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ERROR ANALYSIS FOR THE ELASTIC FLOW
OF PARAMETRIZED CURVES

KLAUS DECKELNICK AND GERHARD DZIUK

ABSTRACT. We analyze a semidiscrete numerical scheme for approximating
the evolution of parametric curves by elastic flow in R™. The fourth order
equation is split into two coupled second order problems, which are approx-
imated by linear finite elements. We prove error bounds for the resulting
scheme and present numerical test calculations that confirm our analysis.

1. INTRODUCTION

Let z : [0,27] — R™ (n > 2) be the parametrization of a closed curve. For A > 0

we consider the functional
1 2m
(1.1) E\(z) := 5/ w%ds + A\L(z),
0

where k denotes the curvature of the curve and L(x) is its length. Furthermore, ds
is the arclength element. The first part in E) is the well-known bending energy;
in view of its scaling properties, it is common to penalize length giving rise to the
second term in (LI)). The critical points of E) are called elasticae. A natural way
to obtain stable elasticae is to consider the limits as ¢ — oo of the gradient flow
associated with E which is given by the following evolution equation

1
(1.2) x=-Viy— §\yl2y + Ay,

where y = x5 is the curvature vector and Vs f = fs — (fs, 7)7, 7 = 5 denoting the
unit tangent. Obviously the velocity z; has no tangential component.

For n = 2, Polden [6] proved the global existence of smooth solutions for (L2).
The corresponding result for curves in arbitrary codimension was obtained in [5].
That paper also suggests a numerical method in order to calculate approximate
solutions of ([2Z). A different scheme was used in [I] for the length preserving
elastic flow. A special feature of their approach is that it introduces a tangential
motion which leads to good numerical properties of the scheme. However, up to now
there is no error analysis for the two above-mentioned methods. The purpose of this
paper is to introduce a new finite element scheme, which respects the variational
structure of the problem, and to carry out an error analysis.

The elastic flow for surfaces is called the Willmore flow. Error estimates for
the Willmore flow of two-dimensional graphs have been obtained by the authors in
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646 K. DECKELNICK AND G. DZIUK

[2]. The underlying evolution equation for the height function is a nonlinear strictly
parabolic PDE of fourth order. In contrast, the equation (2] is a nonlinear system
of fourth order which is in addition degenerate in a tangential direction. This
degeneracy is due to certain invariance properties of the operator and complicates
the analysis. A numerical scheme for the Willmore flow of two-dimensional surfaces
is presented in [4] for the semidiscrete problem.

For a survey over numerical methods for geometric PDEs we refer to [3].

Notation. We denote by || - ||»(1 < p < 00) and || - || g1 the norm of LP(0,27) and
H'(0,27), respectively. For p = 2 we write || - ||z2 = || - ||. Finally, (-,) is the
euclidean scalar product in R™.

2. VARIATIONAL FORMULATION AND DISCRETIZATION

Let us begin by deriving a formula for the first variation of E\ which we shall use
in order to deduce a suitable variational form for (I.2]). The curves x = z(u) to be
considered are defined on [0, 27] and are in general not parametrized by arclength

so that we have
SRR IS B

B |xu|, |4 m

1 2m 27
Br@) = [ WPleal A [
0 0
and hence for all ¢ € Hpe, ((0,27),R™),

Thus,

2m 2m 2m
@b = [ e+ [ WPEo A [ o)

where y4 denotes the derivative of y in direction ¢ and Hf)er((O,Qﬂ'),R”) is the

space of all periodic functions in H* ((07 2m), R”). In order to calculate y4 we write
the relation between x and its curvature vector y in variational form, i.e.

(2.1) /0”<y,w>xu|+ /0”<T,wu>=o Vi € Bl ((0,27), B7).

As a consequence for all ¢ € Hll)er((O7 2m), R"),
2m 2 2 1
| wewod+ [ won [ oo (Poww) =0
0 0 0 |zl

where P is the projection matrix P = I, — 7 ® 7. Using ¢ = y in the above identity
then gives

2 2 2m
Ea).0) == [ = Pubd =3 [ bl +a [ o),

It is therefore natural to introduce the following weak form of the gradient flow for
the functional Ey:

@2) [l - [P T g a [0

|2

I
[=)

Il
o

(23) [Twwin+ [ v
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for all ¢, 1 € Hper((0,27),R™) and 0 < ¢ < T. Tt is not difficult to verify that for
a smooth function = [2.2]), [2.3)) is equivalent to ([L2).

We now use ([22)), (2Z3)) in order to define our numerical scheme. Let 0 = uy <
up < --- <un-_1 < uy = 27 be a partition of [0, 27] into subintervals I; = [u;_1, u;]
and hj := uj—u;_1 as well as h := max;—; . n h;. We require the following inverse
assumption

(2.4) h<éh; foralj=1,..N,

where ¢ is independent of h. Let us denote by X}, the space of linear finite elements,
i.e.

