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NON-HYPERELLIPTIC MODULAR JACOBIANS
OF DIMENSION 3

ROGER OYONO

Abstract. We present a method to solve in an efficient way the problem of
constructing the curves given by Torelli’s theorem in dimension 3 over the com-
plex numbers: For an absolutely simple principally polarized abelian threefold
A over C given by its period matrix Ω, compute a model of the curve of genus
three (unique up to isomorphism) whose Jacobian, equipped with its canoni-
cal polarization, is isomorphic to A as a principally polarized abelian variety.
We use this method to describe the non-hyperelliptic modular Jacobians of
dimension 3. We investigate all the non-hyperelliptic new modular Jacobians
Jac(Cf ) of dimension 3 which are isomorphic to Af , where f ∈ Snew

2 (X0(N)),
N ≤ 4000.

Introduction

In this article, we consider a 3-dimensional absolutely simple principally polar-
ized abelian variety A defined over the complex numbers. Due to the well-known
results about the moduli space of genus 3 curves, the abelian variety A is isomorphic
to the Jacobian variety of a genus 3 curve C defined over the complex numbers.
Moreover, Torelli’s theorem asserts, with respect to the attached polarization, that
the curve C is unique up to isomorphism. In the generic case, the curve C is
non-hyperelliptic. The problem of determining if the curve C is hyperelliptic or
not was first solved by Poor [28]. His approach consists of testing whether some
even theta constants vanish or not, i.e. the values of Riemann’s theta function at
even 2-torsion points. In the case of hyperelliptic curves, Weber [38, 39] also used
even theta constants to explicitly construct the Rosenhain model of the curve C
with Jac(C) � A. Using only even theta constants seemed natural since Riemann’s
theta function always vanishes at odd 2-torsion points. The first use of odd 2-
torsion points for solving Torelli’s theorem is due to Guàrdia et al. [17, 18, 14],
who used a geometric property of derivatives of the theta function at odd 2-torsion
points. Based on this idea, we present a method to solve the non-hyperelliptic case
of Torelli’s theorem in dimension 3.
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We use this method to describe modular Jacobians of dimension 3. We im-
plemented programs in Magma to determine all 3-dimensional non-hyperelliptic
Q-simple new modular Jacobians of level N ≤ 4000.

In what follows, the objects we are dealing with, when no field is specified, are

defined over C. For instance, � means isomorphic over C, and
Q� means isomorphic

over Q.

1. Preliminaries on non-hyperelliptic curves of genus 3

In the following, let C be a non-hyperelliptic curve of genus 3 defined over an
arbitrary field k and let {ω1, . . . , ωg} be a basis of the space Ω1(C) of holomorphic
differential forms on C. The canonical embedding of C with respect to this basis is
given by

φ : C −→ Pg−1

P �−→ φ(P ) := (ω1(P ) : · · · : ωg(P )) ,

where ω(P ) = f(P ) for any expression ω = fdtP , with f, tP ∈ k(C) and tP a local
parameter at P . The image φ(C) of C by the canonical embedding is a smooth
plane quartic, and conversely any smooth plane quartic is the image by the canonical
embedding of a genus 3 non-hyperelliptic curve. From now on, we restrict ourselves
to smooth plane quartics when we are speaking about non-hyperelliptic curves of
genus 3 and we denote (x1 : x2 : x3) (or sometimes (x : y : z)) the coordinates in
the projective plane P2.

1.1. Dixmier invariants. To classify ternary smooth plane quartics (up to iso-
morphism over C), Dixmier [6] introduced a system I3, I6, I9, I12, I15, I18, I27 of
invariants: For a general ternary quartic given by

g(x, y, z) := a1x
4 + 4a2x

3y + 6a3x
2y2 + 4a4xy3 + a5y

4 + 4a6x
3z + 12a7x

2yz

+12a8xy2z + 4a9y
3z + 6a10x

2z2 + 12a11xyz2 + 6a12y
2z2

+4a13xz3 + 4a14yz3 + a15z
4,

the invariants I3 and I6 may be computed from:

I3(g) :=a1a5a15 + 3
(
a1a

2
12 + a5a

2
10 + a15a

2
3

)
+ 4 (a2a9a13 + a6a4a14 −a1a9a14 − a5a6a13 − a15a2a4) + 6a3a10a12

− 12 (a7a8a11 + a2a11a12 + a6a8a12 + a4a11a10 + a9a7a10 + a13a8a3

+ a14a7a3 − (a7a4a13 + a8a14a2 + a11a6a9 + a3a
2
11 + a10a

2
8 + a12a

2
7)

)
,

and

I6(g) := det

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 a3 a10 a7 a6 a2

a3 a5 a12 a9 a8 a4

a10 a12 a15 a14 a13 a11

a7 a9 a14 a12 a11 a8

a6 a8 a13 a11 a10 a7

a2 a4 a11 a8 a7 a3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

For the definition of the other invariants I9, I12, I15, I18, I27, see [6]. The computa-
tion of I9, I12, I15, I18, I27 via explicit formulae is too exhaustive; for example, the
discriminant I27 has about 50, 000, 000 terms.

The plane quartic C : g(x, y, z) = 0 has genus 3 if and only if the discriminant
I27 �= 0 (see [6]). From the above Dixmier invariants we can deduce the following
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absolute Dixmier invariants:

i1 = I9
3

I27
, i2 = I7

3I6
I27

, i3 = I6
3I9
I27

, i4 = I5
3I12
I27

, i5 = I4
3I15
I27

, i6 = I3
3I18
I27

.

Lemma 1. If two ternary smooth plane quartics C and C ′ are isomorphic, then

ij(C) = ij(C ′) for j = 1, . . . , 6 .

Proof. Let C ′ = Cα with α ∈ GL3(C) and D := det(α) �= 0. From [32] we get the
following relations between Ij and I ′j :

I ′j = (D4)
j
3 · Ij ,

for j = 3, 6, 9, 12, 15, 18, 27. The lemma then follows from the definitions of ij . �
Remark 1.

(i) Recently, Ohno gave a complete system of invariants to classify ternary
smooth plane quartics up to isomorphism [26, 10]. Unfortunately, we be-
came aware of these results only once our computations were done. For
this reason, the Dixmier invariants were used throughout this paper.

(ii) After necessary adjustments, Dixmier-Ohno invariants can be extended to
any field of characteristic different from 2 and 3.

