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EVALUATING JACQUET’S GL(n) WHITTAKER FUNCTION

KEVIN A. BROUGHAN

ABSTRACT. Algorithms for the explicit symbolic and numeric evaluation of
Jacquet’s Whittaker function for the GL(n,R) based generalized upper half-
plane for n > 2, and an implementation for symbolic evaluation in the Math-
ematica package GL(n)pack, are described. This requires a comparison of the
different definitions of Whittaker function which have appeared in the litera-
ture.

1. INTRODUCTION

Classical Whittaker functions have been known for many years as solutions to
Whittaker’s ordinary differential equation. Generalized Whittaker functions were
introduced by Jacquet in his thesis [7], defined on Chevalley groups. Piatetski-
Shapiro [10] and Shalika [II] derived the Fourier expansion of a Maass form for
SL(n,Z) in terms of these generalized Whittaker functions. Hence their impor-
tance. Stade, in a ground-breaking series of papers [13] 14} [15], showed how the
integral representations for these functions could be better manipulated by deriving
a recursive representation, expressing each function in terms of functions of lower
dimension. It is this form which was implemented in GL(n)pack .

Goldfeld in [4] describes the theory and applications of Whittaker functions.
Because there are differences in definition, it is essential that a “unification” of the
different definitions be established, and that, in the main, is the goal of this paper.

Section 1 sets out the underlying definitions which are taken from [4], Section
2 establishes the connection between Stade’s and Goldfeld’s definitions, Section
4 gives the classical Whittaker function, Section 5 unifies the classical definition
and Jacquet’s function, Section 6 is an explicit evaluation of the constant in the
standard decomposition of Jacquet’s function, and Section 7 gives some symbolic
and numeric evaluations of the generalized functions in dimensions 2, 3, 4 and 5.

This paper is consistent with [4] but is self-contained in that all essential defini-
tions are included.

2. DEFINITIONS

Let n > 2 unless otherwise noted. The real general linear and orthogonal groups
are GL(n,R) and O(n,R), respectively. The subgroup of diagonal matrices with
non-zero constant value is R*. Each g € GL(n,R) can be expressed uniquely as
g = z.y.0.d, the so-called Iwasawa form, where x is upper triangular unipotent, y
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is positive diagonal with 1 in the bottom entry, o orthogonal and d is in R*. Then
x and y are unique. Explicitly,

1 12 213 T1n Y1Y2 - Yn—1
1 @3 T2.n Y1y2 - Yn—2
Ty =
1 Tn—1,n Y1
1 1

Then O(n,R) x R* acts on the right on GL(n,R) by matrix multiplication, and
we set

" = GL(n,R)/O(n,R) x R*.

From the Iwasawa form we can express each element of h™as the matrix z.y. It is
convenient to use the coordinates y1,--- ,yn_1 for the matrix y where the 1,1 entry
is Y1+ Yn—1, the (i,4)th is y1 -+ yp—; so the (n —1,n — 1)th is y;. These n — 1
variables (y;), together with the n(n—1)/2 variables (z; ;) from the above diagonal
terms of the unipotent matrix x, constitute the so-called Iwasawa coordinates
for h™.

From [4], Definition 2.4.1], let b; ; := ij when i4+j < n and (n—i)(n—j) otherwise,

and v = (v1,+ ,vp_1) € C" 1 then the so-called power function I, : h — C is
defined by

n—1ln—1 b
(1) L(z) =1 1w,

i=1 j=1

where z is the Iwasawa form. Examples of the power function in dimensions 2, 3,
4, where we replace the z variables in the argument lists with the y; on which the
functions depend explicitly (but recall the power function is a function of z and the
y; needs to be computed using the Iwasawa form):

v
L(y) =y,
_ v1+2vs 201+
Iu(ylva) - yll 2y2 ! 23
+2v2+43vs, 2v1+4va+2vs, 3v142va+
L(yi,y2,y3) = yill 2 dezyl "2 degyl raTys,

Note that Friedberg [3] and Stade [I3] reverse the order of the y;’s in the Iwasawa
form.

Definition 2.1. Let S = U,(R) be the subgroup of upper triangular unipotent
matrices. A function v : S — C which can be written in the form

n—1
¢(u) — H eQWimn—i+1ui,i+1
)

=1

for some n — 1 tuple of integers m = (my,--- ,my_1), is called a character or
character of U, (R). We write 1, for ¢, and in case each m; = 1 write 1);. Note
that 1(a.b) = ¥(a)¥(b) for a,b € U,(R) and that all characters of U, (R) have this
form. Note also that [4] begins with a direct order for the m; and then reverses the
order for the definition of the Jacquet-Whittaker function as given here.