Xn = {nne€C°0,2n]) |1, is a linear polynomial, j = 1,..., N
and 7,(0) = np(27) }
with the usual nodal basis {¢1,...,on}. In order to deal with vector-valued func-

tions we also introduce X' := {¢y, : [0,27] — R"|¢p; € Xp, i =1,...,n}. We
denote by I, the Lagrange interpolation operator,

N
Inf = flu))e;
j=1

for which we have the standard interpolation estimates

(25) | = Iuf I+ bl fo = Unf)ull < CR2| fllaz VF € Hper(0,2m).
Furthermore, the following properties will be useful:
(26) [lor < [ nlali=c [ o

I I I

(2.7 [ @nwn)

for j=1,...,N and all ¢p,,9, € X}'. Let us finally introduce

. il ] = g2 [ st

J

Zp = {zn :[0,27] — R" | 21, is constant, j =1,..., N}

and define @y, : Hl((0,27r),R") — Zn by (Quf)1, = L/ f, 7=1...,N.
! |1 J1,

Clearly,

(2.8) If = Qufll < Chll fllgr, Vfe H'((0,2m),R").

The semi-discrete problem corresponding to ([2.2)), [2.3]) can then be stated as
follows: find xp,yp : [0,27] x [0,T] — R™ such that x5 (-,t), yn(,t) € X7, 0<t <T
and

27 27 27
/ In[(xne, on)] |2hal —/ (P, ) _ l/ Inllynl*)(7hs éhu)
0 0 0

|33hu| 2

2
(29) +)\/ (Th; ¢hu) = 07
0

(2.10) /0 " Ll )]l + /0 rhtna) = O,
(2.11) zp(,0) = Inzo
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for all ¢,y € Xj} and 0 <t < T. Here, we have used the abbreviations
Thu

B |xhu|,

Remark 2.1. a ) In view of (23, (2I0) the terms )\fO%(T, ¢.) and )\IOZW(Th,QShu)
can be replaced by —\ fOQW(y,¢)|xu| and —\ fo% In[(yn, &n)]|Thul, Tespectively.

b) By inserting ¢p = xp; into (ZI), ¢y = y, into ZI0) differentiated with re-
spect to time and observing ([3.0]), (B:6) below, we immediately obtain the following
energy decrease as long as the discrete solution exists:

2m d 1l 2T 2m
2 a i 2 _
| nlie Pl + 5 {5 [ o Bl +3 [ ol <o

An analagous testing procedure will be at the heart of our error analysis.

P,=1,— 1 Q1.

Th

Note that our choice of the initial datum in (ZII)) determines y(-,0) € X}
through the relation

/ "I l(n (40, )] (Tnzo).|

2m ((Ith)uﬂy{}hu)
+ ~_ 7 =0 forall c X7,
/o [Tnzo)] on e X

The following result shows that y,(+,0) is a good approximation of y(-,0).

(2.12)

Lemma 2.2. Suppose that xpg = Inxg. Then for h < hg,
1y(-,0) = yn (-, 0)|| < Ch.
Proof. Recalling (2.12), (2.7) and the relation y(-,0) L (2o )u we obtain

- ‘10u|

[Zow]
/Oﬂ-Ih[(Ihy("O)_yh('vo)awh)]|(lhx0)u|
-/ (T, 0) — y(-,0). ) (o)l
27 27
[ 0 ) (o] ~ ool + [ (e Ty )

_|_

I
- “u"?{z

B2 / (T (- 0))us on) (o).

1 I;

S;

j=1

for all ¢, € X}'. Clearly, ([2.1]) and an inverse estimate implies that
[S1] + (2] + [Sa| < Chllyn],

while
N

S3= D (Vnuir,» ), €5 = hy( ro(u;) = To(tj-1) —To(mj))+(hj70(mj)_/ Todu)

|wo(u;) — wo(uj—1)| I

Jj=1
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with o = |£EZ\ and m; = (u;—1 + u;)/2. The error formula for the midpoint rule

and a Taylor expansion yield |e;| < C’h? and hence
|S3| < Chljibn|
again by an inverse inequality. The result now follows by setting vy, = Iry(-,0) —
Yn(-,0). O
Our main results are the following error bounds:

Theorem 2.3. Let x : [0,27] x [0,00) — R™ be the solution of (L2) with smooth
initial value x(-,0) = xg and T > 0. Then there exists hg > 0 such that (2.9)-2.11)
has a unique solution on [0,T] and

IN

T
(2.13)  sup \|x(-,t)—xh(-,t)\|§{1+/ s (-, t) — xpe(-, ) ||Pdt Ch?,
0

te[0,T]

T

(214)  sup lly(-7t>—yh(-,t>||2+/ 1y 8) = ynu (- t)|Pdt - < CR?
te[0,T) 0

or a < h < hg. e constant epends on T, inf g om) |Tou| and on higher

for all0 < h < hg. Th Cd d T, inf g om d high

norms of the solution x of the continuous problem.

In order not to overburden the presentation and in view of the global existence
results for the continuous problem, we do not trace the precise norms of the con-
tinuous solution.

The proof of the theorem will be carried out in §3. It turns out that in order to
gain control on the first derivatives of x it is necessary to deal separately with the
directions and the lengths of x,, xp,, respectively. This is due to the degeneracy
of the PDE in the tangential direction.