1.2. Shioda’s normal forms. Let C be a smooth plane quartic defined over the
field k. For any point ξ ∈ C(k̄) we denote by Tξ the tangent line to C at ξ. The
intersection divisor (C · Tξ) is of the form

(C · Tξ) = 2ξ + ξ′ + ξ′′

for some ξ′, ξ′′ ∈ C(k̄). The point ξ ∈ C(k̄) is called an ordinary flex (resp. special
flex or hyperflex) if

(C · Tξ) = 3ξ + ξ′ for some ξ′ �= ξ (resp. (C · Tξ) = 4ξ ).

The ordinary and special flexes are exactly the ordinary and special Weierstrass
points of the curve C. The hyperflex of a plane quartic with exactly one hyperflex
has to be rational since it has to be Galois invariant. According to [37], a k-rational
smooth plane quartic with a hyperflex has generically a k-rational flex since the
locus of smooth plane quartics with two or more hyperfexes has codimension one
in the locus of smooth plane quartics with a hyperflex. However, one can find k-
rational families of quartics with at least two hyperflexes which are not defined over
k. For instance, the roots in k̄ of the irreducible degree four polynomial f(x) ∈ k[x]
provide hyperflexes (not defined over k) of the curve with affine model y4 = f(x).

In what follows, we say that the pair (C, ξ) is defined over k if C is a curve
defined over k and ξ a k-rational flex of C. In the case of smooth plane quartics we
have the following propositions:

Proposition 1 ([35]). Let k be an arbitrary field of characteristic �= 3. Given
a plane quartic with an ordinary flex (C, ξ) defined over k, there is a coordinate
system (x, y, z) of P2 such that (C, ξ) is given by

C : 0 = y3z + y(p0z
3 + p1z

2x + x3) + q0z
4 + q1z

3x + q2z
2x2 + q3zx3 + q4x

4,(1)

ξ = (0 : 1 : 0), Tξ : z = 0.

Moreover, the parameter

λ = (p0, p1, q0, q1, q2, q3, q4) ∈ k7
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is uniquely determined up to the equivalence
λ = (pi, qj) ∼ λ′ = (p′

i, q
′
j) ⇐⇒ p′

i = u6−2ipi, q′j = u9−2jqj , (i = 0, 1, j = 0, 1, . . . , 4)

for some u �= 0.

Proposition 2 ([35]). Let k be an arbitrary field of characteristic �= 2, 3. Given a
plane quartic with a special flex (C, ξ) defined over k, there is a coordinate system
(x, y, z) of P2 such that (C, ξ) is given by

C : 0 = y3z + y(p0z
3 + p1z

2x + p2zx2) + q0z
4 + q1z

3x + q2z
2x2 + x4,(2)

ξ = (0 : 1 : 0), Tξ : z = 0.

Moreover, the parameter

λ = (p0, p1, p2, q0, q1, q2) ∈ k6

is uniquely determined up to the equivalence
λ = (pi, qj) ∼ λ′ = (p′

i, q
′
j) ⇐⇒ p′

i = u8−3ipi, q′j = u12−3jqj , (i, j = 0, 1, 2)

for some u �= 0.

A curve with an equation of the form (1) or (2) is called a normal form and we
denote it by Cξ. Indeed, a flex of a plane quartic is generically an ordinary flex.
The coefficient q4 in the normal form (1) is generically different from 0. In this case
we can uniquely normalize Cξ by letting q4 = 1. Even if q4 = 0, it is always possible
to describe (C, ξ) by a unique normal form Cξ. If, for instance, ξ is an ordinary
flex and q4 = 0, p1, q3 �= 0, then by choosing u = q3

p1
we then have a unique normal

form

0 = y3z + y(p′0z
3 + p′1z

2x + x3) + q′0z
4 + q′1z

3x + q′2z
2x2 + q′3zx3,

where p′1 = q′3.
With this argumentation, we were able to compute up to a certain precision a

Q-rational model of the curve XD
369 from a Riemann model over C (see Example 1

in Section 4):

XD
369 : 0 =y3z + y(x3 − 2

2187
xz2 − 22

1594323
z3)

− 2
2187

x3z +
1

19683
x2z2 +

10
4782969

xz3 +
151

10460353203
z4 .

Note that one cannot view λ in the above propositions as a set of invariants for
the curve C since λ depends on the flex ξ under consideration.

2. Modular Jacobians and modular curves

Let N > 2 be an integer and X0(N) the associated modular curve of genus g.
Let S2(N) be the set of cusp forms of weight 2 for the Hecke subgroup Γ0(N).

The map
ω : S2(N) −→ Ω1(X0(N)), f(τ ) �−→ 2πif(τ )dτ

induces an isomorphism between the vector spaces S2(N) and Ω1(X0(N)).
If M |N and d| N

M , then z �→ d · z induces a morphism X0(N) −→ X0(M), which
also induces morphisms S2(M) −→ S2(N) and J0(M) −→ J0(N), where J0(N) :=
Jac(X0(N)). The old subspace Sold

2 (N) of S2(N) is defined as the sum of the images
of all such maps S2(M) −→ S2(N) for all d and M such that M |N, M �= N and
d| N

M . Similarly, we define the old subvariety J0(N)old of J0(N). Let Snew
2 (N) be the

orthogonal complement to Sold
2 (N) with respect to the Petersson inner product in
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S2(N). For n ≥ 1 with gcd(N, n) = 1, there exist correspondences Tn on X0(N),
which induce endomorphisms of S2(N) and of J0(N) known as Hecke operators,
also denoted by Tn. There exists a unique basis of Snew

2 (N) consisting of eigenforms
with respect to all the Tp (for gcd(N, p) = 1), i.e. cusp forms f = q +

∑
i≥2 aiq

i

such that Tn(f) = anf whenever gcd(n, N) = 1. The elements of this basis are
called newforms of level N. Given the newform f = q +

∑
i≥2 aiq

i, let Kf = Q(an)
be the real algebraic number field generated by the coefficients an of f, let If =
{σ1, . . . , σd} be the set of all isomorphisms of Kf into C, and let {fσ1 , . . . , fσd} be
the complete set of newform conjugates to f over Q. Shimura [33, 34] attached to the
newform f ∈ Snew

2 (N) a subvariety Af of J0(N) defined over Q with the following
properties: Af is a simple factor of J0(N)new over Q, dim(Af ) = d and Ω1(Af ) �∑

σ∈If
Cω(fσ). Furthermore, Af is absolutely simple if f does not admit a twist,

in particular, Af is absolutely simple for square-free module N. The definition of
Af directly implies the existence of a surjective morphism

πf : J0(N)new �� �� Af .

