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DISCRETE FOURIER ANALYSIS ON A DODECAHEDRON
AND A TETRAHEDRON

HUIYUAN LI AND YUAN XU

ABSTRACT. A discrete Fourier analysis on the dodecahedron is studied, from
which results on a tetrahedron are deduced by invariance. The results include
Fourier analysis in trigonometric functions, interpolation and cubature formu-
las on these domains. In particular, a trigonometric Lagrange interpolation
on the tetrahedron is shown to satisfy an explicit compact formula and the
Lebesgue constant of the interpolation is shown to be in the order of (logn)?.

1. INTRODUCTION

It is well known that Fourier analysis in several variables can be developed based
on the periodicity defined by a lattice, which is a discrete subgroup defined by AZ?,
where A is a nonsingular d x d matrix. A lattice L := AZ? is called a tiling lattice
of R if there is bounded set © that tiles R? in the sense that Q + L = R?. Let
L be a tiling lattice and Lt := A~"Z? its dual lattice; then a theorem of Fuglede
[5] states that the family of exponentials {€27** : o € L} forms an orthonormal
basis for L?(€2). The Fourier expansion on € is essentially the usual multivariate
Fourier series under a change of variables z — A~ 'x.

One can also develop a discrete Fourier analysis associated with a lattice, starting
with a discrete Fourier transform based on L', which has applications in areas such
as signal processing and sampling theory (see, for example, [3, [7, [10]). Recently
in [9], we studied the discrete Fourier transform and used it to derive results on
cubature and trigonometric interpolation on the domain 2, both are important
tools in numerical computation and approximation theory. The simplest domain for
the tiling lattice is the regular hexagon, which has the invariance of the reflection
group As. The fundamental domain of the hexagon under As is an equilateral
triangle. A detailed study of the discrete Fourier analysis is carried out on the
hexagon and on the triangle in [9]. The invariant and the anti-invariant projections
of the basic exponential functions are analogues of cosine and sine functions on
the triangle, which have been studied previously in [8, [II]. Explicit and compact
formulas are derived for several cubature formulas and interpolation functions in
[9]. In particular, we found a compact formula for the Lagrange interpolation by
trigonometric functions that interpolates at X, := {(Z, 1y:0<i<j<n} on the
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triangle T := {(x,y) : z,y > 0, « +y < 1} and proved that its Lebesgue constant
is in the order of (logn)2. The result on interpolation is noteworthy since it is
in sharp contract to the algebraic polynomial interpolation on X,, which has an
undesirable convergence behavior.

The purpose of the present paper is to carry out a similar analysis on R? for a
tetrahedron, also called a simplex in R3. For this we work with the face-centered
cubic (fec) lattice, which has the symmetry of reflection group As. The domain
that tiles R® with the fcc lattice is the rhombic dodecahedron (see Figure 3.2),
whose fundamental domain under Aj is a regular tetrahedron. We shall develop in
detail a Fourier analysis on these two domains, study analogues of cosine and sine
functions as in the case of hexagon, and establish compact formulas for discrete
inner product, cubature formulas and Dirichlet kernels.

Just as in the case of the regular hexagon [9] [I1], the analysis on the rhombic
dodecahedron and the tetrahedron is carried out using homogeneous coordinates of
R* instead of in R3. This has the advantage that our formulas are more symmetric
and the symmetry of the domain becomes more transparent. The Fourier transform
on the dodecahedron as well as the generalized cosine and sine functions were
studied earlier in [12] using a homogeneous coordinate system in R®. We choose
our homogeneous coordinates in R* since As can be regarded as a permutation
group on four elements.

It should be pointed out that the development on a specific domain does not
follow immediately from the general theory. To tile the space without overlap, the
domain 2 can only include part of its boundary. For the discrete Fourier analysis,
this fact causes a loss of symmetry; for example, for the rhombic dodecahedron,
the discrete Fourier transform is defined using only part of the boundary points. In
order to obtain results that are symmetric, we have to modify definitions to include
all boundary points, which can be delicate if the orthogonality is to be preserved.
The difficulty lies in the congruent relations of the boundary. In order to understand
the periodicity based on the rhombic dodecahedron, we need to understand the
congruence of the boundary under translation by the lattice. Furthermore, in order
to transform results from the rhombic dodecahedron to the tetrahedron, we need to
understand the action of A3z on the boundary. The complication of the congruence
of the boundary is also one of the main reasons why we restrict ourself to R3 instead
of dealing with lattices on R¢ that are invariant under A, (see [2]) for all d > 3.

One of our main results is a compact formula for the Lagrange interpolation
based on the regular points on the tetrahedron, whose Lebesgue constant is shown
to be in the order of (logn)3. Again, this is a result in sharp contrast to interpo-
lation by algebraic polynomials on the same set of points. Interpolation by simple
functions is an important tool in numerical analysis that has a variety of appli-
cations. For interpolation on the point sets in several variables, little results are
known if the point sets are not of tensor product type. Moreover, most studies
consider mainly interpolation by algebraic polynomials, which face the problem of
choosing interpolation points, as equally spaced points do not yield favorable re-
sults [I]. Our study in [9] and in the present paper demonstrates that interpolation
at equally spaced points on the triangle and on the tetrahedron can be solved with
trigonometric functions: the interpolation can be carried out by compact formu-
las that offer fast computation, and the convergence behavior is as good as can
be expected since a Lebesgue constant of (logn)? for interpolation in R is about
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optimal. In the present paper, we concentrate on a theoretic framework that leads
to trigonometric interpolation on the tetrahedron; a numerical study is for a future
work.

The paper is organized as follows. In Section 2 we sum up results from the
general theory of discrete Fourier analysis associated with lattice. The analysis
on the rhombic dodecahedron will be carried out in Section 3, including a detailed
study on the congruence of the boundary. Results on the tetrahedron are developed
in Section 4, including generalized sine and cosine functions.

2. DISCRETE FOURIER ANALYSIS WITH LATTICE

In this section we recall results on discrete Fourier analysis associated with lat-
tice. Background and the content of the first subsection can be found in [2] B} [7, [10].
Results in the second subsection are developed in [9]. We shall be brief and refer
the proof and discussions to the above mentioned references.

2.1. Lattice and Fourier series. A lattice L of R? is a discrete subgroup that
contains d linearly independent vectors,

L:={kia; +koag + -+ kgag: ki €Z, i=1,2,...,d},

where a1, ...,aq are linearly independent column vectors in R%. Let A € R%¥*? be
the matrix whose columns are ai,...,aqy. Then A is called a generator matrix of
the lattice L. We can write L as L4 and a short notation for L4 is AZ?; that is,

Ly=AZ"={Ak: keZ%}.

Throughout this paper, we shall treat a vector in the Euclidean space as a column
vector whenever needed. As a result, x - y = 'y, where z'" denotes the transpose
of . The dual lattice L' of L is given by

Lt = {xERd: x-yEZforallyeL},
where x - y denotes the usual Euclidean inner product of x and y. The generator

matrix of L+ is A~
A bounded set Q € R? is said to tile R? with the lattice L if

Z xa(z4+a) =1, for almost all z € R?,
a€cl

where yqo denotes the characteristic function of 2, which we write as Q + L = R?,
Tiling and Fourier analysis are closely related as demonstrated by the Fuglede
theorem. Let [, f(x)dz denote the integration of the function f over Q. Let (-, )q
denote the inner product in L?(€2),

1 S
(21) ()= [ S,
€2 Jo
where |(2| denotes the measure of Q. The following fundamental result was proved
by Fuglede in [5].

Theorem 2.1. Let Q C R? be a bounded domain and let L be a lattice of R%. Then
Q+ L =R? if and only if {627”‘“5 € LL} is an orthonormal basis with respect
to the inner product [2.1]).
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The orthonormal property is defined with respect to the normalized Lebesgue
measure on 2. If L = L4, then the measure of €2 is equal to y/det(A*A4). Fur-
thermore, we can write « € Ly = A™"Z% as a = A™%k with k € Z%, so that
a -z = k¥ A 'z. Hence the orthogonality in the theorem is

Ja ),

The set Q is called a spectral set (fundamental region) for the lattice L. If L = L4
we also write Q = Q4.
A function f € L'(€24) can be expanded into a Fourier series

(2.2) 2K AT g0 — 50, ke T

o tr 1 Cotrg—1
) ~ c e27rzk A a:’ P / T —2mi k" A z .
)~ Y Ty Qf( )

keza

The Fourier transform f of a function defined on L'(R?) and its inversion are
defined by

for = [ s@eicas, /f oI g,

Our first result is the followmg sampling theorem (see, for example, [7, [10]).

