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ANALYSIS FOR QUADRILATERAL MITC ELEMENTS
FOR THE REISSNER-MINDLIN PLATE PROBLEM

JUN HU AND ZHONG-CI SHI

Abstract. The present paper is made up of two parts. In the first part, we
study the mathematical stability and convergence of the quadrilateral MITC
elements for the Reissner-Mindlin plate problem in an abstract setting. We
generalize the Brezzi-Bathe-Fortin conditions to the quadrilateral MITC ele-
ments by weakening the second and fourth conditions. Under these conditions,
we show the well-posedness of the discrete problem and establish an abstract
error estimate in the energy norm. The conclusion of this part is sparsity in
the mathematical research of the quadrilateral MITC elements in the sense
that one only needs to check these five conditions.

In the second part, we extend four families of rectangular MITC elements
of Stenberg and Süri to the quadrilateral meshes. We prove that these quadri-
lateral elements satisfy the generalized Brezzi-Bathe-Fortin conditions from
the first part. We develop the h-p error estimates in both energy and L2 norm
for these quadrilateral elements. For the first three families of quadrilateral
elements, the error estimates indicate that their convergent rates in both en-
ergy and L2 norm depend on the mesh distortion parameter α. We can get
optimal error estimates for them provided that α = 1. In addition, we show
the optimal convergence rates in energy norm uniformly in α for the fourth
family of quadrilateral elements. Like their rectangular counterparts, these
quadrilateral elements are locking-free.

1. Introduction

This paper is devoted to the finite element approximation for the Reissner-
Mindlin plate problem (R-M hereinafter) which reads: Given g ∈ L2(Ω) find
(ω, φ) ∈ H1

0 (Ω) × H1
0 (Ω)2 with

(1.1) a(φ, ψ) + (γ,∇v − ψ) = (g, v) for all (v, ψ) ∈ H1
0 (Ω) × H1

0 (Ω)2 .

With the plate thickness t and the other notation defined in Section 2 below, the
shear stress γ ∈ H−1(div, Ω) reads

(1.2) γ = λt−2(∇ω − φ).
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This plate theory has become a popular plate bending model in the engineering
community due to its simplicity and effectiveness. However, a direct finite ele-
ment approximation usually yields poor numerical results, i.e. they are too small
compared with the continuous solutions. Such a phenomenon is usually referred
to as shear-locking. To weaken or even overcome the locking, many methods have
been proposed, most of them can be regarded as reduction integration methods
[2, 4, 9, 11, 10, 14, 16, 19, 22, 23, 29, 32, 26, 24]. Among others, the MITC method
is an efficient and popular one [11, 9, 10, 14, 16, 19, 24]. So far, most of the MITC
plate bending elements proposed and analyzed in literature are restricted to the
affine meshes, namely, the triangular and parallelogram meshes. Needless to say,
the quadrilateral meshes are more flexible than the rectangular or parallelogram
ones, especially when a domain with a curved boundary is considered. Therefore,
the quadrilateral elements are important in theory and applications and deserve a
careful study.

In [11], Brezzi, Bathe and Fortin have proposed five conditions (hereafter Brezzi-
Bathe-Fortin conditions) for the stability and convergence of the MITC elements
defined on the affine meshes. Since the commutative property of the mixed finite
element methods for the second order elliptic problem is invalid for the general
quadrilateral meshes, the second and fourth conditions no longer hold for this case.

The first aim of this paper is to generalize the Brezzi-Bathe-Fortin conditions to
the quadrilateral meshes by weakening the second and fourth conditions. Thanks
to these general conditions and the discrete Helmholtz decomposition established,
we obtain error estimates in an abstract setting for the limit problem with the plate
thickness t = 0 and the general case with t > 0.

The second aim of this paper is to generalize four classes of rectangular MITC
elements proposed in [29] to the quadrilateral meshes and develop their h-p error
estimates in both energy and L2 norm. We show that the convergence rates for three
classes of these quadrilateral elements depend on the mesh distortion parameter α.
Thus the loss of accuracy will be expected for these generalizations unless the
quadrilateral meshes satisfy the bi-section mesh condition from [27]. Importantly,
we prove that one class of these quadrilateral elements yields optimal error estimates
with respect to the meshsize h uniformly in α in energy norm.

This paper is organized as follows. Next, we introduce the notation in Section 2.
In Section 3, we list the quadrilateral version of the Brezzi-Bathe-Fortin conditions
and present the discrete problem in an abstract setting. In Section 4, we check the
stability and convergence of the discrete problem with t = 0. In Section 5, after
showing the discrete Helmholtz decomposition, we examine the well-posedness of
the discrete problem with t > 0, and prove their error estimates based on the
generalized Brezzi-Bathe-Fortin conditions. In Sections 6, 7 and 8, we generalize
the rectangular MITC elements proposed in [29] to the quadrilateral meshes, and
address the h-p error estimates. For completeness and also compactness, we give
the h-p error analysis of the reduction operator and other interpolation operators
over the quadrilateral meshes in the appendix, namely, in Section A and Section B.

In this paper, the generic constant C is assumed to be independent of the plate
thickness t, the mesh size h and the degree of polynomials k. However, it may
depend on the regularity index m in general.
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2. Notation

This section presents the definitions of notation. Let Ω denote the region occu-
pied by the plate. Assume that Ω is a convex polygon with the boundary ∂Ω. We
use the standard notation and definition for the Sobolev spaces Hs(Ω) for s ≥ 0
[1], the boldface Hs(Ω) denotes the corresponding vector-valued function space;
this rule is applicable to the others spaces, unknowns and operators. The standard
associated inner product is denoted by (·, ·)s, and the norm by ‖ · ‖s with |·|s the
seminorm, respectively. For s = 0, Hs(Ω) coincides with L2(Ω). In this case, the
norm and inner product are denoted by ‖·‖0 and (·, ·) respectively. As usual, Hs

0(Ω)
is the subspace of Hs(Ω) with vanishing trace on ∂Ω. Let L2

0(Ω) be the set of all
L2(Ω) functions with zero integral mean. Denote H−1(Ω) the dual space of H1

0 (Ω)
equipped with the norm ‖ · ‖−1.

Throughout this paper, ω and φ = (φ1, φ2)t denote the transverse displacement
and the rotation of the fiber normal to Ω, respectively. g is the scaled transverse
loading function, λ = Ek/2(1+ν) is the shear modulus with E the Young modulus,
ν the Poisson ratio, and κ the shear correction factor. The bilinear form a(·, ·)
models the linear elastic energy and is defined by

a(φ, ψ) =
E

12(1 − ν2)

∫
Ω

((1 − ν)E(φ) : E(ψ) + ν∇ · φ∇ · ψ)dxdy,(2.1)

the linear Green strain E(φ) = 1
2 [∇φ +∇φT ] is the symmetric part of the gradient

field ∇φ.
We use the standard differential operators:

∇r =
(

∂r/∂x
∂r/∂y

)
, curlp =

(
∂p/∂y
−∂p/∂x

)
.

We denote the gradient operator on the reference element K̂ = [−1, 1]2 with respect
to (ξ, η) ∈ K̂ by ∇̂. For a vector function ψ = (ψ1, ψ2), define

div ψ = ∂ψ1/∂x + ∂ψ2/∂y, rotψ = ∂ψ2/∂x − ∂ψ1/∂y.

We also need the vector spaces

H0(rot, Ω) = { q ∈ L2(Ω), rotq ∈ L2(Ω), q · t = 0 on ∂Ω },
where t denotes as the unit tangent to ∂Ω, and

H(div, Ω) = { q ∈ L2(Ω), div q ∈ L2(Ω) },
which are endowed with the norms, respectively,

‖q‖H(rot) = (‖q‖2
0 + ‖ rot q‖2

0)
1/2

and
‖η‖H(div) = (‖η‖2

0 + ‖ div η‖2
0)

1/2.

Let Jh be a partition of Ω into convex quadrilaterals. Define h: = maxK∈Jh hK

where hK is the diameter of K for each K ∈ Jh. The usual regularity for Jh is
assumed in the sense of Ciarlet and Raviart [15, pp. 247], the quasi-uniformity of
Jh is also assumed. We denote the distance between the midpoints of two diagonals
of K by dK , and assume Jh to satisfy the (1 + α)-section condition [25], i.e., dK is
of order O(h1+α

K ) uniformly for all elements K as h tends to zero for 0 ≤ α ≤ 1. In
particular, we recover the bi-section condition [27] if α = 1.
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Figure 1. Quadrilateral K and the reference element K̂.

Remark 2.1. In practice, α can be greater than one with α = ∞ associated to
the parallelogram meshes. Since the methods under consideration will give optimal
error bounds in both energy and L2 norm for the case with α > 1 and the analysis
below covers this case, we restrict ourselves to considering the case of 0 ≤ α ≤ 1.

Given element K ∈ Jh with four nodes pi(xi, yi), i = 1, . . . , 4, let K̂ = [−1, 1]2

denote the reference element with nodes p̂i(ξi, ηi), i = 1, . . . , 4. Define the bilinear
transformation FK : K̂ → K by

x =
4∑

i=1

xiNi(ξ, η), y =
4∑

i=1

yiNi(ξ, η), (ξ, η) ∈ K̂,

with Ni(ξ, η), i = 1, 2, 3, 4 the bilinear basis functions, which read

N1(ξ, η) =
1
4
(1 − ξ)(1 − η), N2(ξ, η) =

1
4
(1 + ξ)(1 − η),

N3(ξ, η) =
1
4
(1 + ξ)(1 + η), N4(ξ, η) =

1
4
(1 − ξ)(1 + η).

Define ⎛⎜⎜⎝
c0 d0

c1 d1

c2 d2

c12 d12

⎞⎟⎟⎠ =
1
4

⎛⎜⎜⎝
1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1

⎞⎟⎟⎠
⎛⎜⎜⎝

x1 y1

x2 y2

x3 y3

x4 y4

⎞⎟⎟⎠ .

Then the Jacobian matrix of the bilinear transformation FK can be expressed as

DFK =

(
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

)
=

(
c1 + c12η c2 + c12ξ
d1 + d12η d2 + d12ξ

)
with the determinant JK(ξ, η) = J0,K + J1,Kξ + J2,Kη, where J0,K = c1d2 − c2d1,
J1,K = c1d12 − c12d1, J2,K = c12d2 − c2d12, and its inverse is

DF−1
K =

(
∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

)
=

1
JK(ξ, η)

(
d2 + d12ξ − c2 − c12ξ
−d1 − d12η c1 + c12η

)
.
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In terms of the aforementioned mesh parameters, dK = O(h1+α
K ) implies

|c12| + |d12| ≤ Ch1+α,(2.2)
|J1,K | + |J2,K | ≤ Ch2+α,(2.3)

|∇̂JK | ≤ Ch1+α.(2.4)

For an edge Êi of K̂ we let Ei = FK(Êi), i = 1, . . . , 4, be the corresponding edge
of K. The unit tangents of Ei and Êi are denoted by ti and t̂i, respectively.

3. Quadrilateral finite element approximations and sufficient

conditions for the stability and convergence

This section defines the discrete problem in an abstract setting and presents the
generalized Brezzi-Bathe-Fortin conditions.

Assume now that we are given finite element subspaces Θh ⊂ H1
0(Ω) and

Wh ⊂ H1
0 (Ω) over the quadrilateral partition Jh. To overcome locking, a com-

mon procedure is to somehow reduce the influence of the shear energy. We consider
here the case in which the reduction is carried out in the following way: we assume
that we are given a third finite element space Γh, and a linear operator Rh which
is defined on the space H0(rot, Ω) ∩ H1(Ω) and takes values in Γh. Then we use
Rh(∇ωh − φh) instead of ∇ωh − φh. For simplicity we consider the case where

Rh∇wh = ∇wh, ∀wh ∈ Wh(3.1)

and

‖Rhψ‖1 ≤ C‖ψ‖1, ∀ψ ∈ H1
0(Ω).(3.2)

For the limit problem with t = 0, the discrete problem reads

Problem 3.1. Find (ωh, φh) ∈ Wh × Θh such that

(3.3)

{
a(φh, ψ) + (γh, Rhψ −∇v) = (g, v), ∀ψ ∈ Θh, ∀v ∈ Wh,

Rhφh = ∇ωh.

For the general problem with t > 0, the discrete problem can be stated as

Problem 3.2. Find (ωh, φh) ∈ Wh × Θh such that

a(φh, ψ) + (γh,∇v − Rhψ) = (g, v), ∀(v, ψ) ∈ Wh × Θh,(3.4)

where

(3.5) γh = λt−2(∇ωh − Rhφh).

For the stability and convergence of the discrete problem, Brezzi, Bathe and
Fortin have proposed five conditions in the case of the rectangular meshes [11].
In what follows, we generalize these Brezzi-Bathe-Fortin conditions to the general
quadrilateral meshes by weakening the second and fourth conditions.

Condition 1. The gradient field of the discrete displacement space is included in
the discrete shear force space, i.e.,

∇Wh ⊂ Γh.
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Condition 2. There exist two auxiliary spaces Qh and Q1,h which are related to
each other in the following way:

Qh = {q ∈ L2
0(Ω), q |K= q̂(F−1

K (x)), q̂ ∈ Q(K̂), ∀K ∈ Jh},(3.6)

Q1,h = {q ∈ L2(Ω), q |K=
J0,K q̂(F−1

K (x))
JK

, q̂ ∈ Q(K̂), ∀K ∈ Jh},(3.7)

where Q(K̂) is some polynomial space over K̂. The reduction operator Rh is defined
in such a way that

(rot(φ − Rhφ), q) = 0, ∀q ∈ Qh, ∀φ ∈ H(rot, Ω).(3.8)

Moreover,the following inclusion relation holds for the rotation field of the discrete
shear force space and the auxiliary space Q1,h,

rotΓh ⊂ Q1,h.(3.9)

Condition 3. The space pair (Θh, Qh) is stable for the Stokes problem in the
sense that we have the discrete inf-sup condition

inf
q∈Qh

sup
η∈Θh

(rotη, q)
‖η‖1‖q‖0

≥ β(h, k).(3.10)

In addition, we assume there exists a constant C(k) > 0 which only depends on k
such that

lim
h→0

β(h, k) = C(k),(3.11)

with k the degree of the polynomials in consideration.

