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UNCONDITIONAL STABILITY OF EXPLICIT EXPONENTIAL
RUNGE-KUTTA METHODS FOR SEMI-LINEAR

ORDINARY DIFFERENTIAL EQUATIONS

S. MASET AND M. ZENNARO

Abstract. In this paper we define unconditional stability properties of expo-
nential Runge-Kutta methods when they are applied to semi-linear systems of
ordinary differential equations characterized by a stiff linear part and a non-
stiff non-linear part. These properties are related to a class of systems and to
a specific norm. We give sufficient conditions in order that an explicit method
satisfies such properties. On the basis of such conditions we analyze some of
the popular methods.

1. Introduction

Let us consider semi-linear systems of ordinary differential equations (ODEs)

(1)
{

y′ (t) = Ly (t) + f (t, y (t)) , t ≥ t0,
y (t0) = y0,

where L ∈ Rd×d has a large norm along with a non-positive or moderately positive
logarithmic norm and f : [t0, +∞) × R

d → R
d has a moderate Lipschitz constant

with respect to the second argument.
Important examples of such systems of ODEs arise from the spatial discretization

by means of finite differences, finite elements or spectral methods of evolutionary
partial differential equations.

The right-hand side in (1) is divided into a linear stiff part Ly (t) and a non-
linear non-stiff part f (t, y (t)). Since the problem is stiff as a whole, an implicit
method should be used in the numerical integration. However, an implicit method
requires the solution of a non-linear algebraic system at every step of the integration
and the non-linearity of the algebraic system is due to the non-stiff part, which could
be explicitly integrated. Therefore, instead of fully implicit methods, one should
hopefully use methods which are implicit in the linear stiff part and explicit in the
non-linear non-stiff part.

Well-known methods of this type, both Runge-Kutta (RK) and Linear Multistep,
are the so-called IMEX methods (see e.g. [1], [2] and, for an introduction, [15])
which use an implicit scheme for the stiff linear part and another, explicit, scheme
for the non-stiff non-linear part.
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Other such methods are the explicit exponential integrators, where the exact
flow of the linear part, i.e. a matrix exponential, is used in the construction of the
schemes.

Exponential integrators constitute an active field of research in numerical ODEs
(see [5], [6], [7], [9], [10], [11], [12], [13], [14], [16], [18], [20], [22], [23], [26] and, for a
review, [21]). There is also a MATLAB package for exponential integrators called
EXPINT which is described in [4].

In this paper we study unconditional stability properties of explicit exponential
RK methods when they are applied to semi-linear systems of ODEs (1). The outline
of the paper is the following. In Section 2, we introduce exponential RK methods
for semi-linear systems of ODEs. In Section 3, for such methods, we define the
properties of unconditional contractivity and unconditional asymptotic stability.
In Section 4, some sufficient conditions are given and some of the most known
methods are analyzed. Finally, some conclusions are drafted in Section 5.

2. Exponential RK methods

An exponential RK method as applied to a semi-linear systems of ODEs (1) takes
the form

yn+1 = ehn+1Lyn + hn+1

ν∑
i=1

bi(hn+1L)f(tin+1, Y
i
n+1),(2a)

Y i
n+1 = ecihn+1Lyn + hn+1

ν−1∑
j=1

aij(hn+1L)f(tjn+1, Y
j
n ), i = 1, ..., ν,(2b)

where the abscissae ci are non-negative, tin+1 = tn + cihn+1 and the weights
bi(hn+1L) and the coefficients aij(hn+1L) are (d × d)-matrices which are analytic
functions of the matrix hn+1L. As explained in the introduction, we are interested
in explicit methods, i.e. methods where aij(hn+1L) = 0 for i ≤ j.

Note that, when the method is applied to an equation with f = 0, it yields the
exact solution and, when applied to an equation with L = 0 it reduces to a one-step
method for ODEs called the underlying method.

We assume

bi (0) = biId and aij (0) = aijId, i, j = 1, ..., ν,

where bi and aij are scalar, and so the underlying method turns out to be the
classical explicit RK method of weights bi and coefficients aij . To avoid confu-
sion between the scalars bi and aij and the functions hn+1L �→ bi (hn+1L) and
hn+1L �→ aij (hn+1L) we denote, when necessary, such functions by bi (·) and aij (·),
respectively.

Two particular and important subclasses of exponential RK methods are in-
cluded in the general class (2): the Integrating Factor (IF) methods and the Expo-
nential Time Differencing (ETD) methods.

