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COMPUTATION OF JACOBSTHAL’S FUNCTION h(n)
FOR n < 50.

THOMAS R. HAGEDORN

Abstract. Let j(n) denote the smallest positive integer m such that every
sequence of m consecutive integers contains an integer prime to n. Let Pn be
the product of the first n primes and define h(n) = j(Pn). Presently, h(n) is
only known for n ≤ 24. In this paper, we describe an algorithm that enabled
the calculation of h(n) for n < 50.

0.1. Introduction. Let n be a positive integer. Every sequence of n consecutive
integers contains an a with (a, n) = 1. In [7], Jacobsthal raised the question: For a
given n, what is the smallest number m with the property that every sequence of
m consecutive integers contains an a with (a, n) = 1? The Jacobsthal function j(n)
is defined to be the smallest m with this property. Equivalently, it is the largest
difference between consecutive terms in the sequence of integers relatively prime
to n. For example, we have j(6) = 4, j(30) = 6. Trivially, one has j(n) ≤ n and
Jacobsthal conjectured

j(n) �
(

log n

log2 n

)2

,

where f(x) � g(x) is understood to mean that there is a constant C such that
|f(x)| ≤ Cg(x) for all x, and logk x is the iterated logarithm defined by

logk x =

{
log x, if k = 1,

log(logk−1 x), if k > 1.

The best known upper bound,

(0.1) j(n) � log2 n,

is due to Iwaniec [6].
If m, n are both divisible by the same primes, then j(m) = j(n). Hence, in

studying j(n), we can restrict our attention to n that are the product of distinct
primes. In this paper, we consider the particular case when n is the product of the
first k primes. Let Pn denote the product of the first n primes and define

h(n) = j(Pn).

Jacobsthal [7], Kanold [9], and Stevens [15] established upper bounds for h(n);
Maier and Pomerance [11] and Pintz [12] have established lower bounds for h(n).
Exact values for h(n) have been previously calculated for n ≤ 24 [8] and are the
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Table 1. Values of h(n) for n ≤ 49

n h(n) n h(n) n h(n) n h(n) n h(n)
1 2 11 58 21 190 31 354 41 550
2 4 12 66 22 200 32 378 42 574
3 6 13 74 23 216 33 388 43 600
4 10 14 90 24 234 34 414 44 616
5 14 15 100 25 258 35 432 45 642
6 22 16 106 26 264 36 450 46 660
7 26 17 118 27 282 37 476 47 686
8 34 18 132 28 300 38 492 48 718
9 40 19 152 29 312 39 510 49 742

10 46 20 174 30 330 40 538

unshaded entries in Table 1. In this paper, we present an algorithm that enabled
us to calculate h(n) for 25 ≤ k ≤ 49. These values appear as the shaded entries in
Table 1. In Figure 1, we graph the exact values for h(n) versus A(n) (see (1.4)),
the main term of the best known asymptotic lower bound for h(n). In Figure 2, we
graph the ratio h(n)/A(n).

In Section 1, we review the upper and lower bounds that have been established
for h(n) and present the connection between h(n) and the problem of determining
large gaps between consecutive primes. In Section 2, we introduce killing sieves and
relate them to h(n). In Section 3, we describe a bound that reduces the search space
for finding a maximal (Sn, k)-killing sieve. In Section 4, we describe the algorithm
that permits an efficient calculation of h(n) using killing sieves. Upon first reading
this section, one should follow the example in Section 5. In Section 6, we discuss
our use of distributed computing and the technical details of our computation. At
the end of the paper, we include data tables that determine a sequence of h(n)− 1
consecutive integers, each of which is divisible by one of the first n primes.

Notation. Finally, we list the following notations that are used throughout the pa-
per: [1, z] = the set of positive integers ≤ z.

pi denotes the ith prime.
qi denotes the ith odd prime.
Sn = {q1, . . . , qn} is the set of the first n odd primes.
P (x) is the product of the primes p ≤ x.
Pn is the product of the first n primes.

1. Bounds on h(n)

Though exact values for h(n) are difficult to compute, there has been exten-
sive work done on establishing upper and lower bounds for h(n). Previous to the
estimate in (0.1), Iwaniec [5] showed

(1.1) h(n) � n2 log2 n.

Iwaniec’s bound is proved using sieve theory. Using very elementary arguments,
Kanold [9] proved

h(n) ≤ 2n
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Figure 1. Comparison of h(n) with the asymptotic lower bound A(n)
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Figure 2. Ratio of h(n) to the asymptotic lower bound A(n)

for all n and h(n) ≤ 2
√

n, if n ≥ e50. By elementary means, Stevens [15] proved for
n ≥ 15 the stronger (for n > 4, 000, 000) bound

(1.2) h(n) ≤ 2n2+2e log n.

While considerably weaker asymptotically than (1.1), (1.2) provides an explicit
constant.

The best lower bound for h(n) is due to Pintz [12], improving on previous work
of Maier and Pomerance [11]. Define P (x) to be the product of the primes less
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than or equal to x. Pintz proved

j(P (x)) ≥ (2eγ + o(1))
x log x log3 x

log2
2 x

,

where γ ≈ .577216 is Euler’s constant. Letting x = pn, the nth prime, we obtain

(1.3) h(n) ≥ (2eγ + o(1))
pn log pn log3 pn

log2
2 pn

.

