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PROPORTIONALLY MODULAR DIOPHANTINE INEQUALITIES
AND THE STERN-BROCOT TREE

M. BULLEJOS AND J. C. ROSALES

Abstract. Given positive integers a, b and c to compute a generating system
for the numerical semigroup whose elements are all positive integer solutions
of the inequality axmod b ≤ cx is equivalent to computing a Bézout sequence
connecting two reduced fractions. We prove that a proper Bézout sequence
is completely determined by its ends and we give an algorithm to compute
the unique proper Bézout sequence connecting two reduced fractions. We also
relate Bézout sequences with paths in the Stern-Brocot tree and use this tree
to compute the minimal positive integer solution of the above inequality.

1. Introduction

A proportionally modular diophantine inequality is an inequality of the form

(1) axmod b ≤ cx,

with a, b and c positive integers. A nonnegative integer x is a solution of such
an inequality if the remainder of the division of ax by b is less than or equal to
cx. The set S of nonnegative integers which are solutions of (1) is a numerical
semigroup (see [5]), that is, S is a subset of the set N, of nonnegative integers,
which is closed under addition and such that 0 ∈ S and its complementary N\S is
finite. Not every numerical semigroup is the set of solutions of an inequality like
(1) (see also [5]). Those fulfilling this condition are called proportionally modular
numerical semigroups.

In [5] proportionally modular numerical semigroups are characterized. Let us
introduce some notation that is used there to give such a characterization. The set
of nonnegative reals will be denoted by R+

0 . Given a subset A ⊆ R+
0 we will write

〈A〉 for the submonoid of (R+
0 , +) generated by A. The elements in 〈A〉 are then

linear combinations of the elements in A with nonnegative integer coefficients.
Given reduced fractions r

s < u
v , with positive numerators and denominators, the

semigroup S
([

r
s , u

v

])
is the numerical semigroup associated to the closed interval[

r
s , u

v

]
. That is,

S
([r

s
,
u

v

])
= 〈
[r
s
,
u

v

]
〉 ∩ N.
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Then, it is proved in [5] that the proportionally modular numerical semigroup S
coming from an inequality like (1) is

S = S

([
b

a
,

b

a − c

])
,

and conversely, any numerical semigroup S(
[

r
s , u

v

]
) is the set of solutions of an

inequality like (1). In this case a = us, b = ru and c = us − rv.
Thus, the problem of solving a proportionally modular diophantine inequality

is reduced to that of finding a system of generators of a proportionally modular
numerical semigroup, which is always in the form S

([
r
s , u

v

])
. This problem is

reduced further (see [6]) to that of finding a Bézout sequence connecting the reduced
fractions r

s and u
v .

A Bézout sequence is a sequence of reduced fractions

(2)
a1

b1
<

a2

b2
< · · · <

ak

bk

with positive numerators and denominators, which, moreover, satisfies the identities

ai+1bi − aibi+1 = 1 , i ∈ {1, . . . , k − 1}.
The number of terms, k, is the length of the sequence and the fractions a1

b1
and ak

bk

are respectively the left and right ends of the sequence. In [6] it is proved that any
two reduced fractions with positive numerators and denominators can be connected
by a Bézout sequence and, moreover, if (2) is a sequence connecting r

s and u
v , that

is r
s = a1

b1
and u

v = ak

bk
, then

S
([r

s
,
u

v

])
= 〈r = a1, a2, . . . , ak = u〉.

Hence the problem of solving an inequality like (1) is reduced to that of finding a
Bézout sequence connecting two reduced fractions. We devote this paper to giving
algorithmic methods to find such sequences.

A Bézout sequence with ends r
s and u

v is called proper if it has no proper subse-
quences with ends r

s and u
v that are Bézout sequences. It is clear that any Bézout

sequence can be reduced (by dropping terms) to a proper one. We say that the
sequence (2) has decreasing numerators if a1 ≥ a2 ≥ · · · ≥ ak and that it has
increasing denominators if b1 ≤ b2 ≤ · · · ≤ bk. In Section 2 we see that any proper
Bézout sequence can be obtained by joining a Bézout sequence with decreasing nu-
merators to a Bézout sequence with increasing denominators. We also prove that
a Bézout sequence with decreasing numerators is completely determined by its left
end and its length, and dually a Bézout sequence with increasing denominators is
determined by its right end and its length. We then deduce that any two reduced
fractions are connected by a unique proper Bézout sequence. In Section 3 we use
the study of proper Bézout sequences done in Section 2 to give an algorithm (with
similar complexity to Euclides’ algorithm for the calculus of greater common di-
visors) for the computation of the unique proper Bézout sequence connecting two
given reduced fractions.