Definition 2.2 ([4, Proposition 2.3.1]). The associative algebra D™ is the algebra
of operators generated by real linear combinations of the operators D, o---0D,,
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where each «; is an n X n real matrix, D, is defined for smooth functions F' acting
on elements g € GL(n,R) by

0
Do F(g) := EF(Q +tg.a))t=o0,
and D, o Dg is the composition of operators. The center of this algebra is denoted
D",

Definition 2.3 ([ Definition 1.3.1]). Let a,b > 0. The Siegel set X,; C h”
is the set of all z = z.y € h™ with |z; ;| < bfor 1 <i < j < n and y; > a for
1<i<n—1.

From [4], Definition 5.4.1], for n > 2 and v = (v, -+ ,v,—_1) and ¥ a character of
U, (R), a smooth function W : h™ — C is called an SL(n,Z)-Whittaker function of
type v (or for short a Whittaker function) if it satisfies the following conditions:

(1) W(uz) =¢(u)W(z) for all u € U,(R), z € b,
(2) W(z) = ApW(z) for all D € D", z € h™,

DW(
(3) /Q|W(Z)|2d*z <00 where Qis ¥ 5 1

%3
and d*z is the left invariant quotient measure.

Definition 2.4. The matrix w, € SL(n,Z) has a 0 in each row and column except
for the reverse leading diagonal entries which are either (—1)[*/? in the (1,n)th
position or 1 in every other position. That is to say:

(—1)ln/2
Wy =

1

Compare the so-called “long-element” permutation matrix w, which is the same as
wy, except the (1,n)th element has the value 1.

Definition 2.5. The left invariant quotient measure on h™ [4, Proposition 1.5.3]:

d*z = d'z-d'y, where
d'r = H dz;; and
1<i<j<n

n—1
d*y _ Hyk—k(n—k)—ldyk.
k=1

The definition of Jacquet’s Whittaker function as given in [4, Eqn. 5.5.1] and
called “Jacquet’s integral” is given by

Wiz v,0m,) == /U " I, (wy - u - 2), (u)d u,

where z € ", v € C"~ 1, 1), is a character with m = (my_1,--- ,m;) € Z"~ ! and
with no m; = 0 and where the measure is inherited from h™. The main properties
of this function are summarized in:
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Theorem 2.1 ([4, Proposition 5.5.2]). Let n > 2. Assume R(v;) > 1/n for 1 <
i < n — 1 and that non-zero integers m; with 1 < ¢ < n — 1 are given. Then
Jacquet’s integral converges absolutely and uniformly on compact subsets of h™ and
has meromorphic continuation to all v € C"~1. The function W(z;v,1,,) is an
SL(n,Z)-Whittaker function of type v and character 1, and satisfies the identity

WJ(Z§ v, ¢m) = Cuyym * ¢m(~7f') : WJ(My; v, 7/)1)’
where ¢, m # 0 depends only on m and v, and where the diagonal matriz M has
ith entry
[mama - My
for 1 <i<n—1 and nth entry 1 and where the explict value of the constant c, m,
is given in Theorem 6.1 below.

Theorem 2.2. In the definition of Jacquet’s Whittaker function the matriz w,, can
be replaced by the matriz w.

Proof. If for 1 < j < n, e; is the standard unit vector, then e;.w, = e;.w for
all 5 > 1. The theorem now follows from the exterior product form of the power
function given in [4, Lemma 5.7.2]. O

3. RELATION TO STADE’S WHITTAKER FUNCTION

The GL(n)pack function Whittaker computes a symbolic iterated integral repre-
sentation of the generalized Jacquet-Whittaker function Wiacques (also written W)
of order n, for n > 2, as defined above. The algorithm uses the recursive repre-
sentation of the Whittaker function derived by Stade [Stade, 1990, Theorem 2.1],
but his Whittaker functions are not the same as those of [4]. Let Wg and W¢§ be
Stade’s Whittaker and Whittaker starred functions, respectively, and let I",, repre-
sent the gamma factors for either form defined below. Now we make the following
definitions:

Definition 3.1.