Let BM be a basis of non-conjugate newforms. Then

J0(N)new Q∼
∏

f∈BN

Af and J0(N)old Q∼
∏

M |N,M �=N

∏
f∈BM

A
σ0(

N
M )

f ,

where σ0(n) denotes the number of positive divisors of n.

Definition 1 ([13, 2]). An abelian variety A over Q is said to be Q-modular of
level N, if there exists a surjective Q-morphism

ν : J0(N) �� �� A .

In that case, we say that A is new (of level N), if there exists a Q-morphism

ν̄ : J0(N)new �� �� A .

The following diagram is then commutative:

J0(N)
prnew

�� ������������
ν �� �� A

J0(N)new

ν̄

�� ������������

Definition 2 ([13, 2]). A non-singular curve C defined over Q is said to be Q-
modular of level N, if there exists a non-constant Q-morphism

π : X0(N) �� �� C .

The curve C is then said to be new of level N if its Jacobian Jac(C) is new of
level N.
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For a modular curve C, the following diagram commutes:

J0(N)
π∗ �� �� Jac(C)

X0(N)
��

��

π �� �� C
��

��

The modularity of the Jacobian does not imply (in general) the modularity of
the corresponding curve (cf. [13, section 7]).

The well-known results of Wiles et al. [41, 36] about (new) modular elliptic
curves (over Q) implies that there are infinitely many new modular curves of genus
1. In contrast to new modular curves of genus 1, for each g ≥ 2 the set of new
modular curves of genus g (up to isomorphism) over Q is finite and computable [2],
and in the case of genus 2, [2, 13] provide a complete list of new modular curves.

3. Explicit version of Torelli’s theorem in dimension 3

3.1. Abelian varieties over C. An abelian variety A of dimension g defined over
the complex numbers can be viewed as a pair (Cg/Λ, E) where Λ is a full Z-lattice
in Cg and E is a non-degenerate Riemann form on the lattice Λ. The Riemann
form E induces a polarization on Λ. The abelian variety A is principally polarized
if there exists a symplectic basis {λ1, . . . , λ2g} of Λ, such that the Riemann form E
with respect to this basis has the following representation:

(Eij) := (E(λi, λj))1≤i,j≤2g =
(

0 Eg

−Eg 0

)
.

If the polarization is principal, the lattice Λ = Ω1Zg +Ω2Zg is isomorphic to the
lattice Zg + ΩZg, where Ωi := (λ1+(i−1)g, . . . , λg+(i−1)g) ∈ Cg×g and Ω := Ω−1

2 Ω1.
The period matrix Ω of A is in the Siegel upper half-plane

Hg :=
{
z ∈ Cg×g : zt = z,	m(z) > 0

}
and the symplectic group

Sp(2g, Z) :=
{

γ =
(

A B
C D

)
∈ GL(2g, Z)| γtJγ =J where J :=

(
0 Eg

−Eg 0

)}

acts on Cg × Hg by

γ(z, Ω) := ((CΩ + D)−1z, (AΩ + B)(CΩ + D)−1).

The period matrix of the principally polarized abelian variety A and the cosets
Sp(2g, Z)Ω represent the isomorphy class of A in Sp(2g, Z) \ Hg.

The set of 2-torsion points A[2] of A, i.e. the kernel of the isogeny

[2] : A −→ A, a �−→ 2a

is given by

A[2] =
{

zm =
1
2
Ωδt +

1
2

εt
∣∣ m =

[
δ
ε

]
with δ, ε ∈ Zg mod 2Zg

}
.

The 2-torsion point zm is said to be even (resp. odd) if δεt ≡ 0 mod 2 (resp.
δεt ≡ 1 mod 2).
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The Jacobian variety of a genus g curve C defined over the complex numbers is
principally polarized.

Let us denote by Cd the d-fold symmetric product of C, which can be identified
with the set of effective divisors of degree d on C and by Π the normalized degree
g−1 Abel-Jacobi map, Π : Cg−1 −→ Jac(C), whose image Π(Cg−1) is precisely the
theta divisor Θ, i.e. the zero locus of Riemann theta function

θ(z, Ω) :=
∑

n∈Zg

exp(πi(nΩnt + 2nz)).

To the analytic theta characteristic
[
δ
ε

]
with δ, ε ∈ Zg mod 2Zg, we will attach

the holomorphic theta function

θ

[
δ
ε

]
: Cg × Hg −→ C

defined by

θ

[
δ
ε

]
(z, Ω) :=

∑
n∈Zg

exp
(

πi

(
(n +

1
2
δ)Ω(n +

1
2
δ)t + 2(n +

1
2
δ)(z +

1
2
εt)

))

= exp
(

πi

4
δΩδt + πiδ(z +

εt

2
)
)
· θ

(
z +

1
2
Ωδt +

εt

2
, Ω

)
.

The map

(Zg mod 2Zg)2 −→ Jac(C)[2], m =
[
δ
ε

]
�−→ zm :=

1
2
Ωδt +

εt

2

is a bijection between the set of analytic theta characteristics and the set of 2-torsion
points of Jac(C).

The functions

θ

[
δ
ε

]
(0, Ω) : Hg −→ C

are called theta constants and are said to be even, if δεt ≡ 0 (mod 2) and odd
otherwise. All the odd theta constants vanish due to the fact that

θ

[
δ
ε

]
(−z, Ω) = (−1)δεt

θ

[
δ
ε

]
(z, Ω).

They are exactly 2g−1(2g + 1) even and 2g−1(2g − 1) odd theta constants.
The choice of the basis ω1, . . . , ωg of the space of holomorphic differential forms

on C provides the canonical map from C to Pg−1, given by

φ : C −→ Pg−1

P �−→ φ(P ) := (ω1(P ) : · · · : ωg(P )).

Note that if the curve and the differentials are all defined over the same number
field K, then the canonical map is also defined over K. The following result relates
the canonical images of certain divisors with their images through the Abel-Jacobi
map:
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Proposition 3 ([17]). Let P1, . . . , Pg−1 ∈ C(K̄) such that the divisor D = P1 +
· · · + Pg−1 satisfies l(D) = 1. The equation:

(3) HD(X1, . . . , Xg) :=
(

∂θ

∂z1
(Π(D)), . . . ,

∂θ

∂zg
(Π(D))

)
Ω−1

1

⎛
⎜⎝

X1

...
Xg

⎞
⎟⎠ = 0

determines a hyperplane HD of Pg−1 which cuts the curve φ(C) on the divisor φ(D).