Proposition 2.2. Let Q be the spectral set of the lattice AZ®. Assume that f 1s
supported on Q and f € L2(Q). Then
=Y f(A"k)Do(z — AVk)
kezd
in L?(Q), where
1 4
Pq(x) = 7/627”5'“% .
() Jdet (A7 A) Jo <

This theorem is a consequence of the Poisson summation formula. We notice
that

Do(A")) = by, forall j € Z,
by Theorem [Z1] so that ®q can be considered as a cardinal interpolation function.

2.2. Discrete Fourier analysis and interpolation. A function f defined on R?
is called periodic with respect to the lattice AZ® if

flz + Ak) = f(x) for all k € Z¢.

The spectral set © of the lattice AZ¢ is not unique. In order to carry out the
discrete Fourier analysis with respect to the lattice, we shall fix € such that
contains 0 in its interior and we further require that Q tiles R? with L4 without
overlapping and without gap. In other words, we require that

(2.3) Z xa(x + Ak) =1, for all 2 € RY.
kezd
For example, we can take Q0 = [—1, 1)¢ for the standard cubic lattice Z.

Definition 2.3. Let A and B be two nonsingular matrices in R%*¢, Q4 and Qp
satisfy (2.3]). Assume all entries of N := B" A are integers. Define

vi={keZ: B"kecQa} and Al :={ke2Z?: A"k cQp}.
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Two points z,y € R? are said to be congruent with respect to the lattice AZ?,
if v —y € AZ?, and we write x = y (mod A). The following two theorems are the
central results for the discrete Fourier transform.

Theorem 2.4. Let A, B and N be as in Definition 23l Then

Z 2mikN {1, if k=0 (mod N'),

|det(N)] det 0, otherwise.

Theorem 2.5. Let A, B and N be as in Definition 23l Define the discrete inner
product

(f,9)n ‘det Z F(B™")g(B~j)
]GAN

for f, g € C(Qa), the space of continuous functions on Q4. Then

for all f, g in the finite dimensional subspace
Hy := span {¢k (w) = 2N ATT e Ajv} :

Let |E| denote the cardinality of the set E. Then the dimension of Hy is |AL].

Let Zn f denote the Fourier expansion of f € C(Q4) in Hy with respect to the
inner product (-, -) 5. Then, analogous to the sampling theorem in Proposition 2:2]
Inf satisfies the formula

Inf(z)= Y f(B™Uj)®5, (x—B"j), feC(Qa),
JEAN
where
A 2mi kYA~
®q, (z) = |det Z ¢
keA*

The following theorem shows that Zy f is an interpolation function.

Theorem 2.6. Let A, B and N be as in Definition 23 If A}L\, = Anv, then Iy f
is the unique interpolation operator on N in Hy; that is,

INf(BYj) = f(B™"j), Vj€An.

In particular, |[An| = |A}L\,| Furthermore, the fundamental interpolation function
@éB satisfies

4, (2) = Y Dq,(z+ Ak).
kezd

The above results have been used to develop a discrete Fourier analysis on a
hexagon in [9]. In the following section, we apply it to the rhombic dodecahedron.
3. DISCRETE FOURIER ANALYSIS ON THE RHOMBIC DODECAHEDRON

In this section we develop a discrete Fourier analysis on the rhombic dodecahe-
dron. It contains five subsections.
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FIGURE 3.1. Face-centered cubic (fcc) lattice.

3.1. Face-centered cubic lattice and Fourier analysis. We consider the face-
centered cubic (fce) lattice given in Figure 3.1.
Just like the hexagon lattice, the fcc lattice offers the densest packing of R? with
unit balls, which is the so-called Kepler’s conjecture and was proved recently in [6].
The generator matrix A of fcc lattice is given by

0 1 1
A=11 0 1
110

The domain that tiles R® with fcc lattice is the thombic dodecahedron (see Figure
3.2). Thus, the spectral set of fcc lattice is

Q={reR¥: ~1<z+2,<1,1<i<j<3}
The strict inequality in the definition of €2 reflects our requirement that the tiling

of the spectral set has no overlapping.

(0,0,1)

(0,0,-1)

FIGURE 3.2. Rhombic dodecahedron
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Motivated by the study of [9, 1T, 12], we shall use homogeneous coordinates
t = (t1,to,13,t4), where t +to +t3 +1t4 = 0, in R* for our analysis on the rhombic
dodecahedron in R3. The advantage is that our formulas become more symmetric
and the symmetry becomes more transparent under the homogeneous coordinates.
Throughout the rest of this paper, we adopt the convention of using bold letters,
such as t, to denote the points in the space

R%—I = {t: (tl,tz,tg,t4) €R4Zt1 +t2+t3+t4=0}.

In other words, the bold letters such as t and k will always mean homogeneous
coordinates. The transformation between z € R® and t € R, is defined by

t 1 =t2 + 13,
(31) r=A|t <~ To =11 + 13,
ts x3 =12 + ty,
and t4 = —t; — to — t3. Let us denote by H and U the matrices
1 0 0 -1 1 1
0 1 0 111 -1 1
H=1y o | md U=3511 1 1|
-1 -1 -1 -1 -1 -1

respectively. The columns of the matrix U are orthonormal and U"U = I. We
then have A = U H and the inverse transform of [B.1]) is

ty = %(—% + x9 + 3),
to = L(x1 —x x3),
(3.2) t=Uzs <= {° f(l 2+ 72)
ts = 5(:131 + T2 — .]33),
t4 = %(7%1 — Ty — Zg).
In the homogenous coordinates, the spectral set is Qp := {t = Uz : z € }
which, upon using [B.2]), gives
(3.3) Q={teRy:—1<t;—t; <1,1<i<j<4}.

Figure 3.3 shows again the rhombic dodecahedron with vertices labeled in the ho-
mogeneous coordinates.

FI1GURE 3.3. Rhombic dodecahedron labeled in homogeneous coordinates.
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Under the change of variables ([3.2]), the integral over Qp is given by
1 1
(3.4) — f(t)dt = —/ f(z)dx.
Qul Jay €2 Jo

By Fuglede’s theorem, {e2™*'A7'= . k € 73} forms an orthonormal basis in

L2(€2). We would like to reformulate the exponential functions 2™ *¥"47'= 5o that
they are indexed by homogeneous coordinates. For this purpose, we denote by

Zy =7Z'NRy ={k€Z': ki + ko + ks + kg = 0}
the set of integers in homogeneous coordinates and introduce the notation
(3.5) H:={ke€Zy ki =ky=k;=ks (mod4)}.
The definition of the matrix H shows that if k € Z3, then Hk € Z%,. For k € Z3,
set j = 4H(AYA)~1k € Z%. A quick computation reveals that j € H. Moreover,
given j € H, it follows from A = U H that k = $ A"U"j, which is easily seen to be
in Z3. Furthermore, we have

KA e = LM UAA e = iUz = Jj - t.

Consequently, we can index the exponentials by j € H and the exponent 2mikT A g
becomes 7%'j - t. Let us introduce the notation
(3.6) g;(t) = eIt jeH.
Then, using (3:2) and recalling (Z.2), the Fuglede Theorem becomes the following:
Proposition 3.1. Fork,jec H,

1 -
(P, 05) = 5 | dkl(t)d5(t)dt = dic.
Qn
Furthermore, {¢; : j € H} is an orthonormal basis of L*(0y).

Given f defined on ), the mapping 8.2 shows that f(z) = f(U"t) = g(t) is the
function in homogeneous coordinates. Since A = U™ H, a function f being periodic
with respect to the lattice AZ? becomes, in homogeneous coordinates, the following
definition:

Definition 3.2. A function f is H-periodic if it is periodic with respect to the fcc
lattice; that is, f(t) = f(t + Hk) for x € Qy and k € Z3.

