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NONLINEAR NONOVERLAPPING SCHWARZ WAVEFORM
RELAXATION FOR SEMILINEAR WAVE PROPAGATION

LAURENCE HALPERN AND JÉRÉMIE SZEFTEL

Abstract. We introduce a nonoverlapping variant of the Schwarz waveform
relaxation algorithm for semilinear wave propagation in one dimension. Us-
ing the theory of absorbing boundary conditions, we derive a new nonlinear
algorithm. We show that the algorithm is well-posed and we prove its con-
vergence by energy estimates and a Galerkin method. We then introduce an
explicit scheme. We prove the convergence of the discrete algorithm with suit-
able assumptions on the nonlinearity. We finally illustrate our analysis with
numerical experiments.

1. Introduction

Schwarz waveform relaxation is a new class of algorithms for domain decom-
position in the frame of time dependent partial differential equations. They are
well-adapted to evolution problems, designed to solve the equations separately on
each spatial subdomain on the whole time interval, exchanging information on the
space-time boundary of the subdomains, overlapping or not [6].

In particular, for the computation of wave propagation, it is of great importance,
due to numerical dispersion, to be able to handle local time and space meshes, and
this is allowed by these new algorithms. We presented the method for the linear
wave equation in [7] and [5]. When using overlapping subdomains and “classical”
Schwarz waveform relaxation (by a Dirichlet exchange of information on the bound-
ary) the so-defined algorithm converges in a finite number of iterations, inversely
proportional to the size of the overlap, which increases the storage and compu-
tational load. We therefore introduced optimized transmission conditions, relying
on the theory of absorbing boundary conditions, which improved drastically the
convergence of the algorithm.

This paper is a first attempt to extend the strategy to nonlinear equations. An
analysis of the classical Schwarz waveform relaxation algorithm for convection dom-
inated nonlinear conservation laws was performed in [4], but no other transmission
conditions have been used so far. We are interested here in the semilinear wave
equation. This equation intervenes in various phenomena as the dislocation in crys-
tals, laser pulses in plasmas, etc. (see for instance [13]). In the latter example, as
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the laser wavelength and the Debye length of the plasma can differ by several or-
ders of magnitude, discretizations sufficiently fine to resolve the short scales yield
systems of equations far beyond the power of current computers. By using domain
decomposition techniques, decoupling different time scales becomes possible.

As a first step, the goal of this paper is to define new Schwarz waveform relaxation
algorithms for the semilinear wave equation. We introduce two nonoverlapping
algorithms. The first one referred to as linear uses the absorbing boundary condition
of the linear problem, whereas the second one referred to as nonlinear uses the
nonlinear absorbing boundary conditions designed by J. Szeftel in [12]. The paper
is organized as follows.

In Section 2 we introduce the definitions of the algorithms.
In Section 3 we prove the algorithms to be well-posed. For the precise analysis,

we use a fixed point algorithm with regularity estimates on a linear problem.
In Section 4 we prove the convergence of the algorithms. The proof is an exten-

sion of a clever trick in [8], already used for linear algorithms, either hyperbolic or
parabolic (see [7]). However, the nonlinearity requires a very fine analysis.

In Section 5 we design discrete Schwarz waveform relaxation algorithms. In each
subdomain, the interior scheme is the usual leapfrog scheme for the linear part,
with a downwinding in time for the nonlinear part. The exchange of information
on the boundary is naturally taken into account by a finite volume strategy. In
Section 6 we study the convergence of the algorithms by discrete energy estimates.

As it is always the case for nonlinear problems, the well-posedness and conver-
gence results hold only locally in time. Therefore numerical experiments are very
important to bypass the limitations of the theory. We present the results in Section
7, showing in particular that our nonlinear algorithm gives optimal results within
a large class of algorithms.

Remark. Due to the complexity of the mathematical theory, we restrain ourselves
to the one-dimensional case. The multidimensional study contains additional diffi-
culties due to the geometry and should be considered in a forthcoming paper.

2. Problem description

We consider the second order semilinear wave equation in one dimension,

(2.1) (∂2
t − ∂2

x) U = f(U, ∂t U , ∂x U)

on the domain R × (0, T ) with initial conditions U (·, 0) = p, ∂t U (·, 0) = q.

2.1. Absorbing boundary conditions for the semilinear wave equation.
The question of absorbing boundary conditions arises when one wants to make
computations on an unbounded domain: a bounded computational domain is in-
troduced, on the boundary of which boundary conditions must be prescribed. These
boundary conditions must be absorbing to the waves leaving the domain. A whole
strategy has been designed by Engquist and Majda for linear problems with variable
coefficients, using pseudo-differential operators [3]. Recently it has been extended
to nonlinear operators by J. Szeftel, in particular, for the semilinear wave equation
[12], using the paradifferential calculus of [1] and [9]. We introduce a family of
operators

(2.2) B±(g±)u = ∂tu ± ∂xu + g±(u),
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for C∞ functions g± such that g±(0) = 0. The linear absorbing boundary operators
are given by g± = 0. In the case where f(u, ut, ux) = f1(u) + f2(u)ut + f3(u)ux

with fj in C∞(R), 1 ≤ j ≤ 3, and f1(0) = 0, the following nonlinear boundary
operators are given in [12]:

(2.3) g+(u) := −1
2

∫ u

0

(f2 − f3)(ξ)dξ, g−(u) := −1
2

∫ u

0

(f2 + f3)(ξ)dξ.

We replace the problem on the domain R by a boundary value problem in Ω0 =
(a, b):

(2.4)
(∂2

t − ∂2
x)ū = f(ū, ∂tū, ∂xū) in Ω0 × (0, T ),

B−(g−)ū(a, ·) = 0, B+(g+)ū(b, ·) = 0,

with initial values p and q. Such boundary conditions give well-posed initial bound-
ary value problems, and are absorbing provided the intial data is compactly sup-
ported in Ω0; see [12]. Following the strategy in [7], we use such absorbing operators
for domain decomposition.

2.2. A general nonoverlapping Schwarz waveform relaxation algorithm.
We decompose the domain (a, b) into I nonoverlapping subdomains Ωi = (ai, ai+1),
aj < ai for j < i and a1 = a, aI+1 = b, and we introduce a general nonoverlapping
Schwarz waveform relaxation algorithm. An initial guess {h±,0

i }1≤i≤I+1 is given.
For k ≥ 1, one step of the algorithm is

(2.5)

⎡⎣ (∂2
t − ∂2

x)uk
i = f(uk

i , ∂tu
k
i , ∂xuk

i ) in Ωi × (0, T ),
uk

i (·, 0) = p, ∂tu
k
i (·, 0) = q in Ωi,

B−(g−)uk
i (ai, ·) = h−, k−1

i , B+(g+)uk
i (ai+1, ·) = h+, k−1

i in (0, T ),

h−, k
i = B−(g−)uk

i−1(ai, ·), h+, k
i = B+(g+)uk

i+1(ai+1, ·) in (0, T ),

where B±(g±) are given in (2.2). For ease of notation, we defined here h±, k
1 = 0

and h±, k
I+1 = 0, so that the index i in (2.5) ranges from i = 1, 2, . . . , I. In the sequel,

we call linear transmission condition the choice g± = 0 and nonlinear transmission
condition the choice (2.3). For the classical linear homogeneous wave equation, it
has been proved in [7] that the algorithm converges optimally if T is small enough
(which means in two iterations, independently of the number of subdomains), and
the transmission operators B± are given by B± = ∂t±∂x. This behavior is due to the
finite speed of propagation, together with the fact that these operators are the exact
Dirichlet-Neumann operators in this case. In the nonlinear case, the propagation
still takes place with the finite speed, but we can use only approximate Dirichlet
Neumann operators. Therefore the classical Schwarz algorithm with overlap is still
convergent, and for our nonoverlapping nonlinear algorithms, we will use energy
estimates.

3. Well-posedness for the subproblems

The study of the nonlinear problem relies on an iterative linear scheme. Therefore
a first step for the definition of the algorithm is to study the nonhomogeneous initial
boundary value problem for a general domain Ω = (a−, a+),

(3.1)
(∂2

t − ∂2
x)u = f(u, ∂tu, ∂xu) in Ω × (0, T ),

B−(g−)u(a−, ·) = h−, B+(g+)u(a+, ·) = h+,
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with initial values p and q. We will use for j ≤ 2 the spaces

(3.2) Vj(Ω, T ) = {u ∈ L∞(0, T ; L2(Ω)), ∂αu ∈ L∞(0, T ; L2(Ω)), |α| ≤ j}.

In formula (3.2), α is a 2-index in N
2, the first coordinate in α stands for the time,

and the second one stands for the space, so for instance ∂αu = ∂txu for α = (1, 1).
Vj(Ω, T ) is equipped with the norm ‖u‖Vj(Ω,T ) = max|α|≤j ‖∂αu‖L∞(0,T ;L2(Ω)).