Remark 3.3. For example, the schemes in Section 6 admit β(h, k) = Ck−1/2

1+hαk5/2 .
Therefore, β(h, k) tends to Ck−1/2 = C(k) when h goes to zero and k is fixed.

Condition 4. The space pair (Γh,Qh) is stable for the second order elliptic prob-
lem in the sense that the following discrete problem admits a unique solution: Find
(α, p) ∈ Γh ×Qh such that

(α, s) − (rot s, p) = (f, s), ∀s ∈ Γh,

(rotα, m) = (g, m), ∀m ∈ Qh.

Condition 5. We have

{δh ∈ Γh, rot δh = 0} ⊂ ∇Wh.

4. Abstract error analysis for the limit problem

This section presents the error analysis for the finite element methods with Con-
ditions 1–5 for the limit problem with t = 0.

For our analysis, we first need the following result which is related to the discrete
Helmholtz decomposition on the quadrilateral meshes.

Theorem 4.1. For any σ ∈ Γh, if

(rotσ, q0) = 0, ∀q0 ∈ Qh,(4.1)

then, it holds that

rotσ = 0.(4.2)
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Proof. With Condition 2, one can assume that rotσ has the form

q |K= rotσ |K=
qK

JK
, ∀K ∈ Jh,

where qK = q̂K(F−1
K (x)) with q̂K ∈ Q(K̂). Set

q0 |K=
qK

J0,K
− C0

with

C0 =
1

| Ω |
∑

K∈Jh

∫
K

qK

J0,K
dxdy.

By virtue of q ∈ L2
0(Ω), we have

0 = (rotσ, q0) =
∑

K∈Jh

(
qK

JK
,

qK

J0,K
− C0)K

=
∑

K∈Jh

(
qK

JK
,

qK

J0,K
)K ≥

∑
K∈Jh

CK(
qK

J0,K
,

qK

J0,K
)K .

Here we use the regularity CKJK ≤ J0,K of the mesh with the positive constant
CK depending on the geometry of each element K. This leads to

qK = 0, ∀K ∈ Jh,

which completes the proof. �

Let us go to the limit problem and its discrete counterpart which we state here
for the convenience of the reader:{

a(φ, ψ) + (γ, ψ −∇v) = (g, v), ∀ψ ∈ H1
0(Ω), ∀v ∈ H1

0 (Ω),
φ = ∇ω,

(4.3) {
a(φh, ψ) + (γh, Rhψ −∇v) = (g, v), ∀ψ ∈ Θh, ∀v ∈ Wh,

Rhφh = ∇ωh.
(4.4)

A direct consequence of Theorem 4.1 is the following error estimates for the limit
problem.

Theorem 4.2. Let the finite element method satisfy Conditions 1–5, and let (φ, ω)
and (φh, ωh) be the solutions to Problem (4.3) and Problem (4.4), respectively. Then

‖φh − φ‖1 ≤ C

(
sup

ψ∈Θh

(γ, ψ − Rhψ)
‖ψ‖1

+ inf
ψ∈Θh

‖φ − ψ‖1

)
,(4.5)

‖∇ω −∇ωh‖0 ≤ C
(
‖φ − Rhφ‖0 + ‖φ − φh‖1

)
.(4.6)

Proof. We first recall by the Korn inequality that there exists a constant C such
that

a(ψ, ψ) ≥ C‖ψ‖2
1, ∀ψ ∈ Θh.

Now consider the following problem: Find (φI , pI) ∈ Θh ×Qh with

(∇φI ,∇ψ) − (pI , rotψ) = (∇φ,∇ψ), ∀ψ ∈ Θh,

(q, rotφI) = 0, ∀q ∈ Qh.
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Thanks to Condition 3 in the previous section and the mixed finite element theory
[13], there exist a unique solution to this problem with

‖φ − φI‖1 ≤ C inf
ψ∈Θh

‖φ − ψ‖1.(4.7)

We use Condition 2 to obtain

(rotRhφI , q) = (rotφI , q) = 0, ∀q ∈ Qh.

It follows from Theorem 4.1 that

rotRhφI = 0.

Since RhφI ∈ Γh, this identity and Condition 5 assert there exists a unique ωI ∈
Wh such that

∇ωI = RhφI .

We set εφ = φh − φI and εω = ωh − ωI to get

(4.8) Rhεφ = ∇εω.

Take, in both the limit problem and its discrete problem, ψ = εφ, v = 0 and ψ = 0,
v = εω, respectively, we then come to

a(φh − φ, εφ) + (γh, Rhεφ) − (γ, εφ) = 0,

(γh − γ,∇εω) = 0.
(4.9)

Combining (4.8) and (4.9) with Problem (4.3) and Problem (4.4), we derive that

C‖εφ‖2
1 ≤ a(εφ, εφ) = a(φh − φI , εφ)

= a(φh − φ, εφ) + a(φ − φI , εφ)

= (γ, εφ) − (γh, Rhεφ) + a(φ − φI , εφ)

= (γ, εφ − Rhεφ) + (γ − γh, Rhεφ) + a(φ − φI , εφ)

= (γ, εφ − Rhεφ) + (γ − γh,∇εω) + a(φ − φI , εφ)

= (γ, εφ − Rhεφ) + a(φ − φI , εφ),

which implies that

‖εφ‖1 ≤ C‖φ − φI‖1 + C sup
ψ∈Θh

(γ, ψ − Rhψ)
‖ψ‖1

.

Then (4.5) follows from (4.7) and the triangle inequality. (4.6) is a direct con-
sequence of (4.5), the following inequality and the boundedness of the operator
Rh.

‖∇(ω − ωh)‖0 = ‖φ − Rhφh‖0 ≤ ‖φ − Rhφ‖0 + ‖Rhφ − Rhφh‖0. �

Remark 4.3. This lemma and its proof are actually the quadrilateral version of
those from [11].
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5. Abstract error estimate for the general problem

In this section, we establish, in an abstract setting, error estimates for the finite
element methods satisfying Conditions 1–5 proposed in Section 3 for the general
problem with t > 0. Our analysis is based on the discrete Helmholtz decomposition
on the quadrilateral meshes (see Lemma 5.2 below). Therefore, throughout this
section, we assume that these five conditions are met by the finite element methods
used to discretize the Reissner-Mindlin plate problem.

5.1. An equivalent formulation of the R-M plate problem. For our anal-
ysis we shall make use of an equivalent formulation of the Reissner-Mindlin plate
equations proposed by Brezzi and Fortin in [12]. This formulation is derived from
Problem 1.1 by using the Helmholtz Theorem of decomposition of the shear stress
vector

γ = ∇r + curl p,(5.1)

with (r, p) ∈ H1
0 (Ω)×L2

0(Ω). Moreover, if γ ∈ H(div, Ω), then r ∈ H1
0 (Ω)

⋂
H2(Ω)

and p ∈ Ĥ1(Ω) := H1(Ω) ∩ L2
0(Ω), which admits the following estimate:

‖r‖2 + ‖p‖1 ≤ C‖γ‖H(div).(5.2)

Following [14], we introduce the auxiliary variable α = curl p, then Brezzi and
Fortin’s formulation for the Reissner-Mindlin plate can be rewritten as

Problem 5.1. Find (r, φ, p, α, ω) ∈ H1
0 (Ω)×H1

0(Ω)×L2
0(Ω)×H0(rot, Ω)×H1

0 (Ω),
such that

(∇r,∇v) = (g, v), ∀v ∈ H1
0 (Ω),(5.3)

a(φ, ψ) − (p, rotψ) = (∇r, ψ), ∀ψ ∈ H1
0(Ω),(5.4)

−(rotφ, q) − λ−1t2(rotα, q) = 0, ∀q ∈ L2
0(Ω),(5.5)

(α, δ) − (p, rot δ) = 0, ∀δ ∈ H0(rot, Ω),(5.6)

(∇ω,∇s) = (φ + λ−1t2∇r,∇s), ∀s ∈ H1
0 (Ω).(5.7)

It is classic to show that Problem 5.1 is equivalent to Problem 1.1. The existence
and uniqueness of the solution to Problem 5.1 can be found, for instance, in [12, 2].

Note that, for Problem 5.1, two Poisson problems (5.3) and (5.7) are decoupled
from the system, and the remaining part is a Stokes-like problem. To analyze it, we
define the two bilinear forms A : (H1

0(Ω)×H0(rot, Ω))×(H1
0(Ω)×H0(rot, Ω)) → R

and B : L2
0(Ω) × (H1

0(Ω) × H0(rot, Ω)) → R by

A(φ, α; ψ, δ) = a(φ, ψ) + λ−1t2(α, δ),

B(q; ψ, δ) = −(rotψ, q) − λ−1t2(rot δ, q).

Define the following norm:

|||ψ, δ|||2 = ‖ψ‖2
1 + t2‖δ‖2

0 + t4‖ rot δ‖2
0.

With this norm these two bilinear forms are bounded in the sense that

A(φ, α; ψ, δ) ≤ C|||φ, α||||||ψ, δ|||,
B(q; ψ, δ) ≤ C‖q‖0|||ψ, δ|||,
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with C independent of t. Then (5.4)-(5.6) can be rewritten as: Find (φ, α, p) ∈
H1

0(Ω) × H0(rot, Ω) × L2
0(Ω) such that

A(φ, α; ψ, δ) + B(p; ψ, δ) = (∇r, ψ), ∀(ψ, δ) ∈ H1
0(Ω) × H0(rot, Ω),(5.8)

B(q; φ, α) = 0, ∀q ∈ L2
0(Ω).(5.9)

The existence and uniqueness of the solution to this saddle problem can be easily
shown by the classic theory.

5.2. An equivalent formulation of the discrete problem. In this subsection,
we derive an equivalent formulation for the discrete problem under Conditions 1–5
from Section 3.

First we use Condition 4, Condition 5 and Theorem 4.1 to prove the following
discrete Helmholtz decomposition, on which our analysis is based.

Lemma 5.2. For any q ∈ Γh, there exist unique r ∈ Wh, p ∈ Qh and α ∈ Γh such
that

(5.10) q = ∇r + α, and (α, σ) = (rotσ, p), ∀σ ∈ Γh.

Proof. Consider the following mixed problem: Find (α, p) ∈ Γh ×Qh such that

(α, σ) − (rotσ, p) = 0, ∀σ ∈ Γh,

(rotα, m) = (rot q, m), ∀m ∈ Qh.

By virtue of Condition 4, this problem admits a unique solution, and it follows from
Theorem 4.1 that

rot(q − α) = 0.

Then Condition 5 concludes that there exists a unique r ∈ Wh such that q−α = ∇r,
which completes the proof. �

Using Condition 2 and this discrete Helmholtz decomposition and following the
line of [14], we can rewrite Problem 3.2 as the following equivalent form

Problem 5.3. Find (rh, φh, ph, αh, ωh) ∈ Wh × Θh ×Qh × Γh × Wh such that

(∇rh,∇v) = (g, v), ∀v ∈ Wh,(5.11)

a(φh, ψ) − (ph, rotψ) = (∇rh, Rhψ), ∀ψ ∈ Θh,(5.12)

−(rotφh, q) − λ−1t2(rotαh, q) = 0, ∀q ∈ Qh,(5.13)

(αh, δ) − (ph, rot δ) = 0, ∀δ ∈ Γh,(5.14)

(∇ωh,∇s) = (Rhφh + λ−1t2∇rh,∇s), ∀s ∈ Wh.(5.15)

Similar to (5.4)-(5.6), for the discrete problem, (5.12)-(5.14) can be rewritten as:
Find (φh, αh, ph) ∈ Θh × Γh ×Qh such that

A(φh, αh; ψ, δ) + B(ph; ψ, δ) = (∇rh, Rhψ), ∀(ψ, δ) ∈ Θh × Γh,(5.16)

B(q; φh, αh) = 0, ∀q ∈ Qh.(5.17)
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5.3. The well-posedness of the discrete problem and error estimates. In
this subsection, we consider the well-posedness of the discrete problem and the error
estimates. Since the two discrete Poisson equations (5.11) and (5.15) are decoupled
from the system, we only need to check the well-posedness of the discrete problem
(5.16)-(5.17). By the mixed finite element theory from [13], the well-posedness of
(5.16)-(5.17) hangs on the following two assumptions which we will examine below.

(1) K-ellipticity. There exists a constant C > 0 such that

A(ψ, δ; ψ, δ) ≥ C|||ψ, δ|||2,(5.18)

for all

(ψ, δ) ∈ Zh = {(ψ, δ) ∈ Θh × Γh,B(q; ψ, δ) = 0, ∀q ∈ Qh}
= {(ψ, δ) ∈ Θh × Γh, rotRhψ = −λ−1t2 rot δ}.

(2) B-B condition. There exists a constant β(h, k) such that

sup
(ψ,δ)∈Θh×Γh

B(q; ψ, δ)
|||ψ, δ||| ≥ β(h, k)‖q‖0, ∀q ∈ Qh.(5.19)

In order to prove the K-ellipticity condition (5.18), we need the following result

Lemma 5.4. There exists a constant C independent of h and k such that

‖ rotRhψ‖0 ≤ C‖ rotψ‖0, ∀ψ ∈ H1
0(Ω).(5.20)

Proof. With Condition 2 in Section 3, we have for the reduction operator Rh,

(rotRhψ, q0) = (rotψ, q0), ∀q0 ∈ Qh.

Again from Condition 2, one can assume that

q |K= rotRhψ|K =
qK

JK
, ∀K ∈ Jh,

with qK = q̂K(F−1
K (x)) and q̂K ∈ Q(K̂). Similar to the proof of Theorem 4.1, we

set

q0 |K=
qK

J0,K
− C0, with C0 =

1
| Ω |

∑
K∈Jh

∫
K

qK

J0,K
dxdy

and

q1 |K=
qK

J0,K
.

Applying the Cauchy and Holder inequalities,

‖q0‖2
0 ≤ 2[

∫
Ω

q2
1dxdy + C2

0 | Ω |]

≤ 2[C
∫

Ω

q2dxdy + C

∫
Ω

q2dxdy]

≤ C‖ rotRhψ‖2
0.
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By virtue of rot Rhψ ∈ L2
0(Ω) and the regularity CKJ0,K ≤ JK of the mesh with

the positive constant CK only depending on the geometry of each element K, we
have

(rotψ, q0) = (rotRhψ, q0) = (rotRhψ, q1)

≥
∑

K∈Jh

CK(
qK

JK
,
qK

JK
)K

≥ min
K∈Jh

(CK)‖ rotRhψ‖2
0 = C‖ rotRhψ‖2

0,

which, together with the bound of ‖q0‖0, implies that

‖ rotRhψ‖0 ≤ C‖ rotψ‖0,

which completes the proof. �

Then, we have the following result about the existence and uniqueness of the
solution to the discrete problem.