Using the explicit form of the matrix H, it is easy to see that the following holds:
Lemma 3.3. A function f(t) is H-periodic if and only if
ft)=f(s), t-seZy,
or equivalently,
ft+ ke, ;) = f(t), keZ, 1<i<j<i4,
where e; j :=e; —e; and {e1,e1,e3,es} is the standard basis of R%.

Evidently, the functions ¢;(t) in (3.6 are H-periodic. Furthermore, Proposition
B shows that an H-periodic function f can be expanded into a Fourier series

(37) [~ Rebn(). where fr= 5 [ F(®)0-(t)d.

2
keH Qn
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3.2. Boundary of the rhombic dodecahedron. In order to carry out the dis-
crete Fourier analysis on the rhombic dodecahedron, we need to have a detailed
knowledge of the boundary of the polyhedral.

We use the standard set theory notations 9, 22° and Q to denote the boundary,
the interior and the closure of Q, respectively. Clearly, @ = Q° U 9. A rhombic
dodecahedron has 12 faces, 24 edges and 14 vertices. Since we will consider points
on the boundary, we need to distinguish a face with its edges and without its edges,
and an edge with its end points and without its end points. In the following, when
we say a face or an edge, we mean the open set, that is, without its edges or end
points, respectively.

We shall work with homogeneous coordinates. To describe the boundary of Qpy
we set Ny := {1,2,3,4}. For 4,5 € Ny and i # j, define

Fi’j:{tEQHZti—tj:].}.

There are a total 2(3) = 12 distinct F; ; and it easy to see that each F; ; stands for
one face, with its edges, of the rhombic dodecahedron.
For nonempty subsets I, J of Ny, define

Qry= () Fy={t€Qu: t;=t;—1 forallicl, jeJ}.
iel,jed
Lemma 3.4. Let I,J, 1;,J; be nonempty subsets of Ny. Then
(i) Qr.y =0 if and only if INJ # 0.
(ii) QIth n Q]2)J2 = QI)J if[l Ulo=1and JUJy =J.

Proof. 1t is obvious that Qy ; # @ if INJ = @. On the other hand, if INJ # () and
i=je€lInJ,thent; —t; =0 +# 1, which shows that Q; ; = (). This proves (i).
If either Iy N Jy # 0 or Iy N Jy # 0, then Qp, 7, NQp, g, = Qg =0 by (i). If
LNnJi=LnNnJy=0andi, €1,,75, €.J, for v=1,2, then
til_tjgztil_ti2+1§1 and _]-Stjl_tigztil_tig_]-a
which implies ¢;, —¢;, = 0 so that t;, = t;, = t;;, — 1 = t;, — 1 and proves

Q]lelﬂQ[%JQ :Q[)J. O

Edges are intersections of faces and vertices are intersections of edges. Lemma
[3.4 gives us information about the intersections. To make clear the structure of the
boundary 99y, we introduce the notation

K=1{(I,J):1,J CNg InJ =0},
Ko=A{(I,J)eK: i<y, forall (i,j) € (I,J])}.

Definition 3.5. For (I,J) € K, the boundary element By ; of the dodecahedron,
BLJ = {t € QLJ N ¢ Q[17J1 for all (Il,Jl) € K with |I| + |J‘ < ‘.[1| + |J1|},
is called a face if |I| + |J| = 2, an edge if |I| + |J| = 3 and a vertex if |I| + |J| = 4.

For the faces and the edges, the boundary elements represent the interiors. In
fact, it is easy to see that By (3 = F}; and, for example, By jxy = (Fij N Fig)°
for distinct integers i, j, k € Ny.
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Furthermore, for 0 < i,7 < i+ j <4, we define

K ={(I,J)ek: |I|=i, |J|=j}, BY“:= |J B,
(I,J)eKi
(3.8) . ‘ ‘ .
’Cd = {(Iv‘])GICO: |I|:Zv |J|:J}v B()’ = U BI,J~
(1,J)eKh?

Note that B%J is the union of boundary points in those By ; for which |I| =i and
[ J] = J.
Proposition 3.6. Let (I,J) € K and (I1,J1) € K.
(i) BryNBp.g,=0,if I#1 and J # Jy.
(i) Qp \Qy = U(I,J)GIC Brjg= U0<i,j<i+j§4 Bi’?i
(iii> Qu \ Qy = U(I,J)GICO By = U0<i,j<i+j§4 BS’J-

Proof. If By jNBy, .y, # 0, then |I|+|J| = |I1]|+|J1|. Moreover, ift € B; ;N By, j,,
then t € QLJ N Q[h.]l = qujl,Jujl by Lemma [3.4] which implies that ‘I‘ + |J| >
|[TU |+ |JUJq|. Thus we must have I =1, = IUI; and J = J; = J U Jy, which
contradicts the assumption and proves (i).

To prove (ii), we define for t € 0Qp, I = {i € Ny : 3j € Ny such that ¢t; —t; = 1}
and J = {j € Ny : 3i € Ny such that t, —t; = 1}. Clearly, (I, J) € K and t € By 4,
which proves the first equal sign of (ii). The second equal sign follows from the
definition of B%J. Since

Qu\ Qg ={teQu\Qy:t; —t; > -1, Vi< j},
the part (iii) follows immediately from (ii). O

The above proposition provides a decomposition of the boundary into non-
overlapping boundary elements. To make each boundary element explicit, we use
symmetry. Let G = Sy be the permutation group of four elements. For t € R}, and
o € G, the action of o on t is denoted by to, which means the permutation of the
elements of t by 0. A moment of reflection shows that, for (I,J) C K,

B‘IM‘” = U BLJO' = {tO’ 't e BLJ,CT € g}
o€g

Later in the section we will need to consider points on the boundary elements
that are congruent module H. For (I,J) C K we further define

[BI’J} = {BLJ"‘kaEZ%}mﬁH:{t+k€ﬁH2tEB]7J,kEZ%I}.

Since [By,s] is a subset of Qy and By ; is a boundary element, we see that [B;, ]
consists of exactly those boundary elements that can be obtained from B; ; by
congruent modulus H, as confirmed by the following lemma.

Lemma 3.7. Ift,s € Qy and s =t (mod H), thent =s.

Proof. By Lemma B3] if t,s € Qg and t =s (mod H), then s — t € Z}, and, set
k:=s—t, -1 <k;—k; <1foralli,jc Ny The last condition means that either
k; € {0,1} for all : € Ny or k; € {0,—1} for all i € Ny. The homogenous condition
k1 + ko + k3 + k4 = 0 then shows that ky = ko = ks =ks =0o0r s =1t. Il
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As an example, we have
Buyqea = {(tt =1t =1,2-3t): 5 <t < {},

(3.9)
Bpiaoygsy = {(1—t,1—t,—,3t—2): L <t<3},

and from the explicit description of By} (2 33 we deduce

[Biy,12.31] = By 2 U (Bpayq2, + (=1,1,0,0)) U (Bpay 2,3y + (=1,0,1,0))
(3.10) = B1},(2,3) U Byay (1,3 U Bysy (1,23

Others can be deduced similarly. The last equation indicates that [By ] is a union
of By j, which we make precise below.

Let o;; denote the element in G that interchanges ¢ and j; then to;; = t —
(t;—t;)e; ;. For a nonempty set I C Ny, define Gy := {0;; : 4, j € I}, where we take
0;j = 0j; and take o; as the identity element. It is easy to verify that G; forms a
subgroup of G = S, of order |I|.

Lemma 3.8. Let (I,J) € K. Then

(311) [BI’]] = U B]’JO'.
o€Grug

Proof. For any i,j € IUJ, the definition of By ; shows that to;; —t = (t; —t;)e;; €
Z4; for all t € By ;. It then follows from to;; € Qp that By, y0i; € [Br,1).
Consequently, U, g, , Br.so C [Br.s].

On the other hand, for any s € [By, ;] there exists t € By ; such that s —t € Z%;.
It follows from Proposition B.6] and Lemma 3.7 that s € By, j, for a pair (I1,J1) €
KC. By the definitions of By ; and Qp, there exist ¢, s € R such that

—3<t-1=tj<ty<t;=t<3 iel, jelJ 1gIUJ,

b)
—%§8—128j<81<8i=8§%, iel, jeJi, l¢11UJp.