In Section 4 we give a characterization, in terms of Bézout sequences, of when
two fractions in the Stern-Brocot tree are one descendent of the other. This char-
acterization will allow us to give another method, based on the calculus of paths
in the Stern-Brocot tree, to compute the proper Bézout sequence connecting two
reduced fractions.
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The multiplicity of a numerical semigroup S is the smallest positive integer that
is in S and the Frobenius number of S is the greatest integer that is not in S. The
Frobenius problem consists of giving a formula to compute the Frobenius number
of S in terms of its generators. If S = 〈n1, n2〉, then the Frobenius number of S
is n1n2 − n1 − n2 (see [8]), but for numerical semigroups generated by more than
two elements the Frobenius problem is still open (see [4]); there is no hope for a
similar formula when n ≥ 3 since the problem of computing the Frobenius number
is computationally difficult [3].

In [7] an algorithm is given (with similar complexity to the Euclidean algorithm)
to compute the multiplicity of a proportionally modular numerical semigroup and
it is also proved there that if we have a formula to compute the multiplicity of the
proportionally modular numerical semigroup S(

[
r
s , u

v

]
), in terms of r

s and u
v , the

Frobenius problem will be solved for numerical semigroups that can be generated by
three elements. In Section 5 we relate the multiplicity of the semigroup S(

[
r
s , u

v

]
) to

the common ancestor in the Stern-Brocot tree of r
s and u

v and we give an algorithm
(also with similar complexity to the one of Euclides’) to compute this ancestor
and also the multiplicity of the corresponding proportionally modular numerical
semigroup.

2. Bézout sequences

We begin this section by establishing some notation. Given integers a, b and c
we denote⌊a

b

⌋
= max

{
x ∈ Z ; x ≤ a

b

}
and

⌈a

b

⌉
= min

{
x ∈ Z ;

a

b
≤ x

}
.

We will write a ≡ bmod c if a − b is a multiple of c and a = bmod c if a < c and
a ≡ bmod c. We also will write a = b−1 mod c if 0 < a < c and ab ≡ 1mod c.

Let us note that given a Bézout sequence with decreasing numerators

(3)
a

b
<

c

d
,

cb − ad = 1 and a ≥ c, then

(4)
d

c
<

b

a

is a Bézout sequence with increasing denominators. In this sense we see sequence (4)
as a dual of sequence (3). Every Bézout sequence with increasing denominators has
a dual Bézout sequence with decreasing numerators (obtained by inverting every
fraction and reversing their order). It follows that any result for a Bézout sequence
with decreasing numerators has a corresponding dual, whose proof is obtained just
by considering the corresponding dual sequence.

Lemma 2.1. A Bézout sequence with decreasing numerators has strictly decreas-
ing denominators and a Bézout sequence with strictly increasing numerators has
increasing denominators. Moreover, if

a1

b1
<

a2

b2

is a Bézout sequence with a1 = a2, then a1 = a2 = 1.
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Proof. Recall first that all numerators and denominators in Bézout sequences are
positive integers. Given a sequence

a1

b1
<

a2

b2

with a2b1 − a1b2 = 1.
• If a1 ≥ a2, then a1

b1
< a2

b2
implies b1 > b2.

• If a1 < a2, then 1 = a2b1 − a1b2 > a2b1 − a2b2 = a2(b1 − b2) and 2 ≤ a2.
Therefore b1 − b2 ≤ 0, and so b1 ≤ b2. Observe that the denominators can
be equal, as it happens with the sequence a

1 < a+1
1 .

• If a1 = a2, then the equality 1 = a2b1 − a1b2 implies a1 = a2 = 1.
�

We have the following dual result.

Lemma 2.2 (Dual of Lemma 2.1). A Bézout sequence with increasing denomina-
tors has strictly increasing numerators and a Bézout sequence with strictly decreas-
ing denominators has decreasing numerators. Moreover, if

a1

b1
<

a2

b2

is a Bézout sequence with b1 = b2, then b1 = b2 = 1.

The next proposition shows how to add an element to a Bézout sequence so that
the resulting sequence is also a Bézout sequence.

Proposition 2.3. Given a Bézout sequence with decreasing numerators and right
end a

b , if b > 1, then there is a unique reduced fraction that can be joined to the
right of the sequence in such a way that the resulting sequence is also a Bézout
sequence with decreasing numerators. This fraction is 1

b−1 if a = 1, or b−1 mod a
(−a)−1 mod b

if a > 1.

Proof. Given the sequence
a1

b1
<

a2

b2

the equality a2b1 − a1b2 = 1 implies

a2b1 ≡ 1mod a1 and − a1b2 ≡ 1mod b1.