3. ERROR ANALYSIS

Let us fix T > 0. In view of the smoothness of the continuous solution there
exist constants 0 < ¢y < Cp such that

T
(3.1) co < |zy| < Co,  y| < Co in [0, 27] x [0,T], / YullFoedt < Co.
0

Standard ODE theory implies that (Z9)-(@II) has a unique solution (xp,ys) on
some time interval [0, T3] (T}, > 0) such that

1 . Th
(3.2) 560 < |75ha] < 2C0, |yn| < 2C, in [0,27] x [0, T3], / Y| 7 00 dt < 2C.
0

Let us define

Ty = sup{t €[0,T]|(zn,yn) solves ZI)—@II) on [0,t] and

1 , i
560 < [@hul < 2C0,  |yn| < 2Co in [0,27] > [0,1], / [Ynall7~dt <2Co}.
0

Our aim is to show that 7}, = T for small h. To this purpose we shall prove the
bounds (2.13) and @2I4) on [0,7}] with constants only depending on T', ¢g, Co and
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norms of the continuous solution allowing us to continue the discrete solution. By
the definition of T}, we have

1 T
(3.3) 50 < |zpul < 2C0, |yn| < 2Ch on [0,27] x [0,T4), / Y ll? e dt < 2C,.
0

For later use we note some useful identities:

1
(3.4) (v,w) = 1-— §|v—w|2 for v,w € R™, Jv| = |w| =1,
(3.5) lzult = (@b, T), [Thult = (Thtu, Th),
1 1
(3.6) 7t = T—Prw, Tht = PhThtu-
|2 |Zhul

We split the error analysis into several steps starting with two lemmas that
provide the basic estimate.

Lemma 3.1.

Co 2 2 1 1
— |y — zpe]|* — / (—Pyu — —Prlhus Teu — Thiu)
4 0 || ‘xhu|

1 2m
~5 | 0T = lon P = ania) < O + = sl + ] = ol 7).
Proof. Inserting ¢, = Inxy — xpe in 22) and 2.9)), taking the difference of the
resulting identities and recalling Remark 2] as well as ([27) we infer

27 ) 2 1 1
/ |zt — Zhe|*|Tha| — / (—Pyu — — Prynu> InTt)u — Thtu)
0 0 Tyl |Zhul
1 2w ) ) 2w
(3.7) ) (lyl*m = lyn P, (Int)u — Tht) = (2 — Inwe, @ — The)|Thal
0 0

27 27
+/\/ (Y — Y Inwe — Tpe) |[Thol +>\/ (Y, Inwe — The) (|u] — [@hal)
0 0

N

1 1

+5 Zh?/ ((ﬁhm, (Int)u — Thew) |[Tha| — §|yhu|2(7h, (InZt)u — Thiu)
j=1 I;

27
A s = v ol )+ [ or T = ) (] = 2]
0

Il
e

We deduce from (23] and (B3] that

1 27

(38) Y 8i< 5/ |2 = @nel|nal + C (A + lly = ynll® + zul = lzn 7).
i£4 0
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On the other hand, an inverse estimate, (3.3]), Young’s inequality and (Z3]) imply

1
S < ézhﬁ / (= 1n@0)u = Tneal + () s (Inwe)u — o) Hanal

+C Z /1 (RN Iny)ul® + Mgl (Tny)u = Ynal + B3 |Tnte)u = Thtul
j=1" "3

(3.9 < CR2+Cllyu — ynll*

Furthermore, since

27 27
/ (Ttus 2n) =/ ((Inwt)us 2n) Vzn € Zn,
0 0

we obtain, with the help of (Z3]) and (28],

/2W(1P ! Py, (Inzi)u) /277(1P ! — Pryhu, Tiw)
T hYhu; \1h = T hYhus Ltu
0 || T hu ' 0 || | hu '

2 1
+/0 (mpyu - Qh[| u|Pyu] y (Tnxe)u — l‘tu)

2w

1 1

< / ( Pyu - Phyhu; mtu) + Chz,
0 |l |

and similarly

1 2 1 2
5 [ (7= lonPr () < 5 [ (07 = lnPrsow) + O+ Clly =
0 0
The result now follows after inserting the above inequalities as well as ([B.8), (39)
into (B7) and observing ([33)). O
Lemma 3.2. We have for e > 0,
1d

2m 2m
1 1
9 7t In|| Iy — 2 U Py, — —— P wy Yu — Yhu
57 DBy = Pl o+ [ (S Pr = e P, = )

1 2m 2m
5 / Yy = yn|* (Thiw ) + / (@tw, 7)Y — (Zhtus Th)Yns Y — Yn)
0 0
< ellae = anel® + Ce(B? + lly = wnllin + 17 = mnll* + |zl = lznal 7).
Proof. We differentiate (23] and ([2I0) with respect to time; in view of (B.6) and
[220), we obtain

27 27
[ttt =y ol + [ (-
0 0

|

Pz — —— Puhtu, Yhu)

| hU|

27
(310)  + / (s ™) — (@hws 7)s )

27 27
_ /0 (Inys — v Oon) |l + / (e, ) (|2l — L)

+= th/ Ihyt uawhu)|xhu|+ Zh2/ yhuyql)hu)(xhtuaTh)

Jl Li
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for all ¢, € X7'. If we choose ¢}, = Iy — yp, in (B10) we obtain

s [ P el + [ (P S P () - )
2dt J, rlLRY — Yn hu ) |$u| tu |1'hu| hThtus LhY)u — Yhu