Theorem 5.5. Problem 5.3 admits a unique solution (rh, φh, ph, αh, ωh) ∈ Wh ×
Θh × Qh × Γh × Wh.

Proof. Since Θh ⊂ H1
0(Ω), the Korn inequality holds, then for all (ψ, δ) ∈ Zh, it

follows from the definition of the bilinear form A(·, ·; ·, ·) (see Subsection 5.1) and
the kernel space Zh that

A(ψ, δ; ψ, δ) ≥ C‖ψ‖2
1 + λ−1t2‖δ‖2

0

≥ C‖ψ‖2
1 + λ−1t2‖δ‖2

0 + C‖ rotψ‖2
0

≥ C(‖ψ‖2
1 + t2‖δ‖2

0 + ‖t2 rot δ‖2
0)

= C|||ψ, δ|||2.

(5.21)

Let δ = 0. We obtain with Condition 3 in the form of (3.10) and (3.11) that

sup
(ψ,δ)∈Θh×Γh

B(q; ψ, δ)
|||ψ, δ||| ≥ β(h, k)‖q‖0.(5.22)

Then one can use the mixed finite element theory from [13] to end the proof. �

We are now ready to prove the following abstract error bounds.
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Theorem 5.6. Let (r, φ, p, α, ω) ∈ H1
0 (Ω)×H1

0(Ω)×L2
0(Ω)×H0(rot, Ω)×H1

0 (Ω)
and (rh, φh, ph, αh, ωh) ∈ Wh × Θh × Qh × Γh × Wh be the solutions to Problem
5.1 and Problem 5.3, respectively. Let the shear force γ and its discrete counterpart
γh be defined in (1.2) and (3.5), respectively. Then,

‖∇r −∇rh‖0 ≤ C inf
v∈Wh

‖∇r −∇v‖0,(5.23)

|||φh − φ, αh − α||| + β(h, k)‖p − ph‖0

≤ C
1

β(h, k)

(
inf

(ψ,δ)∈Θh×Γh

|||φ − ψ, α − δ||| + inf
q∈Qh

‖p − q‖0(5.24)

+ sup
η∈Θh

| (∇rh, Rhη) − (∇r, η) |
‖η‖1

)
,

‖∇ωh −∇ω‖0 ≤ C( inf
v∈Wh

‖∇ω −∇v‖0 + ‖φ − Rhφh‖0(5.25)

+λ−1t2‖∇r −∇rh‖0),

‖α − αh‖−1 ≤ C

(
h inf

δ∈Γh

‖α − δ‖0 + ‖p − ph‖0

)
,(5.26)

‖γ − γh‖−1 ≤ C(‖r − rh‖0 + ‖α − αh‖−1),(5.27)

‖φh − φ‖1 + t‖αh − α‖0 + β(h, k)‖p − ph‖0

≤ C

β(h, k)
inf

ψh∈Θh

‖φ − ψh‖1 + Ct‖α − Rhα‖0(5.28)

+C

(
inf

q∈Qh

‖p − q‖0 + sup
η∈Θh

| (∇rh, Rhη) − (∇r, η) |
‖η‖1

)
.

Proof. Thanks to the equivalent formulations for the R-M plate problem and its
discrete problem, the well-posedness of the discrete problem in the form of (5.21)
and (5.22), we can prove (5.23)-(5.27) by the standard arguments; we refer the
readers to [13, 14] for further details.

Next, we only show the inequality (5.28). Given (v, s) ∈ Zh and q ∈ Qh, it
follows from (5.8), (5.16) and B(ph − q; v, s) = 0 that

A(φh − φ, αh − α; v, s)

= B(p − ph; v, s) + (∇rh, Rhv) − (∇r, v)

= B(p − q; v, s) + (∇rh, Rhv) − (∇r, v)

= −(rotv, p − q) − λ−1t2(rot s, p − q)

+ (∇rh, Rhv) − (∇r, v).

(5.29)

With this identity, we use the fact that (φh, αh) ∈ Zh and the K-ellipticity (5.21)
to derive as
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‖φh − ψ‖1 + t‖αh − δ‖0

≤
√

2
(
‖φh − ψ‖2

1 + t2‖αh − δ‖2
0 + ‖t2 rot(αh − δ)‖2

0

)1/2

=
√

2|||φh − ψ, αh − δ|||

≤ C sup
(v,s)∈Zh

A(φh − ψ, αh − δ; v, s)
|||v, s|||

≤ C sup
(v,s)∈Zh

A(φh − φ, αh − α; v, s)
|||v, s|||

+ C sup
(v,s)∈Zh

A(φ − ψ, α − δ; v, s)
|||v, s|||

≤ C inf
q∈Qh

‖p − q‖0 + C sup
η∈Θh

| (∇rh, Rhη) − (∇r, η) |
‖η‖1

+ C(‖φ − ψ‖1 + t‖α − δ‖0).

(5.30)

This and the triangle inequality lead to

‖φh − φ‖1 + t‖αh − α‖0 ≤ C inf
q∈Qh

‖p − q‖0 + C sup
η∈Θh

| (∇rh, Rhη) − (∇r, η) |
‖η‖1

+ C inf
(ψ,δ)∈Zh

(‖φ − ψ‖1 + t‖α − δ‖0).

(5.31)

We remain to estimate the last term in the above inequality. Owing to the discrete
B-B condition, for any v ∈ Θh and Rhα ∈ Γh, there exists (η, s) ∈ Θh × Γh such
that

B(q; η, s) = B(q; φ − v, α − Rhα), ∀q ∈ Qh.

Since B(q; φ, α) = 0, this implies that (η +v, s+Rhα) ∈ Zh. Taking into account
Condition 2, we get (rot(α−Rhα), q) = 0. In view of the definition of B(·; ·, ·), we
obtain

B(q; η, s) = −(rot(φ − v), q).

This and the discrete B-B condition (5.19) yield

|||η, s||| ≤ C

β(h, k)
‖φ − v‖1.

Taking ψ = η +v and δ = s+Rhα in (5.31), we apply the triangle inequality and
the above estimate to get

‖φh − φ‖1 + t‖αh − α‖0 ≤ C inf
q∈Qh

‖p − q‖0 + C sup
η∈Θh

| (∇rh, Rhη) − (∇r, η) |
‖η‖1

+
C

β(h, k)
inf

v∈Θh

‖φ − v‖1 + Ct‖α − Rhα‖0.



ANALYSIS FOR QUADRILATERAL MITC ELEMENTS 687

Given q ∈ Qh, it follows from the discrete B-B condition (5.22) that

‖ph − q‖0 ≤ C

β(h, k)
sup

(ψ,δ)∈Θh×Γh

B(ph − q; ψ, δ)
|||ψ, δ|||

≤ C

β(h, k)
sup

(ψ,δ)∈Θh×Γh

B(ph − p; ψ, δ)
|||ψ, δ|||

+
C

β(h, k)
sup

(ψ,δ)∈Θh×Γh

B(p − q; ψ, δ)
|||ψ, δ|||

≤ C

β(h, k)
(‖φh − φ‖1 + t‖αh − α‖0)

+
C

β(h, k)

(
sup

η∈Θh

| (∇rh, Rhη) − (∇r, η) |
‖η‖1

+ ‖p − q‖0

)
,

in the last inequality, we use equations (5.8) and (5.16). An application of the
triangle inequality yields the estimate for the pressure, which ends the proof of
(5.28). �

Remark 5.7. The importance of estimate (5.28) lies in the fact that term
t2 infδ∈Γh

‖ rot(α−δ)‖0 in (5.24) is dropped, which is crucial to obtain error bounds
independent of α in energy norm for Method 4 in Section 6, since the error bound
of t2 infδ∈Γh

‖ rot(α − δ)‖0 depends on α and cannot be improved [34, 5, 25, 18];
see also Lemma 7.8 (see, [18], for counterexamples).

Remark 5.8. It follows immediately from Theorem 4.2 and Theorem 5.6 that MITC
elements converge and are locking-free as long as these five conditions from Section
3 are met.

Remark 5.9. The framework can be used to analyze the first order quadrilateral
element proposed in [16]. With a corresponding modification due to the noncon-
formity, it can be easily extended to the first order nonconforming quadrilateral
elements [19, 24].

6. Four families of quadrilateral MITC elements

In this section, we generalize the rectangular MITC plate bending elements pro-
posed in [29] to the quadrilateral meshes.

We introduce some notation. As usual, for S ⊂ R2, we let Pk(S) denote the set
of polynomials of total degree ≤ k and Qk(S) the set of polynomials of degree ≤ k

in each variable. Moreover, Q
′

k(S) will denote the “trunk” or “serendipity” space
of polynomials [15].

The spaces Wh, Θh and Qh are defined as

Wh = {v ∈ H1
0 (Ω), v |K= v̂ ◦ F−1

K , v̂ ∈ Wk(K̂), ∀K ∈ Jh},
Θh = {ψ ∈ H1

0(Ω), ψ |K= ψ̂ ◦ F−1
K , ψ̂ ∈ Θk(K̂), ∀K ∈ Jh},

Qh = {q ∈ L2
0(Ω), q |K= q̂ ◦ F−1

K , q̂ ∈ Qk(K̂), ∀K ∈ Jh},

where Wk(K̂), Θk(K̂) and Qk(K̂), which shall be specified in the sequel, are poly-
nomial spaces on the reference element K̂.

The space Γh is defined in a slightly different way. Let

Γh = {q ∈ H0(rot, Ω), q |K∈ Γk(K), ∀K ∈ Jh},
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where the space Γk(K) is now defined from the space Γk(K̂) on the reference square
through the following “Piola transformation” for the operator “rot”:

Γk(K) = {σ, σ = DF−T
K σ̄ ◦ F−1

K , σ̄ ∈ Γk(K̂)}.
The reduction operator Rh is also defined locally on each element from the reduction
operator R̂K̂ defined on the reference element with the same transformation,

Rhσ |K= DF−T
K R̂K̂σ̄ ◦ F−1

K , for any σ ∈ H1(Ω),(6.1)

where σ̄ = DFT
Kσ̂ = DFT

Kσ ◦ FK .

Remark 6.1. For ease of presentation, here we assume that σ ∈ H1(Ω) in the
definition of the reduction operator Rh, this restriction can be relaxed to σ ∈
Lp(Ω)2∩H(rot, Ω) with p > 2; we refer readers to Section III 3.3 of [13] for further
details. Similarly, we assume the domain for the operator R̂K̂ is H1(K̂).

The properties of the “Piola transformation” for the operator “rot” are summa-
rized in the following Lemma [20, 18, 29].

Lemma 6.2. Let K be a convex quadrilateral of Jh and σ ∈ H1(K) be any vector-
valued function. Then

rotσ =
r̂ot σ̄

JK
,(6.2) ∫

K

rot σwdxdy =
∫

K̂

r̂ot σ̄ŵdξdη, ∀w ∈ L2(K),(6.3) ∫
E

σ · tds =
∫

Ê

σ̄ · t̂dŝ,(6.4)

with r̂ot σ̄ = ∂σ̄2/∂ξ − ∂σ̄1/∂η.

Four classes of rectangular plate bending elements have been proposed in [29],
we next present their quadrilateral versions, and prove that they satisfy those five
conditions proposed in Section 3. For brevity, we only give the full details of the
proof for Method 1 below since the others can be proved similarly.

Method 1. In this element, the pressure finite element space is chosen as

Qk(K̂) = Pk−1(K̂),(6.5)

and the rotation space reads

Θk(K̂) = (Qk(K̂) ∩ Pk+2(K̂))2.(6.6)

In this case, we choose Γk(K̂) as the following BDFM space [13],

Γk(K̂) = {σ̄, σ̄ ∈ Pk(K̂)\ span{ξk} × Pk(K̂)\ span{ηk}},(6.7)

and the reduction operator R̂K̂ is defined as∫
Ê

(R̂K̂σ̄ − σ̄) · t̂ŵdŝ = 0, ∀ŵ ∈ Pk−1(Ê) for every edge Ê of K̂,∫
K̂

(R̂K̂σ̄ − σ̄) · v̂dξdη = 0, ∀v̂ ∈ Pk−2(K̂)2,
(6.8)

for any σ̄ ∈ H1(K̂). It remains to select the deflection space, which can be chosen
as

Wk(K̂) = Qk(K̂) ∩ Pk+1(K̂).(6.9)
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In what follows, we will show Conditions 1–5 proposed in Section 3 for this class
of quadrilateral elements.

First, it is easy to see that Condition 1 and Condition 2 hold. Moreover, it is
proved in [18] that there exists a positive constant C such that the inf-sup condition

is valid with β(h, k) = C k− 1
2

1+hαk
5
2

for k ≥ 2, which implies Condition 3.

We now prove Condition 4. Given q ∈ Qh, We use Lemma 6.2 and the definition
of Rh in (6.1) to deduce

(rot(σ − Rhσ), q) =
∑

K∈Jh

∫
K

rot(σ − RKσ)qdxdy

=
∑

K∈Jh

∫
K̂

r̂ot(σ̄ − R̂K̂σ̄)q̂dξdη

= −
∑

K∈Jh

∑
Ê⊂∂K̂

∫
Ê

(σ̄ − R̂K̂σ̄) · t̂q̂dŝ

+
∑

K∈Jh

∫
K̂

(σ̄ − R̂K̂σ̄) · ĉurlq̂dξdη = 0.

(6.10)

Based on a scaling argument, one can prove that Rh is a bounded operator in the
sense that

(6.11) ‖Rhσ‖H(rot) ≤ C‖σ‖1, for any σ ∈ H1(Ω).

(6.10) and (6.11) are essentially two conditions for the Fortin technique [13]. With
these two conditions, one can show that the discrete B-B condition holds uniformly
for the space pair (Γh,Qh). In fact, for any q ∈ Qh, there exists ψ ∈ H1

0(Ω) with

(6.12) rot ψ = q, and ‖ψ‖1 ≤ C‖q‖0.