HV(y) = IV(ynfla"' ayl)v
n—1
Q=Q.(y) = Hyy) [[y;", where
j=1
n—j
Wi = er’k for 1 <j <n-—1, and where
k=1
R j
I Zk 5 )—5 for1<j<n—-11<k<n-—j.
From [4, Definition 5.9.2], if n > 2 and v = (v, -+ ,Vp—1), then
n—1 1
r, = H T2 Uchp(% + v, ), where
j=1j<k<n—1
j—1

NVp_fti — 1
2

<
Il
o
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Definition 3.2.
We(yivs 1) = Wn(y) = T, / o Hol e
U, (R

Wiy v, 1) =Wy () = Ws(y;v,¢1)/Q.

The notations Wy, ,, Wy, , are from [13]. Note that the first differs from his W, o
[14].

Theorem 3.1. Letn > 2 and fory = (y1, -+ ,Yn—1) let yr = (Yn—1, - ,y1) be the
vector with coordinates reversed. Then the relationship between the two definitions
of Whittaker function for h™ may be expressed by the equalities

Qu(yr) * Wi(yrs vsh1) = Ty x Wy(y; v,01) = Wi(ys v, 1) = Ws(yr; v, 91).
Stade’s recursive formula for the Whittaker function:

Theorem 3.2 ([I3, Theorem 2.1] as amended in [I4]). If n > 3 and v € C" 1,
for2 < j<n—2 let \ = (A1, -+, \n_3) where \j_1 := nv;/(n — 2), set uy =
0,1/tup—1 =0 and ud_, = 1.

Wily;v,p1) =1 ifn=0 orl,
Wg(y7yaw1) :2Kyil(271'y1) Zf’l’},:z’
2

x o sy -sup-2 1
WS(y;V’¢1):8/ w2 Kovwan o2 (21 1+Fy1)
0 1

X K3u4300-2 (27‘(\/ 1+ u%yg)dul forn =3,
3

n—1
Welmno) =20 [ (T K [0+ ) (1 1)
RH)"2 15
You Yn—oU 2 du
W* 21'“ n—2Un—-3 )\ )\_ 0
X S(( s 3 5 U o )7( 1, s \n 3))11;[1 U

for n > 4, where the quantities r; ; are defined in terms of the v; in Definition 3.1
above.

4. CLASSICAL WHITTAKER FUNCTIONS

Properties of classical Whittaker functions are well known. However, we record
them here to show the relationship between the classical and GL(n)pack functions.
Whittaker’s equation [I8, [8, 9] for Wy ,(2) (4, p. 57]) is given by

1 k-2
W' (=g A =0,

where p € C, k € R and z € C.
Solutions for this equation have the integral representation [I8] 8] [@]:

ko—2/2 o 1 t 1
Wiu(2) = Ll/ e HrTRT 2 (14 S)rTRT 2 gt
D(p—k+3) Jo z

for Ru—k — % >0 and |arg 2| < .
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The solutions also have a series representation [I8] 8, [0]: Let ¥(c,~;z) be the
so-called confluent hypergeometric function of the second kind satisfying

~ (=1)*(a =)k
\I/(Oz,”y;z):z_o‘(z( = )k§~31!+ W)kz_k+0(z|rlw+1))v

k=0

for |arg z| < m — § for all fixed 6 > 0. Then we can write

1 z
Wiu(2) = 2" 2e720(3 — k+ p, 20+ 1; 2).

It follows from the series representations for the K-Bessel and classical Whittaker
functions that for all v and |arg z| < 7w — 6,

2
2R (2) = Wo(22).
vis

Comparing this with Stade’s Wy in dimension n = 2, the reason for the term
“Whittaker” for the functions defined on h” is clear.

5. UNIFORMIZATION OF THE DEFINITIONS OF WHITTAKER FUNCTION
IN DIMENSIONS 2 AND 3

Dimension 2: We have [4, Eqn. 5.5.4]:

1
2lm|"~ 2wv
Wiz;v,¥m) = |I|‘(1/)‘/§KV

r, = |mx|7"T(v).

(2nlmly) - €27

1 )
2

Stade’s form for dimension 2 [13] is

Ws(yiv.n) = 205K, 1(2my).