Theorem 3.1. Let p be in H2(Ω) and q be in H1(Ω). There exists a time T ∗ such
that for any T ≤ T ∗, for h± in H1(0, T ) with the compatibility conditions

(3.3) h±(0) = q(a±) ± p′(a±) + g±(p(a±)),

(3.1) has a unique solution u in V2(Ω, T ), with ∂tu(a±, ·) and ∂xu(a±, ·) in H1(0, T ).
Furthermore, there exists a positive real number C∗ such that

‖u‖2
V2(Ω,T ) +

∑
±

∑
|α|=1

‖∂αu(a±, ·)‖2
H1(0,T )

≤ C∗(‖p‖2
H2(Ω) + ‖q‖2

H1(Ω) +
∑
±

‖h±‖2
H1(0,T )),

(3.4)

where T ∗ and C∗ depend on the data p, q, f, g±, h±.

This result was first proved in [12] with homogeneous boundary conditions (i.e.
h± = 0). The additional difficulty comes from the boundary conditions, and we
give here the main steps of the proof. It relies on the construction of a sequence of
linear problems of the form

(3.5) ∂2
t ũ − ∂2

xũ + ũ = F in Ω × (0, T ),
(∂tũ − ∂xũ)(a−, ·) = H−, (∂tũ + ∂xũ)(a+, ·) = H+.

Proposition 3.2. Let p be in H2(Ω) and q be in H1(Ω). For any positive time T ,
let F be in H1((0, T )×Ω), and H± be in H1(0, T ) with the compatibility conditions

(3.6) H±(0) = q(a±) ± p′(a±).

Then, (3.5) with initial data p and q has a unique solution ũ in V2(Ω, T ), with
∂tũ(a±, ·) and ∂xũ(a±, ·) in H1(0, T ). Moreover, we have the following bounds on
the solution

‖ũ‖2
V2(Ω,T ) +

∑
±

(
‖∂tũ(a±, ·)‖2

H1(0,T ) + ‖∂xũ(a±, ·)‖2
H1(0,T )

)
≤ C1e

T
(
‖F‖2

H1(0,T ;L2(Ω)) + ‖F (·, 0)‖2
L2(Ω)

+
∑
±

‖H±‖2
H1(0,T ) + ‖p‖2

H2(Ω) + ‖q‖2
H1(Ω)

)
,

(3.7)

where C1 is a universal constant.

Proof. We start with the a priori estimates. We multiply (3.5) by ∂tũ and integrate
by parts in Ω:

1
2

d

dt

(
‖∂tũ(·, t)‖2

L2(Ω) + ‖ũ(·, t)‖2
H1(Ω)

)
+ (∂tũ(a−, t))2 + (∂tũ(a+, t))2

= (F (·, t), ∂tũ(·, t))L2(Ω) + H−(t)∂tũ(a−, t) + H+(t)∂tũ(a+, t).
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Using the Cauchy-Schwarz inequality on the right-hand side, together with the
inequality αβ ≤ 1

2 α2 + 1
2 β2 for all α, β ∈ R, and finally integrating in time, we

obtain

‖∂tũ(·, t)‖2
L2(Ω) + ‖ũ(·, t)‖2

H1(Ω) +
∫ t

0

[(∂tũ(a−, s))2 + (∂tũ(a+, s))2] ds

≤
∫ t

0

[‖∂tũ(·, s)‖2
L2(Ω) ds +

∫ t

0

‖F (·, s)‖2
L2(Ω) ds

+ ‖q‖2
L2(Ω) + ‖p‖2

H1(Ω) +
∫ t

0

[(H−(s))2 + (H+(s))2] ds.

By Gronwall’s Lemma, we deduce that

‖∂tũ(·, t)‖2
L2(Ω) + ‖ũ(·, t)‖2

H1(Ω) +
∫ t

0

[(∂tũ(a−, s))2 + (∂tũ(a+, s))2] ds

≤ eT
(
‖F‖2

L2((0,T )×Ω) + ‖q‖2
L2(Ω) + ‖p‖2

H1(Ω) +
∑
±

‖H±‖2
L2(0,T )

)
,

which gives

(3.8) max
|α|≤1

‖∂αũ‖2
L∞(0,T ;L2(Ω)) + ‖∂tũ(a−, ·)‖2

L2(0,T ) + ‖∂tũ(a+, ·)‖2
L2(0,T )

≤ eT
(
‖F‖2

L2((0,T )×Ω) + ‖q‖2
L2(Ω) + ‖p‖2

H1(Ω) +
∑
±

‖H±‖2
L2(0,T )

)
.

Differentiating in time in (3.5), we now apply (3.8) to ∂tũ, and obtain:

(3.9) max
|α|≤1

‖∂α∂tũ‖2
L∞(0,T ;L2(Ω)) + ‖∂2

t ũ(a−, ·)‖2
L2(0,T ) + ‖∂2

t ũ(a+, ·)‖2
L2(0,T )

≤ eT (‖∂tF‖2
L2((0,T )×Ω) + ‖∂2

t ũ(·, 0)‖2
L2(Ω) + ‖q‖2

H1(Ω) +
∑
±

‖∂tH
±‖2

L2(0,T )).

We must estimate ∂2
t ũ(·, 0) in the right-hand side of (3.9). We multiply (3.5) by

∂2
t ũ, integrate in space using the boundary conditions, and evaluate at time 0:

‖∂2
t ũ(·, 0)‖2

L2(Ω) + (∂xp, ∂x∂2
t ũ(·, 0)) + (p, ∂2

t ũ(·, 0))

+ q(a−)∂2
t ũ(a−, 0) + q(a+)∂2

t ũ(a+, 0)

= H−(0)∂2
t ũ(a−, 0) + H+(0)∂2

t ũ(a+, 0) + (F (·, 0), ∂2
t ũ(·, 0)).

We integrate by parts in the second term, and rewrite the equality as

‖∂2
t ũ(·, 0)‖2

L2(Ω) − (∂2
xũ(·, 0), ∂2

t ũ(·, 0)) + (p, ∂2
t ũ(·, 0))

= (H−(0) − q(a−) + ∂xp(a−))∂2
t ũ(a−, 0)

+ (H+(0) − q(a+) − ∂xp(a+))∂2
t ũ(a+, 0) + (F (·, 0), ∂2

t ũ(·, 0)).

The boundary terms on the right-hand side vanish by the compatibility conditions,
and we get

‖∂2
t ũ(·, 0)‖2

L2(Ω) = (∂2
xp − p + F (·, 0), ∂2

t ũ(·, 0)).

Using the Cauchy-Schwarz Lemma, we obtain

‖∂2
t ũ(·, 0)‖L2(Ω) ≤ ‖∂2

xp − p + F (·, 0)‖L2(Ω).
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We replace the term ‖∂2
t ũ(·, 0)‖L2(Ω) in (3.8), and we deduce the second a priori

estimate:

(3.10) max
|α|≤1

‖∂α∂tũ‖2
L∞(0,T ;L2(Ω)) + ‖∂2

t ũ(a−, ·)‖2
L2(0,T ) + ‖∂2

t ũ(a+, ·)‖2
L2(0,T )

≤ 3 eT
(
‖∂tF‖2

L2((0,T )×Ω)+‖F (·, 0)‖2
L2(Ω)+‖p‖2

H2(Ω)+‖q‖2
H1(Ω)+

∑
±

‖∂tH
±‖2

L2(0,T )

)
.

We still need to estimate the mixed derivatives ∂xxũ in the interior and ∂xtũ on the
boundaries. We use the equation, which gives in the interior

‖∂xxũ‖L∞(0,T ;L2(Ω)) ≤ ‖∂ttũ‖L∞(0,T ;L2(Ω)) + ‖ũ‖L∞(0,T ;L2(Ω)) + ‖F‖L∞(0,T ;L2(Ω)).

We now introduce the inequality

‖F‖2
L∞(0,T ;L2(Ω)) ≤ 2(‖F (·, 0)‖2

L2(Ω) + T‖∂tF‖2
L2(0,T ;L2(Ω))),

and by (3.10) and (3.8), we get, using that eT ≥ 1 and eT ≥ T ,

‖∂xxũ‖2
L∞(0,T ;L2(Ω)) ≤ 15eT

(
‖F‖2

H1(0,T ;L2(Ω)) + ‖F (·, 0)‖2
L2(Ω)

+ ‖p‖2
H2(Ω) + ‖q‖2

H1(Ω) +
∑
±

‖H±‖2
H1(0,T )

)
.

As for the boundary term, we get, for instance, on the left boundary

‖∂txũ(a−, ·)‖L2(0,T ) ≤ ‖∂ttũ(a−, ·)‖L2(0,T ) + ‖∂tH
−‖L2(0,T ).

Squaring the inequality, and adding the term coming from the right boundary leads
to ∑

±
‖∂txũ(a±, ·)‖2

L2(0,T ) ≤ 2
∑
±

(
‖∂ttũ(a±, ·)‖2

L2(0,T ) + ‖∂tH
±‖2

L2(0,T )

)
,

which provides the last estimate announced in the proposition. The well-posedness
is then derived in a standard way by the Galerkin method. �

The solution ū of the nonlinear subdomain problem is now defined through an
iterative scheme. The initial guess is ū0 = p. At step k, ūk being known, we define
(3.11)

F(w) = w + f(w, ∂tw, ∂xw), G±(w) = g±(w(a±, ·)), H±(w) = h± − G±(w).