2 27
1
+/ (@tws 7)Y — (@htws T0)YR Iny — yn) — 5/ vy — ynl* (@hew, Th)
0 0

2m

21
_ / (Tnge — oo Tny — yi) ] + / (e, Tny — n) (1] — |2a])
0 0

N
1 1
+2 > h / {n In9)w = yn) + 51 ny)u = vnul*} (e ™)
j=1 71

4
S5
=1

N
1
+6 Z h?/[ ((Ihyt)ua (Ihy)u - yhu)|$hu‘
Jj=1 J

We infer from (28]) and (B3]
[S1] 4182 < C(h* + Iy — gl + Havu| — lznal %),
while an inverse estimate along with (3] implies

|55 Ch? (llynallze + [ Tny)ullzo) 1 UIny)u = Yl lzne]
Ch(llynllze + lyle)IIny)u = ynull (I(Tnze)e — zheall + [ (Tnze)ul])
ClUny)w = ynull (ne — el + 1)

ellze = @nell* + Ce(h® + llyu — ynul®)-

ININ IAN A

Using again an inverse inequality we obtain

1S4 < CR*|(Tnye)ull | (Tny)w — ynull < C(R* + ly — ynl?).

As in the proof of Lemma [B.I] we have

27 1 1
/ (7Pl'tu — 7Phxhtu; (Ihy)u)
0 X

| hul

27 1 1 9
> / (== Pty — —— Prhiu, yu) — Ch°.
0 Tl |Zhul
Furthermore, a straightforward calculation shows

1
—§|Ihy — ynl* (@htws h) + (@, T)Y = (Thtw T) Y0y Iny — yn)
1
= —§|y =yl @hew, ) + ((Tews 7)Y = (Thtu, Th)Yn, Y — Un)

1
—5lv- Loy (@hew, Th) — [(Tew = Thiws T) + @htw, T — T0)] (Y ¥ — TnYy).
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Similarly as above we estimate

2
1
‘/ (—§|y — Loyl?@ntus Th) — (@t — Thtus T) + (@hew, T — )] (Y, ¥ — Iny))
0

Clly = Inyllz= (ly = Inyll + 1T = ) lzneull + 200 — zheall Iy — Inyl
Ch? (W + |Ir = nll) (Iznew = nze)ull + [ (Inwo)all)

+OR* ([|2ew — (Ine)ull + | (Tn)w — Thtul])

< el — anel” + Ce(B? + |7 — 7l?)

and the assertion follows. O

IN A

The next lemma combines the above results.

Lemma 3.3.
Co
Tellet — el +¢'(1) < CP? + C(lly = wnllFn + I = mll” + [Hwwl = [znal [17),

where

1 27 1 27
¢(t) = 5/ LIny — ynl?] |7hal — Z/ |7 = 7h|* |2 hul
0 0

2
Thal — | 1|z
+/ (*‘ hul = | U|(Th—7)+*‘ h"'\Th—TIQﬂyu)-
0 |l 2 |z

Proof. Tt follows from Lemma [3.I] and Lemma with e = € that

co ) 1d 27 ) 27
e —zwll® + 5o | DllTny — unl’] [znul + | (A+B)
8 2 dt 0 0
(3.11) < CR2+C(lly — ynllzn + 17 = 70l + ||zl = |znal 12),
where we have abbreviated
1 1
A = —5(\y|27 — lynl* 70, Tru — Theu) — §|y = Ynl* (@heus )
+((l’tu7 T)y - (xhtua Th)yha y—- yh)a
1 1
B = (—Pzw — — Pathtu, Yu — Yhu)
|2 |2kl

1 1
_(—Pyu - —Phyhuvxtu - mhtu)-
|| | Tkl

Let us rewrite the terms A and B. To begin, a straightforward calculation shows
that

1 1 1
A = —§|y\2($hm77h) + §|y\2(9€htu77) + §|y|2(5€tu,7)
1
+§|yh|2($tu,Th) — (Y, yn)(@4u, T)
1 0 1 1
= §|y|2§(_|$hu‘ + (xhuﬂ')) - §|yl2(whu,n) + §|y|2(rcm,7h - 7')

1
+§|y — unl* @ ) + W,y = yn) (@rus T — ).
Using ([3.06]), the symmetry of P and ([B4]) we obtain




654 K. DECKELNICK AND G. DZIUK
In view of [B4) we have —|zhy| + (Thu, 7) = —2|7 — 7 |*|2hy| and hence
1 Thal
A = ——\y|2 (|Th —7? |xhu\) + §\y|2(1 — || u| )(Th — T, Ty)
u
2|$hu| 2 1 2
__| | EN (7, @) |70 — 7|7 + §|y = Ynl*(@tus Tn) + (Y5 ¥ — Yn) (@tu, T — Th)-
u

As a consequence we deduce
4 dt

2m
/ A > 1d
0
(3.12) —C

Next, recalling [3.6]) we get

|y|2\7 —Th|2|$hu|

(ly =yl + lIm = 70l + IHaul = lonal [7)-

1 1 1
B = 7(2/7“ thtu) + 7(Phyhu,xtu) - 7(thuvyhu) - 7(Phxhtuayu)
1 1 1
(%u [‘ ‘thu T+ T]t) = (Yus (m)thhu + mptxhu +7¢)
+ (@4, —Phyhu — —Pynu).
|Z kol |z u|