3.2. Explicit version of Torelli’s theorem in dimension 3. An isomorphism
between principally polarized abelian varieties (A1, E1) and (A2, E2) is an iso-
morphism between the varieties A1 and A2 which conserves the polarization (i.e.
transforms E1 into E2). An isomorphism between two curves C1 and C2 induces
(up to translation) an isomorphism between their (principally polarized) Jacobians
Jac(C1) and Jac(C2). Furthermore, Torelli’s theorem [40] asserts that the Jacobian
Jac(C) with its principal polarization E determines the curve C up to isomorphism:
If (Jac(C), E) and (Jac(C ′), E′) are isomorphic as principally polarized abelian va-
rieties, then the curve C and C ′ are also isomorphic. By Torelli’s theorem the
curve C is completely determined by its principally polarized Jacobian Jac(C). If
we just consider Jac(C) only as an unpolarized abelian variety, then there could
exist a curve C ′ non-isomorphic to C but with the same unpolarized Jacobian
[20, 21, 11, 19].

The following theorem holds in the case of absolutely simple principally polarized
abelian variety of dimension 3:

Theorem 1. An absolutely simple principally polarized abelian variety of dimension
3 over the complex numbers is the Jacobian of a genus 3 curve. This curve is unique
up to isomorphism.

In the following we are interested in finding an efficient algorithmic method to
make Torelli’s theorem explicit in dimension 3:

For a given absolutely simple principally polarized abelian variety A of dimension
3 given by its normalized period matrix Ω, decide if A is the Jacobian of a hyper- or
a non-hyperelliptic curve C of genus 3, and if so find the equation of such a curve.

The following theorem gives us an answer to this decisional problem, whether
the curve C (in Torelli’s theorem) is hyperelliptic or non-hyperelliptic:

Theorem 2. Let Ω ∈ H3 be a period matrix of an absolutely simple principally
polarized abelian variety of dimension 3. Then

(1) Ω is hyperelliptic if and only if exactly one even theta constant vanishes in
Ω.

(2) Ω is non-hyperelliptic if and only if no even theta constant vanishes in Ω.

A non-hyperelliptic curve of genus 3 defined over a field of characteristic different
from 2 has exactly 28 different bitangents, where bitangents are lines l, such that the
intersection divisor (l ·C) is of the form 2P +2Q for some (not necessarily distinct)
points P, Q of C. There is a canonical bijection between the set of bitangents and
the set of odd 2-torsion points of the Jacobian Jac(C) (see [16]). Due to Proposition
3, the bitangent associated to the odd 2-torsion point z0 is given by the line with
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equation:

(4)
(

∂θ

∂z1
(z0),

∂θ

∂z2
(z0),

∂θ

∂z3
(z0)

)
Ω−1

1

⎛
⎝ x1

x2

x3

⎞
⎠ = 0.

Definition 3 ([7]). Let S = ([εi])i=1,...,7 be a subset of characteristics. The subset
S is called a principal set if

(i) every odd characteristic can be written as [εi] or [εi] + [εj ] , i �= j, and
(ii) every even characteristic can be written as [0] or [εi] + [εj ] + [εk] , with

distinct i, j, k.

In the following we use the canonically principal system S := ([εi])i=1,...,7 where

ε1 =
[

0 0 1
1 0 1

]
ε2 =

[
0 1 1
1 1 0

]
ε3 =

[
0 1 0
1 1 1

]
ε4 =

[
1 1 1
0 0 1

]

ε5 =
[

1 0 0
1 0 0

]
ε6 =

[
1 0 1
0 1 1

]
ε7 =

[
1 1 0
0 1 0

]
.

We denote by βi the bitangent associated to [εi] and by βij the bitangent associ-
ated to [εi] + [εj ]. The set (βi) forms an Aronhold system, i.e. a set of bitangents
with the property, that the intersection points (with the quartic) of three arbitrary
bitangents in this set are never on a conic [7].

After performing some adequate linear transformations, we may suppose

(5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1 : x1 = 0, β5 : a1x1 + a2x2 + a3x3 = 0,

β2 : x2 = 0, β6 : a′
1x1 + a′

2x2 + a′
3x3 = 0,

β3 : x3 = 0, β7 : a′′
1x1 + a′′

2x2 + a′′
3x3 = 0,

β4 : x1 + x2 + x3 = 0.

It is well known as a classical result since the first work of Riemann [30], how
to construct a quartic for which the (βi)i=1,...,7 are one of its Aronhold systems.
Recently, Caporaso and Sernesi [4] as well as Lehavi [22, 23] proved that such
a quartic is uniquely determined by the set of the 7 bitangents (βi)i=1,...,7. In
the following theorem, we describe the Riemann construction in order to find the
equation of a plane quartic with given bitangents associated to a principal system
(cf. [31]):

Theorem 3 (Riemann, [30]). The curve C is isomorphic to the quartic (which we
call a Riemann model)

(6)
√

x1v1 +
√

x2v2 +
√

x3v3 = 0,

where v1, v2, v3 satisfy⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1 + v2 + v3 + x1 + x2 + x3 = 0,
v1
a1

+ v2
a2

+ v3
a3

+ ka1x1 + ka2x2 + ka3x3 = 0,
v1
a′
1

+ v2
a′
2

+ v3
a′
3

+ k′a′
1x1 + k′a′

2x2 + k′a′
3x3 = 0,

v1
a′′
1

+ v2
a′′
2

+ v3
a′′
3

+ k′′a′′
1x1 + k′′a′′

2x2 + k′′a′′
3x3 = 0,
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with k, k′, k′′ solutions of⎛
⎜⎝

1
a1

1
a′
1

1
a′′
1

1
a2

1
a′
2

1
a′′
2

1
a3

1
a′
3

1
a′′
3

⎞
⎟⎠

⎛
⎜⎝

λ

λ′

λ′′

⎞
⎟⎠ =

⎛
⎜⎝

−1
−1
−1

⎞
⎟⎠ ,

⎛
⎝ a1 a′

1 a′′
1

a2 a′
2 a′′

2

a3 a′
3 a′′

3

⎞
⎠

⎛
⎝ λk

λ′k′

λ′′k′′

⎞
⎠ =

⎛
⎝ −1

−1
−1

⎞
⎠ .