We define

(1.4) A(n) = 2eγ pn log pn log3 pn

log2
2 pn

.

A(n) represents the asymptotic lower bound function for h(n). We compare its
values with those of h(n) in Figures 1 and 2.

Let J(x) = maxn≤x j(n). Combining (1.3) with the approximation P (log x) ≈ x,
[11, 12] established a similar lower bound for J(x). [12] showed that

(1.5) J(x) ≥ (2eγ + o(1))
log x log2 x log4 x

log2
3 x

.

For completeness, we mention that Maier and Pomerance have conjectured that

J(x) = O
(
log x(log2 x)2+o(1)

)
.

Lastly, we note that estimate (1.5) is then used by [11, 12] to establish the same
lower bound as in (1.5) for the function

G(x) = max
pn≤x

(pn+1 − pn),

which measures the maximal gap between two consecutive primes with the smaller
prime ≤ x. This connection with the maximal gaps between consecutive primes is
a major motivation for the study of lower bounds for the Jacobsthal function.

The lower bounds for h(n) established above are all based on sieve methods.
In contrast, the strongest result proved algebraically without sieve methods is the
much weaker result:

Proposition 1.1. For n > 1, h(n) ≥ 2pn−1.

Proof. Let N = p1 · · · pn−2 and ε = ±1. By the Chinese Remainder Theorem, we
can find an integer x such that

x ≡ 0 mod N, x ≡ ε mod pn−1, and x ≡ −ε mod pn.

Then x − pn−1, x + pn−1 are consecutive terms in Z
∗
p1···pn

with a gap of length
2pn−1. �

2. Killing sieves

We use the same notations as described at the end of the Introduction. Because
Pn, the product of the first n primes, grows exponentially as a function of n, it
is impractical to determine h(n) for n > 20 by a brute-force search of the gaps
between elements of Z

∗
Pn

. To compute h(n) for n < 50, we employ a reduction,
based on a generalization of an idea of J. Haugland [4], that uses killing sieves. We
note that algorithms similar in spirit were used by Gordon and Rodemich [3] to
study admissible sets for the Prime k-tuples Conjecture. In this section, we define
killing sieves and relate them to the function h(n).
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Definition 2.1. Let r ≥ k ≥ 0 be integers and let S = {t1, . . . , tr} be a set of
primes. An S-sieve with k elements is a set T , where

(2.1) T = {(i1, c1), . . . , (ik, ck)}, with integers 1 ≤ i1 < i2 < . . . < ik ≤ r,

and cj ∈ Ztij
is an equivalence class mod tij

, for j = 1, . . . , k.

Definition 2.2. Let r ≥ k ≥ 0 be integers, let S = {t1, . . . , tr} be a set of primes,
and let z ≥ 1. Let T = {(ij , cj)}1≤j≤r−k be an S-sieve with r − k elements. T is
called an (S, k)-killing sieve of length z if there exists a set I ⊂ [1, z] of k distinct
integers with the property that for all x ∈ [1, z]\I, there exists j ∈ [1, r − k] such
that x ≡ cj mod tij

. We say that an (S, k)-killing sieve T has maximal length z if
there is no (S, k)-killing sieve with length greater than z.

Remarks 2.3. (i) If T is an (S, 0)-killing sieve of length z, for simplicity we refer
to it as a S-killing sieve of length z.

(ii) If S is the set of the first n primes, then an S-killing sieve of maximal length
has length h(n) − 1.

(iii) If T ′ ⊂ T , where T is an (S, k)-killing sieve of length z, we say T ′ can be
extended to a (S, k)-killing sieve of length z.

(iv) By the Chinese Remainder Theorem, we can assume that there is an integer
c such that all (or any subset) of the cj in the definition of T satisfy cj ≡
c mod tij

.

Examples 2.4. (i) Let S ={2, 3, 5}={t1, t2, t3}. Then T ={(1, 1), (2, 2),(3, 4)}
is an S-killing sieve of length 5 as x = 1, 3, 5 ∈ [1, 5] satisfy x ≡ 1 mod t1,
x = 2 satisfies x ≡ 2 mod t2, and x = 4 satisfies x ≡ 4 mod t3. The following
table illustrates the smallest prime t ∈ S used for each x ∈ [1, 5]:

x 1 2 3 4 5
t 2 3 2 5 2

(ii) Let S = {2}. Then T = {(1, 1)} is an (S, 2)-killing sieve of length 5, as there
are only two integers x ∈ [1, 5] that do not satisfy x ≡ 1 mod 2. The corre-
sponding table is:

x 1 2 3 4 5
t 2 * 2 * 2

where the ∗ indicates that the corresponding x is in the set I associated to T .
(iii) Let S8 = {3, 5, 7, 11, 13, 17, 19, 23}. Then

T = {(1, 2), (2, 7), (3, 6), (4, 4), (5, 3), (6, 1)}
defines an (S8, 2)-killing sieve of length 18. Its associated table is:

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
q 17 3 13 11 3 7 5 3 * * 3 5 7 3 11 13 3 17