Combining the relation P,

1 1 u u Thu
()Pt = P, =~ 1y oy 8] 2y 108 ()
and hence

1
(3.13) B=(yu,[| |P:chu T+ 7ht) + (Trus 21) + (Zew, 22)
u
where
Thu 1 1 1
21 = || hQ(TmT)Pyu - ﬁpyu - ﬁpyhu—F mpyhm
_ [Tkl hal 1
z9 = 5 (P hayu)7+ 5 (Yus T)PTh + —— PrYnu — —— PYnu-
|zul? |Zul? |hu| |Zhul
Clearly,
21 ! (|/J:h“| —1)°Py, + ((r,m) = 1) ‘mhui Py, + (L - L)P(yu = Yhu)
while
_ ‘th|
2 = | | ((T’“yu) 2(T77—h)(7—7yu)7—+(7—7yu)7—h)
u
+m((yhu,T)T — (Yhu, Th)Th)
|$hu| |-75hu‘ 1
= Wu, Th — T - Th) + (Yu, T 7. J)\Th =T
o =~ ™+ O (G ~ ) =)
x 1
+2| hT'( ) (1= (7o) 7 + m((yhu = Yur T)T = (Yhu — Yu> Th)Th) -
Observing that
1 |Zhul 1 [zhal 5
—Pxpy —m+ 7= 1) —7)+ = T —Th|°T
E A ey E [ Oy Py R

=—TQ®T7 — 7 ®7 with (31), (B06) we have
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and inserting the above form of z1, 2o into (BI3) and taking into account (3.4) we
arrive at

27 2
d Thu| — [Ty 1xu
/ b= / (‘h| | |(Th_7)+—‘h|\7h—7|27»yu)
0 0

(3.14) ~C(lyu = ynull® + 17 = 7ull* + [l lzal — |znal 7).

Combining (311)), (BI12) and (3I4) completes the proof of the lemma. O
In order to proceed with the error analysis we have to deal with the terms

lyw — Ynull, |7 — 7|l and || |24| — |Zhy!| || which appear on the right-hand side in

Lemma B3] but which cannot be handled directly with the help of a Gronwall
argument. We start with the following:

Lemma 3.4. We have in [0,T},) and for e > 0:
I7 = ml® < e(lly = ynll® + Houl = lnal I7) + Ce(h® + |z — zall).
Proof. We deduce from (23) and (2I0) that

2 27
/ (7 = Ty i) = — / (y — Tny, tn)l@nal — (5, 0n)([2ul — [hal)
0 0

J

2m 1 N
- [ 0y = + 5 302 [ (e tnlend
j=1 '

for ¢y, € Xj!. Inserting ¢y, = Iz — ) we derive

2w
/ (T*Thvxu *xhu)
0

< Ol = 7ll® + Csh? + e(lly — yall® + laul = lznal [17) + Ce(h? + [lz — z1]1?).
Using ([34]) we see that
1
(T = Thy Tu — Thu) = (T — Th, [Tu|T — [ThalTh) = §|T — 7h*(|2u] + |Thal),
and we complete the proof by choosing ¢ small enough. O

In what follows it will be convenient to write the finite element scheme as a
difference scheme. To do so, we introduce the quantities

1 Ti— Ti_1
v = an(ug), ¥ = yn(vy), ¢ = |5 —zjal, 05 = 5 (4 + ¢j41), 75 = ———

2 |lzj — @51
for j = 1,..., N where here and in the following we use N-periodic indices, e.g.

Tn11 = x1. We insert ¢p, v, = ap]-ek(k = 1,...,N) as test functions into (29),
([2I0), respectively, and obtain

. 1 1
(3.15) iy + ——Pj1(yj+1 — y5) — —Pi(y; — yj-1)
qj+1 a;j
1
+7 ((y; 1 + a1 01 = (yi—a P + 1y 75) = M7y —75) = 0,
(316) Oéjyj — (Tj+1 — Tj) = 0,

where we have used the abbreviation P; = I — 7; ® 7;. Note that (3.4) and (B1)
imply
1
(Tj1 = 75:7m5) = =5l = 71" = =5 o]l
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and hence

1
2, (15,95) = —5a5ly;]*

1 1
(B317) (a1 yy) = — (Tj41, Tin = 75) = 505ly; 5

j
Lemma 3.5. We have for e > 0,
Iyu = ynall? < ellee — xnell* + Ce(h? + ||z — 2all* + lly — yall® + || lzu] = Jznal I?)-
Proof. Let us split the difference y, — yn, as follows:
(3.18) Yu = Yhu = Prn(Yu — Ynu) + (Yu — Yo, ) Th-

In order to estimate the first term on the right-hand side we note that (2.2)), (2.9)
as well as Remark 2] imply

2m 1 2m 1 1
/0 (Ph(yu - yhu)a ¢hu) = /0 ( Pryy, — x—Pyua ¢hu)

|Zhal |Zhal ||

2
+ [ s onlwad = Tl on)llonal}

_% ﬂ-{|y‘2(¢hu57)_Ih[|yh|2](¢hua7—h)}
0

2m
(3.19) -A ; {(y, on)lzal = Inl(yn, on)llznal }

for ¢, € Xj'. Inserting ¢5, = Iy — yp into (B19) and using similar arguments as
above we obtain, in view of ([B3]),