The IF methods, also known as Lawson methods after they appeared for the first
time in [19], are such that

bi (hn+1L) = bie
(1−ci)hn+1L, i = 1, ..., ν,(3a)

aij (hn+1L) = aije
(ci−cj)hn+1L, i, j = 1, ..., ν,(3b)
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where bi and aij are weights and coefficients of a classical RK method for ODEs,
which is the underlying method.

The simplest method of this type is the explicit IF (Lawson) Euler method given
by

yn+1 = ehn+1Lyn + hn+1e
hn+1Lf(tn, yn),

where, of course, the underlying method is the explicit Euler method.
The order of an IF exponential RK method is the same as that of the underlying

method.
In order to define the ETD methods, we need to introduce the functions

(4) ϕl (z) =

1∫
0

e(1−s)z sl−1

(l − 1)!
ds, z ∈ C, l = 1, 2, ...,

which satisfy the recursion

ϕl (z) =
ϕl−1 (z) − 1

(l−1)!

z
, ϕ0 (z) = ez.

Then the weights bi (hn+1L), i = 1, ..., ν, are linear combinations of the matrices
ϕl (hn+1L), l = 1, 2, ..., and, for any i = 1, ..., ν, the coefficients aij (hn+1L), j =
1, ..., ν, are linear combinations of ϕl,i (hn+1L) := ϕl (cihn+1L), l = 1, 2, .... In
other words, weights and coefficients of the scheme (2) are given by

bi (hn+1L) =

1∫
0

e(1−s)hn+1Lpi (s) ds, i = 1, ..., ν,(5a)

aij (hn+1L) =

1∫
0

e(1−s)cihn+1Lpij (s) ds, i, j = 1, ..., ν,(5b)

where pi and pij are polynomials. They were presented in this form for the first
time in [8].

The simplest method of this type is the explicit ETD Euler method given by

(6) yn+1 = ehn+1Lyn + hn+1ϕ1 (hn+1L) f(tn, yn),

which equals the exact solution whenever f (t, y) is constant.
We remark that an exponential RK method (2) can be applied also to an abstract

semilinear ODE (1) in which y (t) takes values in a Banach space X and L is the
infinitesimal generator of an analytic semigroup on X. In this case, the matrix
exponentials are replaced by the semigroup operators.

Since exponential methods should be used when the linear part in (1) is stiff,
instead of the classical (non-stiff) order it is better to consider the more important
concept of stiff order.

Definition 1. An exponential RK method (2) has stiff order p if the local error
has order p + 1 with respect to hn+1 when the method is applied to an abstract
semi-linear ODE (1) in which z (t) = f (t, y (t)) is a sufficiently smooth function of
t.

In other words, the stiff order describes the behaviour of the local error indepen-
dently of the norm of the matrix L in (1).
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Stiff order conditions for exponential RK methods were developed in [14, Table
2] up to the order four. Here, we simply recall that the stiff order one condition is

(7)
ν∑

i=1

bi (·) = ϕ1

and the stiff order two condition is

(8)
ν∑

i=1

bi (·) ci = ϕ2,
ν∑

i=1

aij (·) = ciϕ1,i, i = 1, ..., ν.

Therefore the explicit ETD Euler method has stiff order one and two-stage explicit
exponential RK methods of stiff order two constitute the family with parameter c2

given by the Butcher tableau

(9)

0

c2 c2ϕ1,2

ϕ1 − 1
c2

ϕ2
1
c2

ϕ2

.

The so-called ETD2RK method (see [25, Eq. (3.6)], [22, Section 3] and [7, Eq.
(22)])

0

1 ϕ1

ϕ1 − ϕ2 ϕ2

is a particular method in this family.
It is also useful to consider the concept of stiff convergence order.

Definition 2. An exponential RK method has stiff convergence order p if the global
error has order p with respect to h, h = maxn hn+1, when the method is applied to
an abstract semi-linear ODE (1) in which z (t) = f (t, y (t)) is a sufficiently smooth
function of t.

In other words, the stiff global order describes the behaviour of the global error
independently of the norm of the matrix L in (1).

Of course, an exponential RK method of stiff order p also has stiff convergence
order p. However, in order to ensure stiff convergence order p when the method is
applied with constant stepsize h = hn+1 for all n, it is sufficient to satisfy the stiff
order conditions up to the order p − 1 and the order p condition with bi = bi (0)
instead of bi (·), i = 1, ..., ν (see [14, Theorem 4.7]).