ūk+1 is the solution of the linear initial boundary value problem (3.5) with data
fk = F(ūk), g±k = G±(ūk), h±

k = H(ūk), and initial data p and q. The proof of
convergence for the sequence ūk is written in detail in [12]. The uniqueness follows
from the result:

Lemma 3.3. There exists a real positive increasing function θ such that, for any
time T , for any v in V2(Ω, T ), ∂αF(v) is in V1(Ω, T ), G±(v) and H(v) are in
L∞(0, T ). Moreover, for v1, v2 in V2(Ω, T ), we have
(3.12)

‖H±(v1) −H±(v2)‖L∞(0,T ) ≤ θ(‖v1‖V2(Ω,T ) + ‖v2‖V2(Ω,T ))‖v1 − v2‖V1(Ω,T ),

‖F(v1) −F(v2)‖V1(Ω,T ) ≤ θ(‖v1‖V2(Ω,T ) + ‖v2‖V2(Ω,T ))‖v1 − v2‖V2(Ω,T ).

As a consequence, we have the well-posedness of problem (2.4).
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Corollary 3.4. Let p be in H2
0 (Ω) and q be in H1

0 (Ω). There exists a time T ∗
0 > 0

such that for any T ≤ T ∗
0 , (2.4) has a unique solution ū in V2(Ω, T ), with ∂αū(a, ·)

and ∂αū(b, ·) in H1(0, T ) for |α| = 1. Furthermore, there exists a positive real
number C∗ depending only on the size of Ω such that

‖ū‖2
V2(Ω,T ) +

∑
|α|=1

‖∂αū(a, ·)‖2
H1(0,T )

∑
|α|=1

‖∂αū(b, ·)‖2
H1(0,T )

≤ C∗(‖p‖2
H2(Ω) + ‖q‖2

H1(Ω)).

4. Convergence of the algorithm

We now study the convergence of the Schwarz waveform relaxation algorithm
(2.5). In order to define the algorithm, we need a regularity result:

Proposition 4.1. For any ε, 0 < ε < 1,

V2(Ω, T ) ⊂ C0(0, T ; H2−ε(Ω)) ∩ C1(0, T ; H1−ε(Ω)).

Proof. By using extension operators in time and space, it suffices to prove the result
in R × R. We make use of the Littlewood-Paley theory (see for example [2]). In
particular, there exists ϕ and χ two tempered distributions on R, with ϕ supported
in (−8/3,−3/4) ∪ (3/4, 8/3), χ supported in (−4/3, 4/3), and

χ(ξ) +
∑
q≥0

ϕ(2−qξ) = 1, ∀ξ ∈ R.

We define the dyadic projectors ∆q by their action on a function u,

(4.1) ∆−1u = χ(D)u, ∆qu = ϕ(2−qD)u for q ≥ 0,

where D = −i∂. These operators give an equivalent norm in Hs(R),

|u|s =
( ∑

q≥−1

22qs‖∆qu‖2

) 1
2

.

They can also be used to define the Zygmund spaces

Cr
∗ = {u ∈ S ′, |||u|||r = sup

q≥−1
2qr‖∆qu‖2 < +∞}.

Cr
∗ coincides with the usual Hölder space when r is not an integer. For any positive

r, we know that W r,∞, the space of functions in L∞ with derivatives of order up
to r in L∞, is included in Cr

∗ . Therefore we have

V2(R, R) ⊂ C0
∗(R, H2(R)) ∩ C1

∗(R, H1(R)) ∩ C2
∗(R, L2(R)).

We need an interpolation lemma. �

Lemma 4.2. For any positive α, β, a, b, for any θ, 0 ≤ θ ≤ 1,

Cα
∗ (R, Ha(R)) ∩ Cβ

∗ (R, Hb(R)) ⊂ Cθα+(1−θ)β
∗ (R, Hθa+(1−θ)b(R)).

Applying the lemma with successively (α, β, a, b) = (0, 1, 2, 1) and (α, β, a, b) =
(1, 2, 1, 0), we find for any θ, θ′ in (0, 1),

V2(R, R) ⊂ C1−θ
∗ (R, H1+θ(R)) ∩ C2−θ′

∗ (R, Hθ′
(R)).

Since for any ε > 0 we have Cε
∗ ⊂ C0 and C1+ε

∗ ⊂ C1, this concludes the proof of
Proposition 4.1.
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Proof of Lemma 4.2. It relies on the convexity of the exponential function

‖u‖2

Cθα+(1−θ)β
∗ (R,Hθa+(1−θ)b(R))

= sup
j≥−1

22j(θα+(1−θ)β)
∑

k≥−1

22k(θa+(1−θ)b)‖∆t
j∆

x
ku‖2

where ∆t
j (resp. ∆x

j ) is the Littlewood-Paley operator acting in the time (resp.
space) variable.

∑
k≥−1

22k(θa+(1−θ)b)‖∆t
j∆

x
ku‖2 =

∑
k≥−1

((
22ka‖∆t

j∆
x
ku‖2

)θ(
22kb‖∆t

j∆
x
ku‖2

)(1−θ)
)

≤
( ∑

k≥−1

22ka‖∆t
j∆

x
ku‖2

)θ( ∑
k≥−1

22kb‖∆t
j∆

x
ku‖2

)1−θ

.

Therefore we have

‖u‖2

Cθα+(1−θ)β
∗ (R,Hθa+(1−θ)b(R))

≤
(

sup
j≥−1

22jα
∑

k≥−1

22ka‖∆t
j∆

x
ku‖2

)θ(
sup

j≥−1
22jβ

∑
k≥−1

22kb‖∆t
j∆

x
ku‖2

)1−θ

which gives

‖u‖2

Cθα+(1−θ)β
∗ (R,Hθa+(1−θ)b(R))

≤
(
‖u‖2

Cα
∗ (R,Ha(R))

)θ (
‖u‖2

Cβ
∗ (R,Hb(R))

)1−θ

. �

Theorem 4.3. Let p be in H2
0 (Ω) and q be in H1

0 (Ω). There exists a time T1 ≤ T ∗
0

such that for any T ≤ T1, for any initial guess h±
i be in H1(0, T ) with the com-

patibility conditions h+
i (0) = q(ai+1) + p′(ai+1) + g+(p(ai+1)) and h−

i (0) = q(ai)−
p′(ai) + g−(p(ai)), the algorithm (2.5) is defined and converges in

⋃
i V2(Ωi, T ) to

the solution ū of (2.4).

Proof. We first prove that the algorithm is well defined: with the assumptions on
h±

i in the theorem, we know by Theorem 3.1 that (2.5) defines in each Ωi a u1
i in

V2(Ωi, T ), with ∂tu
1
i (ai, ·), ∂tu

1
i (ai+1, ·), ∂xu1

i (ai, ·) and ∂xu1
i (ai+1, ·) in H1(0, T ) for

T ≤ T 1
i . Furthermore, by Lemma 3.3, B−(g−)u1

i−1(ai, ·) and B+(g+)u1
i+1(ai+1, ·)

are in H1(0, T ). As for the compatibility conditions, we have

B−(g−)u1
i−1(ai, 0) = lim

t→0

(
∂tu

1
i−1(ai, t) − ∂xu1

i−1(ai, t) + g−(u1
i−1(ai, t))

)
,

and by Proposition 4.1, we can pass to the limit and get

B−(g−)u1
i−1(ai, 0) = q(ai) − p′(ai) + g−(p(ai)).

This, together with the same regularity result on ai+1, permits the recursion.
We define for T ≤ min(T ∗

0 , mini(T ∗k
i )), for k ≥ 1, the quantities (with ui = ū/Ωi

)
for 1 ≤ i, j ≤ I, j = i or j = i − 1,

ek
i = uk

i − ui,

fk
i = F(uk

i ) −F(ui),

hk,−
i,j = g−(uk

j (ai)) − g−(uj(ai)),

hk,+
i,j = g+(uk

j (ai+1)) − g+(uj(ai+1)).
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The operator F is defined in (3.11). The error ek
i in Ωi at iteration k is a solution

of

(∂2
t − ∂2

x)ek
i + ek

i = fk
i in Ωi × (0, T ),(4.2)

(∂t − ∂x)ek
i + hk,−

i,i = (∂t − ∂x)ek−1
i−1 + hk−1,−

i,i−1 on {ai} × (0, T ),(4.3)

(∂t + ∂x)ek
i + hk,+

i,i = (∂t + ∂x)ek−1
i+1 + hk−1,+

i,i+1 on {ai+1} × (0, T ),(4.4)

with vanishing initial values and ek
0 ≡ 0, ek

I+2 ≡ 0, hk,−
1,0 ≡ 0, hk,+

I,I+1 = 0 . In order
to get a new energy estimate in Ωi, we multiply (4.2) by ∂te

k
i and integrate by

parts:

d

dt
EΩi

(ek
i ) − [∂te

k
i ∂xek

i (ai+1, ·) − ∂te
k
i ∂xek

i (ai, ·)] = (fk
i , ∂te

k
i )(4.5)

with EΩ(u) = 1
2 (‖∂tu‖2

L2(Ω) + ‖∂xu‖2
L2(Ω) + ‖u‖2

L2(Ω)). We rewrite the boundary
terms using the boundary operators:

∂te
k
i ∂xek

i (ai+1, ·) =
1
4
((∂t + ∂x)ek

i (ai+1, ·) + hk,+
i,i )2

− 1
4
((∂t − ∂x)ek

i (ai+1, ·) + hk,−
i+1,i)

2 + Rk
i,i+1,

−∂te
k
i ∂xek

i (ai, ·) =
1
4
((∂t − ∂x)ek

i (ai, ·) + hk,−
i,i )2

− 1
4
((∂t + ∂x)ek

i (ai, ·) + hk,+
i−1,i)

2 + Rk
i,i−1.