The 28 bitangents can be expressed through the following equations:

β1 : x1 = 0, β2 : x2 = 0, β3 : x3 = 0,
β23 : v1 = 0, β13 : v2 = 0, β12 : v3 = 0,

β4 : x1 + x2 + x3 = 0, β5 : a1x1 + a2x2 + a3x3 = 0,
β6 : a′

1x1 + a′
2x2 + a′

3x3 = 0, β7 : a′′
1x1 + a′′

2x2 + a′′
3x3 = 0,

β14 : v1 + x2 + x3 = 0, β15 : v1
a1

+ ka2x2 + ka3x3 = 0,

β16 : v1
a′
1

+ k′a′
2x2 + k′a′

3x3 = 0, β17 : v1
a′′
1

+ k′′a′′
2x2 + k′′a′′

3x3 = 0,

β24 : x1 + v2 + x3 = 0, β25 : ka1x1 + v2
a2

+ ka3x3 = 0,

β26 : k′a′
1x1 + v2

a′
2

+ k′a′
3x3 = 0, β27 : k′′a′′

1x1 + v2
a′′
2

+ k′′a′′
3x3 = 0,

β34 : x1 + x2 + v3 = 0, β35 : ka1x1 + ka2x2 + v3
a3

= 0,

β36 : k′a′
1x1 + k′a′

2x2 + v3
a′
3

= 0, β37 : k′′a′′
1x1 + k′′a′′

2x2 + v3
a′′
3

= 0,

β67 : x1
1−ka2a3

+ x2
1−ka3a1

+ x3
1−ka1a2

= 0,

β57 : x1
1−k′a′

2a′
3

+ x2
1−k′a′

3a′
1

+ x3
1−k′a′

1a′
2

= 0,

β56 : x1
1−k′′a′′

2 a′′
3

+ x2
1−k′′a′′

3 a′′
1

+ x3
1−k′′a′′

1 a′′
2

= 0,

β45 : v1
a1(1−ka2a3)

+ v2
a2(1−ka3a1)

+ v3
a3(1−ka1a2)

= 0,

β46 : v1
a′
1(1−k′a′

2a′
3)

+ v2
a′
2(1−k′a′

3a′
1)

+ v3
a′
3(1−k′a′

1a′
2)

= 0,

β47 : v1
a′′
1 (1−ka′′

2 a′′
3 ) + v2

a′′
2 (1−k′′a′′

3 a′′
1 ) + v3

a′′
3 (1−k′′a′′

1 a′′
2 ) = 0.

Remark 2. By Riemann’s notation
√

x1v1 +
√

x2v2+
√

x3v3 = 0, we mean the plane
quartic with equation (x1v1 + x2v2 − x3v3)2 − 4x1x2v1v2 = 0.

Let A be an absolutely simple principally polarized abelian variety of dimension
3 given by its torus representation A = C3/(Ω1Z3 + Ω2Z3) with Ω := Ω−1

1 Ω2 ∈ H3.
The following procedure could be used to reconstruct the equation of the Riemann
model of a plane quartic C/C with Jac(C) � A:

(i) From the computation of the 36 even theta constants given by A, we decide
if A is the Jacobian of a non-hyperelliptic curve C using Theorem 2.

(ii) If A � Jac(C) for a non-hyperelliptic curve C, then we can efficiently com-
pute the derivatives of the theta function evaluated at odd 2-torsion points
zεi

(εi ∈ S). With (4), we then compute the equations of the 7 bitangents
βi of the Aronhold system S.

(iii) Using linear transformations, we rewrite the 7 bitangents βi associated to
[εi]i=1...,7 in the form given in (5). With Theorem 3 it is an easy task to
compute the equation of the Riemann model of a curve C/C with Jac(C) �
A.
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Remark 3. For a genus 3 non-hyperelliptic curve C defined over a field k of char-
acteristic different from 2, the field of definition k′ of the 28 bitangents of C is
exactly the field of definition of the odd 2-torsion points of its Jacobian, so the
maximal degree of the extension k′/k is the order of Sp6(F2) which is equal to
1451520 = 28 · 27 · 10 · 8 · 6 · 4 (cf. [24]). This maximal degree occurs generically for
curves defined over Q. In order to obtain an equation defined over smaller fields
extension, it is more appropriate to study models arising from Shioda’s transforma-
tions which lead to equations defined over an extension k′′ of k of maximal degree
24.

4. Non-hyperelliptic modular Jacobians of dimension 3

Our goal in this section is to apply the method described in the previous sec-
tion to describe all the principally polarized 3-dimensional abelian varieties Af of
J0(N)new, N ≤ 4000, which are Jacobian of non-hyperelliptic curves of genus 3.

As an optimal quotient of the Jacobian of X0(N), the abelian variety Af has
a natural polarization induced by the canonical polarization defined on the Jaco-
bian J0(N). We will consider this natural polarization Hf on Af to check if Af

is principally polarized. The computations for Af were performed in Magma [25]
using the package Mav [15] written by González-Jiménez and Guàrdia. We are
then able to test if the polarization Hf is principal, and we can also compute the
period matrix Ωf relative to the polarization Hf . After computing theta constants,
we use the method described in the previous section to compute (in the case that
Af is absolutely simple) the equation of a curve Cf such that Jac(Cf ) � Af . In our
computations, we had to use the first 20, 000 Fourier coefficients of the newform
f ∈ Snew

2 (N) to reach the precision required to find rational Dixmier invariants.
For more technical details on the precision of our computations (of the Riemann
model and the associated Dixmier invariants) see [27].

We looked at all the abelian varieties Af of J0(N)new with N ≤ 4000. Table 1
provides the number of abelian varieties Af which are principally polarized, hy-
perelliptic, and non-hyperelliptic modular Jacobians of dimension 3. These results
are not surprising, indeed a generic curve of genus 3 is non-hyperelliptic and the
moduli space of hyperelliptic curves of genus 3 has codimension 1 in the moduli of
curves of genus 3.