1
2

Theorem 5.1. Let n =2 so z = x +1iy. Assume for y >0 and Rv > % that

ee} —2mimuy
W, =2/yK 2 dW — v € du - 27T
s(y, v, 1) VY V?%( my) an 7z, v, 0n) =y [m (1+u2)” U - e
Then )
_ ™ i
W (2,0, 0m) = [m]" " (5=) - 25K, 1 (2n[mly) - 27",
[(v) L)

Proof. This follows from the assumptions using the Mathematica expression for the
infinite integral given above and the relationship W; = %Ws. O

Note that the only difference between this form and that of [4, Eqn. 5.5.4] is the
constant ¢, , = |m|*~!, a form consistent with Theorem 6.1 below.

Dimension 3: By [4, Eqn. 6.1.3] and [13, Page 318] (Note that like Friedberg,
Stade swaps the order of the labels on the y;, but Goldfeld makes the swap back,
but no other changes. This is Stade’s form:

Ws((y1,y2); (v1,v2),911) = 8y; % vy 7 / K%(QﬂylvlJﬂud)
0

vi—3vy d

K sy 48052 (27Y2 1+u2)u31232§
2

3vi.. 3vy. _ 3up + 3y — 1

Myp2yp2 T T

I

X

1
Fz/ — 72 —3V1 _3V2F(
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GL(n)pack has the same gamma factor. The coefficient 4 (as given by [4, 3], but
since corrected [14]) is given its corrected value 8.

6. EVALUATION OF THE CONSTANT

Theorem 6.1. The constant in Theorem 2.1 has value

n—1

n—1 . -
' bigvi—i(n—1i
Com = I | |mi|ZJ71 0,5V —4( )

i=1
Proof. 1. As in [4, Prop. 5.5.2] let

|mimg - - - my_q|
|mymg -+ - My 2

1|
1
Let d, =1landfor 1 <i<mn-—1,d; =|my|---|mn_;|, so u.M = M.i, where for

1<i<ji<n—1,

Lody

Ui = Uiy = Uil - ma—il.
J

If we let u; = Up—;n—i+1 for 1 <i <n —1, and similarly define #;, then under the
transformation u — @ we have

Uq:al|ml|,1 S’L'Sn—l.

The (absolute value of the determinant of the) Jacobian of the transformation
u— U is

n—1
u
J() = LT Imn—al - fmn—il = T lmal™=2.
1<j i=1

2. It follows that
WJ(MZ; v, wq,'” ,En—l)

/ (’u) u. Mz) _Qﬂi(elUI+M+En_1u"_1)d*U,
U, (R

’LU Mi. Z) —27Ti(|m1‘€1711+"'+|mn71‘en—lﬂnfl)d*i‘l/

)
/ U) M.aw.aw.i. Z) 727Ti(m1ﬁ1+"'+mn71ﬁn71)d*ﬁ
1

n—1ln—

ST Tl s d () [ Bfaniige2rimissmasio g
i=1 j=1 uJu, (r)

= Ym,v " WJ(Z; v, Q/Jm) (1)7
where we have used w.M.w is a diagonal matrix with elements in the reverse order
from those of M and where

[T g~
H H \mi b

Tv,m =

i,5 Vi
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3. Next, by taking the Iwasawa form for z = x.y, commuting M and = (M.x =
#.M), and then making the transformation @ = w.Z (which has Jacobian 1), we
obtain the form

(2) WJ(MZ; v, '(/}617"' 7€n71) = ¢m($) ’ WJ(M:U; v, '(/}61,"' 7€n71)'
4. Now consider the n — jth row of the matrix v with 1 < j <n —1:
(O, ---,0,1, Ujy Un—jn—7j+2," " ;un—j,n)-
If §; is the diagonal matrix with 1’s in every position except the n — jth, which is ¢;,
and we make the transformation @ = d;.u with the Jacobian determinant eé, then,

since w.0; = 0p—jqy1.w and I, (8p—j41.2) = I,(z), (because d,_;41 is orthogonal
and diagonal matrices commute), we can write

WJ(M?ﬁ v, ¢617"‘ ,en_l)
:/ L,(w.éj.(;j.u.My)efzm(““l+"'+6”*1“"*1)d*u
Uy (R)

= €| I,(6n 1w My)e 2miertitditdenain-n) geg
Un(R)

= WJ(My, v, 1/1617... S >5n—1)’

where the subscript 1 is in the jth position.
One may do the above procedure for each j with 1 < j < mn — 1 to obtain