Since s—t € Z},, the above inequalities imply that s; —t; € {—1,0,1} for all i € Ny.
We claim that ¢ = s. Assume otherwise, say s > t. Fori € I, s; —t; > s—t > 0so
that s;—t; = 1; while for ¢ € Iy, s;—t; > s—1—t > —1 so that s;—t; € {1,0}. It then
follows that )y, (si — ;) > 0, which poses a contradiction to the homogeneity
of s — t. Hence we must have s = ¢t. With s = ¢, it is then easy to see that
si—s =35 —t € {0,-1} fori € I, s; —s+1=s; —t; € {0,1} for j € J,
and s — 1 < sy =t < sforl € TUJ. This shows that TUJ = I U J; and
Yicrusti = 2ier,uy, Si- Meanwhile, we note that ., ti = t(|I| + [J]) — |J]
and Y ;7 0y, Si = s(|1|+[J1]) — |J1]. Tt then follows that |J| = [J1| and |I| = [I1].
Consequently, s = to for a 0 € Gruy and [Br ] € U, g, , Br,so. This completes
the proof of the lemma. O

Since K% can be obtained from ICé’j from the action of G, it follows that

(3.12) BY= |J Bid= |J B, o0<ij<itj<d
(I,J)eky? BeBiI

We also note that [Br j] N [By,, 5] = 0 if (I,J) # (I1,J1) for (I,J) € Ky and
(I1,J1) € Ko, which shows that (8.12)) is a nonoverlapping partition.
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If |I| +|J| = 3 or By, is an edge, then we have
(3.13) BY? = [B1y (2.3) U [By.q2,43] U [B1y(3.43) U [Byay. 3,43,
B>' = B2y, (3] U B2y, (3] U [Bpa sy (3] U [Bya sy (4],

where we recall that By (2,33 and Byy 2y (3} are given in (3.9,
B1y,(2,4y = B{1},12,3) 034, By1,2},14) = B{1,2},{3) 034,
(3.14) Bi1y,43,4) = B{1},12,3)024,  Bi1.3),{4) = B{1,2},{3}023034,
B2y ¢34y = B{1,2),{3)012024,  B{23},14y = B{1,2},{3}013034.
If [I| + |J| = 4, then
BLS: [{( iaiafi)}]

1
(3.15) v
B = {3 —4 -4

)}

3.3. Dodecahedral Fourier partial sum. In order to apply the general result
on discrete Fourier analysis in the previous section to fcc lattice, we choose A = A
and B = nA with n being a positive integer. Then the matrix

2n n n
N=BYA=|n 2n n
n n 2n

has integer entries. Note that N is now a symmetric matrix so that Ay = Ay,
and it is easy to see that A;rv = An. Recall the definition of H in (B35]). Using again
j=4H(A"A)"'k € Z%, it is easy to see that k € Ay becomes j € H,,, where

Hy:={keH: £ ecQuy}={keH:—4dn <k —k; <4n,1<i<j<4}.
The finite dimensional space H of exponentials in Theorem becomes
H,, :=span{¢x : k € H,} with  dimH,, = det(N) = 4n?.

Note that the points in H,, are not symmetric under G, since points on half of
the boundary are not included. For reasons of symmetry, we further define

]HI;;::{keH:ﬁeﬁH}:{keH:—zmgki—kj§4n,1§z’<j§4}.

(2n,2n,—2n,—2n)

(3n,—n,—n,—n)

Zon,2n, —2n,2n)”
(=2n,2n,—2n, r/l) -

~. 4 P

- \(*ﬂ,fn‘fn‘dn)

~ N (—2n,2n,2n,—2n
~

(=n,—n,3n,—n)
(=3n,n,n,n)

(—2n,—2n,2n,2n)

FIGURE 3.4. H} = {t e H: —4n <t; —t; <4n}.
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For the Fourier expansion (B1) of an H-periodic function, we define its dodeca-
hedral partial sum as

1

(3.16) Suf(t) = Y (f.du)en(t) =5 | f(8)Dy (6~ s)ds,
keH: Qn

where DX is the Dirichlet kernel for the dodecahedral partial sum
(3.17) DH(t):= Y eFkt.
keH;,

Our immediate goal is to find a compact formula for the Dirichlet kernel D,
We start with an observation that the index set H can be partitioned into four
congruent parts, each within a parallelepiped, as shown in Figures 3.5-3.8.

(0,0,0,0)

(=2n,—2n,2n,2n) (~2n,~2n,2n,2n)

FIGURE 3.5. HS) FIGURE 3.6. Hf)

(20,20, ~20,~2n)

(2n,2n, —2n,—2n)

(n,n,—3n,n) (3n,—n,—n, :77L

(0,0,0,0)

(—n,—n,—n,3n) (—n,—n,3n,—n)

FIGURE 3.7. H5L3) FIGURE 3.8. Hg)

Lemma 3.9. Define H&k’ ={jeH:0<j —jx <4n,l € Ny} for k € Ny and
H) :={k€H:k; =k, Vi,je€J, and 0 <k, —k; <dn,Vj € J, Vi e Ny \ J}
for ® € J C Ny. Then

H,=JHY ad H =[)H.
JENY JjeJ

Proof. For k € H¥, let k; = min{ky, ko, ks, ks4}. Then k € H', which implies that
H;, C Uien, HY . Since HY C H, for each i € Ny, it follows that Hf, = J,cy, HY .
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If k € HY NHY, then 0 < k; — k; < 0; that is, k; = k;. It follows that if
k € ﬂjeJHsf), then k; = kj;, Vi,j € J, which implies ijJH5£> C H/. Since

HY c HY by definition, we conclude that HY = ics HY. O
Theorem 3.10. Forn > 0,
4
sin 7mt
(3.18) DH(t) = ©,41(t) — 0,(t), where O, ( U St

Proof. Using the inclusion-exclusion relation of subsets, we have
Df(t) — Z (_1)|J\+1 Z e%" k-t'
PCJCN, keH/
Fix j € J, using the fact that t; = — 37, t;, we have
STkt = 37 o Rianwhikt o 3 TT e F ik
keH; keH; keHJ 1eNg\J

By the definition of H; and the fact that k € H implies k; = k; (mod 4), we obtain

PORRE | D DR R

keH/ 1EN,\J 0<k;—k;<4n
ki=k; (mod 4)
2wi kit; .
I > emht= ] Kut).
1EN,\J 0<k;<n ISRV

Consequently, we obtain
(3.19) D)= > (- I Kutt) = [] Knt)) = J] Enlt;) - 1),
PCJICN,y leNg\J JENy JENy

where the second equality is easily verified upon expanding the right-hand side
explicitly. Thus, we conclude that

4 e2mi (n+1)t; _ 1 4 e2mi (n+1)t

Dﬁl(t):Ue%”T_H eszt::f

2mit;

j=1

4 emi (n+1)t; - (n+1)t emint; e~ Tint;

_ H ‘e H - T i (n1)t,
e7T’Lt — e~ tj 7rzt — e~ tj

Jj=1 j=1

4 4

H sinm(n + 1)t H sin Tnt

sin 7t , sin 7t ;
: ]:1

where in the last step we have used the fact that H;l‘:1 e’ti = 1, which follows
from the fact that t; + t5 + t3 + t4 = 0. This completes the proof. O
As an immediate consequence of Theorem [3.10} we conclude that
IH:| = DF(0) = (n + 1)* — n*.
The explicit formula of the Dirichlet kernel also allows us to derive an estimate

for the norm of the partial sum S, f in (BI6). Let || f||c denote the uniform of
f € C(Qp) and let ||S,||s denote the operator norm of S, : C'(Qy) — C(Qg).
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Theorem 3.11. There is a constant ¢ independent of f and n such that
[Snlloo < c(logn)B.