(iv) Let S19 = {3, 5, . . . , 71} be the set of the first 19 odd prime numbers. Then

T = {(1, 2), (2, 4), (3, 1), (4, 7), (5, 3), (6, 10), (7, 6), (8, 14),

(9, 12), (10, 21), (11, 30), (12, 31), (13, 33), (14, 28), (15, 13)}

(the second entries come from the column for n = 19 in Table 3) is an (S19, 4)-
killing sieve of length 86. Except for x = 45, 46, 48, 58, all x ∈ [1, 86] satisfy
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x ≡ cj mod tij
for some j. Letting

T ′ = T ∪ {(16, 45), (17, 46), (18, 48), (19, 58)}
we obtain an S19-killing sieve of length 86. The additional elements of T ′

indicate that the primes t16 = 59, t17 = 61, t18 = 67, t19 = 71 each eliminate
exactly one integer from [1, z]. These are the integers {45, 46, 48, 58} that do
not satisfy the congruence criteria of the other primes tj . T ′ is not unique as
there are 4! = 24 different S19-killing sieves T ′ that arise from T .

Proposition 2.5. Let S be a set of r distinct primes. There is an S-killing sieve of
length z if and only if there is an (S, k)-killing sieve of length z for some k ∈ [0, r].

Proof. (⇒) is clear since we can take k = 0. (⇐) Let T be an (S, k)-killing sieve
of length z and let I = {c1, . . . , ck} be the associated set of k distinct integers in
[1, z]. Let j1, . . . , jk be the k integers in [1, r] that do not appear as a first element
of the pairs in T (see (2.1)). Then

T ′ = T ∪ {(j1, c1), . . . , (jk, ck)}
is an (S, 0)-killing sieve of length z. �

It is useful to reduce the problem of searching for an (S, k)-killing sieve to the
problem of searching for an (S, k+1)-killing sieve. The following elementary lemma
gives a specific case when we can do this reduction.

Lemma 2.6. Let S = {t1, . . . , tn} be a set of n distinct primes. Let T be an
(S, n−r)-killing sieve of length z, and let T = {(ij , cj)}1≤j≤r. Suppose that there is
j0 ∈ [1, r] and y ∈ [1, z] with the property that y ≡ cj0 mod tij0

and y �≡ cj mod tij
,

for j �= j0. Then T̂ = T\(ij0 , cj0) is an (S, n − r + 1)-killing sieve of length z with
the property that no pair in T̂ has ij0 as its first coordinate.

Proof. If I ⊂ [1, z] is the set of k elements associated with T , let Î = I ∪ {y0} be
the set associated to T̂ . The lemma follows immediately. �

We now define the function w(n) and relate it to the function h(n).

Definition 2.7. For n ≥ 1, we define w(n) to be the maximal length of an Sn-
killing sieve, where Sn is the set of the first n odd primes.

Proposition 2.8. For n ≥ 1, h(n + 1) = 2w(n) + 2.

Proof. Let h = h(n + 1). We first show that h ≤ 2w(n) + 2. By definition of h,
there is an integer b such that each term in the sequence

(2.2) b + 1, b + 2, . . . , b + h − 1

is divisible by one of the first n + 1 primes pi. If (b, Pn+1) �= 1 or (b + h, Pn+1) �= 1,
the sequence in (2.2) would then be a subsequence of a longer sequence with the
same property. As this would imply h(n + 1) > h, we must have (b, Pn+1) =
(b + h, Pn+1) = 1. In particular, b is odd and h must be even. Thus, (2.2) gives an
arithmetic sequence of odd integers

(2.3) b + 2, b + 4, . . . , b + h − 2,

where each term is divisible by one of the odd primes p2, . . . , pn+1. Let N =
p2 · · · pn+1 and choose β ∈ Z such that 2β ≡ 1 mod N . Then the sequence

(2.4) β(b + 2), β(b + 4), . . . , β(b + h − 2)
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derived from (2.3) is a sequence of w = (h − 2)/2 consecutive terms in ZN , each
of which is a nonunit. Let a = β(b + 2). Then rewriting (2.4), each term of the
sequence

a + 1, a + 2, . . . , a + w

is divisible by one of the odd primes p2, . . . , pn+1. Equivalently, for every integer
i ∈ [1, w], there exists j ∈ {2, . . . , n + 1} such that

i ≡ −a mod qj .

Hence there is an Sn-killing sieve of length w. Since w ≤ w(n), we have h =
2w + 2 ≤ 2w(n) + 2. Conversely, if there is an Sn-killing sieve of length w(n),
these steps can be reversed to show h(n + 1) ≥ 2w(n) + 2. The proposition then
follows. �

3. Bounding a killing sieve

In this section, we establish a bound in Proposition 3.10 that gives an efficient
means to search through all possible (Sn, k)-killing sieves of maximal length. We
use the same notations as described at the end of the Introduction and recall that
Sn = {q1, . . . , qn} is the set of the first n odd primes.