3200 5t Pula = ) P < g = s+ el = a1l
+H(Cs + C) (W + 1T = 7ull* + ly = w1 + ||l = |znal 7).
Let us next consider the term (Y, — Ynu, 7h)7h. We first observe that
(3.21) Wur 7) = (17w — (4 7) = —lwa| [yl in [0,27] x [0, 7.
The discrete analogue of this relation follows from ([B.I7), namely
2

1
- Eaj71|yjfl|2

where we have used the notation introduced above. Combining (B21)) and (3:22)
we find in I,

1
(3.22) (Y5 = ¥j-1.73) = —55ly;

(W =y )|l < Clr =il 4+ [ au] = |znaln [+ C(ly = yi-al + ly — y51)
C
+o= (g = a1l + lajea = g51)-
J
Combining (28] with an inverse estimate we find that

G541 — @5 < hjsr [ [(Tn)u] = |Zhal 1,40 + CR* + byl [(Tn@)u| — |2hal 1,
(3.23) < OVA| |(In2)ul = |2hal L2101, + Ch2,
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and therefore

27 N
/ (yu — Yhu, Th)Q = Z/ (yu - yhuaTj)Q
0 j=171%

N

< Ch2+cz / (|T*Th|2+\y*yh\2)+/ ||Zu| = |Zhal?
j=1 (/1 I;1ULUT 4

< C(R+|r =7l + 1y — ynll? + |l lzul — |zhal 7).

This estimate together with (BI8)), (8:220) and Lemma B4l yields the desired bound
after choosing ¢ sufficiently small. O

The most difficult part is to estimate the error in the length element. The basis
is an ODE with respect to time for the lengths of the polygonal curve. In order to
motivate the structure of this ODE we note that (I.2)) implies that (z;,7) = 0 and
hence by (B.6]) and the definition of y,

(3.24) |xu|t = (T, Iut) = (7'7 xt)u - (Tuvxt> = _(Tuaxt) = —(y,xt)\xu|.

Lemma 3.6. The discrete length element satisfies

1

(3.25) qj + 3 (&5, 95) + (Ej-1,95-1)) 5 = R,

with Rj = Sj — Sj,1 and

1 1 A
S = =g (v = uil* =1y =y ) + Fgluil (9501 — 4) = Flwi* (@01 — 4)
J
1 1
+1—6\yj|2|yj+1\2(qg‘+2 +2gj41) — 1_6|yj|2|yj71|2(q]‘71 + 2q;)

for 5 =1,.... N with N-periodic indexing.

Proof. Obviously,

(3.26) G5 = (75, &5) — (75, &5-1).

Let us calculate the expressions on the right-hand side of this equation. For practical
reasons we use the abbreviation

1
i = 5y + 1y;*).
From BI0) and Pj7; = 0 we deduce
a;(7j, &)
1 1

= o (75 Pj1 (01 = 93)) + 5 (T = (T2, 75) Jje1) + ATjrn = 75, 75)-
J

Next, (34) and B.I6) imply that
1 2
Pty = 7= (Tj+1,7)Tj+1 = 75 = Tier + 570 = 757754

1
(327) = —QjY; + 5(1]2|yj‘2Tj+1,
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and using again (3.4]) we deduce

- Qj o 2
(T, &) = rﬂ(%%ﬂ —y;) — 0 [y |5 (7541, Y41 — Y5)
j j
1 1 A
+ 55— Ji) + Zaflyﬂ?‘JjH - 501]2‘|yj‘2~
The elementary relation (y;,yj11) = —3|yj+1 — y;j|°> + 3lyj41% + 3y |* together
with (BI7) finally implies that
, 1 2 2 1 2, 1
(€5, 75) 2411 (|yj+1| |y ) 21 lyj+1 —ys° + 20, (J; j+1)

@ 2 2 2 1 2 A 2
(3.28) +4q4+1 w517 (galyjen |+ ogly; [?) + 1991317 i — S ayly; .

j

Similar calculations lead to the equation

, 1 , , 1 , 1
Ti 1,Tj) = —— . — - + o — Y 4+ — J*, _J,
(] 1 ]) 24,1 (|y.7 1 |yj 2‘) 2q]'71|yj 1= Yj 2| 20, ( Jj—1 J)
51
(3.29) —4;_ ) lyi—1l? (- 1lyj1* + ejaly;—2|?)
i

A
—Zaj—1|yj—1|2Jj—1 + §aj—1|yj—1\2-

In order to derive an equation of the form ([3.25]) we still have to rewrite the euclidean
product between &; and y;. Recalling (B.I17) we obtain

1 1
(8:30)  Pyy; =y; — ()75 = v5 + 5o5luil’my Piayy = v5 = HoslysPrin
With these relations we obtain from (B15])

_ 1 1 1 1
a;(@,y5) = — (5 + 551y ° 7595 = yi-1) = —— (%5 — 51y Te1,y541 — y5)
qj 2 gj+1 2
1
~1 (ily;2T5 + ajly;|* i) + Aayly;

and hence, with the help of (B17),

1
. 2 2 2 2
(&5,9;5) i (lyj+1l® = ly51%) 2050, (lys1* = ly;-11?)
b g — P+ —— g
i — P i —yi s
20&ij+1 It J QOéjq]‘ J J
1
(3.31) "I ;1 (olys*+o—1ly;—11?)
J

1
— —— 1y (ajalyi1® + ajlys)?
4Qj+1 J (.7 J 2197 )