Moreover:
• If a1 = 1, then a2 = 1 and b2 = b1 − 1.
• If a1 > 1 then, by Lemma 2.1, a1 > a2 and so a2b1 ≡ 1mod a1 implies

a2 = b−1
1 mod a1. Also by Lemma 2.1, b1 > b2 and so −a1b2 ≡ 1mod b1

implies b2 = (−a1)−1 mod b1.

Therefore, if we have a Bézout sequence with decreasing numerators and right
end a

b with b > 1, to get a one term longer Bézout sequence with decreasing
numerators, we can only join to the right of the sequence:

• The term 1
b−1 whenever a = 1, or

• The term b−1 mod a
(−a)−1 mod b whenever a > 1.

�

The following corollary is an immediate consequence of Proposition 2.3.
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Corollary 2.4. A Bézout sequence with decreasing numerators is completely deter-
mined by its left end and its length. Therefore, there is at most one Bézout sequence
with decreasing numerators connecting two fractions and, any Bézout sequence with
decreasing numerators is proper.

The corresponding duals of Proposition 2.3 and Corollary 2.4 are the following.

Proposition 2.5 (Dual of Proposition 2.3). Given a Bézout sequence with increas-
ing denominators and left end c

d , if c > 1, then there is a unique fraction that can
be joined to the left of the sequence in such a way that the resulting sequence is also
a Bézout sequence with increasing denominators. This fraction is c−1

1 whenever

d = 1, or (−d)−1 mod c
c−1 mod d whenever d > 1.

Corollary 2.6 (Dual of Corollary 2.4). A Bézout sequence with increasing denomi-
nators is completely determined by its right end and its length. Therefore, there is at
most one Bézout sequence with increasing denominators connecting two fractions,
and any Bézout sequence with increasing denominators is proper.

We know from [6] that any two reduced fractions a
b < c

d can be connected by
a proper Bézout sequence and that any proper Bézout sequence, such as (2), is
convex in the sense that there is an h ∈ {1, . . . , k} such that

a1 ≥ a2 ≥ · · · ≥ ah ≤ ah+1 ≤ · · · ≤ ak.

We may now refine the above as follows.

Theorem 2.7. Let a
b < c

d be reduced fractions. Then, there is a unique proper
Bézout sequence connecting them, which is obtained by concatenating a Bézout se-
quence with decreasing numerators and left end a

b with a Bézout sequence with
increasing denominators and right end c

d .

Proof. We know (see [6]) that there is a proper Bézout sequence connecting both
fractions:

(5) B =
{

a

b
=

a1

b1
<

a2

b2
< · · · <

ah

bh
< · · · <

ak

bk
=

c

d

}
,

which is convex, a1 ≥ a2 ≥ · · · ≥ ah ≤ ah+1 ≤ · · · ≤ ak. We can assume that
ah 	= ah+1, otherwise h is replaced by h + 1. Then ah+1 	= 1 and Lemma 2.1 yields
ah+1 < ah+2. Recursively, we have

ah < ah+1 < · · · < ak .

By using again Lemma 2.1 we have bh ≤ bh+1 ≤ · · · ≤ bk and therefore the sequence
(5) is obtained by joining the Bézout sequence with decreasing numerators and left
end a

b ,

Bdec =
a

b
=

a1

b1
<

a2

b2
< · · · <

ah

bh
,

to the Bézout sequence with increasing denominators and right end c
d ,

Binc =
ah

bh
< · · · <

ak

bk
=

c

d
.

If we prove that h and k − h only depend on a
b and c

d , then Corollaries 2.4 and
2.6 complete the proof of this theorem.
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Let us suppose that we can find another proper Bézout sequence

(6) B′ =

B′
dec︷ ︸︸ ︷{

a

b
=

c1

d1
<

c2

d2
< · · · <

ch′

dh′
< · · · <

ck′

dk′
=

c

d

}
︸ ︷︷ ︸

B′
inc

,

with c1 ≥ c2 ≥ · · · ≥ ch′ < ch′+1 · · · < ck′ which also connects a
b and c

d .
We are going to prove that neither of the following cases can be true, and then

the unique remaining case is h = h′ and k − h = k′ − h′.

(i) If h < h′ and k−h ≤ k′−h′, then Corollaries 2.4 and 2.6 imply that Bdec �

B′
dec and Binc ⊆ B′

inc. Therefore, the sequence (5) is a Bezóut subsequence
of (6) which contradicts that (6) is proper. A similar contradiction arises
when h ≤ h′ and k − h < k′ − h′.

(ii) If h < h′ and k′−h′ ≤ k−h, then in view of Corollaries 2.4 and 2.6 we have
that Bdec � B′

dec (as a left tail) and B′
inc ⊆ Binc (as a right tail). Therefore,

ah

bh
= ch

dh
and ch′

dh′
= ak−k′+h′

bk−k′+h′
and we have

ch ≥ ch+1 ≥ · · · ≥ ch′

and

ch = ah < ah+1 < · · · < ak−k′+h′ = ch′ ,

which is clearly a contradiction. The same holds for h ≤ h′ and k′ − h′ <
k − h.