Let n ≥ 1 and assume T = {(i1, c1), . . . , (ir, cr)} is an Sn-sieve for some r ≤ n.
For a positive integer z, define:

Ij = Ij(T, z) =

⎧⎪⎨
⎪⎩

[1, z] if j = 0,

{x ∈ Ij−1 such that x �≡ cj mod qij
} if 1 ≤ j ≤ r,

Ir if j > r,

and define

nj =

{
|Ij−1| − |Ij |, if 1 ≤ j ≤ r,

0, otherwise.

The number nj represents the number of integers in Ij−1 that are in the congruence
class cj mod qij

. By definition, z ≥
∑r

j=1 nj . We can then use the sum to determine
when T is an (Sn, n − r)-sieve.

Lemma 3.1. Let T , z, and nj be defined as above. Then T is an (Sn, n−r)-killing
sieve of length z if and only if z ≤ (n − r) +

∑r
j=1 nj.

Proof. (⇒) is clear. (⇐) We have |Ir| = z −
∑r

j=1 nj ≤ n− r by hypothesis. Then
T and Ir together define an (Sn, n − r)-killing sieve. �

We now prove a useful upper bound for the nj . The case i = 1 is due to
J. Haugland [4].

Definition 3.2. Let {mi}i≥0 be the sequence of positive integers defined by m0 =
1, m1 = 3, m2 = 4, m3 = 6, m4 = 8, and mi = 10 for i ≥ 5.
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Proposition 3.3. Assume that T is an (Sn, k)-killing sieve of length z with i1 = 1,
i2 = 2 (as defined in (2.1)) and that

(i) i ∈ {1, 2, 3} and j > 1, or
(ii) i ∈ {4, 5} and j > 2.

If miqij
> z − 1, then nj ≤ i + 1.

Proof. (i) We first let i = 1. Suppose nj > 2 and let y ∈ [1, z] be the smallest
integer in Ij−1 − Ij . Since j > 1, y ∈ I1 and y �≡ c1 mod 3. Since nj > 2, there are
positive integers t2 > t1 such that {y, y + t1qij

, y + t2qij
} ⊂ Ij−1 ⊂ I1. However,

since either y + qij
or y + 2qij

is congruent to c1 mod 3, one of these elements is
not in I1. Hence t2 ≥ 3 and

3qij
≤ t2qij

= (y + t2qij
) − y ≤ z − 1,

which contradicts the hypothesis. The cases when i = 2, 3 are proved similarly. We
now prove (ii). Let i = 5 and j > 2. Let y be the smallest element in Ij−1 − Ij .
Assume nj > 6. Then there are positive integers t6 > t5 > · · · > t1 such that

(3.1) S = {y, y + t1qij
, . . . , y + t6qij

} ⊂ Ij−1 ⊂ I2.

Either y + qij
or y + 2qij

is congruent to c1 mod 3. Suppose y + 2qij
≡ c1 mod 3.

Then tk �≡ 2 mod 3 for each k and we must have t6 ≥ 9. If t6 = 9, then {t1, . . . , t6} =
{1, 3, 4, 6, 7, 9}. However, with this set of tk, since qij

�= 5, the set S in (3.1) contains
an element in each of the congruence classes {0, 1, 2, 3, 4} mod 5. This results in a
contradiction as one of the terms y + tkqij

would not be an element of I2. Hence
t6 ≥ 10 and from (3.1), we have

10qij
≤ t6qij

= (y + t6qij
) − y ≤ z − 1,

which contradicts the hypothesis. An identical argument when y + qij
≡ c1 mod 3

also gives a contradiction. Hence, the initial assumption is wrong and nj ≤ 6. A
similar argument proves (ii) for i = 4. �

Remark 3.4. We note that the lemma can be generalized to i > 5, but these cases
have not been useful for the calculation of h(n).

Definition 3.5. Let q, z be integers satisfying (z − 1) < 10q. We define m(q, z) =
1 + i, where i is the smallest natural number such that mi > (z − 1)/q.

Definition 3.6. Define Sn(z) to be the set of primes q ∈ Sn with 10q ≤ z − 1.
Define rn(z) = |Sn(z)| and Rn(z) =

∏
q∈Sn(z) q.

Example 3.7. Let n = 3, z = 53. Then S3(53) = {3, 5}. We have S3\S3(53) =
{7}. Then m(7, 53) = 1 + 4 = 5 as m4 = 8 > (53 − 1)/7 > m3 = 6. We have
r3(53) = 2 and R3(53) = 15.

Later, we will need to use the following elementary lemma:

Lemma 3.8. Let n, z be given.
(i) If n ≥ 3 and 71 ≤ z ≤ 105, then z ≤ Rn(z).
(ii) If n ≥ 4 and 111 ≤ z ≤

∏n
i=1 qi, then z ≤ Rn(z).
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We now establish a fundamental bound that expedites the calculation of h(n).
We first make the following definition.

Definition 3.9. Let n, z ≥ 1. For k ≥ rn(z), define

M(n, z, k) =
n∑

i=k+1

m(qi, z).

We note that i ≥ k + 1 > rn(z) and thus the summand term m(qi, z) is defined.

Proposition 3.10. Let n, z ≥ 1 and assume k ≥ rn(z). Let T = {(ij , cj)}1≤j≤k

be an Sn-sieve with ij = j for j = 1, . . . , rn(z). Assume that the elements of T are
the first k pairs of a (Sn, ik − k)-killing sieve of length z. Then

(3.2) |Ik(T )| ≤ ik − k + M(n, z, ik).