This, together with (6.10) and (6.11), leads to

‖q‖0 =
(rotψ, q)

‖q‖0
=

(rotRhψ, q)
‖q‖0

≤ C
(rotRhψ, q)

‖ψ‖1

≤ C
(rotRhψ, q)
‖Rhψ‖H(rot)

≤ C sup
σ∈Γh

(rotσ, q)
‖σ‖H(rot)

.

(6.13)

On the other hand, it follows from Theorem 4.1 that

(6.14) ‖σ‖0 = ‖σ‖H(rot)

for any
σ ∈ {δ ∈ Γh, (rot δ, q) = 0, ∀δ ∈ Qh}.

This completes the proof of Condition 4.
It remains to show that Condition 5 holds. In fact, the condition rotσ = 0

readily implies that
σ = ∇w, for some w ∈ H1

0 (Ω).

In particular, the condition w = 0 on ∂Ω comes from the property σ · t = 0 on ∂Ω.
What we have to check is that such a w actually belongs to Wh defined by (6.9).
In fact, on the reference element K̂, σ̄ belongs to Γk(K̂), therefore ŵ has to belong
to Wk(K̂) on K̂.
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Method 2. In this method, Wh, Qh and Γh are the same as in Method 1 with
a different choice of the rotation space, which reads as

Θk(K̂) = Qk(K̂)2.(6.15)

As it was pointed out in [29], that compared with the first method this choice will
lead to O(k2) more degrees of freedom. Since the two methods have the same order
of convergence, the first appears to be preferable.

Method 3. The spaces for the rotation and the auxiliary pressure are chosen
as in Method 1. However, we take the following BDM space [13],

(6.16) Γk(K̂) = {σ̄, σ̄ ∈ Pk(K̂)2 ⊕ span{∇(ξηk+1)} ⊕ span{∇(ξk+1η)}},
as the shear force space with the reduction operator defined by∫

Ê

(R̂K̂σ̄ − σ̄) · t̂ŵdŝ = 0, ∀ŵ ∈ Pk(Ê) for every edge Ê of K̂,∫
K̂

(R̂K̂σ̄ − σ̄) · v̂dξdη = 0, ∀v̂ ∈ Pk−2(K̂)2.
(6.17)

Therefore, the deflection space has to be selected as

Wk(K̂) = Q′
k+1(K̂).(6.18)

Here and throughout this paper, Q′
k+1(K̂) denotes the “trunk” or “serendipity”

space of polynomials over K̂ [15].
The last method proposed in [29] is tailored to be a real quadrilateral method,

for which we shall show that the convergence rate is independent of the distortion
parameter α of the mesh.

Method 4. Here, we take the pressure and the rotation spaces as

Qk(K̂) = Qk−1(K̂),(6.19)

Θk(K̂) = {ψ ∈ Qk+1(K̂)2, ψ |Ê∈ Pk(Ê)2 for every edge Ê of K̂}.(6.20)

It is easy to see that Qk(K̂)2 ⊂ Θk(K̂). The corresponding space for the shear
force is the following R-T space:

Γk(K̂) = {σ̄, σ̄ ∈ Qk−1,k(K̂) × Qk,k−1(K̂)},(6.21)

with the reduction operator defined by∫
Ê

(R̂K̂σ̄ − σ̄) · t̂ŵdŝ = 0, ∀ŵ ∈ Pk−1(Ê) for every edge Ê of K̂,∫
K̂

(R̂K̂σ̄ − σ̄) · v̂dξdη = 0, ∀v̂ ∈ Qk−1,k−2(K̂) × Qk−2,k−1(K̂).
(6.22)

The space for the deflection is selected as

Wk(K̂) = Qk(K̂).(6.23)

7. Energy norm error estimates

In this section, we present an error analysis in energy norm for the quadrilateral
MITC elements defined in the previous section.

Throughout this section, we assume that the following regularity holds for the
solution

φ ∈ H1
0(Ω) ∩ Hm(Ω) , r, ω ∈ H1

0 (Ω) ∩ Hm(Ω) , p ∈ Hm−1(Ω) , α ∈ Hm−1(rot, Ω).
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Let Πh the usual Lagrangian interpolation operator from H2(Ω) ∩ H1
0(Ω) to

Θh, let Πh be the L2 projection operator from L2(Ω) to Qh and let Πω
h be the

Lagrangian interpolation operator from H2(Ω) ∩ H1
0 (Ω) to Wh.

7.1. Error estimates for some operators. Here and in Section 8, we will fre-
quently use the error estimates for the reduction operator Rh, the H1-projection
operators Πh and Πω

h , and the L2-projection operator Πh. This subsection presents
these estimates without proof for compactness. For completeness, we will provide
their corresponding error analysis in the appendix, namely, Sections A and B.

For the BDFM elements from Method 1 of Section 6, we have the following L2

error estimates.

Lemma 7.1. Let the reduction operator Rh be defined by (6.1) and (6.8) for the
BDFM elements in Method 1 of Section 6. Assume σ ∈ Hm−1(Ω). Then,

‖σ − Rhσ‖0 ≤ Cεk
−m+3/2+εhµ+(1+[ µ

2 ])(α−1)‖σ‖m−1, µ > 2,

‖σ − Rhσ‖0 ≤ Cεk
−m+3/2+εhµ−1+α‖σ‖m−1, µ = 1, 2,

(7.1)

where µ = min(m − 1, k) and Cε depends on 0 < ε < m − 3/2.

Proof. The proof is given in Lemma A.4 below. �

Remark 7.2. In Lemma 7.1 and other places, Cε indicates that the constant depends
on the parameter ε. Given ε > 0, this dependence is from the imbedding theorem,

‖u‖0,∂Ω ≤ Cε‖u‖ 1
2+ε,Ω, for any u ∈ H

1
2+ε(Ω).

Similarly, one can prove the following L2 error estimates for the BDM elements
from Method 3 based on the analog to (A.4) from [29, Remark 5.2].

Lemma 7.3. Let the reduction operator Rh be defined by (6.1) and (6.17) for the
BDM elements in Method 3 of Section 6. Assume σ ∈ Hm−1(Ω). Then,

‖σ − Rhσ‖0 ≤ Cεk
−m+3/2+εhµ+(1+[ µ

2 ])(α−1)‖σ‖m−1, µ > 2,

‖σ − Rhσ‖0 ≤ Cεk
−m+3/2+εhµ−1+α‖σ‖m−1, µ = 1, 2,

(7.2)

where µ = min(m − 1, k) and Cε depends on 0 < ε < m − 3/2.

We have the following L2 error estimates of the reduction operator Rh for the
R-T elements.

Lemma 7.4. Let σ ∈ Hm−1(Ω) and the reduction operator Rh be defined by (6.1)
and (6.22) for the R-T elements in Method 4 of Section 6. Then,

‖σ − Rhσ‖0 ≤ Ck−m+3/2hµ‖σ‖m−1, if m − 1 < µ + 1,

‖σ − Rhσ‖0 ≤ Ck−m+3/2hµ+(1+[ µ
2 ])(α−1)‖σ‖m−1, if m − 1 ≥ µ + 1,

(7.3)

with µ = min(m − 1, k).

Proof. We refer the interested readers to Lemma A.6 for the proof. �

Remark 7.5. Notice from Lemma 7.4 that if m−1 = k, we get optimal error bounds
for the interpolation operator of the R-T elements with respect to the meshsize h.

We now consider the H(rot) error estimates for the reduction operators Rh. For
the BDFM elements in Method 1 of Section 6, we have
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Lemma 7.6. Let the reduction operator Rh be defined by (6.1) and (6.8), and
σ ∈ Hm−1(rot, Ω). Then,

‖ rotσ − rotRhσ‖0 ≤ Ck−m+1hµ+(1+[ µ
2 ])(α−1)‖σ‖Hm−1(rot), µ ≥ 3,(7.4)

‖ rotσ − rotRhσ‖0 ≤ Ck−m+1hµ−1+α‖σ‖Hm−1(rot), µ = 1, 2,(7.5)

where µ = min(m − 1, k).

Proof. The proof can be found in Lemma B.2 �
Similarly, we have the following result for the BDM elements in Method 3 of

Section 6.

Lemma 7.7. Let the reduction operator Rh be defined by (6.1) and (6.17), and
σ ∈ Hm−1(rot, Ω). Then,

‖ rotσ − rotRhσ‖0 ≤ Ck−m+1hµ+(1+[ µ
2 ])(α−1)‖σ‖Hm−1(rot), µ ≥ 3,

‖ rotσ − rotRhσ‖0 ≤ Ck−m+1hµ−1+α‖σ‖Hm−1(rot), µ = 1, 2,
(7.6)

where µ = min(m − 1, k).

For the R-T elements, we have the following H(rot) error estimates.

Lemma 7.8. Let rotσ ∈ Hm−1(Ω) and Rh be defined by (6.1) and (6.22) for the
R-T elements in Method 4 of Section 6. Then,

‖ rot(σ − Rhσ)‖0 ≤ Ck−m+1hµ+α−1‖σ‖Hm−1(rot), m − 1 < µ + 1,

‖ rot(σ − Rhσ)‖0 ≤ Ck−m+1hµ+(1+[ µ
2 ])(α−1)‖σ‖Hm−1(rot), m − 1 ≥ µ + 1,

(7.7)

with µ = min(m − 1, k).

Proof. See Lemma B.4 for the details of the proof. �
Remark 7.9. Note from Lemma 7.8 that the H(rot)-norm error estimates of inter-
polations of R-T elements depend on α. The counterexamples from [18] show that
this result cannot be improved.

In the rest of this subsection, we are concerned with the error estimates of the
H1-projection operators Πh and Πω

h , and the L2-projection operator Πh. The
proof of the following two lemmas can be found in Lemma B.5 and Lemma B.6,
respectively.

Lemma 7.10. Let the discrete rotation space Θh be defined in Method 1, or in
Method 2, or in Method 3, of Section 6, and let Πh be the usual H1-projection
operator from H2(Ω) ∩ H1

0(Ω) to Θh. Then,

‖Πhψ − ψ‖s ≤ Ck−m+shµ+[ 1+µ
2 ](α−1)−s‖ψ‖m,(7.8)

for any ψ ∈ Hm(Ω) ∩ H1
0(Ω) with m ≥ 2. Where s = 0, 1, µ = min(k + 1, m).

Lemma 7.11. Let the discrete rotation space Θh be defined in Method 4 of Section
6, and let Πh be the usual H1-projection operator from H2(Ω) ∩ H1

0(Ω) to Θh.
Then,

‖Πhψ − ψ‖s ≤ Ck−m+shµ−s‖ψ‖m, if m < µ + 1,

‖Πhψ − ψ‖s ≤ Ck−m+shµ+[ 1+µ
2 ](α−1)−s‖ψ‖m, if m ≥ µ + 1,

(7.9)

for any ψ ∈ Hm(Ω) ∩ H1
0(Ω) with m ≥ 2, µ = min(m, k + 1) and s = 0, 1.
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Remark 7.12. One can prove the analogous results of Lemma 7.10 and Lemma 7.11
for operators Πω

h and Πh:
(1) Let the space Wh and Qh be defined in Method 1, or in Method 2, or in

Method 3 of Section 6. Let Πω
h be the usual H1-projection operator from H2(Ω)∩

H1
0 (Ω) to Wh, and let Πh be the L2 projection operator from L2(Ω) onto Qh. Then,

‖Πω
hψ − ψ‖s ≤ Ck−m+shµ+[ 1+µ

2 ](α−1)−s‖ψ‖m,(7.10)

‖Πhq − q‖0 ≤ Ck−m+1hµ−1+[ µ
2 ](α−1)‖q‖m−1,(7.11)

for any ψ ∈ Hm(Ω) ∩ H1
0 (Ω) and q ∈ L2

0(Ω) ∩ Hm−1(Ω) with m ≥ 2, s = 0, 1,
µ = min(k + 1, m).

(2) Let Πω
h and Πh be the corresponding operators with the spaces Wh and Qh

from Method 4. Then,

‖Πω
hψ − ψ‖s ≤ Ck−m+shµ−s‖ψ‖m, if m < µ + 1,

‖Πω
hψ − ψ‖s ≤ Ck−m+shµ+[ 1+µ

2 ](α−1)−s‖ψ‖m, if m ≥ µ + 1,(7.12)

‖Πhq − q‖0 ≤ Ck−m+1hµ−1‖q‖m−1, if m < µ + 1,

‖Πhq − q‖q ≤ Ck−m+1hµ−1+[ µ
2 ](α−1)‖q‖m−1, if m ≥ µ + 1,(7.13)

for any ψ ∈ Hm(Ω) ∩ H1
0 (Ω) and q ∈ L2

0(Ω) ∩ Hm−1(Ω) with m ≥ 2, µ =
min(m, k + 1), s = 0, 1.

7.2. The estimate of (∇r,Rhη − η). This subsection presents the analysis for
the consistency term (∇r, Rhη − η).

For the BDFM elements, we have

Lemma 7.13. Let r ∈ Hm(Ω), η ∈ H1(Ω) ∩ H0(rot, Ω), and Rh be defined by
(6.1) and (6.8) for the BDFM elements. Then,

(7.14) | (∇r, Rhη − η) |≤ Cεk
−m+3/2+εhµ+[ µ+1

2 ](α−1)+α‖r‖m‖η‖1,

where µ = min(m − 2, k − 1) and Cε depends on 0 < ε < 1/2.

Proof. In this case, we define

ΘP
k−2(J

h) := {ψ ∈ L2(Ω)2, ψ|K = ψ̂ ◦ F−1
K , ψ̂ ∈ Pk−2(K̂)2, ∀K ∈ Jh}.

Let ΠP
k−2 denote the piecewise L2 projection operator from L2(Ω)2 onto ΘP

k−2(Jh),
we have the following decomposition:

(∇r, Rhη − η) = (∇r − ΠP
k−2∇r, Rhη − η) + (ΠP

k−2∇r, Rhη − η) = I1 + I2.