(iii) The proofs for the cases h′ < h and k′ − h′ ≤ k − h, or h′ ≤ h and
k′ − h′ < k − h are as in (i) but interchanging sequences (6) and (5).

(iv) The proofs for the cases h′ < h and k − h ≤ k′ − h′, or h′ ≤ h and
k − h < k′ − h′ follow as in (ii) but interchanging sequences (6) and (5).

�

We conclude this section by noting that the element ah found in Theorem 2.7
above is an invariant of the semigroup S(

[
a
b , c

d

]
), in fact, ah is the multiplicity of

the semigroup. Also, two other invariants of the above semigroup were also found,
namely h and k.

3. An algorithm to compute the unique proper Bézout sequence

connecting two reduced fractions

As we have proved in Theorem 2.7 the proper Bézout sequence connecting two
reduced fractions is obtained by merging a Bézout sequence with decreasing nu-
merators with a Bézout sequence with increasing denominators. Thus, Proposition
2.3 (Proposition 2.5) shows that a Bézout sequence with decreasing numerators
(increasing denominators) is completely determined by its left (right) end and its
length. These propositions also give us a recursive method to compute the terms of
such Bézout sequences. We begin this section by computing the longest Bézout se-
quence with decreasing numerators (increasing denominators) and fixed left (right)
end, but first we give a couple of lemmas that simplify the computation of the terms
in such sequences.
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Lemma 3.1. Given a Bézout sequence with decreasing numerators
a1

b1
<

a2

b2
<

a3

b3
,

then b3 = −b1 mod b2. Moreover, if a2 	= 1, then a3 = −a1 mod a2.

Proof. The Bézout condition asserts that a2b1 − a1b2 = 1 = a3b2 − a2b3. Then, by
taking mod b2 and mod a2, we have

a2b1 ≡ −a2b3 mod b2 and − a1b2 ≡ a3b2 mod a2,

respectively. Moreover, a2 is a unit module b2 and b2 is a unit module a2, so we
also have

b3 ≡ −b1 mod b2 and a3 ≡ −a1 mod a2.

Lemma 2.1 ensures that b1 > b2 > b3, and thus b3 = −b1 mod b2. Moreover, if
a2 	= 1, then Lemma 2.1 also implies a1 > a2 > a3. Hence a3 = −a1 mod a2. �

Dually we obtain the following.

Lemma 3.2 (Dual of Lemma 3.1). Given a Bézout sequence with increasing de-
nominators

a1

b1
<

a2

b2
<

a3

b3
,

then a1 = −a3 mod a2. Moreover, if b2 	= 1, then b1 = −b3 mod b2.

The next proposition gives the longest Bézout sequence with decreasing numer-
ators and a fixed left end.

Proposition 3.3. Let B be the longest Bézout sequence with decreasing numerators
and left end a

b .

(i) If a = 1, then the sequence B is

1
b

<
1

b − 1
<

1
b − 2

< · · · <
1
1

.

(ii) If b = 1, then the sequence B only has the term, a
1 .

(iii) If a > b, then the sequence B has strictly decreasing numerators, the ceiling

function,
⌈ ⌉

, is constant on B and its right end is 
 a
b �
1 .

(iv) If a < b, then the sequence B has right end 1
1 , it has 1

� b
a

as a term and

the floor function,
⌊ ⌋

, is constant on the inverses of the fractions in the
subsequence of B with right end 1

� b
a

.

Proof. The cases a = 1 or b = 1 are clear.
Case 1) If a > b. Then 1 < a

b and so, for any fraction ai

bi
in B, we also have

1 < ai

bi
.

Given two consecutive fractions in B,
ai

bi
<

ai+1

bi+1
,

if ai = ai+1, then the equality ai+1bi − aibi+1 = 1 implies ai = ai+1 = 1, and this
contradicts 1 < ai

bi
. Therefore, the sequence B has strictly decreasing numerators.
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Thus, if bi+1 = 1, then we have ai

bi
= ai+1 − 1

bi
, with bi ≥ 2, and so

⌈
ai

bi

⌉
=

ai+1 =
⌈

ai+1
bi+1

⌉
; if bi+1 ≥ 2, then we have ai+1

bi+1
= ai

bi
+ 1

bibi+1
, which also leads to⌈

ai

bi

⌉
=
⌈

ai+1
bi+1

⌉
.