(3) WJ(My; v, q/161,“' 1671,—1) = WJ(My; v, wl,m ,1)'
Finally, combining the expressions (1), (2), and (3) we derive the equation
WJ(Z; v, wm) =Cum * wm(x) ' WJ(My; v, 11)1,4.- ,1)7

where

—1
Cva = fYV,m

n—1
n—1 . .
- H || 2= i —i(n—i) 0

i=1
Here is a listing of the first n = 2 through n =5 ¢, values:

Coy = |m1|V171a

C3, = |m1|l/1+21/272|m2|21/1+u272
> )
vi+2ve+3vz—3 |m2|2 vi+4ve+2v3—4 |m3‘31}1+2 vo+vsy—3

Cap = |m1| s

vi+2ve+3vs+4va—4 2v1+4v3+6v3+3vs—6
G = |mal |ma|

3v1+6ve+4v3+2v4—6 4v1+3ve+2v3+vi—4
ms| | :

X

7. COMPUTATION OF Wj;(z,v,1) AND VALIDATION

Computation of the Whittaker function was divided into symbolic evaluation
and numeric evaluation. The former is more straightforward than the latter and
was able to be included in GL(n)pack . The numerical code uses the symbolic form
as an initial step. Stade’s form W§ was computed using his recursive reformulation,
Theorem 3.1, which was converted first to a single multiple integral and then, by
a change of variables using the inverse hyperbolic tangent in each variable, to an
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integral over a cube of appropriate dimension. This has a number of decided ad-
vantages over any direct use of Jacquet’s integral for numerical computation: first,
the oscillation implied by the character v, is removed, and second, the exponential
decay of the K-Bessel functions at infinity assists the speed and accuracy of any
quadrature application.

Stade’s form was then converted into the function W; using Theorem 3.1.

Examples of the GL(n)pack output are given below: in Figure 1 dimensions 2
and 3, in Figure 2 dimension 4, and in Figure 3 dimension 5 [2]:

In([114]:=
Whittaker[{{y1l, 0}, {0, 1}}, {v1}, {1}, ul[[4]]

Out [114]=

277 Ayl K[-+ +vl, 2yl]
Gamma [v1]

In[115]:=
Whittaker[{{yly2, 0, 0}, {0, y1, 0}, {0, O, 1}}, {v1, v2}, {1, 1}, ul[[4]]

Out [115]=

vl _ vz

Vi v « (vi-v 1
R AR eeE R IR S L e J P K[E (-2+3v1+3v2), 271+ u2 y1]
0

1 / 1
K[? (-2+3vl+3v2), 27 l+u—2y2]dlu /

}Gamma[% (-1+3vi+3v2)]]

} Gamma[ 3v2

(Gamma[ 3vi

FIGURE 1. The GL(n)pack Whittaker functions in dimensions 2
and 3.

In[116]:=
Whittaker[{{yly2y3, 0, 0, 0}, {0, yly2, 0, 0}, {0, 0, ¥y1, 0}, {0, 0, 0, 1}},
{vi, v2, v3}, {1, 1, 1}, u][[4]]

Out [116]=

(64 J2+6 V1+8 v2+6 V3 yl%+vlfv3 v2? y3%7v1+v3

! 27y2ull] 3 1
LLK[—E+2V2, T}K[—E+2vl+2v2+2v3, 27y3 |1+ EIE ]

K[—%+2v1+2v2+2v3,27'ry2\/(1+u[1]2) (1+ L ]]K[-—+2v1+
u

2v2+2v3, 27yl 1+u[2]2] (u[1l]uf[2]) **2vi2v3 qui2] dlu[l]]/

(Gamma[2 vl] Gamma[2 v2] Gam.ma[—% +2vl +2v2} Gamma [2 v3]

1
Gamma[—; +2v2+2v3} Gamma[—1+2v1+2v2+2v3])

FIGURE 2. The GL(n)pack Whittaker functions in dimension 4.



