They are of the

same type: their real parts all lie in [0, 5.2] and their imaginary parts are small, i.e
|Im(z)| < 0.6325.

The first new polynomial of this family that appeared was x5 − 8x4 + 22x3 −
25x2 +10x−1. It has two complex roots, which has reminded us of the exceptional
polynomial of Habsieger and Salvy. We transform this polynomial by x �→ 1

x − 4
in order to get a polynomial whose real roots are in [0, 1

4 ]. We find the polynomial
4921x5 − 4594x4 + 1697x3 − 310x2 + 28x − 1 which is the polynomial A8 in [HS].
But this polynomial does not belong to the final list of our polynomials.
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Table 1. List of the polynomials Qj that occur in the explicit aux-
iliary function (1.1) to obtain the inequality (1.2). Those marked
with a sharp are the exceptions mentioned in Theorem 1. Those
marked with an asterisk are only used for the lower bound of
tZ([0, 1]). ν is the number of complex roots of the new polyno-
mials Qj .

j ν Qj

1# x
2# −1 + x
3 −2 + x
4# 1 − 3x + x2

5 1 − 4x + x2

6 2 − 4x + x2

7# −1 + 6x − 5x2 + x3

8 −1 + 8x − 6x2 + x3

9 −1 + 9x − 6x2 + x3

10 −3 + 9x − 6x2 + x3

11# 1 − 7x + 13x2 − 7x3 + x4

12# 1 − 8x + 14x2 − 7x3 + x4

13 −1 + 11x − 29x2 + 26x3 − 9x4 + x5

14 −1 + 12x − 31x2 + 27x3 − 9x4 + x5

15 −1 + 13x − 32x2 + 27x3 − 9x4 + x5

16 −1 + 15x − 35x2 + 28x3 − 9x4 + x5

17 2 1 − 9x + 33x2 − 52x3 + 35x4 − 10x5 + x6

2 1 − 12x + 43x2 − 64x3 + 41x4 − 11x5 + x6 (∗)
18 1 − 13x + 47x2 − 68x3 + 42x4 − 11x5 + x6

19 1 − 15x + 53x2 − 73x3 + 43x4 − 11x5 + x6

20 1 − 15x + 59x2 − 78x3 + 44x4 − 11x5 + x6

2 1 − 16x + 78x2 − 155x3 + 142x4 − 63x5 + 13x6 − x7 (∗)
21 −1 + 16x − 78x2 + 157x3 − 143x4 + 63x5 − 13x6 + x7

2 1 − 15x + 79x2 − 202x3 + 273x4 − 197x5 + 75x6 − 14x7 + x8 (∗)
22 2 1 − 19x + 111x2 − 277x3 + 339x4 − 221x5 + 78x6 − 14x7 + x8

23 2 1 − 21x + 120x2 − 289x3 + 345x4 − 222x5 + 78x6 − 14x7 + x8

24 3 − 40x + 187x2 − 402x3 + 445x4 − 269x5 + 89x6 − 15x7 + x8

25 3 − 42x + 200x2 − 428x3 + 467x4 − 277x5 + 90x6 − 15x7 + x8

26 2 −1 + 20x − 135x2 + 424x3 − 703x4 + 651x5 − 345x6 + 103x7 − 16x8 + x9

27 1 − 24x + 194x2 − 743x3 + 1526x4 − 1798x5 + 1265x6 − 537x7 + 134x8 − 18x9 + x10

28 1 − 24x + 200x2 − 766x3 + 1560x4 − 1822x5 + 1273x6 − 538x7 + 134x8 − 18x9 + x10

29 1 − 24x + 206x2 − 813x3 + 1662x4 − 1920x5 + 1320x6 − 549x7 + 135x8 − 18x9 + x10

30 2 1−32x + 256x2−916x3 + 1760x4−1967x5 + 1331x6−550x7 + 135x8−18x9 + x10

31 4 1−26x+267x2−1389x3+4097x4−7341x5+8352x6−6196x7+3023x8−958x9+189x10

−21x11 + x12

32 4 1−27x+281x2−1470x3+4336x4−7742x5+8750x6−6430x7+3102x8−972x9+190x10

−21x11 + x12

33 4 1−27x+283x2−1483x3+4372x4−7789x5+8780x6−6439x7+3103x8−972x9+190x10

−21x11 + x12

34 2 −1+28x−313x2+1837x3−6338x4+13689x5−19217x6+17929x7−11240x8+4730x9

−1313x10 + 230x11 − 23x12 + x13

35 2 −1+30x − 358x2+2246x3−8359x4+19715x5−30607x6+31950x7−22636x8+10851x9

−3451x10 + 695x11−80x12 + 4x13
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Table 2. List of the coefficients cj used in the explicit auxiliary
function (1.1)

j cj j cj j cj j cj

1 0.5584957222 10 0.003856972798 19 0.001108761904 28 0.004813507609
2 0.4916967610 11 0.02993703111 20 0.0008466162920 29 0.004620732100
3 0.07630565169 12 0.02755084495 21 0.0008291782706 30 0.003043369627
4 0.1761207656 13 0.005156588163 22 0.001195618507 31 0.001938859038
5 0.01072483141 14 0.007670086583 23 0.002200027138 32 0.003180059759
6 0.01038787553 15 0.003542904754 24 0.001352021285 33 0.006514951360
7 0.07277644358 16 0.004673480798 25 0.004580671504 34 0.002183415705
8 0.002809414882 17 0.001557114885 26 0.0008445959086 35 0.001482155949
9 0.005946815966 18 0.003429925309 27 0.004268551700
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