To conclude (iii) we use Proposition 2.3 and Lemma 3.1 to add recursively new
terms to the right of a

b until we get a Bézout sequence with decreasing numerators
whose right end has 1 as denominator. Note that the ceiling is constant and equal
to
⌈

a
b

⌉
on the terms we are joining and so the last term we can append to the right

of the sequence is 
 a
b �
1 .

Case 2) If a < b. Given two consecutive fractions in B, as above, if ai > 1 and
ai+1 = 1, then we have bi−aibi+1 = 1. So bi

ai
= bi+1+ 1

ai
and

⌊
bi

ai

⌋
= bi+1 =

⌊
bi+1
ai+1

⌋
.

If ai+1 > 1, then ai > ai+1, and bi+1
ai+1

= bi

ai
− 1

aiai+1
implies

⌊
bi

ai

⌋
=
⌊

bi+1
ai+1

⌋
.

To conclude (iv) we use Proposition 2.3 and Lemma 3.1 to add recursively new
terms c

d , with
⌊

d
c

⌋
=
⌊

b
a

⌋
, to the right of a

b until we get a Bézout sequence with
decreasing numerators whose right end has numerator 1 (and denominator

⌊
b
a

⌋
).

Then we append terms, to the right, with numerators 1 and decreasing denomina-
tors, until we reach 1

1 . The sequence B is

a

b
< · · · <

1⌊
b
a

⌋ <
1⌊

b
a

⌋
− 1

< · · · <
1
1
. �

To produce the longest Bézout sequence with decreasing numerators and left end
the reduced fraction a1

b1
(a1 	= 1 and b1 	= 1), we proceed as follows.

Case 1) a1 > b1. First we calculate a2 = b−1
1 mod a1 and b2 = (−a1)−1 mod b1,

and recursively we take ai+2 = −ai mod ai+1 and bi+2 = −bi mod bi+1 until we
reach

⌈
a1
b1

⌉
with the a’s (and 1 with the b’s).

For example, to get the longest Bézout sequence with decreasing numerators and
right end 131

50 we calculate

ai bi

131 50

76 = 50−1 mod 131 29 = (−131)−1 mod 50

21 = −131mod 76 8 = −50mod 29

8 = −76mod 21 3 = −29mod 8

3 = −21mod 8 =
⌈

131
50

⌉
1 = −8mod 3

So the sequence is

(7)
131
50

<
76
29

<
21
8

<
8
3

<
3
1
.

Case 2) a1 < b1. As in the above case we first calculate a2 = b−1
1 mod a1 and

b2 = (−a1)−1 mod b1, and recursively we take ai+2 = −ai mod ai+1 and bi+2 =
−bi mod bi+1 until we reach

⌊
b1
a1

⌋
with the b’s (and 1 with the a’s). Finally, we add
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terms to the sequence with 1 as numerators and strictly decreasing denominators
until we reach 1

1 .
For example, to get the longest Bézout sequence with decreasing numerators and

left end 34
111 we calculate

ai bi

34 111

19 = 111−1 mod 34 62 = (−34)−1 mod 111

4 = −34mod 19 13 = −111mod 62

1 = −19mod 4 3 = −62mod 13 =
⌊

111
34

⌋
1 2 = 3 − 1

1 1 = 2 − 1

So the sequence is

34
111

<
19
62

<
4
13

<
1
3

<
1
2

<
1
1
.

In the same way, the dual of Proposition 3.3 gives the longest Bézout sequence
with increasing denominators and right end c

d .

Proposition 3.4 (Dual of Proposition 3.3). Let B′ be the longest Bézout sequence
with increasing denominators and right end c

d . Then:

(i) If d = 1, the sequence B′ is

1
1

< · · · <
c − 2

1
<

c − 1
1

<
c

1
.

(ii) If c = 1, the sequence B′ only has the term 1
d .

(iii) If c < d, the sequence B′ has strictly increasing denominators, the function⌈ ⌉
is constant on the inverses of the fractions in B′ and its left end is 1


 d
c �

.

(iv) If c > d, the sequence B′ has left end 1
1 , it has � c

d
1 as a term and the

function
⌊ ⌋

is constant on the fractions in the subsequence of B′ with left

end � c
d
1 .

Then to produce the longest Bézout sequence with increasing denominators and
right end the reduced fraction c1

d1
(c1 	= 1 and d1 	= 1) we proceed as follows.

Case 1) c1 < d1. First we calculate d2 = c−1
1 mod d1 and c2 = (−d1)−1 mod c1,

and recursively we take di+2 = −di mod di+1 and ci+2 = −ci mod ci+1 until we
reach

⌈
d1
c1

⌉
with the d’s (and 1 with the c’s).
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For example, to get the longest Bézout sequence with increasing denominators
and right end 35

46 we calculate

ci di

35 46

19 = (−46)−1 mod 35 25 = 35−1 mod 46

3 = −35mod 19 4 = −46mod 25

2 = −19mod 3 3 = −25mod 4

1 = −3mod 2 2 = −4mod 3 =
⌈

46
35

⌉
So the sequence is

1
2

<
2
3

<
3
4

<
19
25

<
35
46

.