From now on, when we say that a method has stiff convergence order p, we
mean that it satisfies the stiff order conditions up to the order p− 1 and the order
p condition in this weak form.

The stiff convergence order one is obtained when

(10)
ν∑

i=1

bi = ϕ1 (0) = 1

and the stiff convergence order two is obtained when (7) holds along with
ν∑

i=1

bici = ϕ2 (0) =
1
2
,

ν∑
i=1

aij (·) = ciϕ1,i, i = 1, ..., ν.
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In particular, a family of two-stage explicit exponential RK methods of stiff con-
vergence order two is given by

(11)

0

c2 c2ϕ1,2(
1 − 1

2c2

)
ϕ1

1
2c2

ϕ1

where c2 is a parameter and, with respect to the methods in (9), the weights involve
ϕ1 only. The so-called RKMK2e method (see [23, Ex. 4]), or Pseudo-Steady-State-
Approximation (PSSA) scheme (see [26, Section 2]),

0

1 ϕ1

1
2ϕ1

1
2ϕ1

belongs to this family.
Even if IF methods do not have stiff order one, they achieve stiff convergence

order one (and not more than one) whenever condition (10) holds for the underlying
RK method. However, they perform to their full non-stiff convergence order on
particular problems where the solution satisfies certain smoothness properties such
as, for example, the non-linear Schrodinger equation (see [3]).

3. Stability definitions

We begin this section by giving two well-known conditions guaranteeing con-
tractivity and asymptotic stability, respectively, for semi-linear systems of ODEs
(1). To this aim, let us introduce a norm ‖ · ‖ on Rd which induces a norm on
Rd×d denoted by the same symbol. Moreover, let µ (L) and γ denote, respectively,
the logarithmic norm of L and the Lipschitz constant (with respect to the second
argument) of f in (1) relevant to the given norm on Rd.

We recall the following two properties of the logarithmic norm (see e.g. [24])
which will be widely used later:

•
∥∥eM

∥∥ ≤ eµ(M) for M ∈ Rd×d,
• µ (αM) = αµ (M) for M ∈ R

d×d and α ≥ 0.
Let us consider the semi-linear system (1) with two different initial values:

(12)
{

u′ (t) = Lu (t) + f (t, u (t)) , t ≥ t0,
u (t) = u0,

and

(13)
{

v′ (t) = Lv (t) + f (t, v (t)) , t ≥ t0,
v (t0) = v0,

and introduce the difference

δ (t) := u (t) − v (t) .

We also set δ0 := δ (0) = u0 − v0.
It is easy to see that the condition

(14) µ (L) + γ ≤ 0
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guarantees contractivity for system (1), i.e.

‖δ (t)‖ ≤ ‖δ0‖ , t ≥ t0,

holds for every u0, v0. Moreover, when the sign ≤ in (14) is replaced by <, system
(1) is asymptotically stable, i.e.

‖δ (t)‖ → 0, t → +∞,

holds for every u0, v0.
Now, consider an explicit exponential RK method (2) as applied with stepsize

h to (12) and (13). Denoting by un+1 and vn+1 the relevant grid approximations
and by U i

n+1 and V i
n+1 the relevant stage-values, the differences

δn+1 := un+1 − vn+1,

∆i
n+1 := U i

n+1 − V i
n+1, i = 1, ..., ν,

satisfy

δn+1 = ehLδn + h

ν∑
i=1

bi(hL)
[
f(tin+1, U

i
n+1) − f(tin+1, V

i
n+1)

]
,(15a)

∆i
n+1 = ecihLδn + h

i−1∑
j=1

aij(hL)
[
f(tjn+1, U

j
n+1) − f(tjn+1, V

j
n+1)

]
.(15b)

Now, we introduce some definitions concerning stability properties of exponential
RK methods. To this purpose, we consider a class C of semi-linear systems of the
type (1).

Definition 3. An exponential RK method (2) is called unconditionally contractive
on the class C with respect to the norm ‖ · ‖ if ‖δ1‖ ≤ ‖δ0‖ holds for all u0, v0 and
for all stepsizes h when applied to any system in C satisfying (14).

Furthermore, it is called unconditionally asymptotically stable if δn → 0 as
n → ∞ whenever (14) is satisfied with ≤ replaced by <.

Remark that, unlike contractivity, asymptotic stability should not be related to
a specific norm. Nevertheless, we define the asymptotic stability properties of the
methods with respect to a given norm ‖ · ‖ because we require the preservation of
the asymptotic behaviour of the solutions of systems belonging to subsets of the
class C which depend on that norm via the logarithmic norm of L and the Lipschitz
constant γ of the function f (see condition (14)).