Proof. By definition, the (Sn, ik − k)-killing sieve must consist of pairs (ij , cj) for
j = 1, . . . , n + k − ik. By Lemma 3.1, we have z ≤ ik − k +

∑n+k−ik

j=1 nj . Since
|Ik| = z −

∑k
j=1 nj and nj ≤ m(qij

, z), we have:

|Ik| − (ik − k) ≤
n+k−ik∑
j=k+1

nj ≤
n+k−ik∑
j=k+1

m(qij
, z) ≤

n∑
j=ik+1

m(qj , z) = M(n, z, ik).

Thus (3.2) is proved. �

4. The algorithm

In this section, we describe an efficient algorithm for calculating w(n) by finding
an Sn-killing sieve of maximal length. We use the same notations as described at
the end of the Introduction. Recall that Sn = {q1, . . . , qn} is the set of the first n
odd primes and that rn(z), Rn(z) are defined in Definition 3.6.

Assume n ≥ 4. Suppose that T = {(i1, c1), . . . , (in, cn)} is an Sn-killing sieve
of length z. By Remark 2.3(iv), there is an integer c with the property that the
set T ′ = {(1, c mod q1), . . . , (rn(z), c mod qrn(z))} is a subset of T . We note that
Irn(z)(T ) = Irn(z)(T ′) and denote it by Irn(z).

The elements of Irn(z) defined in (3.2) can then be identified with the units
mod Rn(z) in the sequence of integers 1 − c, . . . , z − c. Additionally, since we are
ultimately trying to find a maximal Sn-killing sieve, we can assume that c is also
a unit mod Rn(z). Assume 111 ≤ z ≤

∏n
i=1 qi (in practice, the upper bound is

always satisfied). By Lemma 3.8, we can assume z ≤ Rn(z) and the terms of the
sequence will be distinct mod Rn(z).

In a naive brute-force algorithm to find T , one tries all possible c ∈ Z
∗
Rn(z) (which

determines the subset T ′) and congruence classes cj mod qij
, for rn(z) ≤ j ≤ n

(which determines T\T ′). However, this algorithm can be sharpened to permit a
more efficient search. First, by Proposition 3.10, Irn(z) must satisfy

(4.1) |Irn(z)| ≤ M(n, z, rn(z)).

Otherwise, T ′ cannot be extended to an Sn-killing sieve of length z. Hence, one
must choose c ∈ Z

∗
Rn(z) so that (4.1) is satisfied. Second, by Lemma 2.6, we can

assume that T is an (Sn, n − r)-killing sieve of length z with rn(z) ≤ r ≤ n and
T ′ ⊂ T . Then

T\T ′ = {(ij , cj)| where rn(z) + 1 ≤ j ≤ r},
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for some integers irn(z)+1, . . . , ir satisfying rn(z) < irn(z)+1 < . . . < ir ≤ n, and
cj mod qij

for rn(z) + 1 ≤ j ≤ r. For each k ∈ [rn(z), r], we have

(4.2) |Ik(T )| ≤ (ik − k) + M(n, z, ik),

by Proposition 3.10. Most choices of c, ij , and cj mod qij
do not satisfy (4.1)

and (4.2), and can be discarded. Due to the reduced number of possible c, ij ,
and congruence classes cj mod qij

to consider, a modified brute-force search can
successfully determine a maximal (Sn, n − r)-killing sieve for n < 49, for some r.

We now discuss how r and the ij for j > rn(z) are chosen. As there are fewer
choices of parameters cj mod qij

in an (Sn, h + 1)-killing sieve as compared to an
(Sn, h)-killing sieve, one would like to make this reduction whenever possible. We
repeatedly make the reduction in the following case. Given an (Sn, h)-killing sieve
T , and two integers j, k with 0 < k < j ≤ n − h, suppose that no two of the
elements of |Ik(T )| lie in the same congruence class mod qij

(with ij as in (2.1)).
Then (ij , c) ∈ T for some c. By Lemma 2.6, T̂ = T\(ij , c) is an (Sn, h + 1)-killing
sieve in which ij does not appear as the first coordinate of any pair.

Combining these observations, we obtain an algorithm (detailed in Table 4) for
determining the maximal length of an Sn-killing sieve. The algorithm begins by
searching for an Sn-killing sieve of length z, where z is an initial value. If we assume
that w(n−1), the maximal length of an Sn−1-killing sieve, is known, one can begin
with z ≥ w(n − 1) + 1 as w(n) ≥ w(n − 1) + 1. If the initial choice of z is too
high, no Sn-killing sieve of length z will be found. If an Sn-killing sieve of length z
is found, then the algorithm proceeds by finding an Sn-killing sieves of increasing
length until there is a z for which no Sn-killing sieve of length z can be found. Then
w(n) = z − 1 and h(n) = 2w(n) + 2.

The algorithm cycles through all possible c ∈ Z∗
R, where R = Rn(z) (unless

105 ≤ z < 111). We note that as z increases, there are fewer possible choices of c
and ci satisfying (4.1), (4.2) (see also the conditions in Steps 5 and 6c(iii) below).
Hence, as long as R remains unchanged, the search runs progressively faster as z
increases. If z increases and R changes, then the search slows down as the number
of possible c that need to be examined in Step 4 increases.