Case 2) c1 > d1. As in the above case we first calculate d2 = c−1
1 mod d1 and

c2 = (−d1)−1 mod c1, and recursively we take di+2 = −di mod di+1 and ci+2 =
−ci mod ci+1 until we reach

⌊
c1
d1

⌋
with the c’s (and 1 with the d’s). Finally, we join

terms with 1 as denominators and strictly decreasing numerators until we reach 1
1 .

For example, to get the longest Bézout sequence with increasing denominators
and right end 131

47 , we calculate

ci di

131 47

39 = (−47)−1 mod 131 14 = (−34)−1 mod 111

25 = −131mod 39 9 = −47mod 14

11 = −39mod 25 4 = −14mod 9

8 = −25mod 11 3 = −9mod 4

5 = −11mod 8 2 = −4mod 3

2 = −8mod 5 =
⌊

131
47

⌋
1

1 = 2 − 1 1

So the sequence is

(8)
1
1

<
2
1

<
5
2

<
8
3

<
11
4

<
25
9

<
39
14

<
131
47

.

We summarize the above results in the following algorithm.

Algorithm 3.5.
Input: Two reduced fractions a

b < c
d .

Output: The unique proper Bézout sequence with left and right ends a
b and c

d respec-
tively.

(1) Compute Bldec, the longest Bézout sequence with decreasing numerators and
left end a

b .
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(2) Let Binc =
{

c
d

}
and m

n the left end of Binc.
(3) While m

n /∈ Bldec compute the unique element x
y that can be joined to

the left of Binc to get a one term longer Bézout sequence with increasing
denominators, and replace Binc with

{
x
y

}
∪ Binc.

(4) Let Bdec be the subsequence of Bldec with left and right ends a
b and m

n ,
respectively.

(5) Return the concatenation of Bdec and Binc.

4. The Stern-Brocot tree and Bézout sequences

The Stern-Brocot tree provides a recursive method to list all reduced fractions
x
y with x and y positive integers [2].

To build the Stern-Brocot tree we start with the expressions
0
1
,
1
0
,

representing 0 and infinity. Between two adjacent expressions m
n and m′

n′ , we insert
its mediant m+m′

n+n′ . We recursively obtain sequences

0
1 < 1

1 < 1
0 ,

0
1 < 1

2 < 1
1 < 2

1 < 1
0 ,

0
1 < 1

3 < 1
2 < 2

3 < 1
1 < 3

2 < 2
1 < 3

1 < 1
0 ,

which are all Bézout sequences (see [2]). Finally, we connect a mediant with the
two fractions used to compute it:

1
1

���������

���������

1
2

��
�� ��

��
2
1

��
�� ��

��

1
3

��
� ��

�
2
3

��
� ��

�
3
2

��
� ��

�
3
1

��
� ��

�

1
4

2
5

3
5

3
4

4
3

5
3

5
2

4
1

Any reduced fraction appears just once in the Stern-Brocot tree. There is an
easy algorithm to obtain the path between 1/1 and any other fraction m/n (see
[1]).

Algorithm 4.1.
While m 	= n do

If m < n
then (output(L); replace n with n − m)
else (output(R); replace m with m − n)

For example, the path between 1/1 and 11/5 is RRLLLL, which means: from
1/1 take right to 2/1 then right again to 3/1, then left to 5/2 and so on.

To see where a path W leads, we only have to replace L and R in W by the
matrices

L =
(

1 1
0 1

)
and R =

(
1 0
1 1

)
,
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and so by multiplying we obtain a new matrix W. Then the path W leads to the
fraction represented by (

0 1
1 0

)
W
(

1
1

)
,

(see also [1]).
For example, the path W = RRLLLL leads to the fraction represented by the

product (
0 1
1 0

)
RRLLLL

(
1
1

)
=
(

11
5

)
,

that is, 11
5 .

We now point out two properties of the leaves in the Stern-Brocot tree.
• If mL

nL
and mR

nR
are respectively the left and right sons of m

n ,

m
n

��
�

��
�

mL

nL

mR

nR

then,
mL

nL
<

m

n
<

mR

nR

is a Bézout sequence. Hence
mL

nL
<

m

n

is a Bézout sequence with decreasing numerators, and therefore with strictly
decreasing denominators. Analogously,

m

n
<

mR

nR

is a Bézout sequence with increasing denominators, and thus with strictly
increasing numerators.