1
- Z|yj|2 (Jj + Jis1) + Ay |
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Let us combine (328), (3:29) with (33T)) for j and j — 1. Recalling the definition
of J; and sorting terms we obtain after some elementary calculations

. 1 . .
4+ 5 (5, 95) + (£5-1,95-1)) ¢

2
. . 1 . 1.
= (15,25) — (75, &5-1) + 54;(&5,95) + 5¢;(E5-1,95-1)
2 2
1 4 2 2 2 2
= - lyj+11° = 1y;1°) + — (lyi-1l" = lyj+1l
2(]j+1 4Qj+1aj) ( J J ) 4aj ( J J )
e (P = ) + T — ) (g — )
da_q ! dg; 1051 251 ! ’
1 2 2 1 2 2
+4aj (‘yj| lyj—1l ) 4oy (|yj| yj—1l )
1 4q; 2 1 q; 2
(2(]]‘—1 404]‘—1%‘—1)'%71 yj72‘ (2%4-1 4Oéjqj‘+1)|yj+l yjl
1 2 Q; 4q;j 2 2 2
(4aj 40éj_1)|yj Y1l (4Qj+1 8qj+1) ( iyl +1yj+1] )|yg‘
Q51 q;
+(4qj, o 8q,] 1) (aj—alyj—2l* + aj1ly;1]?) lyj-a|?
i— j—
1 o
~3 (lyi—11* + ly51?) (g-1lyj—11* + asly; I*) + gj\yjﬁ (ly1* + lyj411%)
51 q;
+ ]8 lyi—11? (lyj—2l? + ly;—11%) — %Lﬂﬂ2 (lyj—11* + 2ly; 1 + lyj11%)
q; A
_ﬁ|yj—1|2 (lyj—2? + 2ly;—1 > + |y;°) — 5(%‘—1\%‘—1\2 + ajly;1?)
A
205l + by P).
‘We observe that
1 _ Qj _ 1 q]' _ 1 _ 1
2¢j+1  4Agj104 doj’  Agj-rogo1 2¢5 dojy’
B 7 S
4gj+1  8¢j+1 4gj-1  8¢j—1 8
and after rearranging and simplifying, we obtain the claim of the lemma. (I

Lemma 3.7. We have for t € [0,T},),

t
(332) [[(Jzul = znal) (- O] < Ch2+c/0 lz = anl® + lly = ynll* + [l — wne|*dt.

Proof. Let us define xj, = Ipx, yp = Iy and introduce the quantities

. . - . - - 1 _ _ Tj— T
Ty =), 95 =), 4 =12 =3l 6 =5 (@ +Gw), T =2 —F
Tj—Tj—1
From (B:24) and Lemma [B.6 we infer that on the grid interval Ij,
1 . . 1
(Izul = lenul)y = = (@, Y)|ul + 5= (25, 45) + (Ej-1,95-1)) 45 — - R;
2hj hj
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and hence
1 t
|(|zul = [2hul) (O] = (T — Tha) (+ 0)] — F/ |R;| dt
i Jo
1 to .
< o J, | ((25,95) + (T5-1,95-1)) @ — ((&5,95) + (£5-1,y5-1)) g;| dt
J

1 /41, . . . L
+;/0 ‘5 ((25,85) + (€51, 95-1)) |5 — Zj—1| = Dy (e, )] | dt
J

IA

t
C/O 175 — yil + 125 — &5 + |Gj—1 — yj—1| + |[Tj—1 — &j1] dt
1 t
(3.33) +C—/ 3 — q;] dt + Ch;
hj Jo
C t
< _/ 190 = ynllL2y) + 1% — Tnell2 1,y + 1Zhal = [ZhulllL2 ;) dt + Ch
Vh Jo

C t
< */ ly = ynllz2cryy + llze — znell 2,y + lwul = [2halll L2,y dt + Ch.
Vh Jo

Here we have used the assumptions [B:2)) and the smoothness of the continuous
solution. Next, we estimate the remainder term R;. According to Lemma [3.6]

(3.34) Rj=18;—5;-1 with S; = 5;(¢j-1, 95, Gj+1: Gj+2, Yj—1: Yj» Yj+1)-
One easily shows by Taylor expansion that
1851 = 1S5(@j—1: @j» Gj+15 Gjw2s Tj—1: Uj» Gj+1)| < CHP.
We demonstrate this for two typical terms:
Lo _ o _ O o s - - 2
15 195 = Gi-1l” = G52 = G171 < 1051 = 205 + GallFyea — Gi-1] < CR7,
j
|Gjr1 = Gl = 11841 — 5| = |25 — Zyal] < |Tjr — 285 + 31| < OB,
Altogether we have with R; = S; — S;_; that
(3.35) |R;| < |R; — R;| + Ch?

and it remains to estimate the difference between R; and Rj.
We treat the terms in ([B34) separately. The smoothness assumptions on the
continuous solution implies the estimate

(3.36) 4 = 431 < VAl |zul = onul 221,y + Ch3.
This inequality will be used often in the remaining estimates. First,

L(|yj+1 —yil> = ly; —y; ) - L(Lﬂjﬂ — 9> =19 — 91 )

4o 4o

< Clgj+1 = Gl + laj — ¢;1)

+CR(| lynal® = 100l 11,00 + Hynal® = 1Gnul?[1;)
OVl |zu] = [enal | 22(101,4,) + Ch®

+CVR| G — Ynall2(ur,.0) (1 + ynallne).