Table 1. Principally polarized Af with dim Af = 3 and N ≤ 4000

#Af 3334
# p.p. Af 79
# p.p. and hyperelliptic Af 12
# p.p. and non-hyperelliptic Af 67

Unfortunately, numerical evidence indicates that the models are, in general, not
defined over Q. The Dixmier invariants are defined over Q as expected. However,
it is a difficult task to solve the following problem:

From a complete set of given Dixmier-Ohno invariants {i1, . . . , i12} defined over
a field k, compute a model of a smooth plane quartic C defined over the same field
k which has exactly these invariants.
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However, if modular Jacobians are also expected (as in [14, 12]) to be described
by curves with small integer coefficients, we may try to compute the equations of
such models by brute force.

For the special case of modular Jacobians Af � Jac(Cf ) which admit a model
Crat defined over Q with a Q-rational flex, we can use the following deterministic
algorithm to compute such a Q-rational equation:

(i) Compute all the 24 flexes ξ1, . . . , ξ24 of Cf .
(ii) For each ξj , compute the unique Shioda normal form Cξj

relative to (C, ξj).
(iii) The curve (Cf , ξ) admits a Q-rational model if and only if one of the above

equations Cξj
has only Q-rational coefficients.

In fact, this method gives us an efficient algorithm to test (and compute) if a given
curve C/C admits a model (C, ξ) defined over Q. With this algorithm we are also
able to determine the structure of the automorphism group Aut(C) of C : An
automorphism ϕ �= Id of C fixes at most 2g − 2 = 8 points of C, i.e. ϕ cannot act
trivially on the set of Weierstrass points of C. The normal forms Cξ1 and Cξ2 at two
distinct Weierstrass points ξ1, ξ2 are equal if and only if ξ1 = ξϕ

2 for a ϕ ∈ Aut(C).
In the following, we label the genus 3 curves coming from Q-simple new modular

Jacobians Af of level N by XA
N , where N denotes the level of XA

N and the letter A
denotes the position with respect to the ordering given as output of the Magma-
function SortDecomposition.In the appendix (see Table 6) we listed out all Q-
simple quotients Af of J0(N)new with N ≤ 600, as well as their Dixmier invariants.
In the thesis of the author [27], this table was extended to N ≤ 4000.

Remark 4. As an abelian variety of the GL2-type, the abelian variety Af has
exactly 2M isomorphic classes of principal polarizations over Q, where 0 ≤ M ≤
[Kf : Q]−1 (see [11]). We only studied Af with respect to its canonical polarization
Hf . However, it is clear that another non-isomorphic principal polarization Pf of
the absolutely simple variety Af should give a non-isomorphic model C ′ for which
the Jacobians Jac(C) and Jac(C ′) are both isomorphic to Af as unpolarized abelian
varieties. It is also possible to have non-hyperelliptic curves and hyperelliptic curves
of genus 3 whose Jacobians are (as unpolarized abelian varieties) isomorphic to Af ,
f ∈ Snew

2 (N).

To conclude, we illustrate our algorithm with the following example.

Example 1. Let N = 369 = 32 · 41 and f be the newform in Snew
2 (369) with

Fourier expansion

f = q + aq2 + (a2 − 2)q4 + (−a − 2)q5 + (−a2 − a + 2)q7 + (−2a2 − 2a + 2)q8 + O(q10),

where a3 + 2a2 − 2a− 2 = 0. The modular abelian variety Af is absolutely simple
(it can be checked using Magma that the newform f has no CM1 and thus Af

is absolutely simple (cf. [12])). Furthermore, Af is isomorphic to a torus which
has a symplectic basis {λ1, . . . , λ6} such that the intersection pairing Hf has the
representation

(Hf (λi, λj))1≤i,j≤6 =
(

0 ∆f

−∆f 0

)
∈ Z6×6

1The newform f = q +
∑

i≥2 aiq
i ∈ Snew

2 (N) has complex multiplication (CM) if there exists

a non-trivial character χ of Gal(Q, Q) such that ap = χ(p)ap for all primes p not dividing N .
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with diagonal matrix

∆f = 8 · Id ,

that means, Af is a principally polarized abelian variety, which has the torus rep-
resentation C3/(Z3 + ΩfZ3) with period matrix

Ωf =
(

0.55467 · · · + 3.07521 . . . i −0.79883 · · · + 0.11922 . . . i 0.85186 · · · + 0.79061 . . . i
−0.79883 · · · + 0.11922 . . . i 0.74004 · · · + 0.43861 . . . i −0.04497 · · · − 0.32299 . . . i

0.85186 · · · + 0.79061 . . . i −0.04497 · · · − 0.32299 . . . i 0.65132 · · · + 0.97328 . . . i

)
.

Using Theorem 1, there is a curve Cf of genus 3 with Af � Jac(Cf ). Straightforward
computations with an appropriate precision for computations over the complex field
show that no even theta constant vanishes and Theorem 2 implies that Cf is non-
hyperelliptic. By equation (4), the bitangents associated to the canonical Aronhold
system S = (εi) (cf. page 1181) have the equations

β1 : 0 = x − (1.62009 · · · − 0.88123 . . . i)y + (0.60794 · · · − 1.09289 . . . i)z ,

β2 : 0 = x − (1.62009 · · · + 0.88123 . . . i)y + (0.60794 · · · + 1.09289 . . . i)z ,

β3 : 0 = x − (1.18597 · · · − 0.01375 . . . i)y + (0.07649 · · · + 0.00738 . . . i)z ,

β4 : 0 = x − (0.13444 · · · − 0.32339 . . . i)y + (0.79703 · · · − 0.39889 . . . i)z ,

β5 : 0 = x + (2.88498 · · · + 2.57527 . . . i)y + (2.95024 · · · − 6.21143 . . . i)z ,

β6 : 0 = x + (0.02710 · · · + 0.18672 . . . i)y + (0.75712 · · · − 0.74717 . . . i)z ,

β7 : 0 = x + (0.90241 · · · − 1.65452 . . . i)y − (2.06151 · · · + 1.61189 . . . i)z ,

which become

β1 : 0 = x ,

β2 : 0 = y ,

β3 : 0 = z ,

β4 : 0 = x + y + z ,

β5 : 0 = x + (0.99571 · · · + 0.01530 . . . i)y + (0.99050 · · · − 0.00242 . . . i)z ,

β6 : 0 = x + (0.99999 · · · + 0.00218 . . . i)y + (0.99655 · · · + 0.00029 . . . i)z ,

β7 : 0 = x + (1.00406 · · · + 0.01543 . . . i)y + (0.98864 · · · − 0.00065 . . . i)z ,

after performing the adequate linear transformations.
Using Theorem 3, we compute the Riemann model for the canonical embedding

of Cf , and obtain

Cf : (xv1 + yv2 − zv3)2 = 4xyv1v2 ,

where

v1 = (2.41739 · · · + 0.67174 . . . i)x + (1.39123 · · · + 0.65332 . . . i)y + (1.40882 · · · + 0.65261 . . . i)z ,

v2 = −(1.55957 · · · + 0.16076 . . . i)x − (0.52956 · · · + 0.15658 . . . i)y − (1.54558 · · · + 0.14781 . . . i)z ,

v3 = −(1.85781 · · · + 0.51098 . . . i)x − (1.86167 · · · + 0.49673 . . . i)y − (0.86323 · · · + 0.50480 . . . i)z .