• In the situation
m
n

			
			

	













m
L

n
L

��
�

m
R

n
R

��
�

m
LR

n
LR

m
RL

n
RL

we have a Bézout sequence
mL

n
L

<
mLR

n
LR

=
mL + m

n
L

+ n
<

m

n
<

mRL

n
RL

=
mR + m

n
R

+ n
<

mR

n
R

,

and therefore
m

LR

n
LR

<
m

n

is a Bézout sequence with decreasing numerators, and
m

n
<

mRL

n
RL

is a Bézout sequence with increasing denominators.
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The next proposition extends the above two properties. Its proof is constructive
and it will furnish the basis for an algorithmic method to connect two reduced
fractions by a proper Bézout sequence.

Proposition 4.2. Given reduced fractions r
s < u

v :
(1) The fraction r

s is a descendent of u
v in the Stern-Brocot tree if and only if

r
s and u

v are connected by a Bézout sequence with decreasing numerators.
(2) The fraction u

v is a descendent of r
s in the Stern-Brocot tree if and only if

r
s and u

v are connected by a Bézout sequence with increasing denominators.

Proof. Note that if we consider the path(
m

n
,
m

L

n
L

,
m

LR

n
LR

, . . . ,
m

LR i...R

n
LR i...R

)

in the Stern-Brocot tree, with 1 ≤ i, we have
mL

n
L

<
mLR

n
LR

< . . . <
m

LR i...R

n
LR i...R

<
m

n

with
m

LR j...R

n
LR j...R

=
m

LRj−1... R
+ m

n
LRj−1... R

+ n
,

for all 1 ≤ j ≤ i. Hence, by induction,
m

LR j...R

n
LR j...R

<
m

n

is a Bézout sequence with decreasing numerators. Dually, given the path(
m

n
,
mR

nR

,
mRL

nRL

, . . . ,
m

RL i...L

n
RL i...L

)
,

with 1 ≤ i,
m

n
<

m
RL j...L

n
RL j...L

is a Bézout sequence with increasing denominators, for all 1 ≤ j ≤ i.
(1) Let us suppose that r

s is a descendent of u
v and let

(9) P =
(

u

v
=

c1

d1
,
c2

d2
, . . . ,

ck

dk
=

r

s

)
be the descending path in the Stern-Brocot tree connecting both fractions.
Then c2 = uL and d2 = vL. To get a Bézout sequence with decreasing
numerators connecting both fractions, we remove from P the fraction ci

di

whenever the fraction ci+1
di+1

is on its right, 1 < i ≤ k − 1. The resulting
sequence (sorted in descending order) is a Bézout sequence with decreasing
numerators connecting r

s and u
v .

(2) Dually, if u
v is a descendent of r

s , and

(10) P ′ =
(

r

s
=

a1

b1
,
a2

b2
, . . . ,

ak

bk
=

u

v

)
is the descending path in the Stern-Brocot tree connecting both fractions,
then a2 = rR and b2 = sR. To get the Bézout sequence with increasing
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denominators connecting both fractions, we remove from P ′ the fraction
ai

bi
whenever the fraction ai+1

bi+1
is on its left, 1 < i ≤ k − 1. The resulting

sequence is the Bézout sequence with increasing denominators connecting
r
s and u

v .

Conversely, since any two reduced fractions r
s and u

v appear just once in the
Stern-Brocot tree, there is a unique path connecting both fractions. If we call m

n
to the common ancestor of r

s and u
v , then

r

s
<

m

n
<

u

v
.

Thus (in view of the first part of this proof) r
s and m

n are connected by a Bézout
sequence with decreasing numerators, and m

n and u
v are connected by a Bézout se-

quence with increasing denominators (and so, by Proposition 2.5, strictly increasing
numerators). Since any two elements are connected by a unique proper Bézout se-
quence (Theorem 2.7) the unique way of connecting r

s and u
v by a Bézout sequence

with decreasing numerators or a Bézout sequence with increasing denominators is
that m

n = u
v or m

n = r
s , respectively, and so r

s is a descendent of u
v or vice versa. �

We can use the Stern-Brocot tree to get the proper Bézout sequence connecting
two reduced fractions r

s < u
v as follows:

• First apply Algorithm 4.1 to obtain the paths P1 and P2 connecting 1
1 to

r
s and u

v , respectively.
• Then take P as the beginning common part of P1 and P2.
• The right end m

n of the path P is the common ancestor of r
s and u

v .
• The paths P1\P and P2\P (obtained by deleting P in P1 and P2, respec-

tively) connect m
n to r

s and u
v , respectively.

• Finally, apply the method in Proposition 4.2 to P1\P and P2\P to obtain
the Bézout sequence with decreasing numerators and the Bézout sequence
with increasing denominators connecting m

n to r
s and u

v , respectively, and
join both sequences.