4. Sufficient conditions for stability

Let M be a class of matrices (even of different dimensions) which is closed with
respect to the multiplication by positive scalars (so that, hM ∈ M for any h > 0,
if M ∈ M).

We study stability properties on the class C (M) of equations (1) with L ∈ M
with respect to a given norm ‖ · ‖. To this aim, we introduce, for α ≤ 0, the
(1 × ν)-vector b (α) of components

(16) bi (α) := sup
M∈M

µ(M)≤α

‖bi(M)‖ , i = 1, ..., ν,
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and the (ν × ν)-matrix A (α) whose elements are

(17) aij (α) := sup
M∈M

µ(M)≤α

‖aij (M)‖ , i, j = 1, ..., ν.

Note that b (α) and A (α) depend on the class M and on the norm ‖ · ‖.
Since M contains all scalars, we have

sup
x≤α

|bi (x)| ≤ bi (α) and sup
x≤α

|aij (x)| ≤ aij (α) , α ≤ 0, i, j = 1, ..., ν.

Moreover, we remark that the functions bi and aij , i, j = 1, ..., ν, are non-decreasing.
Now, we give a bound for ‖δn+1‖ in terms of ‖δn‖ which holds whenever the

matrix L in (1) belongs to the class M.
By (15a) and (15b), we obtain

‖δn+1‖ ≤ eµ(hL) ‖δn‖ + hγ
ν∑

i=1

‖bi(hL)‖
∥∥∆i

n+1

∥∥ ,

∥∥∆i
n+1

∥∥ ≤ eciµ(hL) ‖δn‖ + hγ
i−1∑
j=1

‖aij(hL)‖
∥∥∥∆j

n+1

∥∥∥ , i = 1, ..., ν,

where γ is the Lipschitz constant of f , and then

‖δn+1‖ ≤ ehµ(L) ‖δn‖ + hγb(hµ (L))∆n+1,(18) (
I − hγA (hµ (L))

)
∆n+1 ≤ echµ(L)1ν ‖δn‖ ,(19)

where ∆n+1 is the (ν × 1)-vector of components
∥∥∆i

n+1

∥∥, i = 1, ..., ν, c is the
(ν × 1)-vector of components ci, i = 1, ..., ν, 1ν is the (ν × 1)-vector with all com-
ponents equal to 1, the notation x ≤ y, x, y ∈ R

ν , stands for xi ≤ yi, i = 1, ..., ν, and
the notation ex, x ∈ Rν , stands for the diagonal (ν × ν)-matrix diag (ex1 , ..., exν ).

Since the matrix A (hµ (L)) is strictly lower triangular, we obtain

(20) ‖δn+1‖ ≤ S (hµ (L) , hγ) ‖δn‖ ,

where

(21) S (α, β) := eα +
ν−1∑
k=0

βk+1b (α)A (α)k ecα1ν , α ∈ R and β ≥ 0.

Since the functions bi and aij defined in (16) and (17), respectively, are non-
negative and non-decreasing, the function S turns out to be increasing in its first
argument.

Now we present a sufficient condition for the unconditional stability properties
on the class C (M), relevant to a class M of matrices, and with respect to a norm
‖ · ‖.

Proposition 4. If an explicit exponential RK method (2) satisfies

(22) S (−β, β) ≤ 1, β ≥ 0,

where S is defined in (21), then it is unconditionally contractive and asymptotically
stable on the class C (M) with respect to the norm ‖ · ‖.

Proof. Since the function S is increasing in its first argument, we have S (α, β) ≤
S (−β, β) for α + β ≤ 0 and S (α, β) < S (−β, β) for α + β < 0. The thesis of the
proposition now follows. �
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Along with the function S we consider also the function

(23) S (α, β) := eα +
ν−1∑
k=0

βk+1b (α) A (α)k
ecα1ν , α, β ∈ R,

where b (α) is the (1 × ν)-vector of components bi (α), i = 1, ..., ν and A (α) is the
(ν × ν)-matrix of coefficients aij (α), i, j = 1, ..., ν.

Thus, as an immediate consequence of the previous proposition, we obtain the
following theorem.

Theorem 5. If an explicit exponential RK method (2) satisfies

(24) S (−β, β) ≤ 1, β ≥ 0

and

(25) b (α) = b (α) and A (α) = A (α) , α ≤ 0,

then it is unconditionally contractive and asymptotically stable on the class C (M)
with respect to the norm ‖ · ‖.