Proof. From (BI6)), a standard argument shows that the norm is given by

1
1Snllee = = m@x/ ‘Df(t —s)| ds.
2 tetn Jay,

To estimate the integral, we use the first equation of (3I9) and the fact that

n .

ij g SIT(N 4 1)t

3.20 K, (t) = E 2mijt ming MR+ DT
( ) ( ) : € =e pr—

which leads to

1
1Sn/loe < T max / Ko (i — )| ds

2
€ “ToN, leN4\J

i 2 ),
— max
2

8€Qu o TN, o 1N\

A

sinm(n+ 1)(t; — s1)
sin(t; — s1)

IN

ds.

Since J # (0, the above product contains at most three terms, and those that
contain product of three terms dominate other integrals. Consequently, enlarging
the domains of the integration and then using the periodicity of the trigonometric
function, we conclude that

3
SMOS/
stz [ 1

CH/

where the last step follows from the usual estimate of the integral involved. O

sinm(n+1) uJ d
u

sin U

sinm(n 4+ 1)u;

du; < el 3
sin 7w, u; < c(logn)”,

We expect that the estimate is sharp, that is, ||Su||cc > c(logn)3. To prove such
a result would require a lower bound estimate of the integral of |D (t —s)| at one
point in Qp, likely at s = 0. However, this does not appear to be an easy task as
there is a sum of four terms of the same type.

3.4. Discrete Fourier analysis on the rhombic dodecahedron. Using the
set-up in the previous subsection, Theorem in the homogeneous coordinates
becomes the following proposition.

Proposition 3.12. Forn >0, define

(b= g S0 A 9(E), o9 € COm)

jEH,

Then
<fvg>:<fag>n7 faQEHn-

The point set H,,, hence the inner product (-, -),,, is not symmetric on Qz in the
sense that it contains only part of the points on the boundary. Using the periodicity,



1014 HUIYUAN LI AND YUAN XU

however, we can show that the inner product (-,-), is equivalent to a symmetric
discrete inner product based on H. To proceed, define

H, {_]EH —eQ°}
and, recall B8], for 0 < i,j < i+ j < 4 define
(321)  HY:={keH: £eBY}, HY={keH: &eB}.

Recall that B*/ is a boundary element of Qp, so that H}7 describes those points
j in H, such that ;L are in B% of 0Qy. Furthermore, HL7 = {H,%0 : 0 € G}
Using Proposition 3.6} it is easy to see that Hi NHE = @) if 4 # k, j # 1,
J WY =H,\H, and U B =H, \H.

0<i,j<i+j<4 0<i,j<i+j<4

Lemma 3.13. Forn>1,0<4,j<t+j <4,
4!

ilgld —i—j)!
Proof. The first equation follows from |[HS | = [H* ;| = n* — (n —1)*. The descrip-
tion of B»J in Subsection 3.2 shows that B%J has W’li]), segments and each has

H=n'—(n-1%  [HY|=

n

(n— 1)t

(n — 1)4=%=J points, which proves the second equation. O

Definition 3.14. For n > 0 define the symmetric discrete inner product

o= s 3o AV fG)0(E), fg e C@n),

JeHy

~F

where CJ§”) =1ifje H;, and c}n) = (Llj) if j € H%7; more explicitly,
4

jeH;, (n* — (n — 1)* points in the interior),
€ HL1t, (12(n — 1)? points on the faces),

(

(

cjgn) = jeEHL2UH2 (2 x 12(n — 1) points on the edges),

jeH P UHS!,
€ H22, (6 points on the vertices).

2 x 4 points on the vertices),

Q= = W= N =

It is easy to verify that > p. CE”) = 4n3, so that (1,1) = 1. We prove the
following result.

Theorem 3.15. Forn > 0,
(fr9)={f, n={f9n [ 9€Hn.

Proof. For each j € H- | we define

n,0’

(3.22) y={keH,: £ = % (mod H)}.

It follows immediately from (3.12)) that H:I = UkeHi,jO Sk. By @I0), [BY7] is the

k+l)

union of (|I||4I'||J|) components of By jo. Consequently, it follows that |S;| = ( !
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for j € HyG,. Let f be an H-periodic function. Then

Z ngn)f(%): Z (Hl-_k) Z f(zf_n)

JEHX \H 0<i,k<it+k<4

- Z (zilc) Z Zf(%)

0<i,k<i+k<4

Since |S;| = (H'k) for j € Hn 0, using the invariance of f, we then conclude that
(n) iy 1 1+ k
S = Y ms S (- ¥ s
JEH: \HS 0<i,k<i+k<4 \ 1 jer;,"{) JEH, \HZ
Since an) = 1if j € H, the proof is completed. O

The discrete inner product is closely related to cubature formula, since Theorem
shows that the integral of f € H, agrees with the discrete sum over H.
In fact, more is true. Let us define by 7, the space of generalized trigonometric
polynomials,

7, :=span{¢x : ke H} }.
Theorem 3.16. For n > 0, the cubature formula
1 1 (n)
3 | r0dt =15 3 )
JeH;,
is exact for all f € Top_1.

Proof. If k,j € H,, then the definition of H}, implies immediately that k — j €
H3,_,. Suppose now j € H3, _; and we may assume that j; > j2 > j3 > js.
There exists k € H such that k —j € H. Indeed, if j; — j3s < 4n — 4, we can
take k = (n,n,n,—3n). If jo — js < 4n — 4, we can take k = (3n,—n, —n, —n).
Finally, if both j; — j3 > 4n and js — js > 4n, then it follows from the definition
of H5,,_; that j; — jo < 4n — 4 and j3 — js < 4n — 4. In this case we can take
k = (2n,2n,—2n,—2n). Consequently, this shows that

H, , ={l:1=k—j, k,jeH,}.

Thus if ¢; € Hap—1, then j € H3, _; and there exist k,1 € H,, such that ¢; = ¢k¢1
Consequently, the stated result follows from Theorem [3

3.5. Interpolation on the rhombic dodecahedron. For the rhombic dodeca-
hedron, Theorem on interpolation becomes the following:

Proposition 3.17. Forn > 0, define
. . 1
= Z f(E)en(t — 4-),  where =5 Z
JEH, €H,
for f € C(Qg). Then I, f € H, and
Tof(d) = £(3), Yi€Hn
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Again there is a lack of symmetry in the sense that Z,, uses only points in H,,,
which contains only about half of the boundary points. We are more interested in
another interpolation operator given below, defined over all points in HY. Although
it does not interpolate at all points in HY , its symmetric form can be used to derive
results on the tetrahedron in the next section. Recall Sk defined in (322]).

Theorem 3.18. Forn >0 and f € C(Qy), define

=" F(E) ()

jeEH:
where
(€)= @5t = 2)  and  @(t) = LS s
keH:
Then L) f € T, and it satisfies
F(E), jeHe,

(3.23) T f(d) =

1 1 1 sin(n — 1)7t,
O (t) =— DH DH. = (2t; +t
n(t) 4n3 |2 ( (t)+ 3 —  sinnwt, ;cosmr +v)
J#v
1< 1
(3.24) ~3 Zcos 2nnt; — 3 Z cos2mn(t, +t,)
j=1 1<p<v<4

Proof. By definition,
€j7"(4n) @ ( TJ 4 An3 Z (n)¢
1€Hy,

Since Qp tiles Ry, there exist m,1 € Z3; such that 2 € Qy and k — j = m + 4nl.
Thus, by Theorem [B.15]

1 n m 1 n i
lin(15) =13 > () = P > A" b ()
icH icH:

:<¢m7 ¢0>7*1 = <¢m7 ¢0> = 6m,0~

Equivalently we can write the above equation as

1, k=j+4nl 1€ Z3,
0, otherwise,

(3.25) Uin(a5) = Pk, B5)7 = {

from which (3:23)) follows.
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To derive the compact formula for ¢; ,, we start with the obvious fact that OH}, =

H* \ HF_,, so that
n 1 n
dooalat =5 > ) > (5 )ok(t)
ke oMy, keH: \H} _, ke oMy,
1
=5 (DI (®) =DL®) = > (G- a)ex(b).
keoH,

Since H¥ = H UOH,, we then derive from the decomposition of OH into H:J and
the values of cl((n) that