(4.6)

The remainders Rk
i,i+1 and Rk

i,i−1 will be evaluated later. We insert (4.6) into (4.5),
and obtain

d

dt
EΩi

(ek
i ) +

1
4
((∂t − ∂x)ek

i (ai+1, ·) + hk,−
i+1,i)

2 +
1
4
((∂t + ∂x)ek

i (ai, ·) + hk,+
i−1,i)

2

=
1
4
((∂t + ∂x)ek

i (ai+1, ·) + hk,+
i,i )2 +

1
4
((∂t − ∂x)ek

i (ai, ·) + hk,−
i,i )2

+ Rk
i,i+1 + Rk

i,i−1 + (fk
i , ∂te

k
i ).

Using the transmission conditions (4.3), (4.4), we get

d

dt
EΩi

(ek
i ) +

1
4
((∂t − ∂x)ek

i (ai+1, ·) + hk,−
i+1,i)

2

+
1
4
((∂t + ∂x)ek

i (ai, ·) + hk,+
i−1,i)

2

=
1
4
((∂t + ∂x)ek−1

i+1 (ai+1, ·) + hk−1,+
i,i+1 )2

+
1
4
((∂t − ∂x)ek−1

i−1 (ai, ·) + hk−1,−
i,i−1 )2

+ Rk
i,i+1 + Rk

i,i−1 + (fk
i , ∂te

k
i ).

(4.7)

We sum (4.7) on the indexes i, 1 ≤ i ≤ I and integrate in time. We translate the
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domain indexes in the right-hand side. Defining

E∂Ωi
(ek

i ) =
1
4
[((∂t − ∂x)ek

i (ai+1, ·) + hk,−
i+1,i)

2 + ((∂t + ∂x)ek
i (ai, ·) + hk,+

i−1,i)
2],

we get, since the initial data vanish,

(4.8)

I∑
i=1

EΩi
(ek

i )(t) +
∫ t

0

I∑
i=1

E∂Ωi
(ek

i )(s)ds ≤
∫ t

0

I∑
i=1

E∂Ωi
(ek−1

i )(s)ds

+
∫ t

0

I∑
i=1

(Rk
i,i+1 + Rk

i,i−1)(s)ds +
∫ t

0

I∑
i=1

(fk
i , ∂te

k
i )(s)ds.

Differentiating the equation and the transmission conditions in time yields the
bound on ∂te

k
i :

I∑
i=1

EΩi
(∂te

k
i )(t) +

∫ t

0

I∑
i=1

E∂Ωi
(∂te

k
i )(s)ds ≤

∫ t

0

I∑
i=1

E∂Ωi
(∂te

k−1
i )(s)ds

+
∫ t

0

I∑
i=1

(R̃k
i,i+1 + R̃k

i,i−1)(s)ds +
∫ t

0

I∑
i=1

(∂tf
k+1
i , ∂tte

k
i )(s)ds.

(4.9)

We now estimate the remainders. We start with Rk
i,i+1 (ignoring the superscript

k):

Ri,i+1 =
1
4
[−h+

i,i(2(∂tei+∂xei)(ai+1, ·)+h+
i,i)+h−

i+1,i(2(∂tei−∂xei)(ai+1, ·)+h−
i+1,i)],

and we get a bound on the integral of Ri,i+1:∫ t

0

Ri,i+1(s) ≤
3
4
(‖h+

i,i‖2

H
1
2 (0,t)

+ ‖h−
i+1,i‖2

H
1
2 (0,t)

)

+
1
2
(‖∂tei(ai+1, ·)‖2

H− 1
2 (0,t)

+ ‖∂xei(ai+1, ·)‖2

H− 1
2 (0,t)

).

We can treat Ri,i−1,R̃i,i−1, and R̃i,i−1 the same way and obtain∫ t

0

Ri,i−1(s) ≤
3
4
(‖h−

i,i‖2

H
1
2 (0,t)

+ ‖h+
i−1,i‖2

H
1
2 (0,t)

)

+
1
2
(‖∂tei(ai, ·)‖2

H− 1
2 (0,t)

+ ‖∂xei(ai, ·)‖2

H− 1
2 (0,t)

),∫ t

0

R̃i,i+1(s) ≤
3
4
(‖∂th

+
i,i‖2

H
1
2 (0,t)

+ ‖∂th
−
i+1,i‖2

H
1
2 (0,t)

)

+
1
2
(‖∂2

t ei(ai+1, ·)‖2

H− 1
2 (0,t)

+ ‖∂xtei(ai+1, ·)‖2

H− 1
2 (0,t)

),∫ t

0

R̃i,i−1(s) ≤
3
4
(‖∂th

−
i,i‖2

H
1
2 (0,t)

+ ‖∂th
+
i−1,i‖2

H
1
2 (0,t)

)

+
1
2
(‖∂2

t ei(ai, ·)‖2

H− 1
2 (0,t)

+ ‖∂xtei(ai, ·)‖2

H− 1
2 (0,t)

).
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At point ai, for instance, by the Trace Theorem, there is a constant C3 independent
of T , such that for any α with |α| = 1, we have

‖∂αei(ai, ·)‖
H− 1

2 (0,t)
≤ ‖∂αei(ai, ·)‖L2(0,t) ≤ C3‖∂αei‖H1(Ωi×(0,t)),

‖∂α∂tei(ai, ·)‖
H− 1

2 (0,t)
≤ ‖∂αei(ai, ·)‖

H
1
2 (0,t)

≤ C3‖∂αei‖H1(Ωi×(0,t)),

which gives our first bounds on the remainders:

∫ t

0

Ri,i+1(s)ds ≤ 1
2
(‖h+

i,i‖2

H
1
2 (0,t)

+ ‖h−
i+1,i‖2

H
1
2 (0,t)

) +
C2

3

2
‖ei‖2

H2(Ωi×(0,t)),∫ t

0

R̃i,i+1(s)ds ≤ 1
2
(‖∂th

+
i,i‖2

H
1
2 (0,t)

+ ‖∂th
−
i+1,i‖2

H
1
2 (0,t)

) +
C2

3

2
‖ei‖2

H2(Ωi×(0,t)).

We now insert the previous estimates in (4.8) and (4.9). By Cauchy-Schwarz in-
equality we get

I∑
i=1

EΩi
(ek

i )(t) +
∫ t

0

I∑
i=1

E∂Ωi
(ek

i )(s)ds(4.10)

≤
∫ t

0

I∑
i=1

E∂Ωi
(ek−1

i )(s)ds +
C2

3 + 1
2

I∑
i=1

‖ek
i ‖2

H2(Ωi×(0,t))

+
1
2

I∑
i=1

∫ t

0

‖fk
i ‖2

L2(Ωi)
(s)ds

+
3
4

I∑
i=1

(‖hk,+
i,i ‖2

H
1
2 (0,t)

+ ‖hk,−
i+1,i‖2

H
1
2 (0,t)

)

+
3
4

I∑
i=1

(‖hk,−
i,i ‖2

H
1
2 (0,t)

+ ‖hk,+
i−1,i‖2

H
1
2 (0,t)

),

I∑
i=1

EΩi
(∂te

k
i )(t) +

∫ t

0

I∑
i=1

E∂Ωi
(∂te

k
i )(s)ds(4.11)

≤
∫ t

0

I∑
i=1

E∂Ωi
(∂te

k−1
i )(s)ds +

C2
3 + 1
2

I∑
i=1

‖ek
i ‖2

H2(Ωi×(0,t))

+
1
2

I∑
i=1

∫ t

0

‖∂tf
k
i ‖2

L2(Ωi)
(s)ds

+
3
4

I∑
i=1

(‖∂th
k,+
i,i ‖2

H
1
2 (0,t)

+ ‖∂th
k,−
i+1,i‖2

H
1
2 (0,t)

)