Proceeding along the same line of Lemma 7.10 (see, Lemma B.5), one can prove

‖∇r − ΠP
k−2∇r‖0 ≤ Ck−m+2hµ+[ µ+1

2 ](α−1)‖∇r‖m−2,

with µ = min(m − 2, k − 1). An application of Lemma 7.1 yields

|I1| ≤ Cεk
−m+3/2+εhµ+[ µ+1

2 ](α−1)+α‖r‖m‖η‖1,

with Cε depending on 0 < ε < 1/2.
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We now turn to the term I2. Let MK(ξ, η) = JKDF−T
K such that we have

I2 =
∑

K∈Jh

∫
K

ΠP
k−2∇r · (Rhη − η)dxdy

=
∑

K∈Jh

∫
K̂

̂ΠP
k−2∇r · MK(ξ, η)(R̂K̂ η̄ − η̄)dξdη

=
∑

K∈Jh

∫
K̂

̂ΠP
k−2∇r · MK(0, 0)(R̂K̂ η̄ − η̄)dξdη∫

K̂

+ ̂ΠP
k−2∇r · (MK(ξ, η) − MK(0, 0))(R̂K̂ η̄ − η̄)dξdη = I3 + I4.

It follows from the definition of R̂K̂ that I3 = 0. A straightforward investigation
gives

‖[MK(ξ, η) − MK(0, 0)]‖F ≤ Ch1+α,

where ‖ · ‖F is the Frobenius matrix norm.

Let Π̂
P

k−3 denote the L2 projection operator from L2(K̂)2 onto the space
Pk−3(K̂)2. With the definition of Mk(ξ, η), we have MT

k (ξ, η)v̂ ∈ Pk−2(K̂)2 for
any v̂ ∈ Pk−3(K̂)2. This and the definition of R̂K̂ (6.8) lead to

|I4| = |
∑

K∈Jh

∫
K̂

̂ΠP
k−2∇r · (M(ξ, η) − MK(0, 0))(R̂K̂ η̄ − η̄)dξdη|

= |
∑

K∈Jh

∫
K̂

( ̂ΠP
k−2∇r − Π̂

P

k−3
̂ΠP
k−2∇r) · (MK(ξ, η)−MK(0, 0))(R̂K̂ η̄−η̄)dξdη|

≤ Ch1+α
∑

K∈Jh

‖ ̂ΠP
k−2∇r − Π̂

P

k−3
̂ΠP
k−2∇r‖0,K̂‖R̂K̂ η̄ − η̄‖0,K̂ .

Based on Lemma 7.1, a similar argument in Lemma 7.10 (see Lemma B.5) proves

|I4| ≤ Ch1+αk−m+2
∑

K∈Jh

inf
v̂∈Pk−3×Pk−3

‖ ̂ΠP
k−2∇r − v̂‖m−2,K̂‖R̂K̂ η̄ − η̄‖0,K̂

≤ Cεk
−m+3/2+εhµ1+[

µ1+1
2 ](α−1)+1+2α‖r‖m‖η‖1,

with µ1 = min(m − 2, k − 2). This completes the proof. �
Similarly, we have the following result for the BDM elements.

Lemma 7.14. Let r ∈ Hm(Ω), η ∈ H1(Ω)∩H0(rot, Ω), and let Rh be defined by
(6.1) and (6.17) for the BDFM elements. Then,

| (∇r, Rhη − η) |≤ Cεk
−m+3/2+εhµ+[ µ+1

2 ](α−1)+α‖r‖m‖η‖1,(7.15)

where µ = min(m − 2, k − 1), and Cε depending on 0 < ε < 1/2.

For the R-T elements, we have

Lemma 7.15. Let r ∈ Hm(Ω), η ∈ H1(Ω)∩H0(rot, Ω), and let Rh be defined by
(6.1) and (6.22) for the R-T elements. Then,

| (∇r, Rhη − η) |≤ Ck−m+3/2hµ+1‖r‖m‖η‖1, if µ = m − 2 ≤ k − 1,

| (∇r, Rhη − η) |≤ Ck−m+3/2hµ+1+[ µ+1
2 ](α−1)‖r‖m‖η‖1, if µ = k − 1 < m − 2.

(7.16)
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Proof. Denote by Πk−2 the piecewise L2 projection operator from L2(Ω)2 onto
Θk−2(Jh), where

Θk−2(Jh) := {ψ ∈ L2(Ω)2, ψ|K = ψ̂ ◦ F−1
K , ψ̂ ∈ Qk−2(K̂)2, ∀K ∈ Jh}.

Then, we have the decomposition

(∇r, Rhη − η) = (∇r − Πk−2∇r, Rhη − η) + (Πk−2(∇r), Rhη − η) = I1 + I2.

A similar argument of Lemma 7.11 (see Lemma B.6) proves

‖∇r − Πk−2∇r‖0 ≤ Ck−m+2hµ‖∇r‖m−2, if µ = m − 2 ≤ k − 1,

‖∇r − Πk−2∇r‖0 ≤ Ck−m+2hµ+[ µ+1
2 ](α−1)‖∇r‖m−2, if µ = k − 1 < m − 2.

(7.17)

This and Lemma 7.4 leads to

|(∇r − Πk−2∇r, Rhη − η)| ≤ Ck−m+3/2hµ+1‖r‖m‖η‖1, if µ = m − 2 ≤ k − 1,

|(∇r − Πk−2∇r, Rhη − η)| ≤ Ck−m+3/2hµ+1+[ µ+1
2 ](α−1)‖r‖m‖η‖1,

if µ = k − 1 < m − 2.

(7.18)

It remains to take care of the second term I2,

I2 = (Πk−2∇r, Rhη − η)

=
∑

K∈Jh

∫
K

Πk−2∇r · (Rhη − η)dxdy

=
∑

K∈Jh

∫
K̂

̂Πk−2∇r · MK(ξ, η)(R̂K̂ η̄ − η̄)dξdη,

where

MK(ξ, η) = JKDF−T
K =

(
d2 + d12ξ −d1 − d12η
−c2 − c12ξ c1 + c12η

)
.

Therefore, MT
K(ξ, η) ̂Πk−2∇r ∈ Qk−1,k−2(K̂)× ∈ Qk−2,k−1(K̂). This, together

with the definition of the reduction operator R̂K̂ in (6.22), implies

I2 = 0,

which completes the proof. �

7.3. Energy norm error estimates. For the sake of brevity, we introduce a new
notation

|||| (r, φ, α, p, ω) ||||= ‖φ‖m + ‖r‖m + t‖α‖m−1 + t2‖ rotα‖m−1 + ‖p‖m−1 + ‖ω‖m.

Then we have the following energy norm error estimates for Method 1–Method 3.

Theorem 7.16. Let (r, φ, p, α, ω) ∈ H1
0 (Ω)×H1

0(Ω)×L2
0(Ω)×H0(rot, Ω)×H1

0 (Ω)
and let (rh, φh, ph, αh, ωh) ∈ Wh ×Θh ×Qh ×Γh ×Wh be the solutions of Problem
5.1 and Problem 5.3, respectively. Let the shear γ and the discrete shear force γh
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be defined in (1.2) and (3.5), respectively. Then, it holds, for Method 1–Method 3
of Section 6,

‖r − rh‖1 ≤ Ck−m+1hµ+[ µ+2
2 ](α−1)‖r‖m,(7.19)

|||φh − φ, α − αh||| + ‖ω − ωh‖1 + t‖γ − γh‖0 + t2‖ rot(γ − γh)‖0

+
k−1/2

1 + hαk
5
2
‖p − ph‖0 +

k−1

1 + hαk
5
2
(‖γ − γh‖−1 + ‖α − αh‖−1)(7.20)

≤ Cε,h,kk−m+3/2+εhµ+[ µ+2
2 ](α−1) |||| (r, φ, α, p, ω) |||| .

Where Cε,h,k = Cε(1 + hαk5/2) with Cε depending on 0 < ε < 1/2 and µ =
min(m − 1, k).

Proof. First, one can use (5.24) and Remark 7.12 for Πω
h to show

(7.21) ‖r − rh‖1 ≤ Ck−m+1hµ+[ µ+2
2 ](α−1)‖r‖m.

We only show (7.20) for Method 1 by bounding the terms on the right-hand of
(5.28).

In view of Lemma 7.10, Lemma 7.1, Remark 7.12 for Πh, and β(h, k) =
C k−1/2

1+hαk5/2 from Method 1 of Section 6 (see [18]), we obtain

C

β(h, k)
inf

ψ∈Θh

‖φ − ψ‖1 + t‖α − Rhα‖0 + inf
q∈Qh

‖p − q‖0

≤ Cε(1 + hαk5/2)k−m+3/2+εhµ+(1+[ µ
2 ])(α−1)(‖φ‖m + t‖α‖m−1 + ‖p‖m−1),

with µ = min(m − 1, k) and Cε depending on 0 < ε < 1/2.
The consistency error term (∇rh, Rhη) − (∇r, η) can be decomposed as

(∇rh, Rhη) − (∇r, η) = (∇rh −∇r, Rhη) + (∇r, Rhη − η).

Taking into account (7.21) and Lemma 7.13, we deduce as

|(∇rh, Rhη) − (∇r, η)| ≤ |(∇rh −∇r, Rhη)| + |(∇r, Rhη − η)|

≤ Cεk
−m+3/2+εhµ+[ µ+2

2 ](α−1)‖r‖m‖η‖1,

with µ defined as above.
We substitute these two estimates in (5.28) to prove

‖φ − φh‖1 + t‖α − αh‖0 +
k−1/2

1 + hαk5/2
‖p − ph‖0

≤ Cε(1 + hαk5/2)k−m+3/2+εhµ+[ µ+2
2 ](α−1) |||| (r, φ, α, p, ω) |||| .

Applying this inequality, (5.25), (7.21), and Remark 7.12 for Πω
h , we proceed as

follows:
|ω − ωh|1 ≤ inf

v∈Wh

‖∇ω −∇v‖0 + ‖φ − Rhφh‖0 + λ−1t2‖∇r −∇rh‖0

≤ ‖∇ω −∇Πω
hω‖0 + ‖φ − Rhφ‖0 + C‖φ − φh‖1 + λ−1t2‖∇r −∇rh‖0

≤ Cε(1 + hαk5/2)k−m+3/2+εhµ+[ µ+2
2 ](α−1) |||| (r, φ, α, p, ω) |||| .

It follows from the decomposition of the shear forces γ and γh that

t‖γ − γh‖0 ≤ C‖∇r −∇rh‖0 + t‖α − αh‖0

≤ Cε(1 + hαk5/2)k−m+3/2+εhµ+[ µ+2
2 ](α−1) |||| (r, φ, α, p, ω) |||| .
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Thanks to the definition of the (resp. discrete) shear force and the (resp. discrete)
Helmholtz decomposition, we have

α − αh = λt−2(∇ω − φ) − λt−2(∇ωh − Rhφh) + ∇rh −∇r.

This and Lemma 7.6 lead to
t2‖ rot(α − αh)‖0 = λ‖ rot(φ − Rhφh)‖0

≤ λ‖ rotφ − rotRhφ‖0 + λ‖ rotRh(φ − φh)‖0

≤ Ck−m+1hµ+[ µ+2
2 ](α−1)‖φ‖m + C‖ rot(φ − φh)‖0

≤ Cε(1 + hαk5/2)k−m+3/2+εhµ+[ µ+2
2 ](α−1) |||| (r, φ, α, p, ω) |||| .

Due to α = curl p, we get ‖α‖m−2 ≤ C‖p‖m−1. Then, it follows from (5.26), the
estimate of ‖p − ph‖0, and Lemma 7.1 with m − 2 that

‖α − αh‖−1 ≤ C(h inf
δ∈Γh

‖α − δ‖0 + ‖p − ph‖)

≤ C(h‖α − Rhα‖0 + ‖p − ph‖)

≤ Cεk
−m+ 5

2+εhµ1+1+(1+[
µ1
2 ])(α−1)‖α‖m−2 + ‖p − ph‖0

≤ Cε(1 + hαk5/2)2k−m+5/2+εhµ+[ µ+2
2 ](α−1) |||| (r, φ, α, p, ω) ||||,

where µ1 = min(m−2, k). With (5.27), we get from this estimate and the Poincaré
inequality for ‖r − rh‖0 that

‖γ − γh‖−1 ≤ Cε(1 + hαk5/2)2k−m+5/2+εhµ+[ µ+2
2 ](α−1) |||| (r, φ, α, p, ω) |||| .

A summary of these estimates shows the inequality (7.20). �
Similarly, we have the following error estimates for Method 4 of Section 6.

Theorem 7.17. Let (r, φ, p, α, ω) ∈ H1
0 (Ω)×H1

0(Ω)×L2
0(Ω)×H0(rot, Ω)×H1

0 (Ω)
and (rh, φh, ph, αh, ωh) ∈ Wh × Θh × Qh × Γh × Wh be the solutions of Problem
5.1 and Problem 5.3, respectively. Let the shear γ and the discrete shear force γh

be defined in (1.2) and (3.5), respectively. Then, for Method 4:
(I) If µ = m ≤ k + 1, we have

‖r − rh‖1 ≤ Ck−m+1hµ−1‖r‖m,(7.22)

‖φh − φ‖1 + ‖ω − ωh‖1 + t‖γ − γh‖0 + t‖α − αh‖0(7.23)

+
k−1/2

1 + hαk
5
2
‖p − ph‖0 +

k−1

1 + hαk
5
2
(‖γ − γh‖−1 + ‖α − α‖−1)

≤ Ch,kk−m+3/2hµ−1 |||| (r, φ, α, p, ω) ||||,
t2(‖ rot(γ − γh)‖0 + ‖ rot(α − αh)‖0)(7.24)

≤ Ch,kk−m+3/2hµ+α−2 |||| (r, φ, α, p, ω) |||| .

(II) If µ = k + 1 < m, we have

‖r − rh‖1 ≤ Ck−m+1hs‖r‖m,(7.25)

|||φh − φ, α − αh||| + ‖ω − ωh‖1 + t‖γ − γh‖0 + t2‖ rot(γ − γh)‖0(7.26)

+
k−1/2

1 + hαk
5
2
‖p − ph‖0 +

k−1

1 + hαk
5
2
(‖γ − γh‖−1 + ‖α − αh‖−1)

≤ Ch,kk−m+3/2hs |||| (r, φ, α, p, ω) ||||,

where Ch,k = C(1 + hαk5/2) and s = µ + [µ+1
2 ](α − 1) − 1.
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Proof. A similar argument of Theorem 7.16 and using Lemma 7.15, Lemma 7.4,
Lemma 7.8, and Lemma 7.11 instead can prove this result. For brevity, we omit
the details. �

Remark 7.18. The estimate given in Theorem 7.17 is not optimal with respect to
the degree k. Applying the technique of [29] and using the well-known K-Method
[21], we can slightly improve these results, i.e., from k−m+3/2 to k−m+1+ε.