320 B0 =5 [5OIO DI -5 X e

An? k€M > U !
1 1
1 > olt) - 3 > k()]
keHl*?’uH?”l keH;?
Let us deﬁne HLY :={k € H: ;< € By s} for I,J C Ny and also define [HL/] :=
{keH: £ € [BI’]]} It follows from B12), B2I) and Lemma B.§] that
= | m] and  [HY]= ) HYe
I,JeKi? o€Gruy
In particular, by (313]), we have
B = ({129 U ({8 U O U [0,
' = ({2 20 U [ 0] U [0,

By BI0), 3] = g3 g g2 O i Furthermore, it fol-

lows from @I4) that [HE Y] = @30y, | Y = @236y,
[H£2},{3,4}] _ [HT{Ll},{Q,S}]

see that

012094. Using the explicit formulas in 39), it is easy to

HIH23Y — {4+ 20,5 — 20,5 —2n,2n—3j) : 1 < j <n—1}.
Consequently, using t1 + to + ts + t4 = 0, it follows readily that

Yoooat)= D at)+ D at)+ > k(t)

ke[ 28] kemf' 28 kemf? 8 kemf?h 2
n—1
_ Z o—2mijts (eZnTri(t1+t4) 4 e2nmiltata) 4 62n7ri(t3+t4))
Jj=1

_ sin(n — 1)mty (enni(2t1+t4) L enmi(2tatts) | en‘n’i(2t3+t4)>

sin 7ty ’
where in the last step the sum is evaluated using (B220). The explicit formulas for
other components of Zkerz ¢k follow from the above expression by permuting
the variables. In a similar manner, we have [H;{L172}’{3}] = H;{Ll’2}’{3} U ]H[;{ll’?’}’@} U
B and, using B14) again, [HEWHY) = mi By, @) =
[H’gl,Z},{B}] Hiz273}7{4}] _ [Hr{LLQ}’{g}]

093034, | 013034. Moreover, we also have

HW23 = {(2n — j,2n — j,—2n — j,—2n + 3j) : 1 < j <n—1}.
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Thus, using t1 + t3 + t3 + t4 = 0, we can deduce as before that

SYoooat = Y aw+ Y s+ > et

KeEi2h (3 KemL!2) (31 kemL 32} kem23h (1)

sin(v? — 1)mty (e_nﬂi(2t1+t4) 4 emnmi(2tatts) | e—nm‘(2t3+t4)> 7
sin 7ty

from which the explicit formulas of other components of ZkeHi,l ok follow from
permuting the variables.
Putting the sums over H:? and H?! together, we obtain

4

Z Z ms?n_mi )ty Zcosmr (2t + ).

keHy 2UHZ ! v=1 =1
J#V

Using B.I5), it is easy to see that H13 = {(n,n,n,—3n)o : 0 € G}, H2? =
{(2n,2n,—2n,—2n)o : 0 € G} and H3! = {(3n,—n,—n,—n)o : o € G}, from
which it follows that

4 4
Z or(t) = Z (€™ 4 eI ) = 2 Z cos 2mnt;.

keHL S UuHS ! j= =1

—

Furthermore, using t1 + t2 + t3 + t4 = 0, it is easy to see that

Z dr(t) = Z e2min(tutts) — Z cos 2mn(t, +t,).

kcH?? 1<p<vr<4 1<p<v<4

Putting these terms into ([326]) completes the proof. O

The compact formula of the interpolation function allows us to estimate the
operator norm of I, which is usually referred to as the Lebesgue constant.

Theorem 3.19. Let ||I}||. denote the operator norm of I : C(Qy) — C(Qg).
Then there is a constant c, independent of n, such that

173 ]loo < c(logn)®.

Proof. A standard procedure shows that
Kk
15l = max @5 (6 — 4]
Y e
Using the compact formula of ®* in Theorem BI§] it is easy to see that it suffices
to prove that

iy < > 0.
4n3 trggi ke:ﬂ* |DJI(t — 45)| < c(logn)?, n>0

Furthermore, as in the proof of Theorem 311, the formula of DX in ([3I9) shows
that our main task is to establish the estimate

I3y tIggX Z | K (t1 — $2) Kn(ta — 52)Kp(ts — 52)| < c(logn)?,
KeH:
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and three other similar estimates I(; 5 4y, I{1,3.4) and I;3 34}, respectively. Enlarg-

ing the domain H to {k € Z}; : —4n < k; < 4n, k; = 0 (mod 4), 1 < i < 3}, we
see that

I{l 23} < 4n e max Z Z Z )Kn(t2 - %)Kn(td - %)‘

1—771 ktszn k}g—f’l’b
3
1 1 < [sin(n+ D)7t — &)
< - ma — n < ¢(logn)?,
~ 4dte[- ]< k;n sinm(t — £) < c(logn)

where the last step follows from the standard estimate of one variable (cf. [13] Vol.
II, p. 19]). g

Again we expect that the estimate is sharp, that is, ||I7]| > c(logn)?; and the
problem is again that there is a sum of four terms of the same type.

4. DISCRETE FOURIER ANALYSIS ON THE TETRAHEDRON

Considering functions invariant under the isometrics of the fcc lattice, the dis-
crete Fourier analysis on the dodecahedron in the previous section can be carried
over to the analysis on the tetrahedron.

4.1. Generalized sine and cosine functions. The fcc lattice is the root lattice
of the reflection group As [2, Chap. 4]. Under the homogeneous coordinates, the
group Ajs is generated by the reflections {o;; : 1 < i < j < 4}, where o;; is the
reflection defined by to;; = t — 2&%& ; with e; ; = e; — e¢; as before. Thus
Ajs is the permutation group in the previous section. Denote the identity element
in A3 by 1. It is easy to see that we have

O',LQJ- = 1, 0ij0jk0ij = Oik, i,j,k € Ny.
For 0 € G = As, let |o| denote the number of inversions in o. The group G
is naturally divided into two parts, g7 := {c € G: |o| =0 (mod 2)} of elements
with even inversions, and G~ := {c € G: |o| =1 (mod 2)} of elements with odd
inversions. Writing it out explicitly, we have
Gt = {1,012013,013012701201470'14012,0130'14,
0’140’13,023024,0240237012034,0'13024,0140'23},
G- = {012,013,0147023,024,0347012013014,01201401&
013012014,013014012,014012013,014013012}~
The action of 0 € G on the function f : R} — R is defined by o f(t) := f(to). A
function f in homogeneous coordinates is called invariant under G if of = f for
all 0 € G, and it is called anti-invariant under G if of = p(o)f with p(o) = 1 if
ceGtand p(o)=-1ifceG™
The following proposition follows immediately from the definition.

Proposition 4.1. Define two operator PT and P~ acting on f(t) by

(4.1) PEF(t) : 24{thcr Zf(ta)}

oceg+t ceG—
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Then the operators PT and P~ are projections from the class of H-periodic func-
tions onto the class of invariant, and respectively anti-invariant functions.

Applying the operators P* to ¢y (t) = eskt gives basic invariant and anti-
invariant functions, which we denote by TCy and TSy, respectively, as they are
analogues of cosine and sine functions. We formerly define them as follows.

Definition 4.2. For k € H define
TCk(t) := P o (t) = %[ Z ox(to) + Z ¢k(to)},

oegt oeG—
TSk(t) = —’Pi(bk(t) = —214|: Z (bk(tO') — Z ¢k(t0):|,
oegt oeG—

and call them generalized cosine and generalized sine, respectively.

Evidently TCy is invariant and TSy is anti-invariant. The rhombic dodecahedron
is invariant under our group G of order 24; its fundamental domain is a tetrahedron.
For invariant functions, we can make use of symmetry to translate results on the
rhombic dodecahedron to one of its 24 tetrahedrons. We shall choose our reference
tetrahedron as

(4.2) A:={reR®:0<x3+x0,20 +x; <1}
In the homogeneous coordinates, by (B.2)), this tetrahedron becomes
A ={t eRY 10 <t —to,ty —t3,t5 —ta,tg —ts < 1}.

See Figure 4.1 below, in which coordinates of the corners are given in both R?
coordinates and homogeneous coordinates in R*.

FIGURE 4.1. Reference tetrahedron.