+
3
4

I∑
i=1

(‖∂th
k,−
i,i ‖2

H
1
2 (0,t)

+ ‖∂th
k,+
i−1,i‖2

H
1
2 (0,t)

).
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Adding (4.10) and (4.11), we can write

I∑
i=1

(EΩi
(ek

i ) + EΩi
(∂te

k
i ))(t) +

∫ t

0

I∑
i=1

(E∂Ωi
(ek

i ) + E∂Ωi
(∂te

k
i ))(s)ds

≤
∫ t

0

I∑
i=1

(E∂Ωi
(ek−1

i ) + E∂Ωi
(∂te

k−1
i ))(s)ds + (C2

3 + 1)
I∑

i=1

‖ek
i ‖2

H2(Ωi×(0,t))

+
3
4

I∑
i=1

(‖hk,+
i,i ‖2

H
1
2 (0,t)

+ ‖hk,+
i+1,i‖2

H
1
2 (0,t)

+ ‖hk,−
i,i ‖2

H
1
2 (0,t)

+ ‖hk,+
i−1,i‖2

H
1
2 (0,t)

)

+
3
4

I∑
i=1

(‖∂th
k,+
i,i ‖2

H
1
2 (0,t)

+ ‖∂th
k,+
i+1,i‖2

H
1
2 (0,t)

+ ‖∂th
k,−
i,i ‖2

H
1
2 (0,t)

+ ‖∂th
k,+
i−1,i‖2

H
1
2 (0,t)

)

+
I∑

i=1

1
2
(‖fk

i ‖2
L2(Ω×(0,T )) + ‖∂tf

k
i ‖2

L2(Ω×(0,T ))).

We now estimate the quantities involving the hk,±
i,j . Refining the results in Lemma

3.3, we have a real positive increasing function θ2, such that

‖hk,±
i,j ‖2

H
1
2 (0,t)

+ ‖∂th
k,±
i,j ‖2

H
1
2 (0,t)

≤ θ2
2(

∑
|α|≤2

α�=(0,2)

(‖∂αui‖2
L2(Ω×(0,T )) + ‖∂αuk

i ‖2
L2(Ω×(0,T ))))

×
∑
|α|≤2

α�=(0,2)

‖∂αek
i ‖2

L2(Ω×(0,T ))

which gives

I∑
i=1

(EΩi
(ek

i ) + EΩi
(∂te

k
i ))(t) +

∫ t

0

I∑
i=1

(E∂Ωi
(ek

i ) + E∂Ωi
(∂te

k
i ))(s)ds

≤
∫ t

0

I∑
i=1

(E∂Ωi
(ek−1

i ) + E∂Ωi
(∂te

k−1
i ))(s)ds

+
I∑

i=1

θ3(
∑
|α|≤2

α�=(0,2)

(‖∂αui‖2
L2(Ω×(0,T )) + ‖∂αuk

i ‖2
L2(Ω×(0,T ))))‖ek

i ‖2
H2(Ωi×(0,t))

+
I∑

i=1

1
2
(‖fk

i ‖2
L2(Ω×(0,T )) + ‖∂tf

k
i ‖2

L2(Ω×(0,T ))),

(4.12)

with θ3 = 3θ2
2 + C2

3 + 1. We now evaluate the terms on the right-hand side. We
first note that

‖ek
i ‖2

H2(Ωi×(0,t)) ≤
∫ t

0

(EΩi
(ek

i ) + EΩi
(∂te

k
i ) + ‖∂xxek

i ‖2
L2(Ωi)

)ds,

and evaluate ‖∂xxek
i ‖2

L2(Ωi×(0,t)) by equation (4.2):

‖∂xxek
i ‖2

L2(Ωi×(0,t)) ≤ 3(‖∂tte
k
i ‖2

L2(Ωi×(0,t)) + ‖ek
i ‖2

L2(Ωi×(0,t)) + ‖fk
i ‖2

L2(Ωi×(0,t))),
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from which we deduce

‖ek
i ‖2

H2(Ωi×(0,t)) ≤ 4
∫ t

0

(EΩi
(ek

i ) + EΩi
(∂te

k
i ))ds + 3‖fk

i ‖2
L2(Ωi×(0,t)).

There remains only in (4.12) that
(4.13)

I∑
i=1

(EΩi
(ek

i ) + EΩi
(∂te

k
i ))(t) +

∫ t

0

I∑
i=1

(E∂Ωi
(ek

i ) + E∂Ωi
(∂te

k
i ))(s)ds

≤
∫ t

0

I∑
i=1

(E∂Ωi
(ek−1

i ) + E∂Ωi
(∂te

k−1
i ))(s)ds

+
[ I∑

i=1

4θ3(
∑
|α|≤2

α�=(0,2)

(‖∂αui‖2
L2(Ω×(0,T )) + ‖∂αuk

i ‖2
L2(Ω×(0,T ))))

×
∫ t

0

(EΩi
(ek

i ) + EΩi
(∂te

k
i ))ds

]
+

I∑
i=1

(3θ3(
∑
|α|≤2

α�=(0,2)

(‖∂αui‖2
L2(Ω×(0,T ))

+‖∂αuk
i ‖2

L2(Ω×(0,T )))) + 1
2 )(‖fk

i ‖2
L2(Ω×(0,T )) + ‖∂tf

k
i ‖2

L2(Ω×(0,T ))).

Again, as in Lemma 3.3, there exists a positive increasing function θ4 such that

‖fk
i (t, ·)‖2

L2(Ω) + ‖∂tf
k
i (t, ·)‖2

L2(Ω)

≤ θ2
4

( ∑
|α|≤2

α�=(0,2)

(‖∂αui‖2
L2(Ω) + ‖∂αuk

i ‖2
L2(Ω))

) ∑
|α|≤2

α�=(0,2)

‖∂αek
i ‖2

L2(Ω);

the latter sum means that no term ∂xx are present, therefore we can bound the sum
by twice the energy. Furthermore, we know that the energy of ū is bounded on the
interval (0, T ). Thus there exists a new positive increasing function θ5, depending
on u, such that

‖fk
i (t, ·)‖2

L2(Ω) + ‖∂tf
k
i (t, ·)‖2

L2(Ω)

≤ (θ2
5(EΩi

(ek
i ) + EΩi

(∂te
k
i ))(EΩi

(ek
i ) + EΩi

(∂te
k
i )))(t).

(4.14)

We insert (4.14) into (4.13), and get (with a new function θ6)

(4.15)

I∑
i=1

(EΩi
(ek

i ) + EΩi
(∂te

k
i ))(t) +

∫ t

0

I∑
i=1

(E∂Ωi
(ek

i ) + E∂Ωi
(∂te

k
i ))(s)ds

≤
∫ t

0

I∑
i=1

(E∂Ωi
(ek−1

i ) + E∂Ωi
(∂te

k−1
i ))(s)ds

+
I∑

i=1

∫ t

0

(θ6(EΩi
(ek

i ) + EΩi
(∂te

k
i )))(EΩi

(ek
i ) + EΩi

(∂te
k
i ))(s)ds.

For clarity we define

Ek
int =

I∑
i=1

(EΩi
(ek

i ) + EΩi
(∂te

k
i )), Ek

b =
I∑

i=1

(E∂Ωi
(ek

i ) + E∂Ωi
(∂te

k
i )),



878 LAURENCE HALPERN AND JÉRÉMIE SZEFTEL

and we can rewrite (4.15) as

(4.16) Ek
int(t) +

∫ t

0

Ek
b (s)ds ≤

∫ t

0

Ek−1
b (s)ds +

∫ t

0

θ6(Ek
int(s))E

k
int(s)ds.

Summing in k, we define ẼK
int =

∑K
k=1 Ek

int, and we have

ẼK
int(t) +

∫ t

0

EK
b (s)ds ≤

∫ t

0

E0
b (s)ds +

∫ t

0

θ6(ẼK
int(s))Ẽ

K
int(s)ds.

Now let C > 0. If t tends to 0,
∫ t

0
E1

b (s)ds + tCθ6(C) tends to 0. Therefore there
exists a T1 such that

∫ T1

0
E1

b (s)ds + T1Cθ6(C) = C, and so we have for t ≤ T1,

ẼK
int(t) ≤ C.

We conclude that uk
i exists on the time interval (0, T1), and that

∑I
i=1(EΩi

(ek
i ) +

EΩi
(∂te

k
i )) tends to 0 when k tends to infinity; the sequence uk

i converges to ū on
(0, T1) in each subdomain in the norm of energy. �

5. A finite volume discretization

We use here a finite volumes scheme, which has been described in [7] for the
linear one-dimensional wave equation, and extended to the nonlinear boundary
value problems in the frame of absorbing boundary conditions in [11]. We restrict
ourselves to uniform meshes in time and space.