Finally, we note that when z > Rn(z) (which only occurs when z < 70 or
106 ≤ z ≤ 110), we can modify the algorithm by using the set {3, 5, 7, 11} in place
of the set Sn(z) and define r = 4, R = 1155 in lieu of rn(z), Rn(z).

5. Example: Calculation of h(20)

In this section, we work out the details of the algorithm in Table 4 for calculating
h(20). Suppose that we are looking for a gap of length h(20) = 174, or equivalently,
an S19-killing sieve of length z = 86. Then Definition 3.6 gives S = S19(z) =
{3, 5, 7}, R = R19(z) = 105, and r = r19(z) = 3. Then Z = Z

∗
105. We will need

to search over the elements c ∈ Z and the congruence classes for the primes in
S19 − S19(z) = {11, 13, . . . , 71} .

Suppose we have chosen c = 29 ∈ Z and let ci ≡ c mod qi, for i = 1, 2, 3. Then
T0 = {(1, 2 mod 3), (2, 4 mod 5), (3, 1 mod 7)} and I3 = I3(T0, 86) is the 37-element
set

I3 = {3, 6, 7, 10, 12, 13, 16, 18, 21, 25, 27, 28, 30, 31, 33, 37, 40, 42, 45,

46, 48, 51, 52, 55, 58, 60, 61, 63, 66, 67, 70, 72, 73, 75, 76, 81, 82}.
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Table 2. Algorithm for calculating a maximal Sn-killing sieve.
Starting with an initial value of z ≤ ω(n), the algorithm finds Sn-
killing sieves of increasing length z. w(n) is the final z for which
an (Sn, k)-killing sieve of length z can be successfully found.

1. Begin with a positive integer z.
2. If z < 111, let r = 4, R = 1155. Otherwise, let R = Rn(z), r = rn(z) using

Definition 3.6.
3. Let Z = Z

∗
R.

4. Choose c ∈ Z. If every element of Z has already been chosen, then there is
no Sn-killing sieve of length z.

5. Let Ir = [1, z]∩ (Z∗
R + c), where W + c is the set defined by adding c to each

element of a set W . If |Ir| > M(n, w, r), then choose a different c in Step 4.
Otherwise, let i1 = 1, . . . , ir = r, T0 = {(1, c), . . . , (r, c)}, h = 0, and k0 = 0.

6. If h < n − r − kh, then:
a. Let j be the smallest integer with ir+h + 1 ≤ j ≤ n and the property that

there exists x, y ∈ Ir+h(Th) with x ≡ y mod qj .
b. If no such j exists, then:

i. Let kh = n − r − h. If |Ir+h| ≤ kh, then continue with Step 7.
Otherwise, if h = 0, continue with Step 4; if h > 0, continue with
Step 6c(i).

c. If j exists, let h = h + 1, ir+h = j and kh = kh−1 + j − ir+h−1 − 1. Then:
i. Choose cr+h mod qir+h

. (If all possible choices for cr+h mod qir+h
have

already been made (for a fixed Th−1), then if h ≥ 2, repeat this step
with h = h − 1. If h = 1, let h = 0 and continue with Step 4.)

ii. Let Th = Th−1 ∪ {(ir+h, cr+h)} and Ir+h = Ir+h(Th, z).
iii. If |Ir+h| ≤ kh + M(n, z, ir+h), continue with Step 6. Otherwise, go to

Step 6c(i).
7. Th determines an (Sn, kh)-killing sieve of length z with r+h elements. Then:

a. Increment z. Let R0 = R and recalculate r, R as in Step 2.
b. If R = R0, then continue with Step 4 and the same c. Subsequently, one

need only consider c ∈ Z not previously considered by the algorithm.
c. If R �= R0, let π be the projection map π : ZR → ZR0 . Let Z ′ ⊂ Z be

the set consisting of c and elements in Z not previously considered by the
algorithm. Then replace Z by π−1(Z ′) and continue with Step 4.

Using the notation of Step 5, we have i1 = 1, i2 = 2, i3 = 3. Now m(q, 86) = 5, for
q = 11, 13; m(q, 86) = 4, for q = 17, 19; m(q, 86) = 3, for q = 23; and m(q, 86) = 2,
for q = 29, . . . , 71. Hence, we have M(19, 86, 3) = 43 ≥ 37 = |I3|. As the bound
given by (3.2) for k = 3 is satisfied, it may be possible that T0 can be extended to
an S19-killing sieve of length 86.

We now start with Step 6 in Table 4. We have h = k = 0 and r = 3. Since
the elements 3, 25 ∈ T0 are congruent mod 11, we can take h = 1 and i4 = 4. If
we choose c4 ≡ 7 mod 11, we have T1 = T ∪ {(4, 7 mod 11)} and I4 = I4(T1) =
I3 − {7, 18, 40, 51, 73}. Then the bound given by (3.2) is satisfied for k = 4 as
M(19, 86, 4) = 38 ≥ 32 = |I4|.
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By the same logic, we can choose h = 2, i5 = 5, and c5 ≡ 3 mod 13. Then
I5 = I4 − {3, 16, 42, 55, 81} and M(19, 86, 5) = 33 ≥ 27 = |I5|. Continuing in
this manner, we find that for h = 1, 2, . . . , 12, there is a choice of c3+h mod q3+h

(given by the entries in the column n = 19 in Table 3) such that the inequality
M(19, 86, j) ≥ |Ij | is satisfied. Then

T12 = T0 ∪
(

12⋃
h=1

{(i, ci mod qi)}
)

.