Remark 7.19. Note from Theorem 7.17 we can obtain optimal error estimates in
energy norm with respect to the meshsize h provided that m = k +1 for Method 4.

Remark 7.20. If the mesh is mildly distorted in the sense α = 1, then all of these
methods can yield optimal convergence rates in energy norm with respect to the
meshsize h. Usually, the meshes used in the practical computations satisfy this
condition.

8. L2
error estimates

This section presents the L2 error analysis for the methods proposed in Section
6. For brevity, we only give the details for Method 4. For completeness, we list
the corresponding result for Method 1–Method 3, which can be established with a
similar argument.

In order to obtain optimal L2 error estimate for Method 4, we need the following
result from [18].

Lemma 8.1. Let Rh be defined by (6.1) and (6.22) for the R-T elements in Method
4. Assume that rotσ ∈ H1(Ω) and k ≥ 2. Then,

‖ rot(σ − Rhσ)‖0 ≤ Chk−1‖ rotσ‖1.(8.1)

Proof. From the proof of Lemma 7.8 (see Lemma B.4), we can see that for any
K ∈ Jh, ∫

K

| rot(σ − Rhσ) |2 dxdy ≤ Ch−2

∫
K̂

| r̂ot(σ̄ − R̂K̂σ̄) |2 dξdη,

‖r̂ot(σ̄ − R̂K̂σ̄)‖0,K̂ ≤ Ck−1 inf
v̂∈Qk−1(K̂)

‖r̂ot σ̄ − v̂‖1,K̂ .

By Lemma 6.2, one has r̂ot σ̄ = JK ̂rot σ. Given v̂ ∈ Qk−2(K̂), we have JK v̂ ∈
Qk−1(K̂). This observation leads to

inf
v̂∈Qk−1(K̂)

‖r̂ot σ̄ − v̂‖1,K̂ ≤ inf
v̂∈Qk−2(K̂)

‖JK(̂rotσ − v̂)‖1,K̂

≤ Ch2 inf
v̂∈Qk−2(K̂)

‖̂rotσ − v̂‖1,K̂

≤ Ch2|̂rotσ|1,K̂ ≤ Ch2‖ rotσ‖1,K .

Substituting this inequality into the previous one and summing over all the elements
completes the proof. �

To use the Aubin-Nitsche dual argument to derive the L2 error estimate, we
define an auxiliary problem:
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Problem 8.2. Given d ∈ L2(Ω) find (φd, pd, αd) ∈ H1
0×L2(Ω)×H0(rot, Ω) such

that

A(ψ, δ; φd, αd) + B(pd; ψ, δ) = (d, ψ), ∀(ψ, δ) ∈ H1
0(Ω) × H0(rot, Ω),(8.2)

B(q; φd, αd) = 0, ∀q ∈ L2(Ω).(8.3)

The solution to this problem admits the following regularity:

‖φd‖2 + ‖pd‖2 + ‖αd‖0 + t‖αd‖1 + t2‖ rotαd‖1 ≤ C‖d‖0.(8.4)

Theorem 8.3. Let (r, φ, p, α, ω) ∈ H1
0 (Ω)×H1

0(Ω)×L2
0(Ω)×H0(rot, Ω)×H1

0 (Ω)
and (rh, φh, ph, αh, ωh) ∈ Wh × Θh × Qh × Γh × Wh be the solutions of Problem
5.1 and Problem 5.3, respectively, then for Method 4, we have the error bounds:

(I) If µ = m ≤ k + 1, then,

(8.5) ‖φh − φ‖0 + ‖ω − ωh‖0 ≤ C2
h,kk−m+1hµ+α−1 |||| (r, φ, α, p, ω) |||| .

(II) If µ = k + 1 < m, then,

(8.6) ‖φh − φ‖0 + ‖ω − ωh‖0 ≤ C2
h,kk−m+1hs |||| (r, φ, α, p, ω) |||| .

Where s = µ + [µ+1
2 ](α − 1) and Ch,k = C(1 + hαk5/2).

Proof. First, it is easy to show

‖r − rh‖0 ≤ Ck−mhµ‖r‖m, if µ = m ≤ k + 1,(8.7)

‖r − rh‖0 ≤ Ck−mhµ+[ µ+1
2 ](α−1)‖r‖m, if µ = k + 1 < m.(8.8)

Taking ψ = φ − φh in (8.2) yields

(d, φ − φh) = A(φ − φh, α − αh; φd, αd) + B(pd; φ − φh, α − αh)

= A(φ − φh, α − αh; φd − Πhφd, αd − Rhαd)

+ B(pd − Πhpd; φ − φh, α − αh)

+ A(φ − φh, α − αh;Πhφd, Rhαd)

+ B(Πpd; φ − φh, α − αh).

(8.9)

We use (5.8), (5.16), B(p; φd, αd) = 0, and B(ph; φd, αd) = 0, to derive as

A(φ − φh, α − αh;Πhφd, Rhαd)

= (∇r,Πhφd) − (∇rh, RhΠhφd)

+ B(ph − p;Πhφd, Rhαd)

= (∇r,Πhφd) − (∇rh, RhΠhφd)

+ (rot(Πhφd − φd), p − ph)

+ λ−1t2(rot(Rhαd − αd), p − ph).
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Using B(Πpd; φ−φh, α−αh) = 0 and inserting this identity into (8.9) and applying
a further decomposition for the term (∇r,Πhφd) − (∇rh, RhΠhφd), we obtain

(d, φ − φh) = A(φ − φh, α − αh; φd − Πhφd, αd − Rhαd)

+ B(pd − Πhpd; φ − φh, α − αh)

+ (∇(r − rh),Πhφd) − (∇r, (I − Rh)(I − Πh)φd)

+ (∇r, (I − Rh)φd) + (∇(rh − r), (I − Rh)Πhφd)

+ (rot(Πhφd − φd), p − ph) + λ−1t2(rot(Rhαd − αd), p − ph)
= I1 + I2 + · · · + I8.

(8.10)

We now bound the eight terms on the right-hand side of (8.10). There are two
cases of which we need to take care.

(I) If µ = m ≤ k + 1. We use Theorem 7.17 and Lemma 7.4 and Lemma 7.11
and Remark 7.12 to obtain

|I1| = |A(φ − φh, α − αh; φd − Πhφd, αd − Rhαd)|
≤ C(‖φ − φh‖1 + t‖α − αh‖0)

× (‖φd − Πhφd‖1 + t‖αd − Rhαd‖0)

≤ Ch,kk−m+1hµ |||| (r, φ, α, p, ω) |||| ‖d‖0,

|I2| = |B(pd − Πhpd; φ − φh, α − αh)|
≤ C(‖ rot(φ − φh)‖0 + ‖t2 rot(α − αh)‖0) × ‖pd − Πhpd‖0

≤ Ch,kk−m+1/2hµ+α−1 |||| (r, φ, α, p, ω) |||| ‖d‖0.

Integrating by parts and using (8.7) leads to

|I3| = |(∇(r − rh),Πhφd)| = (r − rh, div Πhφd)

≤ ‖r − rh‖0‖ divΠhφd‖0 ≤ Ck−mhµ‖r‖m‖φd‖2.

Thanks to Lemma 7.15 and Lemma 7.11, we have

|I4| = |(∇r, (I − Rh)(I − Πh)φd)| ≤ Ck−m+3/2hµ−1‖r‖m‖(I − Πh)φd‖1

≤ Ck−m+1/2hµ‖r‖m‖φd‖2.

With the projection operator Πk−2 from Lemma 7.15, we have

(∇r, (I − Rh)φd) = (∇r − Πk−2∇r, (I − Rh)φd).

With a similar argument of Lemma 7.15, this and Lemma 7.4 give

|I5| = |(∇r, (I − Rh)φd)| ≤ Ck−m+2hµ−2‖∇r‖m−2‖(I − Rh)φd‖0

≤ Ck−m+1/2hµ‖∇r‖m−2‖φd‖2.

Using (7.21) and Lemma 7.4, we get

|I6| = |(∇(rh − r), (I − Rh)Πhφd)| ≤ Ck−m+1/2hµ‖r‖m‖φd‖2.

The last two terms are bounded as, respectively,
|I7| = |(rot(Πhφd − φd), p − ph)|

≤ C2
h,kk−m+2hµ−1 |||| (r, φ, α, p, ω) |||| ‖ rot(Πhφd − φd)‖0

≤ C2
h,kk−m+1hµ |||| (r, φ, α, p, ω) |||| ‖φd‖2



ANALYSIS FOR QUADRILATERAL MITC ELEMENTS 701

and

|I8| = |λ−1t2(rot(Rhαd − αd), p − ph)|
≤ C2

h,kk−m+1hµt2 |||| (r, φ, α, p, ω) |||| ‖ rotαd‖1.

Then, a summary of these inequalities shows

(8.11) ‖φ − φh‖0 ≤ C2
h,kk−m+1hµ+α−1 |||| (r, φ, α, p, ω) |||| .

To get the L2 estimate for the deflection ω, we need a new auxiliary problem.
Let z ∈ H1

0 (Ω) and zh ∈ Wh be the solutions of

(∇z,∇s) = (ω − ωh, s), s ∈ H1
0 (Ω),

(∇zh,∇s) = (ω − ωh, s), s ∈ Wh,

respectively. Then, the standard error estimate and the regularity property give

‖z − zh‖s ≤ Ck−2+sh2−s‖ω − ωh‖0, s = 0, 1.

In addition, we have

(ω − ωh, ω − ωh) = (∇z,∇(ω − ωh))

= (∇(z − zh),∇(ω − ωh)) + (∇zh,∇(ω − ωh)).

In view of (5.7) and (5.15), we use (5.3) and (5.11) to deduce

(∇zh,∇(ω − ωh)) = (φ + λ−1t2∇r,∇zh) − (Rhφh + λ−1t2∇rh,∇zh)

= (φ − Rhφh,∇zh) = (φ − φh,∇zh) + ((I − Rh)φh,∇zh)

= (φ − φh,∇zh) + ((I − Rh)(φh − φ),∇zh)

+ ((I − Rh)φ,∇zh −∇z) + ((I − Rh)φ,∇z).

For the different terms we obtain

|(φ − φh,∇zh)| ≤ C2
h,kk−m+1hµ+α−1 |||| (r, φ, α, p, ω) |||| ‖z‖2,

|((I − Rh)(φh − φ),∇zh)| ≤ Ck−1/2h‖φh − φ‖1‖z‖2

≤ Ch,kk−m+1hµ |||| (r, φ, α, p, ω) |||| ‖z‖2,

|((I − Rh)φ,∇zh −∇z)| ≤ Ck−m+3/2hµ−1‖φ‖m−1‖∇zh −∇z‖0

≤ Ck−m+1/2hµ‖φ‖m−1‖z‖2.

With Πk−2 from Lemma 7.15, a similar argument of Lemma 7.15 shows

((I − Rh)φ,∇z) = ((I − Rh)φ,∇z − Πk−2∇z).

This yields

|((I − Rh)φ,∇z)| ≤ Ck−m+1/2hµ‖φ‖m−1‖∇z‖1.(8.12)

A combination of these estimates gives

‖ω − ωh‖0 ≤ C2
h,kk−m+1hµ+α−1 |||| (r, φ, α, p, ω) |||| .

(II) If µ = k+1 < m. The result for this case can be proved by proceeding along
the line of the case with µ = m ≤ k + 1. �

Similarly, we have the following L2 error estimates for Method 1–Method 3.
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Theorem 8.4. Let (r, φ, p, α, ω) ∈ H1
0 (Ω)×H1

0(Ω)×L2
0(Ω)×H0(rot, Ω)×H1

0 (Ω)
and (rh, φh, ph, αh, ωh) ∈ Wh × Θh × Qh × Γh × Wh be the solutions of Problem
5.1 and Problem 5.3, respectively, then for Method 1–Method 3, we have the error
bounds:

(8.13) ‖φh − φ‖0 + ‖ω − ωh‖0 ≤ C2
ε,h,kk−m+1+εhs+α |||| (r, φ, α, p, ω) ||||,

where Cε,h,k = Cε(1 + hαk5/2), s = µ + [µ+2
2 ](α − 1) with µ = min(m − 1, k).

Remark 8.5. Note from the two theorems above that all of these methods converge
optimally in L2 norm with respect to the meshsize h provided that α = 1.

Remark 8.6. For the limiting problem, a similar error estimate hold.

Appendix A. Error estimates of the reduction operator in L2
norm

In this section, we will prove the L2 error estimates of the reduction operator Rh

presented in Lemma 7.1 and Lemma 7.4, respectively. For the readers’ convenience,
we will present them again in the following.

Throughout this section, we will use the following notation:

M = DF−T
K ,(A.1)

[û]m,K̂,ξ = ‖∂mû

∂ξm
‖0,K̂ , [û]m,K̂,η = ‖∂mû

∂ηm
‖0,K̂ .

With this notation, we have the following relation [17].

Lemma A.1. Given K ∈ Jh, let v ∈ H l(K) and v̂ = v ◦ FK(ξ, η). Then

(A.2) [v̂]l,K̂,ξ + [v̂]l,K̂,η ≤ Chl−1|v|l,K .

with h the diameter of K.

Lemma A.2. Given K ∈ Jh, let v ∈ H l(K) and v̂ = v ◦ FK(ξ, η). Then,

| v̂ |2
l,K̂

≤ Ch−2

[ l+1
2 ]∑

j=0

h2l+2jα−2j | v |2l−j,K , if l ≥ 2,

| v̂ |2
l,K̂

≤ Ch2(l−1)‖v‖2
l,K , if l = 0, 1.

(A.3)

h is the diameter of K, and α is the mesh distortion parameter defined in Section
2. Given an integer i, we denote by [ i+1

2 ] the max integer not greater than i+1
2 .

Proof. Since FK is a bilinear transformation, one can prove this result by a straight-
forward investigation. �

The following result is concerned with the error estimate of the interpolation
operator R̂K̂ for the BDFM elements in Method 1 from Section 6. Its proof can be
found in Lemma 5.1 of [29].

Lemma A.3. Let the reduction operator R̂K̂ be defined in (6.8) with σ̄∈Hm−1(K̂).
Then,

‖σ̄ − R̂K̂σ̄‖0,K̂ ≤ Cεk
3/2+ε−m‖σ̄‖m−1,K̂ ,(A.4)

with Cε depending on 0 < ε < m − 3/2.