1070 KEVIN A. BROUGHAN
In[1]:= Whittaker[{{yly2y3y4, 0, 0, 0, 0}, {0, yly2y3, 0, 0, 0}, {0, 0, yly2, 0, 0},
{0, o, 0, y1, 0}, {0, 0, 0O, O, 1}}, {vi, v2, v3, v4}, {1, 1, 1, 1}, u][[4]]
out[1]= 10247T5(71+2v1+3v2+3v3+2v4)
12\”- W23 3 23»--\v2 v3-% v33 YL v24v3e G y4zfﬂfﬁ+%+3”
1 27my3 4 [1+
— (-2+5v2+5v3)
u[3
2 V- V
L (2isvassy3y, 2L¥2VI+ull] “[3}] (1] 2322 qu[1]
2 ur4]
1
K[E (-4+5v1+5v2+5v3+5vd), 2ny4
K[i(—4+5vl+5v2+5v3+5v4) 271y3 [(1+u[2]? +41—]]
2 ' u[3]?
K[i(-4+5v1+5v2+5v3+5v4) 27y2 [(L+u[3]? P ]]
2 ' ul4)?

K[% (-4 +5v1l+5v2+5v3+5vd),

u[3]r

(Gamma[ 5vi } Gamma[ 5v2 } Gamma[%

U1

VB}

Gamma 3

Gamma (—1+5v2+5v3)}

Gamma (-2+5v1+5v2+5v3)]

RN

v4}

Gamma
2

Gamma (-1+5v3+5v4) |

Gamma (-2+5v2+5v3+5v4)]

[
[
[
[
[
[
[

NI RNITENNIE

Gamma

2:51+5v2-5v3-5v4) (44 (2] u[4]) :

27yla/1l+u[4d]?

(72+5v1-5v4) qy (2] du[3] du[4]}/

(-1+5v1+5v2) ]

(73+5v1+5v2+5v3+5v4)”

FIGURE 3. The GL(n)pack Whittaker function in dimension 5.

To validate the numerical computations (and thus the symbolic forms computed
by GL(n)pack ), and give some idea of their accuracy, we used a result highlighted in
[14, p. 126], namely that if the power function is defined using some especially chosen
new parameters, then the Whittaker functions are invariant under all permutations
of those parameters. These permutations give rise to functional equations, which
on the face of it differ from those set out in [4, Theorem 5.9.8]. These permutations
were used here in a simpler manner: a permutation of an explicit set of values for
the new parameters a; give rise to two corresponding sets of values in the original

parameters v;.

the integral forms.

These corresponding sets should be in or close to the domain of
absolute convergence of the Whittaker function v; > 1/n to give convergence of
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In more detail, set

n—1 n—1

Hooly) = [Ty [Tv)"
j=1 j=1

where the (a;) are n — 1 complex numbers. Then set a,, = —a1 — -+ — a,. When
defined using this power function the Whittaker function is invariant under all
permutations of the (a;). Then define v in terms of a by setting I, (y) = Hp o (yr)
and note that the first product term in the definition of H is invariant under reversal
of the order of the y;. These relations in dimensions 3 through 5 are as follows:

Dimension 3:v; = (1 + a1+ 2a2)/3,
1+ay—a2)/3,

1+ a1+ as + 2a3)/4,
1+as—as)/4,

(
(
(
(
vs = (1+a1—a2)/4,
(
(
(
(

V2
Dimension 4 : v; =

Vo =

1+ a1+ as + az + 2a4)/5,
1 +a3 —a4)/5,
1+ as —as)/5,
1+ay —a2)/5.

Dimension 5: vy =
Vo =
vy =

Vg =

In this study, the Mathematica general adaptive quadrature routine NIntegrate was
used, with the option method set of MultiDimensional and the precision set to
MachinePrecision. The processor was an Intel Pentium 4. No improvement was
found using the function Compile. This is no doubt because most of the work
is done by NIntegrate, which is already compiled. The values given are for the
Whittaker function W§. The timing is from the Mathematica Timing function.
The results are as follows:

Dimension | v y value timing
3 {5/4,1/4} {1,1} 2.255480212 x 10~8

3 {7/6,5/12} {1,1} 2.255480211 x 1078 | 0.562s

4 {199/520,23/80,67/620} {1,1,1} 1.0910 x 10~ 15

4 {437/1040,67/260,213/1040} {1,1,1} 1.0915 x 1015 25703.7s
5 {3433/6630,47/221,89/510,3/10} | {1,1,1,1} | 5.1976 x 1028

5 {558/1105,3/10,22/195,47/221} | {1,1,1,1} | 5.1972 x 10~28 759.8s

Given Theorem 2.1, the uniform nature of the periodicity of the integrand should
make the application of modern lattice rule techniques [12] practical for direct
numerical evaluation of Jacquet’s integral. However, given the unbounded domain
and slow convergence of the integrand, this will require considerable adaptation
and analysis.
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