Proceeding through the algorithm, in Step 6, when h = 12 and k12 = 0, we find
in Step 6a that no such j exists. Hence in Step 6b we set k12 = 4. The algorithm
then concludes that T12 is an (S19, 4)-killing sieve of length 86.

We note that with the sieve T12, there are five primes (q = 23, 59, 61, 67, 71),
where ni (with i determined by q = qi) is less than the optimal bound m(qi, 86).
In these cases, we have ni = m(qi, 86) − 1. One might hope that a different choice
of the ci would permit ni = m(qi, 86) and result in a longer S19-killing sieve.

Suppose we try to find an S19-killing sieve of length 87. Using the same data as
above, we would again arrive at Step 6b with h = 12 and then choose k12 = 4; but
now |I15| = 5 > 4 = k12. Hence, there is no S19-killing sieve of length 87 using this
congruence data.

Finally, suppose in our original search for an S19-killing sieve with length 86,
we had started with c = 97. Then |I3| = 40. Picking i4 = 4, c4 ≡ 6 mod 11,
and i5 = 5, c5 ≡ 4 mod 13, we have n4 = n5 = 2 and |I5| = 36. But since
M(19, 86, 5) = 33 < |I5|, we know that there is no S19-killing sieve associated with
c = 97 and T2 = {(1, 97), (2, 97), (3, 97), (4, 6), (5, 4)}. Hence, in the algorithm, one
must consider other congruence data for the primes q4, q5 and other c ∈ Z to find
an S19-killing sieve of length 86.

6. Details of computation

The algorithm was coded in C, and initially run on a Linux 2.6 Ghz server.
The program uses minimal memory, and processor speed is the main constraint
for the calculation of h(n) for increasing values of n. For n = 42, the calculation
took approximately two months (we note that once h = h(n) is known, it is much
faster to verify that h(n) = h by starting the search with z = h). To enable the
calculation of h(n) for n ≥ 43, a distributed computing approach was used [13] to
enable a number of computers to simultaneously search different areas of the search
space for a ∈ Z (see Step 3 of the algorithm). With a cluster of thirty computers
(GNU/Linux 2.4 Ghz), the calculation of h(49) took approximately two months.

Let wn−1 be the value calculated by the computer program as the maximal length
of an Sn−1-killing sieve. From the data in Tables 3 and 4, it is simple to verify that
there is a killing sieve of length wn−1. Hence w(n − 1) ≥ wn−1, and the values
in Table 1 provide lower bounds for h(n). Assuming a correct implementation in
the computer program of the algorithm in this paper, these lower bounds are the
actual values of w(n − 1), h(n), respectively. We note that the computer program’s
calculations agree with previous calculations of h(n), for n ≤ 24.
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Table 3. Congruence data for an Sn-killing sieve of maximal
length w for 19 ≤ n ≤ 33.

Explanation of Tables 3, 4: Fix 19 ≤ n ≤ 48 and let Sn = {q1, . . . , qn},
where qi is the ith odd prime. Fix the table column corresponding to n.
The shaded rows indicate the primes in Sn(w(n)) for that n. Let R =
{r1, . . . , rt} ⊂ Sn be the set of those primes for which the corresponding en-
try is an asterisk. For q �∈ R, let cq be the corresponding entry. The set
T = {(i, cqi

)| for i such that qi �∈ R} forms a (Sn, t)-killing sieve of length w(n).
Let I = {y1, . . . , yt} ⊂ [1, z] be the subset of t integers associated to T . Choose
a ∈ Z such that a ≡ −cq mod q, for all primes q ∈ Sn\R and a ≡ −yi mod ri for
i = 1, . . . , t. The sequence a + 1, . . . , a + w(n) has length w(n) and every term
is divisible by a prime in Sn. Finally, 2a + 1 +

∏n
i=1 qn is the first term of a

sequence of h(n + 1)− 1 integers that are each divisible by one of the first n + 1
primes.