It is easy to see that condition (24) is satisfied with equality under the “mild”
restriction

(26)
ν∑

i=1

bi (·) = ϕ1 and
i−1∑
j=1

aij (·) = ciϕ1,i, i = 1, ..., ν,

i.e., if the method satisfies the stiff order one condition (7) and the second equation
in the stiff order two condition (8). Observe that, however, (26) is not satisfied by
IF methods.

In this paper, we study the case where M is the class of all matrices (even of
different dimensions) and so C (M) is the class Call of all semi-linear equations (1).
We start by analyzing IF methods.

Proposition 6. For an IF method (3) with an explicit underlying RK method
(A, b, c), we have

(27) S (α, β) = eα

(
1 +

ν−1∑
k=0

βk+1bAk1ν

)
, α, β ∈ R.

Proof. For such a method we have, for α, β ∈ R,

b (α) = be(1ν−c)α, A (α) = ecαAe−cα.

Thus
b (α)A (α)k ecα = eαbAk, k = 0, 1, ..., ν − 1,

and, by (23), we obtain (27). �

As a consequence, condition (24) holds if

bAk1ν ≤ 1
(k + 1)!

, k ≥ k,

where

(28) k = min
{

k ∈ {0, 1, 2, ...}
∣∣ bAk1ν �= 1

(k + 1)!

}
.
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On the other hand, condition (25) holds if

(29) 0 = c1 ≤ · · · ≤ cν ≤ 1

and

(30) bi ≥ 0 and aij ≥ 0, i = 1, ..., ν and j = 1, ..., i − 1,

since

bi (α) ≤ |bi| e(1−ci)α, i = 1, ..., ν,(31a)

aij (α) ≤ |aij | e(ci−cj)α, i = 1, ..., ν and j = 1, ..., i − 1.(31b)

Hence an explicit IF method is unconditionally contractive and asymptotically
stable on the class Call with respect to an arbitrary norm if the underlying RK
method is a ν-stage explicit RK method of order ν satisfying (29) and (30).

Examples of such methods are well-known up to ν = 4 and the classical RK
method of order four is the sole method with four stages (see [17, page 521]).
Moreover, it is also known that there do not exist explicit methods of order greater
than four satisfying (30) with positive weights (see [17, Corollary 8.7]).

For methods which are not of IF type, condition (24) is implied by (26). For an
ETD method (5), condition (25) holds if

pi (s) ≥ 0 and pij (s) ≥ 0, s ∈ [0, 1] and i = 1, ..., ν and j = 1, ..., i − 1,

since

bi (α) ≤
1∫

0

e(1−s)α |pi (s)| ds, i = 1, ..., ν,

aij (α) ≤
1∫

0

e(1−s)ciα |pij (s)| ds, i = 1, ..., ν and j = 1, ..., i − 1.

As a consequence, we can conclude that explicit ETD Euler method (6) is un-
conditionally contractive and asymptotically stable on the class Call with respect
to an arbitrary norm.

Moreover, in the family (9) of two-stage exponential RK methods of stiff order
two, a method is unconditionally contractive and asymptotically stable on the class
Call, with respect to an arbitrary norm, if c2 ≥ 1 and, in the family (11), if c2 ≥ 1

2 .
We have not yet found any ETD method of stiff convergence order greater than

two that fulfills the above sufficient conditions.

5. Conclusions

In this paper we have studied stability properties of explicit exponential RK
methods when they are applied to semi-linear systems of ODEs. The properties
of unconditional contractivity and unconditional asymptotic stability have been
introduced, and some popular explicit methods have been investigated with respect
to such properties.

As for IF methods, we have proved unconditional contractivity and asymptotic
stability on the whole class Call of semi-linear systems with respect to any norm
if the underlying explicit RK method has non-negative weights and coefficients
and has order equal to the number of stages. Hence, we have proved that there
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exist several IF methods of order p ≤ 4 which are unconditionally contractive and
asymptotically stable.

On the other hand, it is known that IF methods have stiff convergence order one
only. Unfortunately, for methods outside this class, which can reach higher stiff
convergence order, there are very few examples which are proved to be uncondi-
tionally contractive or asymptotically stable on the class Call with respect to any
norm; they are the explicit ETD Euler method, the methods in the family (9) with
c2 ≥ 1 and the methods in the family (11) with c2 ≥ 1

2 .
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