ANALYSIS FOR QUADRILATERAL MITC ELEMENTS 703

Lemma A.4 (Lemma 7.1 in Section 7). Let the reduction operator Rh be defined
by (6.1) and (6.8) for the BDFM elements in Method 1 of Section 6. Assume
σ ∈ Hm−1(Ω). Then,

‖σ − Rhσ‖0 ≤ Cεk
−m+3/2+εhµ+(1+[ µ

2 ])(α−1)‖σ‖m−1, µ > 2,

‖σ − Rhσ‖0 ≤ Cεk
−m+3/2+εhµ−1+α‖σ‖m−1, µ = 1, 2,

(A.5)

where µ = (m − 1, k) and Cε depends on 0 < ε < m − 3/2.

Proof. Thanks to the inequality (A.4), we have, for any v̄ ∈ Γk(K̂),

‖σ − Rhσ‖0,K ≤ C‖σ̄ − R̂K̂σ̄‖0,K̂ = C‖(σ̄ − v̄) − R̂K̂(σ̄ − v̄)‖0,K̂

≤ Cεk
−m+3/2+ε‖σ̄ − v̄‖m−1,K̂ .

This leads to

(A.6) ‖σ − Rhσ‖0,K ≤ Cεk
−m+3/2+ε inf

v̄∈Γk(K̂)
‖σ̄ − v̄‖m−1,K̂ .

We now estimate the term on the right-hand side of (A.6). There are two cases of
which we need to take care.

(I) We first consider the case where m − 1 < µ + 1. For this case, one has
µ = m − 1 ≤ k. Then, it follows from the definition of the BDFM elements (see
Method 1 of Section 6),

(A.7) inf
v̄∈Γk(K̂)

‖σ̄ − v̄‖m−1,K̂ = inf
v̄∈Γk(K̂)

‖σ̄ − v̄‖µ,K̂ ≤ C|σ̄|µ,K̂ .

Since σ̄ = M−1σ̂ = M−1σ ◦ FK(ξ, η), one can use the expression of M−1 (see
Section 2, also Lemma A.6 below) and the estimates from (2.2) for c1, c12, d1 and
d12 to get

(A.8) |σ̄|µ,K̂ ≤ C(h|σ̂|µ,K̂ + h1+α|σ̂|µ−1,K̂).

Thanks to Lemma A.2, this leads to

|σ̄|µ,K̂ ≤ Chµ+(1+[ µ
2 ])(α−1))‖σ‖µ,K , if µ ≥ 3,

|σ̄|µ,K̂ ≤ Chµ−1+α‖σ‖µ,K , if µ = 1, 2.
(A.9)

A combination of (A.6)-(A.9) proves the result for this case.
(II) We now study the case with m− 1 ≥ µ + 1. For this case, we have µ = k <

m − 1.

inf
v̄∈Γk(K̂)

‖σ̄ − v̄‖m−1,K̂ ≤ inf
v̄∈Γk(K̂)

(‖σ̄ − v̄‖µ,K̂ +
m−1∑

i=µ+1

| σ̄ |i,K̂) ≤ C
m−1∑
i=µ

| σ̄ |i,K̂ .

(A.10)

With σ̄ = M−1σ̂ and the estimates from (2.2) for c1, c12, d1 and d12, one can show
that

m−1∑
i=µ

| σ̄ |i,K̂≤ C(h
m−1∑
i=µ

| σ̂ |i,K̂ +h1+α
m−2∑

i=µ−1

| σ̂ |i,K̂).(A.11)

Thanks to Lemma A.2, we have

|σ̄|i,K̂ ≤ Chi+(1+[ i
2 ])(α−1)‖σ‖m−1,K , if i ≥ 3,

|σ̄|µ,K̂ ≤ Chi−1+α‖σ‖m−1,K , if i = 1, 2.
(A.12)
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Substituting (A.12) and (A.10) into (A.6) completes the proof for this case. �

The following result is concerned with the p-type error estimate of the R-T
elements on the reference element K̂; see, for instance, [30, 31, Lemma 3.1].

Lemma A.5. Let the reduction operator R̂K̂ be defined in (6.22) with σ̄ ∈
Hm−1(K̂). Then,

‖σ̄ − R̂K̂σ̄‖0,K̂ ≤ Ck3/2−m‖σ̄‖m−1,K̂ ,(A.13)

with k the degree of polynomials.

We have the following error estimates of the reduction operator Rh for the R-T
elements.

Lemma A.6 (Lemma 7.4 in Section 7). Let σ ∈ Hm−1(Ω). The reduction operator
Rh is defined by (6.1) and (6.22) for the R-T elements in Method 4 of Section 6.
Then,

‖σ − Rhσ‖0 ≤ Ck−m+3/2hµ‖σ‖m−1, if m − 1 < µ + 1,

‖σ − Rhσ‖0 ≤ Ck−m+3/2hµ+(1+[ µ
2 ])(α−1)‖σ‖m−1, if m − 1 ≥ µ + 1,

(A.14)

with µ = min(m − 1, k).

Proof. Thanks to the inequality (A.13), we have, for any v̄ ∈ Γk(K̂),

‖σ − Rhσ‖0,K ≤ C‖σ̄ − R̂hσ̄‖0,K̂ = C‖(σ̄ − v̄) − R̂h(σ̄ − v̄)‖0,K̂

≤ Ck−m+3/2‖(σ̄ − v̄)‖m−1,K̂ .

This leads to

(A.15) ‖σ − Rhσ‖0,K ≤ Ck−m+3/2 inf
v̄∈Γk(K̂)

‖(σ̄ − v̄)‖m−1,K̂ .

We now estimate the term on the right-hand side of (A.15). There are two cases
of which we need to take care.

(I) We first consider the case where m − 1 < µ + 1. For this case, one has
µ = m − 1 ≤ k. Then, it follows from the definition of the R-T elements (see
Method 4 of Section 6),

inf
v̄∈Γk(K̂)

‖σ̄ − v̄‖m−1,K̂ = inf
v̄∈Γk(K̂)

‖σ̄ − v̄‖µ,K̂

≤ C([σ̄1]µ,K̂,ξ + [σ̄2]µ,K̂,η),
(A.16)

where σ̄1 and σ̄2 are two components of σ̄ = M−1σ̂ with σ̂ = σ ◦ FK(ξ, η). Since
two components in the first row of matrix

M−1 =
(

c1 + c12η d1 + d12η
c2 + c12ξ d2 + d12ξ

)
are linear functions with respect to η and constant functions of ξ, and two compo-
nents in the second row are linear functions with respect to ξ and constant functions
of η, we can obtain, by the estimates (2.2) for the mesh parameters c1, c12, d1 and
d12, that

[σ̄1]µ,K̂,ξ + [σ̄2]µ,K̂,η ≤ Ch([σ̂]µ,K̂,ξ + [σ̂]µ,K̂,η) ≤ Chµ‖σ‖µ,K .
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In the last inequality, we use Lemma A.1 with l = µ. Inserting this inequality into
(A.16), we get

inf
v̄∈Γk(K̂)

‖σ̄ − v̄‖m−1,K̂ ≤ Chµ‖σ‖m−1,K .(A.17)

With (A.15), this proves the first inequality in (A.14).
(II) We now study the case with m− 1 ≥ µ + 1. For this case, we have µ = k <

m − 1,

inf
v̄∈Γk(K̂)

‖σ̄ − v̄‖m−1,K̂ ≤ inf
v̄∈Γk(K̂)

(‖σ̄ − v̄‖µ,K̂ +
m−1∑

i=µ+1

| σ̄ |i,K̂ +
m−1∑

i=µ+1

| v̄ |i,K̂).

(A.18)

We take v̄ as the L2 projection of σ̄ onto the space Pµ−1(K̂)2 ⊂ Γk(K̂) in (A.18).
This leads to

(A.19) inf
v̄∈Γk(K̂)

‖σ̄ − v̄‖m−1,K̂ ≤ C

m−1∑
i=µ

| σ̄ |i,K̂ .

Using the fact that the four components of the matrix M−1 are linear functions of
ξ and η as in the first part of the proof, and the estimates for c1, c12, d1 and d12,
one can prove

m−1∑
i=µ

| σ̄ |i,K̂≤ C(h
m−1∑
i=µ

| σ̂ |i,K̂ +h1+α
m−2∑

i=µ−1

| σ̂ |i,K̂).(A.20)

Combining inequalities (A.18)-(A.20) with (A.3) leads to

inf
σ̄∈Γk(K̂)

‖σ̄ − v̄‖m−1,K̂ ≤ Chµ+(1+[ µ
2 ])(α−1)‖σ‖m−1,K .(A.21)

Substituting (A.21) into (A.15) proves the second inequality of (A.14). �

Appendix B. Error estimates of the reduction operator

in H(rot) norm

This section presents the proof of the H(rot) error estimates given in Lemma 7.6
and Lemma 7.8 for the reduction operator Rh. They will be presented in Lemma
B.2 and Lemma B.4, respectively. We also provide the proof of Lemma 7.10 and
Lemma 7.11 for the H1-projection operators Πh. For the readers’ convenience, we
will recall them in Lemma B.5 and Lemma B.6, respectively.

For the error estimates for the BDFM elements and BDM elements, we need the
following result [8, 7].

Lemma B.1. We have

inf
v̂k∈Pk−1(K̂)

‖û − v̂k‖s,K̂ ≤ Ck−m+1+s‖û‖m−1,K̂ , s = 0, 1.(B.1)

For the BDFM elements in Method 1 of Section 6, we have

Lemma B.2 (Lemma 7.6 in Section 7). Let the reduction operator Rh be defined
by (6.1) and (6.8), and σ ∈ Hm−1(rot, Ω). Then,

‖ rotσ − rotRhσ‖0 ≤ Ck−m+1hµ+(1+[ µ
2 ])(α−1)‖σ‖Hm−1(rot), µ ≥ 3,(B.2)

‖ rotσ − rot Rhσ‖0 ≤ Ck−m+1hµ−1+α‖σ‖Hm−1(rot), µ = 1, 2,(B.3)

where µ = min(m − 1, k).
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Proof. Set w = rot(σ − Rhσ). Given K ∈ Jh, it follows from Lemma 6.2 that∫
K

| rot(σ − Rhσ) |2 dxdy =
∫

K

rot(σ − Rhσ)wdxdy

=
∫

K̂

r̂ot(σ̄ − R̂K̂σ̄)ŵdξdη ≤ ‖r̂ot(σ̄ − R̂K̂σ̄)‖0,K̂‖ŵ‖0,K̂ .

(B.4)

Since ‖ŵ‖0,K̂ ≤ Ch−1‖w‖0,K , this yields∫
K

| rot(σ − Rhσ) |2 dxdy ≤ Ch−2

∫
K̂

| r̂ot(σ̄ − R̂K̂σ̄) |2 dξdη.(B.5)

To bound the right-hand side of (B.5), we note from the definition of R̂K̂ (6.8) that∫
K̂

r̂ot(R̂K̂σ̄ − σ̄)ŵdξdη = 0, ∀ŵ ∈ Pk−1(K̂).(B.6)

Since r̂ot R̂K̂σ̄ ∈ Pk−1(K̂), this implies that r̂ot R̂K̂σ̄ is the projection of r̂ot σ̄

onto Pk−1(K̂). Let Π̂k−1 denote this projection operator. This means

r̂ot R̂K̂σ̄ = Π̂k−1r̂ot σ̄.

Given v̂ ∈ Pk−1(K̂) and ŵ ∈ Pk−1(K̂), we have

‖r̂ot σ̄ − Π̂k−1r̂ot σ̄‖0 = ‖r̂ot σ̄ − v̂ − ŵ − Π̂k−1(r̂ot σ̄ − v̂ − ŵ)‖0.

This observation and (B.1) lead to

‖r̂ot(σ̄ − R̂K̂σ̄)‖0,K̂ ≤ Ck−m+1 inf
v̂∈Pk−1(K̂)

‖r̂ot σ̄ − v̂‖m−1,K̂ .(B.7)

We remain to estimate the right-hand side of (B.7). We need to take care of two
cases.

(I) We first consider the case µ = m − 1 ≤ k. Then,

(B.8) inf
v̂∈Pk−1(K̂)

‖r̂ot σ̄ − v̂‖m−1,K̂ ≤ C|r̂ot σ̄|µ,K̂ .

In view of r̂ot σ̄ = JK ̂rot σ from Lemma 6.2 and the fact JK = J0,K +J1,Kξ+J2,Kη,
we get, for any i + j ≥ 1,

(B.9)
∂i+j r̂ot σ̄

∂ξi∂ηj
= iJ1,K

∂i−1+j
̂rotσ

∂ξi−1∂ηj
+ jJ2,K

∂i+j−1
̂rotσ

∂ξi∂ηj−1
+ JK

∂i+j
̂rot σ

∂ξi∂ηj
.

This and the estimates for JK , J1,K and J2,K from (2.3) yield

(B.10) |r̂ot σ̄|µ,K̂ ≤ Ch2+α|̂rotσ|µ−1,K̂ + Ch2|̂rot σ|µ,K̂ .

An application of Lemma A.2 leads to

|r̂ot σ̄|µ,K̂ ≤ Chµ+α+[ µ
2 ](α−1)‖ rotσ‖µ,K , if µ ≥ 3,

|r̂ot σ̄|µ,K̂ ≤ Chµ+α, if µ = 1, 2.
(B.11)

Combining (B.5), (B.7), (B.8), and (B.11) ends the proof for this case.
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(II) We now study the case µ = k < m − 1. For this case, we have

inf
v̂∈Pk−1(K̂)

‖r̂ot σ̄ − v̂‖m−1,K̂ ≤ inf
v̂∈Pk−1(K̂)

(‖r̂ot σ̄ − v̂‖µ,K̂ +
m−1∑

i=µ+1

|r̂ot σ̄|i,K̂)

≤ C

m−1∑
i=µ

|r̂ot σ̄|i,K̂ .

(B.12)

Applying (B.9) and (2.3) and Lemma A.2 leads to
m−1∑
i=µ

|r̂ot σ̄|i,K̂ ≤ Chµ+α+[ µ
2 ](α−1)‖ rotσ‖m−1,K , if µ ≥ 3,

m−1∑
i=µ

|r̂ot σ̄|i,K̂ ≤ Chµ+α‖ rotσ‖m−1,K , if µ = 1, 2.

(B.13)

Inserting (B.12) and (B.13) into (B.5) then completes the proof. �
Next, we have the following result [8, 7].