5.1. Discretization of the subdomain problem (3.1). The domain Ω× (0, T )
is meshed by a rectangular grid, with uniform mesh sizes ∆x and ∆t. There are
J + 1 points in space with ∆x = (a+ − a−)/J , and N + 1 points in time, with
∆t = T/N . We denote the numerical approximation to u(a− + j∆x, n∆t) by
U(j, n). We introduce the notations:

D+
t U(j, n) =

U(j, n + 1) − U(j, n)

∆t
, D−

t U(j, n) =
U(j, n) − U(j, n − 1)

∆t
,

D+
x U(j, n) =

U(j + 1, n) − U(j, n)

∆x
, D−

x U(j, n) =
U(j, n) − U(j − 1, n)

∆x
,

D0
x U(j, n) =

U(j + 1, n) − U(j − 1, n)

2∆x
, D0

t U(j, n) =
U(j, n + 1) − U(j, n − 1)

2∆t
,

D−−
t U(j, n) =

3U(j, n) − 4U(j, n − 1) + U(j, n − 2)

2∆t
,

D−∗
t U(j, n) =

{
D−−

t U(j, n) for n ≥ 2,
D−

t U(j, n) for n = 1.

(5.1)

The last finite derivative in (5.1) is a second order approximation of ∂tu, to be
used in the nonlinear term, in order to design an explicit scheme.

The scheme in the interior gives

(5.2)
(
D+

t D−
t − D+

x D−
x

)
U(j, n) − f(U(j, n), D−∗

t U(j, n), D0
x U(j, n)) = 0

in [|1, J − 1|] × [|1, N − 1|].
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We define the discrete initial value as

P (j) = p(a− + j∆x), Q(j) = q(a− + j∆x),

and we obtain the initial scheme
(5.3)

(D+
t − ∆t

2
D+

x D−
x )U(j, 0) = Q(j) +

∆t

2
f(P (j), Q(j), D0

x Q(j)), in [|1, J − 1|].

For the boundary conditions, we define the discrete boundary operators as:

B−(f, g−) U(0, n) = (D0
t − D+

x +
∆x

2
D+

t D−
t )U(0, n)

(5.4)

− ∆x

2
f(U(0, n), D−∗

t U(0, n), D+
x U(0, n)) + g−(U(0, n)),

B−(f, g−) U(0, 0) = (D+
t − D+

x +
∆x

∆t
D+

t ) U(0, 0) − ∆x

∆t
Q(0)

− ∆x

2
f(P (0), Qi(0), D+

x P (0)) + g−(P (0)),

B+(f, g+) U(J, n) = (D0
t + D−

x +
∆x

2
D+

t D−
t )U(J, n)

(5.5)

− ∆x

2
f(U(J, n), D−∗

t Ui(J, n), D−
x U(J, n)) + g+(U(J, n)),

B+(f, g+) U(J, 0) = (D+
t + D−

x +
∆x

∆t
D+

t )U(J, 0) − ∆x

∆t
Q(J)

− ∆x

2
f(P (J), Qi(J), D−

x P (J)) + g+(P (J)).

We define the boundary data as
(5.6)

H±(n) =
1

∆t

∫ tn+∆t/2

tn−∆t/2

h±(τ )dτ, 1 ≤ n ≤ N, H±(0) =
2

∆t

∫ ∆t/2

0

h±(τ )dτ.

The discretization of problem (3.1) is now given by (5.2), (5.3), with boundary
conditions

(5.7) B−(f, g−)U(0, ·) = H− , B+(f, g+)U(J, ·) = H+ in [|0, n ≤ N |],

where the discrete boundary operators B± are given in (5.4), (5.5).
Our numerical computations indicate that this scheme is second order both in

space and time.

5.2. The discrete Schwarz waveform relaxation algorithm. The equation is
now discretized on each subdomain Ωi × (0, T ), i = 1, . . . , I separately, using a
uniform mesh with sizes ∆x and ∆t. There are Ji + 1 points in space and N + 1
grid points in time in subdomain Ωi, with ∆x = (ai+1−ai)/Ji and ∆t = T/N . We
denote the numerical approximation to uk

i (ai + j∆x, n∆t) on Ωi at iteration step
k by Uk

i (j, n).
The problem in domain Ωi is now defined through boundary data H±, k−1

i , com-
ing from the neighboring subdomains Ωi±1. Therefore, we define the extraction
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operator from domain Ωi to his neighbours as:

B̃+(f, g+) Ui(0, n) = (D0
t + D+

x − ∆x

2
D+

t D−
t )Ui(0, n)

(5.8)

+
∆x

2
f(Ui(0, n), D−∗

t Ui(0, n), D+
x Ui(0, n)) + g+(Ui(0, n)),

B̃+(f, g+) Ui(0, 0) = (D+
t + D+

x − ∆x

∆t
D+

t ) Ui(0, 0)

+
∆x

∆t
Qi(0) +

∆x

2
f(Pi(0), Qi(0), D+

x Pi(0)) + g+(Pi(0),

B̃−(f, g−)Ui(Ji, n) = (D0
t − D−

x − ∆x

2
D+

t D−
t )Ui(Ji, n)

(5.9)

+
∆x

2
f(Ui(Ji, n), D−∗

t Ui(Ji, n), D−
x Ui(Ji, n))+g−(Ui(Ji, n)),

B̃−(f, g−) Ui(Ji, 0) = (D+
t − D−

x − ∆x

∆t
D+

t ) Ui(Ji, 0) +
∆x

∆t
Qi(Ji)

+
∆x

2
f(Pi(Ji), Qi(Ji), D−

x Pi(Ji)) + g−(Pi(Ji)).

The discrete Schwarz waveform relaxation algorithm on subdomains Ωi, i =
1, . . . , I is defined as follows. An initial guess {H0,±

i }1≤i≤I is given. For k ≥ 1, we
solve
(5.10)⎡⎢⎢⎢⎢⎢⎣

(
D+

t D−
t − D+

x D−
x

)
Uk

i = f(Uk
i , D−∗

t Uk
i , D0

x Uk
i ) in [|1, Ji − 1|] × [|1,N |],

Uk
i (·, 0) = Pi, (D+

t − ∆t

2
D+

x D−
x )Uk

i (·, 0) = Qi +
∆t

2
f(Pi, Qi, D

0
x Qi) in [|1, Ji − 1|],

B−(f, g−)Uk
i (0, ·) = H−, k−1

i , B+(f, g+)Uk
i (Ji, ·) = H+, k−1

i in [|0, n ≤ N |],

H−, k
i = B̃−(f, g−)Uk

i−1(Ji−1, ·) , H+, k
i = B̃+(f, g+)Uk

i+1(0, ·) in [|0, n ≤ N |].

As in the continuous algorithm, we set Uk
0 ≡ 0 and Uk

I+2 ≡ 0.
We denote by Ū the discrete approximation of problem (2.4), obtained by solving

(5.2), (5.3), (5.7) on Ω = (a, b) with J =
∑I

i=1 Ji intervals of length ∆x, and H± =
0. Each subproblem is an explicit scheme, thus has a unique solution. Therefore
the Schwarz waveform Relaxation Algorithm is well defined. If it converges, the
limit in each subdomain is denoted by Vi. It satisfies the same scheme as Ū at
initial time, in the interior and on the exterior boundaries. At point ai it satisfies
for any n ≥ 0,

B−(f, g−)Vi(0, n) = B̃−(f, g−)Vi−1(Ji−1, n) , B+(f, g+)Vi−1(Ji−1, n)

= B̃+(f, g+)Vi(0, n).
(5.11)

Theorem 5.1. Suppose that f is affine in the third variable ∂xu. Then, if the dis-
crete algorithm converges, it converges to the discrete approximation Ū of problem
(2.4).

Proof. Since p is in H2(Ω) and q is in H1(Ω), they are both continuous and we have
for any i, Vi(0, 0) = Pi(0) = Vi−1(Ji−1, 0) = Pi−1(Ji−1) = p(ai), and Qi−1(Ji−1) =
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Qi(0) = q(ai). We write the transmission conditions (5.11) for n = 0. The nonlinear
terms containing g± on both sides cancel out, and we have

(D+
t − D+

x +
∆x

∆t
D+

t )Vi(0, 0) − ∆x

∆t
q(ai) −

∆x

2
f(p(ai), q(ai), D+

x p(ai))(5.12)

= (D+
t − D−

x − ∆x

∆t
D+

t )Vi−1(Ji−1, 0) +
∆x

∆t
q(ai) +

∆x

2
f(p(ai), q(ai), D−

x p(ai)),

(D+
t + D+

x − ∆x

∆t
D+

t )Vi(0, 0) +
∆x

∆t
q(ai) +

∆x

2
f(p(ai), q(ai), D+

x p(ai))(5.13)

(D+
t + D−

x +
∆x

∆t
D+

t )Vi−1(Ji−1, 0) − ∆x

∆t
q(ai) −

∆x

2
f(p(ai), q(ai), D−

x p(ai)).