When TCy are restricted to the tetrahedron A g, we only need to consider a
subset of k € H. In fact, it is easy to see that

(4.3) TCxo(t) = TCxk(to) = TCk(t),
for t € Ay and o € G. Thus, we can restrict k to the index set
A::{kGHZkl Zk22k32k4},

when we consider TCy. As for TSy, it is easy to see that TSy, (t) = TSk(to) =
TSk(t) for 0 € G and TSk, (t) = TSk(to) = —TSk(t) for o € G~. In particular,
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TSk (t) = 0 whenever two or more components of k are equal. Thus TSy are defined
only for k € A°, where

AOZZ{kEH:k1>k‘2>k3>k‘4},

which is the set of the interior points of A. Since k € H implies that k; € Z and
k14 ko + ks + k4 = 0, the points in A lie in a three dimensional wedge. To describe
the points on the boundary of A, we further define

Af I:{(kEHIk1=k2>k3>k‘4 01"k‘1>k12=/€3>k4 ork1>k2>k3:kz4},
A% = {(k,k, k,—3k), (3k, -k, =k, —k) : k >0},
AS = {(2k, 2k, —2k, —2k) : k >0}, AY:={(0,0,0,0)}.
Then evidently A\ A° = Af U A®T U AS2 U A°.

Let kG denote the orbit of k under G, that is, kG := {ko : o € G}. Then, for
k,je€ A, kG NjG = 0 whenever k # j. Furthermore, it is easy to see that

24, ke A°,
) 12, ke A7,
(4.4) TCi(t) = G| > d kGl=(6, keA“l,
jekg 4, ke A
1, k=0¢eA".

We define an inner product on Ay by

= ft)g(t)dt =12 [ f(t)g(t)dt,dtadts.
1Aul Jag Au

(fs g>AH :

If fg is invariant under G, then it follows immediately that (f,g) = (f,9)a,-
Furthermore, the generalized cosine and sine functions are orthogonal with respect
to this inner product.

Proposition 4.3. Fork,j €A,

1, k=0,
5 1, keA®?
(4.5) (TG, TG Ay = 0 =0 d &, ke Ao,
k6| d .
?, ke A/,
54 k (S AO;
fork,je A°,
1
(46) <TSk,TSj>AH = ﬂék,j.

Proof. Both of these relations follow from the identity (f, g) = (f, g)a,, for invari-
ant functions. For (@3]), the invariance is evident and we only have to use the
orthogonality of ¢y in Proposition BJ] and ([44). For (&6]), we use the fact that
TSk(t)TS;(t) is invariant under G and the orthogonality of ¢ on Qp. O
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We can derive more explicit formulas for the generalized cosine and sine functions
by making use of the homogeneous coordinates. For example, we have

i (t,ta,ta, ta) — duclta, tr,t3, ta) — di(ti, ta, ta, t3) + di(ta, t1, ta, t3)
_ [e%i(k1t1+k2t2) _ e%i(kltﬁkgtl)] [6%(kst3+k4t4) _ e%i(kstﬁkﬂs)}

— 9% (F1tk2)(t1+t2) iy W(klszzl)(tlfb) .9 5 (katka) (tatta) i) W(k37kztl)(t3*t4)

_ _46%[(k1+k2)(t1+t2)+(k3+k4)(t3+t4)] sin Tr(k1—k24)(t1—t2) sin ﬂ(ks—kz)(ts—tzx)
= di(t3, ta, t1,t2) — d(ta, t3, t1,t2) — dr(ts, ta, ta, t1) + Pi(ta, ta, t2,t1).

Similarly or by permuting the variables, we also have,

P(ti,ts,ta, ta) — di(ts, t1,ta, ta) — du(t1, ts, ta, ta) + duc(ts, ti, 2, ta)
= i (ta, o, t1,t3) — Pu(ta, ta, t3,t1) — P(ta, ta, t1,t3) + dr(t2, ta, t3, 1)
— g T (kitka)(ta+ta)+(katka) (b2+t0)] g5 W(kl_ki)(tl—tié) sin W(ks—ki)(tz;—tz)

and

Gu(ti,ta, to, t3) — du(ta, tr,to, t3) — ity ta, t3, t2) + i (ta, t1,t3,t2)

= ¢i(ta, s, t1,ts) — Pi(to, t3,ta, 1) — P(ts, ta, t1,ta) + dx(ts, ta,ta, t1)

— g T Utk (trtta)+(katha) (t2+ts)] gipy T(k1—k2)(t1—t4) W(kS*kZ)(tQ*tS)
L )

sin

Consequently, using the homogeneous relations ¢; + to +t3 +t4 = 0 and k1 + k2 +
ks + k4 = 0, we can then deduce that

(4.7)  TSi(t) =de (rtha)(titte) gin T (k) — k) (1) — o) sin T (ks — ka)(t3 — ta)
+%€%(kl+k2)(tl+t3) sin %(kl — kg)(tl — t3) sin %(l@ — k4)(t4 — tg)
+%6%(k1+k2)(t1+t4) sin %(kl — ]{12)(t1 — t4) sin %(kﬁg — /€4)(t2 — tg).

In a similar way, we obtain

(4.8) TCi(t) =de itka(titta) cog T (k) — ko) (ty — to) cos T (ks — ka)(ts — ta)
+%6%1(k1+k2)(t1+t3) COS %(kl — kg)(tl — t3) COS %(kg — k4)(t4 — tg)
e (k) (+t0) o5 T (k) — ko) (ty — t4) cos T (ks — ka)(t2 — t3).

Permuting variables t1, to, t3, t4 leads to other representations of TSy and TCk.

4.2. Discrete inner product on the tetrahedron. Using the fact that TCy and
TSy are invariant and anti-invariant under ¢ and the orthogonality of ¢y with re-
spect to the symmetric inner product (-, )%, we can deduce a discrete orthogonality
for the generalized cosine and sine functions. For this purpose, we define

(49) An::H;mA:{kEH:k4§k3§k2SklSk4+4n}.

The point set with n = 4 and the region is depicted in Figure 4.1.
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(2n,2n,—2n,—2n)
=(0.0.4n)

(0,0,0,0)
=(0,0,0)

FIGURE 4.2. A, withn =4

By the definition of HJ,, the set {£ : k € A,} contains points inside Ay. We
will also need notation for points on the boundary of Ay, which are defined as

Ay =HNA°, A= (A NH) U (A°NH),
Apti= (A" NH) U (A NHLYY,

A= (A“?NH;) U (A nHY?) U (A nHZY),

Ay :={0}U (A" NHZ?) U (A NH,®) U (A*NHE'),

(4.10)

corresponding to the set of the interior points, the set of the points on faces, the set
of points on two type of edges, and the set of vertices, respectively. More precisely,
these sets are given explicitly by

Ay ={keH:ky <ks<ky <k <ks+4n},
A ={keH: ky<hks<ky<ki=kys+4dn or ky < ks <ka =k <ks+4n
or ky <ks=ky<ky <ks+4n or k4:k3<k2</€1<k4+4n},
NSt = {(2k, 2k, —2k, —2k), (2k +n,n — 2k, n — 2k, 2k —3n) : 0 < k < n},
A% = {(k,k, k,—3k), 3k, —k, —k,—k), (n + k,n + k,n — 3k, k — 3n),
Bn—Fk,3k—n,—n—k,—n—k): 0<k<n},
Ay =1{(0,0,0,0), (2n,2n — 2n,—2n), (3n,—n,—n,—n), (n,n,n,—3n)}.