P
r
i
m
e
s

n 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

h(n + 1) 174 190 200 216 234 258 264 282 300 312 330 354 378 388 414

w(n) 86 94 99 107 116 128 131 140 149 155 164 176 188 193 206

3 2 1 2 1 2 2 2 2 2 2 1 1 2 1 2
5 4 2 4 2 4 2 4 4 3 4 3 3 1 2 3
7 1 2 3 2 3 6 3 3 4 3 2 3 3 4 1

11 7 4 4 4 1 7 4 4 9 4 3 9 4 1 7
13 3 11 7 11 7 10 7 7 1 7 6 6 2 2 4
17 10 3 8 3 6 13 8 8 2 8 7 14 5 16 11
19 6 18 2 3 17 9 2 2 15 2 1 12 6 10 18
23 14 14 13 10 12 1 13 13 7 13 12 12 10 21 21
29 12 10 1 8 2 4 1 1 24 1 2 2 14 9 10
31 21 4 27 6 25 15 27 27 22 28 26 10 7 5 19
37 30 8 16 16 29 31 16 28 32 1 13 21 12 20 17
41 31 33 22 39 21 17 18 16 12 18 17 10 19 26 31

43 33 41 12 35 11 17 20 32 10 16 15 34 32 24 25
47 28 6 28 36 5 16 28 6 6 12 11 15 18 5 8
53 13 * 43 21 42 3 6 43 37 43 5 11 11 15 52
59 * 21 * 45 15 19 43 8 2 8 7 37 9 8 24
61 * 29 6 14 50 39 60 51 51 57 59 13 27 6 9
67 * * * 29 * 54 51 63 * * 7 44 42 16 42
71 * * * * * 25 55 61 55 61 * 19 26 * 29
73 5 18 * 17 21 57 60 54 60 56 29 26 65 34
79 * 5 26 45 12 12 57 63 * 26 5 35 8
83 18 * 43 * 55 49 55 54 54 55 51 61
89 27 * * * * * 27 36 85 75 46
97 * * * 45 51 62 47 57 59 27

101 22 22 16 22 21 30 34 69 76
103 18 21 27 29 56 30 * 12
107 * * * 39 58 66 49
109 * * 5 78 71 66
113 42 27 40 63 16
127 * * 14 60
131 13 30 *
137 3 *
139 6
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Table 4. Congruence data for an Sn-killing sieve of maximal
length w for 34 ≤ n ≤ 48.

P
r
i
m
e
s

n 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

h(n + 1) 432 450 476 492 510 538 550 574 600 616 642 660 686 718 742

w(n) 215 224 237 245 254 268 274 286 299 307 320 328 342 358 370

3 1 1 2 2 1 1 1 1 1 1 1 1 2 1 1
5 3 1 4 4 3 1 1 1 2 1 2 4 4 1 3
7 5 2 1 6 5 5 3 5 1 3 4 5 5 4 2

11 6 2 6 7 6 10 5 5 6 10 1 7 5 1 7
13 4 8 12 5 4 5 10 5 10 1 8 1 3 2 11
17 9 3 15 3 3 8 1 13 8 16 3 4 6 14 9
19 8 7 1 9 5 14 3 14 13 9 14 6 7 14 14
23 5 4 17 10 9 4 21 3 12 21 11 15 2 5 13
29 3 5 2 17 16 15 20 5 11 12 6 6 20 24 12
31 11 27 11 12 11 12 12 12 3 24 5 11 21 7 4
37 7 32 13 30 14 2 15 8 16 3 9 7 9 34 17
41 21 39 11 32 25 2 2 2 4 11 14 24 31 10 21

43 35 24 16 29 34 20 9 5 41 9 41 40 24 20 10
47 20 6 29 36 43 38 8 14 33 8 18 30 36 10 22
53 34 45 27 16 34 23 30 6 21 30 13 37 5 29 22
59 14 18 38 45 32 48 33 40 9 48 16 23 28 3 15
61 15 52 14 42 57 1 12 1 5 15 49 3 15 30 26
67 59 62 21 * 44 9 63 14 60 39 1 20 1 47 6
71 58 33 10 50 21 24 48 69 56 57 26 45 14 17 10
73 28 14 67 47 35 35 37 51 54 1 15 60 22 37 47
79 7 38 33 21 7 * 65 35 48 42 29 7 70 8 18
83 24 75 82 44 1 17 14 24 44 29 67 2 5 59 42
89 36 48 2 58 13 25 39 17 38 78 12 78 73 79 42
97 2 95 14 60 80 80 55 65 30 13 46 1 30 9 7

101 66 7 7 25 99 69 57 42 26 2 44 71 13 72 88
103 92 12 18 5 41 52 32 50 24 62 50 8 20 35 92
107 102 78 70 61 7 30 40 102 20 18 94 49 106 88 8
109 41 74 48 87 65 53 53 20 22 46 30 28 38 105 20
113 57 42 37 52 16 45 19 29 10 19 63 49 37 * 5
127 29 15 3 81 * 13 50 113 1 35 19 80 63 107 119
131 45 84 * 112 15 3 99 13 28 63 52 102 10 129 80
137 * 15 55 1 27 72 72 87 129 75 114 48 14 27 132
139 71 29 * 93 2 29 29 80 125 119 59 113 44 83 7
149 * * 46 82 36 78 123 78 135 * 141 132 97 84 22
151 59 45 15 59 104 68 77 143 23 38 146 132 113 4

157 30 78 * 92 47 32 119 20 131 41 18 125 122
163 * 29 77 77 * 95 5 140 50 90 77 1
167 60 * * 15 111 72 69 36 100 42 57
173 60 42 39 18 60 * 57 160 117 27
179 54 9 * * 51 * 118 153 126
181 * * 68 104 56 105 98 56
191 63 69 24 * 112 * *
193 89 113 17 * 44 137
197 48 108 43 75 39
199 32 66 68 101
211 51 134 110
223 50 134
227 45
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