Adding (5.12) and (5.13) yields D+
t Vi(0, 0) = D+

t Vi−1(Ji−1, 0), and hence Vi(0, 1)
= Vi−1(Ji−1, 1). We define now Ṽ (j, n) for 0 ≤ j ≤ J as Ṽ (j̃, n) = Vi(j, n) if j̃∆x
= ai+j∆x, with 1 ≤ j ≤ Ji. With the assumption on f , since D0

x = (D+
x +D−

x )/2,
we can rewrite (5.12) as

(D+
x − D−

x − 2
∆x

∆t
D+

t )Ṽ (j̃i, 0) + 2
∆x

∆t
q(ai) + ∆xf(p(ai), q(ai), D0

x p(ai)) = 0,

with j̃i = J1 + · · · + Ji, which, when multiplying by − ∆t
2∆x , proves that Ṽ is the

solution of (5.3) at any point, and therefore U and Ṽ coincide at time 0 and 1. A
simple recursion with the explicit schemes now proves that, for any n, for any i,
Vi(0, n) = Vi−1(Ji−1, n), and therefore U = Ṽ . �

Remark. The assumption on f in Theorem 5.1 is fulfilled when f(u, ut, ux) =
f1(u) + f2(u)ut + f3(u)ux.

6. Convergence of the discrete algorithm

According to Theorem 5.1, we suppose that f is affine in ∂xu. We introduce the
linear transmission operators defined by

T± = B±(0, 0), T̃± = B̃±(0, 0).

We note Ūi = Ū/Ωi
. With these notations, the error Ūk

i = Uk
i − Ūi is the solution

of the linear problem

(6.1)
(
D+

t D−
t − D+

x D−
x + 1

)
Ūk

i = F k
i , in [|1, Ji − 1|] × [|1, N |]

with the initial value Ūk
i (j, 1) = Ūk

i (j, 0) = 0 and the transmission conditions

(6.2)
T−Ūk

i (0, ·) + G−, k
i = T̃−Ūk−1

i−1 (Ji−1, ·) + G̃−, k−1
i−1 , in [|0, N |],

T+Ūk
i (Ji, ·) + G+, k

i = T̃+Ūk−1
i+1 (0, ·) + G̃+, k−1

i+1 , in [|0, N |].
The remainders are given by

(6.3)

F k
i = f(Uk

i , D−∗
t Uk

i , D0
x Uk

i ) − f(Ūi, D
−∗
t Uk

i , D0
x Ūi) + Ūk

i for n ≥ 1,

G−, k
i = −∆x

2
fk

i (0, ·) + g−(Uk
i (0, ·)) − g(Ūi(0, ·)),

G̃−, k
i−1 =

∆x

2
fk

i−1(Ji−1, ·) + g−(Ūk
i−1(Ji−1, ·)) − g−(Ūi−1(Ji−1, ·)),

G+, k
i = −∆x

2
fk

i (Ji, ·) + g+(Ūk
i (Ji, ·)) − g+(Ūi(Ji, ·)),

G̃+, k
i+1 =

∆x

2
fk

i+1(0, ·) + g+(Ūk
i+1(0, ·)) − g+(Ūi+1(0, ·)),
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and G±, k
i (0) = 0, G̃±, k

i (0) = 0. For n = 0, the centered derivative in x is replaced
in the expression of F k

i by a forward or backward derivative.
We define now a discrete energy as follows. We consider sequences of the form

V = {V (j)}0≤j≤J in R
J+1, and we define a bilinear form on R

J+1 by

(6.4) a∆(V, W ) = ∆x(
J∑

j=1

D−
x (V )(j) · D−

x (W )(j) +
J−1∑
j=1

V (j)W (j)).

For a mesh function V of time and space, we define

(6.5)

EK(V )(n) =
∆x

2

J−1∑
j=1

(
(D−

t V (j, n))2 + (D−
t V (j, n + 1))2

)
,

EP (V )(n) = a∆(V (·, n), V (·, n − 1)),

E = EK + EP .

The quantity EK is a discrete kinetic energy, and EP is a discrete potential energy.
The following lemma gives a lower bound for E under a CFL condition, and hence
shows that E is then indeed an energy. The proof is classical ([7]) and is omitted
here.

Lemma 6.1. For any n ≥ 1, we have

(6.6) E(V )(n) ≥
(

1 − ∆t2

∆x2
− ∆t2

4

)
EK(V )(n).

Hence, under the CFL condition

(6.7)
∆t2

∆x2
+

∆t2

4
< 1,

E is bounded from below by an energy.

The following energy estimate is obtained by a discrete integration by parts:

Lemma 6.2. For any V solution of(
D+

t D−
t − D+

x D−
x + 1

)
V = F, 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N,(6.8)

we have for any n ≥ 1,
(6.9)

E(V )(n) − E(V )(n − 1) +
∆t

2
[(T̃+V (0, n))2 + (T̃−V (J, n))2]

=
∆t

2
[(T−V (0, n))2 + (T+V (J, n))2] + 2∆t∆x

J∑
j=1

F (j, n)D0
t V (j, n),

and for n = 0,
(6.10)

EK(U)(0) + E(U)(0) +
∆t

4
[(T̃+U(0, 0))2 + (T̃−U(J + 1, 0))2]

=
∆t

4
[(T−U(0, 0))2 + (T+U(J, 0))2] + a∆(P, P ) + 2∆x

J∑
j=1

Q(j)D+
t U(j, 0).

These estimates are obtained by multiplying (6.8) with D0
t V (j, n) and integrat-

ing by parts [7].
We now state the main result of this section.
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Theorem 6.3. Suppose that f is affine with respect to ∂xu. Defining the quantities
(6.11)
Rk

i (n) =G̃+, k
i (n)(G̃+, k

i (n)+2T̃+Ūk
i (0, n))+G̃−, k

i (n)(G̃−, k
1 (n) + 2T̃−Ūk

i (Ji, n))

−G−, k
i (n)(G−, k

i (n)+2T−Ūk
i (0, n))−G+, k

i (n)(G+, k
i (n)+2T+Ūk

i (Ji, n)),

and assuming that there exists a positive constant M such that for any iteration
number K, any domain Ωi and any discrete time n, the following estimate holds:

(6.12) 2∆x

J∑
j=1

F k
i (j, n)D0

t Ūk
i (j, n) +

1
2
Rk

i (n) ≤ ME(Ūk
i )(n),

then, for ∆t sufficiently small, the discrete Schwarz algorithm converges in the
energy norm.

Remark. Assumption (6.12) is technical, and will be proved in Corollary 6.4 in a
special case.

Proof. We apply (6.9), (6.10) to Ūk
i . Since the initial data vanish, every term in

(6.10) vanishes. Thus E(Ūk
i )(0) = 0, and we rewrite (6.9) as

(6.13)

E(Ūk
i )(n) − E(Ūk

i )(n − 1)

+
∆t

2
[(T̃+Ūk

i (0, n) + G̃+, k
i (n))2 + (T̃−Ūk

i (Ji, n) + G̃−, k
i (n))2]

=
∆t

2
[(T−Ūk

i (0, n) + G−, k
i (n))2 + (T+Ūk

i (Ji, n) + G+, k
i (n))2]

+ 2∆t∆x

Ji∑
j=1

fk
i (j, n)D0

t Ūk
i (j, n) +

∆t

2
Rk

i (n).

We now insert the transmission conditions (6.2), translate the indices in the right-
hand side, and add the contributions of all subdomains. We define a total internal
energy and a total boundary energy as

Ek
I (n) =

I∑
i=1

E(Ūk
i )(n), Ek

B(n)

=
∆t

2

∑
i

[(T̃+Ūk
i (0, n) + G̃+, k

i (n))2 + (T̃−Ūk
i (Ji, n) + G̃−, k

i (n))2].

With these notations we can write
Ek

I (n) − Ek
I (n − 1) + Ek

B(n) = Ek−1
B (n)

+
I∑

i=1

[2∆t∆x

Ji∑
j=1

fk
i (j, n)D0

t Ūk
i (j, n) +

∆t

2
Rk

i (n)].
(6.14)

We now sum up (6.14) for 1 ≤ k ≤ K, and define ÊK
I (n) =

∑K
k=1 Ek

I (n):

ÊK
I (n) − ÊK

I (n − 1) + EK
B (n) = E0

B(n)

+ ∆t

K∑
k=1

I∑
i=1

[2∆x

Ji∑
j=1

fk
i (j, n)D0

t Ūk
i (j, n) +

1
2
Rk

i (n)].
(6.15)

Under assumption (6.12) we deduce that

(6.16) ÊK
I (n) − ÊK

I (n − 1) ≤ F0(n) + M∆tÊK
I (n).
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The recursive inequality is easy to solve. For ∆t sufficiently small, M∆t < 1, and
since ÊK(0) = 0, we get

(6.17) ÊK
I (n) ≤ eMn∆t

n∑
p=1

F0(p) ≤ eMT
N∑

p=1

F0(p).

This proves that supn≤N ÊK
I (n) is bounded as K tends to infinity. Therefore we

have

(6.18) ∀n ≤ N,
I∑

i=1

E(Uk
i − Ū)(n) → 0 as k → +∞,

which concludes the proof. �

We are able to prove the assumption (6.12) in the case of the linear transmission
conditions.