Up to a certain precision, the curve Cf has the Q-rational Dixmier invariants

i1 = 79

244·318·413 , i2 = −77·97
248·321·413 ,

i3 = 76·6353
236·316·413 , i4 = 75·73·31337

236·318·413 ,

i5 = 74·43·4662331
234·315·413 , i6 = −73·1307·1601·5303

232·316·413 .
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We note that by using Shioda’s transformations at the ordinary flex

ξ = (0.60900 · · · − 0.79316 . . . i : −1.62391 · · · + 0.77629 . . . i : 1)
with tangent line
Tξ : 0 = −(0.03895 · · · + 0.02027 . . . i)x − (0.03870 · · · + 0.01924 . . . i) − (0.03799 · · · + 0.01975 . . . i)z

we obtain the model
C′

f : 0 = y3z + y(x3 − 9, 14494 . . . 10−4xz2 − 1.37989 . . . 10−5z3) − 9, 14494 . . . 10−4x3z

+5.08052 . . . 10
−5

x
2
z
2

+ 2.09075 . . . 10
−6

xz
3

+ 1.44354 . . . 10
−8

z
4

,

which is, up to a certain precision, the Q-rational curve with the equation

0 = y3z + y(x3 −
2

2187
xz2 −

22

1594323
z3) −

2

2187
x3z +

1

19683
x2z2 +

10

4782969
xz3 +

151

10460353203
z4 .

For some modular Jacobians, we get additional bad reductions for the curve Cf at
some primes p not dividing the level N. For all the modular Jacobians Jac(Cf ) � Af

of level N ≤ 4000, whenever this phenomenon appears, the discriminant of the
smooth plane quartic Cf always admits a factor p14 at such primes p (cf. Appendix).
At this time, the author cannot give a reasonable explanation for this phenomenon.

5. Conclusion

Initially, our intention behind the computation of the equations of genus 3 non-
hyperelliptic new modular curves with Q-simple Jacobian was based on their pre-
sumably attractive application to cryptosystems based on the discrete logarithm
problem (DLP) on finite abelian groups. Generically, the fact that a curve C is
secure lies on the fact that the group order #Jac(C)(Fq) has a large prime divisor.
The computation of #Jac(C)(Fq) is thus an important milestone for testing the se-
curity of those cryptosystems. From this point of view, modular Jacobians provided
attractive groups for the DLP. Then by using the characteristic polynomials χTp

of the Hecke operators Tp acting on the Tate module of Af , the Eichler-Shimura
relation enables us to compute #Af (Fp) at primes p with good reduction by

#Af (Fp) = χTp
(p + 1).

Moreover, there exists fast algorithms for performing the group law on the Jaco-
bians of non-hyperelliptic curves of genus 3 (see [8, 9, 3, 29]). Meanwhile, Diem
and Thomé [5] provided a method to solve the DLP on Jacobians of smooth plane
quartics which has an heuristic complexity of Õ(q), where q is the number of ele-
ments of the finite field Fq; this attack makes the use of non-hyperelliptic curves of
genus 3 in comparison to other cryptosystem (ECC and HECC see for example [1])
at this time no longer competitive. In fact, the size of the parameters should then
be enlarged by about 50% (i.e. q ≈ 281) to maintain the security level.
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6. Appendix: Table of non-hyperelliptic new modular Jacobian

Af of J0(N)new, N ≤ 600

curves Dixmier invariants

XA
97 i1 = −239

253·327·973

i2 = 52·237

257·329·973

i3 = 236·109
239·324·973

i4 = −235·106649
237·325·973

i5 = 7·13·234·29·47
232·323·973

i6 = 7·233·4446899
229·322·973

XB
109 i1 = 119

253·327·1093

i2 = 117·472

257·329·1093

i3 = 116·101·1259
243·324·1093

i4 = 115·5894347
240·325·1093

i5 = 115·5087·10889
237·323·1093

i6 = 5·113·39330808093
236·322·1093

XC
113 i1 = −1

253·327·1133

i2 = 13·61
257·329·1133

i3 = −19·23·269
243·324·1133

i4 = −836063
239·325·1133

i5 = 5·13·38562143
237·3231133

i6 = −11·37·62711911
236·322·1133

XA
127 i1 = 719

253·327·1273

i2 = −43·717·139
257·329·1273

i3 = 7·716·13933
240·3241273

i4 = −7·715·23840251
241·325·1273

i5 = 13·714·1336920521
238323·1273

i6 = 53·713·607·3251·26681
236·322·1273

XB
139 i1 = −179

253·327·1393

i2 = 13·177·349
257·3291393

i3 = −7·176·41·367
243·324·1393

i4 = −7·175·2835667
240·325·1393

i5 = 5·7·175·383·12161
234·323·1393

i6 = 7·11·173·53·149854519
236·322·1393

curves Dixmier invariants

XA
149 i1 = 839

253·327·1493

i2 = 837·1823
257·329·1493

i3 = 5·836·239·947
241·324·1493

i4 = 835·432110321
241·325·1493

i5 = 7·834·236140337759
238·323·1493

i6 = 5·7·17·23·833·239·853·58049
236·322·1493

XA
151 i1 = 79

253·327·1513

i2 = −77·17·617
257·329·1513

i3 = 76·23·251·577
243·324·1513

i4 = 75·11·1621·5087
240·325·1513

i5 = −74·31·37·113·587·6733
237·323·1513

i6 = 73·38767·945648167
236·322·1513

XB
169 i1 = 518

253·327·136

i2 = −514·7·79
257·329·136

i3 = 512·155887
243·324·136

i4 = 510·11·216829
239·325·136

i5 = 58·131·463·69847
237·323·136

i6 = 58·89·162518641
236·322·136

XB
179 i1 = −179

253·327·1793

i2 = 178·89
257·329·1793

i3 = 53·13·177

241·324·1793

i4 = −7·176·89·227
241·325·1793

i5 = 175·41·2478937
238·323·1793

i6 = −173·36829407137
236·322·1793

XE
187 i1 = 79

244·327·113·174

i2 = −77·59
248·329·113·173

i3 = 5·76·157·283
235·324·113·174

i4 = −75·13·16456963
236·325·113·174

i5 = 74·111770067821
234·323·113·174

i6 = −73·37·131·181·101419
232·322·113·174
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curves Dixmier invariants