We denote by 7C,, and 7S, the spaces of the trigonometric polynomials
TC,, :=span{TCx: k€ A,}, TS, :=span{TSk: ke A},

respectively. We define a discrete inner product (-,-)a , by

(. 9)an =73 2o A A0

4dn’’
jeEA,
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where
24, jeEA],
12, jeAl,
(4.11) A =06, jeAs
4, jeAL?,
1, jeAr.
Theorem 4.4. For fg € TCq,_1,

Moreover, the following cubature formula is exact for all f € TCay_1,

1 1 .
(113) o [ f®dt = s S AT
|AH| N 4n ien J
In particular,
Ok.j .
k

Proof. We shall deduce the result from Theorem [3.16] Let f be a function invariant
under G. Recall the coefficients c}n) in the symmetric inner product defined in

Definition B.I4l Taking into consideration of the orbits of the points in various
regions, we obtain

SV =Y rE =24 Y A 12 Y A

JEH? JEHS JEACNHY JEATNHY,
+6 > f(E)+4 D f(E)+ 0,
JEASINHY JEAS2NHS

and, using the values of ch"),

S oy =24 Y AV 12 Y SV
JEH;\HS, jeAenHy! JEASNHE!
+12 > RN IC IR DR A (€
JE(A NHR ) UAS NHET) jEASINHE?
(n) ¢/ j
+4 > " ()
JE(AS2NHY®)U(AS2NHE )

=12 > f(E)+6 D f(d)+4 > FEE)

jeAeNHy! JEASNH? JEASNHR UM NHL )

+ > S+ > FL).

jeAe 1 NHZ? je(Ae2NHL ) U(AS2NHD )
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Adding these two expressions together and using ([EI0), we conclude that

(1) 3 dqUE =2 3 dqUE) =2y fh

JEH;, JeHg, JEH;, \Hg, jens,
+12 3 f(E)+6 D> fE) 4 Y fE+ D )
jend, jeas? JEAL? jeay,
_ (n) j
= 2 N
jeA,

Replacing f by fg, we have proved that (f, ) = (f, 9)An Whenever fgis invari—
ant. Hence (m follows from Theorem BI85l Furthermore, since ‘Q ‘ fQH t)dt

= A A\H / a,, f(t)dt for all invariant f, (£I3) follows from Theorem [3
Furthermore, replacing f by TC,TC; in ([@I5), we derive by ([@3)) that

(TG, TG Z A" TG TG ()
IeH,
1 1 (n) 10 1 1 (n) 10
=55 S d” > a3 TG(E) = DY >V D TG
1M oc€EG 1€, o€g
- |2g4| IZ A" (TG () = (61, TG = i Zg<¢k»¢ia>2'
cH: o€

Using (B:28) and abbreviating k = j mod 4Z as k = j, we further deduce that

(TG, TG) A {ceg: Jo_k}‘— {ceg: ko_k}‘_)\(n,

" 24‘
where the last equality follows from a direct counting. O

The proof of the above theorem also applies to f,g € 755, since fg is invariant
if both f and g are anti-invariant. Moreover, fg € 75,_1 if f,g9 € 7,,. Notice also
that TSy (z-) = 0 when j € A, \ A}, we deduce the following result.

Theorem 4.5. Let the discrete inner pmduct (-, Y no.n be defined by

<f’ Zf4n 4L

,]EAO

Then
<.f7 g>A°,n = <f’ g>AH’ fvg €71S,.

4.3. Interpolation on the tetrahedron. We can deduce results on interpolation
on the tetrahedron by making use of the orthogonality of generalized trigonometric
functions with respect to the discrete inner product, as shown in our first result
below. Recall the operator P* defined in ({@.]).

Theorem 4.6. Forn >0, and f € C(Ay), define
Co . 144 —
= > FEGL0), )= P > TSk(®)TSk(h).
jeAs keAS
Then L, f is the unique function in TS, that satisfies
Lof(H) =5, A
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Furthermore, the fundamental interpolation function £5,, is real and satisfies

o 6 . )
éJ"L( ):ﬁpt @n(t—fn)—@n_l(t—zf—n) ,

where Py means that the operator P~ is acting on the variable t and ©,, is defined
Proof. By {@8), (TS;, TSk)ae.n = 3705k, which shows that Zj’n(ﬁ) = djx and
verifies the interpolation condition. It follows from the definition of TSy that

6 —_—
Galt) = —PrPy Y d(t)on(dh).
keHS

Furthermore, we can replace the summation over k € H? by the summation over
k € H, since TSk() = TS;(£) = 0 whenever k € A, \ A3, and TSk(t) = 0
whenever at least two components of k are equal. Consequently, we conclude that
o 6 H j
éj,n(t) = E,Pt Pj Dn (t - 4‘]_71)’
where DX is the Dirichlet kernel for the rhombic dodecahedral Fourier partial sum

defined in (3I7). Recall that G is a permutation group and |o| denotes the number
of inversions in o € G. Let f be an invariant function under G. Then

Py Py f(t — \Ql2 SO (=)l (g0 — s7)

ceGTEG
| [+] -1 _
W > Sy -
T€EGoEG
“7‘ (to —s) =P, f(t—s),
UEQ

where in the third equal sign we have used the fact that |o7| + |7| = |o]|, which can
be easily verified. Setting f = DX completes the proof. (I

The function L, f interpolates at the interior points of A,,. We can also derive
an analog result for interpolation on A,, by using the same approach. However, it is
more illustrating to derive it from the interpolation on the rhombic dodecahedron,
which we carry out below.

Theorem 4.7. Forn >0 and f € C(Ay) define

. )\gn) " [
= D IE®. 6.0 = 3T AT TC().

JEA, keA,
Then L} f is the unique function in 7C,, that satisfies
Lhf(d) =), Jei.

Furthermore, the fundamental interpolation function EjA

~, 45 given by

8.(6) = XNVPT 5 (b).

j.n
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Proof. Tt follows from (£I4) that ¢ (4—n) = Jkj for k,j € A,,, which verifies the
interpolation condition. Furthermore in the proof of Theorem [£.4], we established
that > ;e (")g(f—n) = Z]EH* c(n)g( -) for function g invariant under G. Apply-

ing this relation to g(L) = TCk(t )TCk(E)7 we obtain

4 =5 Z ATC()TC ()

kel
Al - :
=S PEP Y Al eken(dh) = NUPEPF @t - 4.
keHx
Using the fact that G is a permutation group, it is easy to see that
PP f(t—s) =Py f(t —s),
for an invariant function f. Consequently,
A n * j n
Ga(6) = XPE®; (6 — ) = X P at).

The proof is completed. O

Recall the explicit formula of ¢;,, given in Theorem BI8] é ., enjoys a compact
formula.

Let || £, || and ||£%]|| denote the operator norms of £,, and L%, respectively, both

as operators from C(Apy) — C(Apg). From Theorems and 7 an immediate
application of Theorem [3.19] yields the following theorem.

Theorem 4.8. There is a constant ¢ independent of n, such that
I£all < c(logn)® and |I£;]] < c(logn)®.
4.4. Interpolation on the regular tetrahedron. The results in the above are

developed in homogeneous coordinates. Here we indicate how they can be recast
into the usual coordinates on the regular tetrahedron A* defined by

A* = {xeR3:0§x3§x2§x1§1}
as depicted in the Figure 4.3 below.

The change of variable from t to x € R? is given in ([3:2). When we transform
the formulas from the homogeneous coordinates to the regular coordinates, we also
need to transform the indices from j € Z%; to Z3 by using

1 k= (i1 — Ja),
(4.16) k= ZA”U”j = ko= 102—ja),
ks = 1(j3 — Ja)-

Under this change of variables, it is easy to see that the point set A, becomes

{k €Z:0< ks <ky <k <n}. Forexample, the cubature formula in (ZI3)
becomes the following:

Theorem 4.9. For n > 0, the cubature formula

1 3 (n)
_ ki1 ko k
6 . f(Il,.Z‘g,xg)d$1d$2d$3 = 4n3 )‘kl,kz,kyf(?l’ no ?3)
a 0<ks<ka<ki<n

is ezact for all f € TCoy,_1, where )\Eg?kz’% = )\j(n) with j given by ([EIG]).
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FIGURE 4.3. Regular tetrahedron

We also note that the Dirichlet kernel in (BI8)) can be recast into = coordinates
by [B.2) straightforwardly, so is the fundamental interpolation function ¢; ,,(t) given
in Theorem [3.I8 Consequently, the Lagrange interpolation function in Theorem

[£7 becomes N

0<ks<ks<ki<n

where E,ﬁn satisfies the compact formula
0o (@) = AP a(t), where 6,(t) = 5t — L)

with ® given in (324, )\,(c") = )\E”) with j as in (EI6). In the above formula we
apply PT to the compact formula of @} first and then use ([3.2) to change from t
to x.
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