Corollary 6.4. Suppose that f is affine with respect to ∂xu. For ∆t sufficiently
small, there exists a time T such that the discrete Schwarz waveform relaxation
algorithm (5.10) with linear transmission conditions (i.e. g± = 0) converges to the
discrete approximation Ū of problem (2.4) on (0, T ).

Proof. Here the remainder Rk
i (n) reduces to

(6.19) Rk
i (n) = 2∆x(−fk

i (0, n)D0
t Ūk

i (0, n) + fk
i (Ji, n)D0

t Ūk
i (Ji, n)),

and the estimate (6.12) amounts to proving that for any k ≤ K, n ≤ N ,

(6.20) ∆x

Ji∑
j=0

fk
i (j, n)D0

t Ūk
i (j, n) ≤ M1E(Ūk

i )(n).

If f is globally Lipschitz in both variables, this is merely an application of the
discrete Cauchy-Schwarz lemma. �

7. Numerical results

7.1. Remarks on overlapping versus nonoverlapping Schwarz waveform
relaxation algorithms and variants. The original Schwarz algorithm, designed
for elliptic equations, uses overlapping subdomains (Ωi = (ai, bi) for 1 ≤ i ≤ I, with
ai < ai+1 < bi < bi+1), with an exchange of Dirichlet data on the boundary, and
the convergence factor depends on the overlap [10, 8]. For hyperbolic problems, due
to the finite speed of propagation, it is easy to see that this “classical” algorithm
converges in a finite number of iterations, given by N = �cT/L
 where c is the
wave speed, and L the size of the overlap. In the linear case, absorbing transmission
conditions have the same property, but the convergence is drastically improved, even
without overlap. In one dimension, for sufficiently small T , only two iterations are
needed for convergence, independently of the number of subdomains, [7], and in
two dimensions, the absorbing transmission conditions with optimized coefficients
can reduce the error after two iterations by a factor 20 [5].

In the nonlinear case, we have theoretical convergence results on the linear al-
gorithm for sufficiently small T . However, we will see that the linear algorithm
outperforms the classical one on large time intervals as well, and that the nonlinear
algorithm performs even better.
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Our experiments concern the space domain Ω = [0, 4], simulating R with linear
absorbing boundary conditions at each boundary. The time interval is [0, 2]. Ω is
divided in two subdomains. The initial value is supported in (0, 2), with p(x) =
x3(2 − x)3, the initial velocity is q(x) = 3x2(2 − x)2(x − 1). This is a good test
since the solution is supported in the first subdomain at t = 0 and escapes in the
second domain before the end of the computation.

Note that the Schwarz algorithm can be viewed as a fixed point algorithm applied
to the interface problems

(H+
1 , H−

2 ) �→ (B̃+U2(0, ·), B̃−U1(J1, ·)) = A(H+
1 , H−

2 ).

In all cases, the stopping criterion in the algorithm will be on the residual resk

for A. We also compute the exact discrete solution in Ω, and measure the discrete
global error Ek in L∞(0, T, L2(Ω)).

7.2. The classical overlapping Schwarz algorithm. In this case, Ω1 =(0, 2+L)
and Ω2 = (2, 4). The stopping criterion pertains to the residual for the interface
problem:

resk =
(
‖(uk+1

1 − uk
1)(2 + L, ·)‖2

L2 + ‖(uk+1
2 − uk

2)(2, ·)‖2
L2

)1/2

.

We run the computation until the residual resk is equal to zero. The theoretical

minimal number of iterations for the discrete algorithm is Nd
th = �∆x

∆t

T

L

, while

the continuous one is Nc
th = �T

L

.

We start with the nonlinear term f(u, ut, ux) = u3. Table 1 gives the number
of iterations Ncomp needed to achieve convergence (i.e. the error is zero), together
with Nd

th and Nc
th, for a fixed overlap equal to eight grid points. ∆t and ∆x vary

with ∆t/∆x kept constant, such as to fulfill the CFL condition. The speed of
convergence is a decreasing function of the stepsize. It is in accordance with the
discrete theoretical convergence speed for large stepsize, and with the theoretical
continuous speed for small stepsize. This is due to the fact that the smaller the
stepsizes are, the closer the discrete algorithm is to the continuous algorithm.

Table 2 shows the convergence behavior of the algorithm for fixed stepsize, as
a function of the overlap. The number of iterations needed to reach convergence
decreases with the size of the overlap, and the behavior is similar to the continuous
one for fine mesh, to the discrete one for rougher mesh.

We show on Figure 1 the convergence history of the classical Schwarz algorithm
for various values of the mesh size and an overlap equal to eight grid points. We

Table 1. Number of iterations to achieve convergence for the clas-
sical Schwarz algorithm, L = 8∆x

∆x 2/100 1/100 1/200 1/400
∆t 2/120 1/120 1/240 1/480

Ncomp 16 29 54 105
Nd

th 16 31 61 121
Nc

th 13 26 51 101
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Table 2. Number of iterations to achieve convergence for the clas-
sical Schwarz algorithm as a function of the overlap

overlap L ∆x 2 ∆x 4∆x 8∆x 16∆x
Ncomp 220 111 56 29 15
Nd

th 241 121 61 31 16
Nc

th 201 101 51 26 13

∆x = 1/100, ∆t = 1/120
overlap L ∆x 2 ∆x 4∆x 8∆x 16∆x

Ncomp 61 31 16 9 5
Nd

th 61 31 16 8 4
Nc

th 51 26 13 7 4

∆x = 4/100, ∆t = 4/120

check in each case that the error Ek vanishes together with the residual. Further-
more, we can see that the error decays very slowly for many iterations, and reaches
zero in a few iterations, independently of the mesh size (three or four in all cases).
The behaviour is very similar to what happens for the linear wave equation: only
the finite speed of propagation produces convergence, which takes place when the
signal has left the domain. The algorithm behaves similarly for other nonlinearities.
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Figure 1. Variation of the residual resk (left) and the error
Ek(right) as a function of the iteration number k.

7.3. The nonlinear nonoverlapping Schwarz algorithms. We will see in this
section that our strategy greatly improves the performances of the classical Schwarz
algorithm. Note that, whereas the classical algorithm only converges in the pres-
ence of an overlap, and the smaller the overlap, the slower the convergence, our
algorithms are run without overlap.

Here the residual is given by

resk =
(
‖(G+, k+1 − G+, k)(a1, ·)‖2

L2 + ‖(G−, k+1 − G−, k
2 )(a1, ·)‖2

L2

)1/2

.
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Figure 2. f = u3. Left residual, right: error. ∗: ∆x = 1/100,
∆t = 1/120, o: ∆x = 1/200, ∆t = 1/240, ♦: ∆x = 1/400,
∆t = 1/480.
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Figure 3. f = u2ux. Top: residual, bottom: error. Solid: linear,
dash: nonlinear.

We start with f = u3. In this case the transmission operators are the same and
linear, since g± = 0. We have proved in Corollary 6.4 that there exists a final time
T for which the discrete algorithm is convergent.

In the forthcoming computations, the theoretical and numerical data are the
same as before. Figure 2 plots the convergence history for various mesh sizes. The
computation is stopped as soon as the residual reaches 0.5 10−7. We see that the
algorithm converges very rapidly, independently of the mesh size.

We consider now the case f = u2ux, and nonlinear transmission conditions,
i.e. g±(u) = ±u3/6. In Figure 3, we plot the convergence history for various
mesh sizes. The computation is stopped as soon as the residual reaches 0.5 10−7.
Both the linear and the nonlinear transmission conditions behave very well. The
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Figure 4. f = u2ux. Variations of the error as a function of the
nonlinearity coefficient δ.

convergence takes place in five iterations with the linear transmission condition, in
four iterations with the nonlinear one.

We also can vary the nonlinearities in the transmission conditions, we use a real
parameter δ, and g± = ±δu3. The nonlinear strategy corresponds to δ = 1/6,
whereas the linear one is obtained for δ = 0. We draw in Figure 4 the error curves
after three iterations for the same initial values as before, the mesh sizes are ∆x =
1/100, ∆t = 1/120. We observe that the nonlinear strategy corresponds precisely
to the optimal numerical value of the parameter δ, validating the high frequency
approach. We have carried out the same computations in the case f = u2ut. We
do not display the results here since they are very similar.

8. Conclusion

We have presented a linear and a nonlinear Schwarz waveform relaxation algo-
rithm without overlap for the semilinear wave equation. On the continuous level, we
proved the convergence for sufficiently small time intervals. We designed a discrete
algorithm, in such a way that, if convergent, the algorithm converges to the dis-
crete solution in the whole domain, which we prove when the nonlinearity is affine in
∂xu. In that case we proved the convergence for the linear transmission condition.
Numerical experiments highlight the fast convergence to the discrete full domain
solution in a large time domain in both linear and nonlinear strategies, without
overlap. Furthermore, we have shown that our nonlinear transmission conditions
give optimal results within a large class of transmission conditions.
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