Lemma B.3. We have

inf
v̂k∈Qk−1(K̂)

‖û − v̂k‖s,K̂ ≤ Ck−m+1+s‖û‖m−1,K̂ , s = 0, 1.(B.14)

For the R-T elements, we have the following error estimates.

Lemma B.4 (Lemma 7.8 in Section 7). Let rotσ ∈ Hm−1(Ω) and Rh be defined
by (6.1) and (6.22) for the R-T elements. Then,

‖ rot(σ − Rhσ)‖0 ≤ Ck−m+1hµ+α−1‖σ‖Hm−1(rot), m − 1 < µ + 1,

‖ rot(σ − Rhσ)‖0 ≤ Ck−m+1hµ+(1+[ µ
2 ])(α−1)‖σ‖Hm−1(rot), m − 1 ≥ µ + 1,

(B.15)

with µ = min(m − 1, k).

Proof. First, a similar argument at the very beginning of Lemma 7.6 proves

(B.16)
∫

K

| rot(σ − Rhσ) |2 dxdy ≤ Ch−2

∫
K̂

| r̂ot(σ̄ − R̂K̂σ̄) |2 dξdη.

In what follows, we will bound the right-hand side in (B.16), there are two cases of
which we need to take care.

(I) We first consider the case m − 1 < µ + 1, which implies µ = m − 1 ≤ k. By
the definition of R̂K̂ defined in (6.22), it is easy to see that∫

K̂

r̂ot(R̂K̂σ̄ − σ̄)ŵdξdη = 0, ∀ŵ ∈ Qk−1(K̂).(B.17)

Since r̂ot R̂K̂σ̄ ∈ Qk−1(K̂), this implies that r̂ot R̂K̂σ̄ is the projection of r̂ot σ̄

onto Qk−1(K̂). Similar arguments in Lemma 7.6 and (B.14) yield

‖r̂ot (σ̄ − R̂K̂σ̄)‖0,K̂ ≤ Ck−m+1 inf
v̂∈Qk−1(K̂)

‖r̂ot σ̄ − v̂‖m−1,K̂

= Ck−m+1 inf
v̂∈Qk−1(K̂)

‖r̂ot σ̄ − v̂‖µ,K̂

≤ Ck−m+1([r̂ot σ̄]µ,K̂,ξ + [r̂ot σ̄]µ,K̂,η).

(B.18)
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Thanks to Lemma 6.2, we have

r̂ot, σ̄ = JK ̂rotσ.

An application of (B.9) with the estimates of J1,K and J2,K from (2.3) leads to

[r̂ot σ̄]µ,K̂,ξ ≤ Ch2+α[̂rotσ]µ−1,K̂,ξ + Ch2[̂rot σ]µ,K̂,ξ.

[r̂ot σ̄]µ,K̂,η ≤ Ch2+α[̂rotσ]µ−1,K̂,η + Ch2[̂rot σ]µ,K̂,η.

Using Lemma A.1 with l = µ − 1 and l = µ, respectively, we get from the above
two inequalities that

[r̂ot σ̄]µ,K̂,ξ + [r̂ot σ̄]µ,K̂,η ≤ Chµ+α‖σ‖Hm−1(rot,K).(B.19)

Inserting (B.19) and (B.18) into (B.16) proves the first inequality.
(II) We now turn to the case m − 1 ≥ µ + 1. This means µ = k < m − 1. It

follows from (B.14) and (B.17) that

‖r̂ot(σ̄ − R̂K̂σ̄)‖0,K̂ ≤ Ck−m+1 inf
v̂∈Qk−1(K̂)

‖r̂ot σ̄ − v̂‖m−1,K̂

≤ Ck−m+1 inf
v̂∈Qk−1(K̂)

(‖r̂ot σ̄ − v̂‖µ,K̂ +
m−1∑

i=µ+1

| r̂ot σ̄ |i,K̂ +
m−1∑

i=µ+1

| r̂ot v̂ |i,K̂).

(B.20)

Let v̂ be the projection of r̂ot σ̄ onto the space Pk−1(K̂) ⊂ Qk−1(K̂) such that we
get

(B.21) ‖r̂ot(σ̄ − R̂K̂σ̄)‖0,K̂ ≤ Ck−m+1
m−1∑
i=µ

| r̂ot σ̄ |i,K̂ .

Using r̂ot σ̄ = JK ̂rotσ, (2.3) and (B.9) again, one can prove
m−1∑
i=µ

| r̂ot σ̄ |i,K̂ ≤ Ch2(
m−1∑
i=µ

| ̂rotσ |i,K̂ +hα
m−2∑

i=µ−1

| ̂rotσ |i,K̂).(B.22)

Thanks to Lemma A.2, this leads to

(B.23)
m−1∑
i=µ

| r̂ot σ̄ |i,K̂≤ Chµ+1+(1+[ µ
2 ])(α−1)‖σ‖Hm−1(rot,K).

Substituting (B.21) and (B.23) into (B.16) completes the proof of the second in-
equality of (B.15) �

In the following, we present the error analysis for the H1-projection operators
Πh.

Lemma B.5. Let the discrete rotation space Θh be defined in Method 1, or in
Method 2, or in Method 3, of Section 6, and let Πh be the usual H1-projection
operator from H2(Ω) ∩ H1

0(Ω) to Θh. Then,

‖Πhψ − ψ‖s ≤ Ck−m+shµ+[ 1+µ
2 ](α−1)−s‖ψ‖m,(B.24)

for any ψ ∈ Hm(Ω) ∩ H1
0(Ω) with m ≥ 2. Where s = 0, 1, µ = min(k + 1, m).
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Proof. Since the case with s = 0 can be proved in a similar way, we only consider
the case of s = 1 for Method 1. Let Π̂ denote the corresponding interpolation
operator on the reference element K̂ [7], [8]. Then, we have

|Πhψ − ψ|21 =
∑

K∈Jh

∫
K

|∇(Πhψ − ψ)|2dxdy

≤ C
∑

K∈Jh

|Π̂ψ̂ − ψ̂|2
1,K̂

.
(B.25)

Given any v̂ ∈ Θk(K̂) and ŵ ∈ Θk(K̂), one has,

(B.26) |Π̂ψ̂−ψ̂|1,K̂ = |Π̂(ψ̂− v̂)−(ψ̂− v̂)|1,K̂ = |Π̂(ψ̂− v̂−ŵ)−(ψ̂− v̂−ŵ)|1,K̂ .

This, together with (B.1) and the construction of the space Θk(K̂), leads to

|Π̂ψ̂ − ψ̂|1,K̂

≤ Ck−m+1 inf
v̂∈Θk(K̂)

‖ψ̂ − v̂‖m,K̂ , for any v̂ ∈ Θk(K̂).(B.27)

(I) If µ = m ≤ k + 1, then

inf
v̂∈Θk(K̂)

‖ψ̂ − v̂‖m,K̂ = inf
v̂∈Θk(K̂)

(‖ψ̂ − v̂‖µ,K̂) ≤ C|ψ̂|µ,K̂ .(B.28)

An application of Lemma A.2 yields

inf
v̂∈Θk(K̂)

‖ψ̂ − v̂‖m,K̂ ≤ Chµ−1+[ µ+1
2 ](α−1)‖ψ‖µ,K .(B.29)

Inserting (B.27) and(B.29) into (B.25) proves the result for this case.
(II) If µ = k + 1 < m. For this case, we have

(B.30) inf
v̂∈Θk(K̂)

‖ψ̂− v̂‖m,K̂ ≤ inf
v̂∈Θk(K̂)

(‖ψ̂− v̂‖µ,K̂ +
m∑

i=µ+1

|ψ̂|i,K̂ +
m∑

i=µ+1

|v̂|i,K̂).

We take v̂ as the projection of v̂ onto the space (Pµ−1(K̂))2 ⊂ Θk(K̂). This gives

(B.31) inf
v̂∈Θk(K̂)

‖ψ̂ − v̂‖m,K̂ ≤ C
m∑

i=µ

|ψ̂|i,K̂ .

Thanks to Lemma A.2, we get

inf
v̂∈Θk(K̂)

‖ψ̂ − v̂‖m,K̂ ≤ Chµ−1+[ µ+1
2 ](α−1)‖ψ‖m,K .(B.32)

A combination of (B.25), (B.27) and (B.32) completes the proof. �

Lemma B.6. Let the discrete rotation space Θh be defined in Method 4 of Section
6, and let Πh be the usual H1-projection operator from H2(Ω) ∩ H1

0(Ω) to Θh.
Then,

‖Πhψ − ψ‖s ≤ Ck−m+shµ−s‖ψ‖m, if m < µ + 1,

‖Πhψ − ψ‖s ≤ Ck−m+shµ+[ 1+µ
2 ](α−1)−s‖ψ‖m, if m ≥ µ + 1,

(B.33)

for any ψ ∈ Hm(Ω) ∩ H1
0(Ω) with m ≥ 2, µ = min(m, k + 1) and s = 0, 1.
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Proof. We only give the proof for the case of s = 1. First, proceeding along the
same line at the beginning of Lemma 7.10, we can show

|Πhψ − ψ|21 =
∑

K∈Jh

∫
K

|∇(Πhψ − ψ)|2dxdy

≤ C
∑

K∈Jh

|Π̂ψ̂ − ψ̂|2
1,K̂

≤ Ck−2m+2
∑

K∈Jh

inf
v̂∈Θk(K̂)

‖ψ̂ − v̂‖2
m,K̂

.

(B.34)

(I) If µ = m < µ + 1 ≤ k + 2. Since Qk(K̂)2 ⊂ Θk(K̂), we apply Lemma A.1 to
deduce

inf
v̂∈Θk(K̂)

‖ψ̂ − v̂‖m,K̂ ≤ C([ψ̂]µ,K̂,ξ + [ψ̂]µ,K̂,η)

≤ Chµ−1|ψ|µ,K .
(B.35)

A substitution of (B.35) into (B.34) proves the result for this case.
(II) If µ = k + 1 < m. For this case, one can prove the result by using a similar

argument as in the second part of Lemma 7.10.
A summary of the two parts shows the assertion. �
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[6] I. Babuška and M. Süri. The p and h-p versions of the finite element method: Basic principles
and properties, SIAM Review 36(1994), pp. 578-632. MR1306924 (96d:65184)
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[32] M. Süri and I. Babuška, C. Schwab. Locking effects in the finite element approximation of

plate models, Math. Comp. 64(1995), pp. 461-482. MR1277772 (95f:65207)
[33] P. A. Raviart and J. M. Thomas. A mixed finite element method for second order elliptic

problems, Proc. Sympos. Mathematical Aspects of the Finite Element Method (Rome, 1975),
Lecture Notes in Math. 606(1977), pp. 292-315, Springer-Verlag. MR0483555 (58:3547)

[34] J. P. Wang and T. Mathew. Mixed finite element methods over quadrilaterals, 1994, preprint.

LMAM and School of Mathematical Sciences, Peking University, 100871 Beijing,

China

E-mail address: hujun@math.pku.edu.cn

No 55, Zhong-Guan-Cun Dong Lu, Institute of Computational Mathematics, Chinese

Academy of Sciences, Beijing 100080, China

E-mail address: shi@lsec.cc.ac.cn

http://www.ams.org/mathscinet-getitem?mr=1115205
http://www.ams.org/mathscinet-getitem?mr=1115205
http://www.ams.org/mathscinet-getitem?mr=1115287
http://www.ams.org/mathscinet-getitem?mr=1115287
http://www.ams.org/mathscinet-getitem?mr=0520174
http://www.ams.org/mathscinet-getitem?mr=0520174
http://www.ams.org/mathscinet-getitem?mr=2035005
http://www.ams.org/mathscinet-getitem?mr=2035005
http://www.ams.org/mathscinet-getitem?mr=851383
http://www.ams.org/mathscinet-getitem?mr=851383
http://www.ams.org/mathscinet-getitem?mr=1974269
http://www.ams.org/mathscinet-getitem?mr=1974269
http://www.ams.org/mathscinet-getitem?mr=0350177
http://www.ams.org/mathscinet-getitem?mr=0350177
http://www.ams.org/mathscinet-getitem?mr=1839065
http://www.ams.org/mathscinet-getitem?mr=1256325
http://www.ams.org/mathscinet-getitem?mr=1256325
http://www.ams.org/mathscinet-getitem?mr=2168943
http://www.ams.org/mathscinet-getitem?mr=2168943
http://www.ams.org/mathscinet-getitem?mr=1924140
http://www.ams.org/mathscinet-getitem?mr=1924140
http://www.ams.org/mathscinet-getitem?mr=1421988
http://www.ams.org/mathscinet-getitem?mr=1421988
http://www.ams.org/mathscinet-getitem?mr=757491
http://www.ams.org/mathscinet-getitem?mr=757491
http://www.ams.org/mathscinet-getitem?mr=1367655
http://www.ams.org/mathscinet-getitem?mr=1367655
http://www.ams.org/mathscinet-getitem?mr=1442928
http://www.ams.org/mathscinet-getitem?mr=1442928
http://www.ams.org/mathscinet-getitem?mr=1052150
http://www.ams.org/mathscinet-getitem?mr=1052150
http://www.ams.org/mathscinet-getitem?mr=990603
http://www.ams.org/mathscinet-getitem?mr=990603
http://www.ams.org/mathscinet-getitem?mr=1277772
http://www.ams.org/mathscinet-getitem?mr=1277772
http://www.ams.org/mathscinet-getitem?mr=0483555
http://www.ams.org/mathscinet-getitem?mr=0483555

	1. Introduction
	2. Notation
	3. Quadrilateral finite element approximations and sufficient conditions for the stability and convergence
	4. Abstract error analysis for the limit problem
	5. Abstract error estimate for the general problem
	5.1. An equivalent formulation of the R-M plate problem
	5.2. An equivalent formulation of the discrete problem
	5.3. The well-posedness of the discrete problem and error estimates

	6. Four families of quadrilateral MITC elements
	7. Energy norm error estimates
	7.1. Error estimates for some operators
	7.2. The estimate of (r, Rhbold0mu mumu hdvips-bold0mu mumu hdvips)
	7.3. Energy norm error estimates

	8. L2 error estimates
	Appendix A. Error estimates of the reduction operator in L2 norm
	Appendix B. Error estimates of the reduction operator in H(rot ) norm
	Acknowledgment
	References