If we apply the above procedure to 33
25 and 27

7 , we have:

• P1 = RLLLRRRRRRR, P2 = RRRLRRRRR.
• P = R.
• The common ancestor is the right end of P , that is, 2

1 .
• The sequences P1\P = LLLRRRRRRR and P2\P = RRLRRRRR con-

nect 2
1 to 33

25 and 27
7 , respectively.

• If we apply the method in Proposition 4.2 to the paths P1\P and P2\P ,
we obtain the sequences

33
25

4
3

LRRRRRRR�� 3
2

L�� 2
1

L��

and

2
1

R �� 3
1

RL �� 7
2

R �� 11
3

R �� 15
4

R �� 19
5

R �� 23
6

R �� 27
7 ,

and the Bézout sequence connecting 33
25 to 27

7 is

33
25

<
4
3

<
3
2

<
2
1

<
3
1

<
7
2

<
11
3

<
15
4

<
19
5

<
23
6

<
27
7

.
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5. The multiplicity of a proportionally modular numerical semigroup

In this section we apply the study we have done in the previous sections to give
two algorithms. The first one computes the common ancestor in the Stern-Brocot
tree of two reduced fractions and the second one computes the multiplicity of a
proportionally modular numerical semigroup.

Algorithm 5.1 (To compute the common ancestor).
Input: Two reduced fractions a

b and c
d .

Output: The common ancestor in the Stern-Brocot tree of a
b and c

d .

(1) (a1, b1) = (a, b), (c1, d1) = (c, d), M =
(

0 1
1 0

)
.

(2) If b1 < a1 and d1 < c1, then

(a1, b1) := (a1 − b1, b1), (c1, d1) := (c1 − d1, d1), M := M

(
1 0
1 1

)
and goto 2.

(3) If a1 < b1 and c1 < d1, then

(a1, b1) := (a1, b1 − a1), (c1, d1) := (c1, d1 − a1), M := M

(
1 1
0 1

)
and goto 2.

(4) Return mediant(M), where

mediant
(

m11 m12

m21 m22

)
=

m11 + m12

m21 + m22
.

Proposition 5.2. If m
n is the common ancestor of the reduced fractions a

b < c
d

in the Stern-Brocot tree, then m is the multiplicity of the proportionally modular
numerical semigroup S(

[
a
b , c

d

]
).

Proof. Note only that by Proposition 4.2 the common ancestor of a
b and c

d in
the Stern-Brocot tree is a term of the longest Bézout sequence with decreasing
numerators and left end a

b , and also a term of the longest Bézout sequence with
increasing denominators and right end c

d . Then by Theorem 2.7 the unique Bézout
sequence connecting a

b and c
d has the form

a

b
=

a1

b1
<

a2

b2
< · · · <

ah

bh
=

m

n
< · · · <

ak

bk
=

c

d
,

with
a = a1 ≥ a2 ≥ · · · ≥ ah = m < ah+1 < · · · ak = c.

Furthermore, S(
[

a
b , c

d

]
) = 〈a1, a2, . . . , ah, . . . , ak〉 and then m is the smallest positive

integer that is in the semigroup S(
[

a
b , c

d

]
) which is, by definition, the multiplicity

of the semigroup. �

Algorithm 5.3 (To compute the multiplicity).
Input: Two reduced fractions a

b < c
d .

Output: The multiplicity of the proportionally modular numerical semigroup
S(
[

a
b , c

d

]
).

(1) (a1, b1) = (a, b), (c1, d1) = (c, d), (m1, m2) = (0, 1).
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(2) If b1 < a1 and d1 < c1, then

(a1, b1) := (a1 − b1, b1), (c1, d1) := (c1 − d1, d1), (m1, m2) := (m1 + m2, m2)

and goto 2.
(3) If a1 < b1 and c1 < d1, then

(a1, b1) := (a1, b1 − a1), (c1, d1) := (c1, d1 − c1), (m1, m2) := (m1, m1 + m2)

and goto 2.
(4) Return m1 + m2.

For example, to compute the smallest positive integer that is solution the of the
inequality 50xmod 131 ≤ 3x, we compute the multiplicity of the proportionally
modular numerical semigroup S(

[
131
50 , 131

47

]
). Algorithm 5.3 gives

(1) (a1, b1) = (131, 50) → (81, 50) → (31, 50) → (31, 19) → (12, 19),
(2) (c1, d1) = (131, 47) → (84, 47) → (37, 47) → (37, 10) → (27, 10),
(3) (m1, m2) = (0, 1) → (1, 1) → (2, 1) → (2, 3) → (5, 3).
(4) m1 + m2 = 8.
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Departamento de Álgebra, Universidad de Granada, 18071 Granada, Spain

E-mail address: bullejos@ugr.es
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