XF
203 i1 = 74·179

253·327·293

i2 = 53·72·177·283
257·329·293

i3 = 5·7·176·353·29327
243·324·293

i4 = 72·175·487·216577
240·325·293

i5 = 174·6737·8849·359417
236·323·7·293

i6 = 173·149·131679238350523
236·322·72·293

XA
217 i1 = 59·2279

253·355·73·313

i2 = −58·2277·342821
257·357·73·313

i3 = 56·2276·439·3871663
239·352·73·313

i4 = 55·19·113·2275·3181·4410097
241·353·73·313

i5 = 54·2274·3264116968231423459
238·351·73·313

i6 = 53·2273·11320571·514794731537767
236·350·73·313

XA
239 i1 = 59·79

253·327·2393

i2 = −57·77·433
257·329·2393

i3 = −56·76·43963
239·324·2393

i4 = −55·75·509·112481
241·325·2393

i5 = −54·74·27827·3496799
238·323·2393

i6 = −54·73·68503144613
236·322·2393

XA
295 i1 = −119

253·327·53·593

i2 = 117·13·181
257·329·53·593

i3 = −7·116·23203
242·324·53·593

i4 = −72·115·370631
241·325·53·593

i5 = 7·115·19·769·2287
238·323·52·593

i6 = −7·113·197·415664659
236·322·53·593

XC
329 i1 = −199

253·327·73·473

i2 = 5·197·1181
257·329·73·473

i3 = −196·29·61·67
240·324·73·473

i4 = −13·195·701·7723
241·325·73·473

i5 = 194·163061001821
238·323·73·473

i6 = 5·193·41·7369·904573
236·322·73·473

curves Dixmier invariants

XD
369 i1 = 79

244·318·413

i2 = −77·97
248·321·413

i3 = 76·6353
236·316·413

i4 = 75·73·31337
236·318·413

i5 = 74·43·4662331
234·315·413

i6 = −73·1307·1601·5303
232·316·413

XE
369 i1 = 79

244·318·413

i2 = −77·97
248·321·413

i3 = 76·6353
236·316·413

i4 = 75·73·31337
236·318·413

i5 = 74·43·4662331
234·315·413

i6 = −73·1307·1601·5303
232·316·413

XA
388 i1 = −1

246·327·973

i2 = −233
250·329·973

i3 = 5293513
241·324·973

i4 = 624203
235·325·973

i5 = 71·3533·300997
238·323·973

i6 = −29·409326261863
236·322·973

XB
436 i1 = 1819

237·318·1114·1093

i2 = −5·23·113·1817

242·320·1114·1093

i3 = 1816·4727066557
235·315·1114·1093

i4 = 1815·499·56343733
233·315·1114·1093

i5 = 151·1814·381481·538018951
234·314·1114·1093

i6 = 1813·239273·480133·133676033
232·314·1114·1093

XA
452 i1 = 319

210·341·1133

i2 = 13·17·317·521
221·343·1133

i3 = 316·157·336931631
217·338·1133

i4 = 5·315·71·53551058051
218·339·1133

i5 = 5·314·774401181277897891
222·337·1133

i6 = 7·23·313·421·10301727084532427
222·336·1133
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curves Dixmier invariants

XE
475 i1 = 30679

253·327·56·193

i2 = 479·30677·15937
257·329·56·193

i3 = 193·30676·115419877
239·324·56·193

i4 = 41·30675·41903·2234129
237·325·54·193

i5 = 13·397·479·30674·6619·8887·25349
232·323·56·193

i6 = 30673·1587899065951933060901
229·322·55·193

XG
475 i1 = 30679

253·327·56·193

i2 = 479·30677·15937
257·329·56·193

i3 = 193·30676·115419877
239·324·56·193

i4 = 41·30675·41903·2234129
237·325·54·193

i5 = 13·397·479·30674·6619·8887·25349
232·323·56·193

i6 = 30673·1587899065951933060901
229·322·55·193

XB
511 i1 = 59·379·431339

253·330·78·1114·733·10114

i2 = −58·377·263·431337·197689·6021091
257·332·78·1114·733·10114

i3 = 56·13·376·431336·142702121·25535098000501
243·328·78·1114·733·10114

i4 = 55·17·375·577·431335·3563719·164875199·160402791737
239·328·78·1114·733·10114

i5 = −54·132·374·431334·41153760466703282853288413280589099
233·324·78·1114·733·10114

i6 = −53·373·431333·688333·28685999·3031471393386674295606558437642759
236·326·78·1114·733·10114

XH
567 i1 = 54

253·39·73

i2 = 5·17
257·312·73

i3 = 5·3821
242·38·73

i4 = 17·8363
241·39·5·73

i5 = 52·313
238·36·73

i6 = −19·83·11119
236·37·52·73

XA
596 i1 = 3599

255·327·1493

i2 = 13·23·73·3597

257·329·1493

i3 = 23·3596·89348191
247·324·1493

i4 = 52·3595·39644905697
245·325·1493

i5 = 47·3594·370708577229919
242·323·1493

i6 = 13·19·3593·16529·794641·2599117
240·322·1493
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[2] M. H. Baker, E. González-Jiménez, J. González, and B. Poonen, Finiteness results for mod-
ular curves of genus at least 2, Amer. J. Math. 127 (2005), no. 6, 1325–1387. MR2183527
(2006i:11065)

[3] A. Basiri, A. Enge, J-C. Faugère, and N. Gürel, Implementing the arithmetic of C3,4 curves,
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[13] E. González-Jiménez and J. González, Modular curves of genus 2, Math. Comp. 72 (2003),

397–418. MR1933828 (2003i:11078)
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