IN
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Also,

1 1 . 5. - -
E|yj‘2|yj+l|2(%+2 +2¢j41) — E|yj|2|yj+l|2(qj+2 +2q;41)
< Chllgn — ynllr,.) + Clgjre — Gival + lgj41 — Gipal)
< CVhl|gn - CVh — Ch?

Yn yh||L2(Ij+1) + [REMRRET™ ||L2(Ij+1u1j+2) + -

Treating the remaining terms in S; — Sj in a similar way as above we finally obtain
Byl < R+ CVR(Ilwal = lonal lz2aay) + Iy = wnlzzr,)
(3.37) +OVA (Il = vy + Al e ) (14 Tyl )

where we have set I(jy = I; o Ul; 1 UI; Ulj1Uljo. Combining the inequalities

B33) and (B37) we arrive at

|(zul = [2na) (5 0|1, < |Zou = Zhoulr, + Ch

C t
+ﬁ /O Iy = ynllL2r,)) + lloe — znell 22y + Hwl = |l2nal 22, dt

1

(L e il + Rl ) (1 ([ Tonlie ) )
\/E A Yu = YnullL2(1 ;) YuullL2(15)) o Yhu|| Lo .

We square this result, integrate over I; and then sum from j =1,..., N. Recalling
that xpo = Inzo and ((B3) we obtain

t

(] = |zna) (1)1 < CR® + C/ ly = yallzr + llze = @nell® + [ o] — lena] [[Pdt.
0

Lemma B3 with € = 1 together with a Gronwall argument completes the proof. [

We are now in position to complete the error analysis. Lemma [3.3] implies
t t
¢
o [ W —onelP e+ 0(2) < CH4C [y ynlFp i =7+ o]~ o |
0 0

since ¢(0) < Ch? by Lemma 22l Recalling ([2.6) and (23 it is straightforward to
see that

¢(t) = %H(y =) (O = 0l (2l = lzna )G DN = Cs (B2 + (7 = ) (L O]1?).

Hence, in view of Lemma [3.4]
co [* 2 € 2 2
16 J, lze = wnel”dt + LMy —y) GO < dll(Jeu] = lzna (2]

t
+Cs (0?4 (=) (- O1?) + C/O ly = ynlFn + 17 = 1l + | wul = lenal I dt
< 0+ eCs)l[(Jul = lzna D BIP + €Coll(y — yn) (O + CsCell (@ — @n) (- 1)

t
+Cs(1+C)h2+C / ly — w2+ 17— 7l 4 | vl — L |2 d.
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Using Lemma 37 and Lemma we infer after choosing first 0 and then e suffi-
ciently small that

C t C
o5 [ Nl = ol e+ 2w = )OI < CO2 + @ = za)- D)

t
(3.38) +C/ lz = @nll* + ly =yl + 7 = 7al* + [l wu| = [onal | dt.
0
Since
2m
(o = 2) DI = [ — ) H2+2/ JRCEEDIEEES
we infer
t t
(= 2p)(-,t)|? §0h2+6/ ||xt—xht||2dt+C’6/ |z — xp||?dt, e>0.
0 0

Combining this estimate with (838) and using again Lemma B4l and Lemma B.7]
we deduce that the function

p(t) == [[(@—xn) O+ [y —yn) O + | (2] = |2na] ) ¢ 07+ / [l —pe]|* dt
satisfies
t
p(t) < Ch? + C/ p(s)dt, 0<t<Ty.
0
Gronwall’s lemma implies that p(t) < Ch2for0<t< T » and hence

SUPT (1@ = 2n) 01+ 1y = ya) (5 O17)
0<t<Ty,
(3.39) o

Th
[ =l o = P < O,
0
Here we used the relation x,, — xpy = |xu|(T — 1) + (|2u| — |Zha|) 7 and note that
the constant C only depends on T, ¢y, Cy and norms of the continuous solution.

We can now prove that T, =T. If not, we would have T, < T'; the smoothness
of the solution along with (839) and an inverse estimate would then imply that

T,
(@0 = @ha) D)l 2ows [[(y = 9) (D) | e < OV, / 1yu = ynullZ=dt < Ch,
0
which combined with B3I would give
3 3 3 . T 3
ZCO < |xhu‘ < 5007 |yh| < 500 on [0,27T] X [OvTh}v / ||yhu||%oodt < 5007
0

provided that h < hg and hg is sufficiently small. However, we could then extend
the discrete solution to an interval [0, T}, + 4] for some J > 0 with

1 R Th+6
560 S |xhu‘ S 2003 ‘yh| S 200 on [0327(] X [O;Th +5]a / ||yhuH%°Odt S 2C10
0

contradicting the definition of T},. Therefore T;, = T' and ([3:39) yields the desired
error estimates in Theorem [2.3]
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4. IMPLEMENTATION AND NUMERICAL RESULTS

The spatially discrete elastic flow [239)), I0), 2II) can be written as a sys-

tem of ODEs for the unknown vector-valued function « = (x1,...,zn) with z; =
(ﬁj,l, ce ,xj,n).
1 . 1 1
(4.1) 5(%‘ + qj+1)E5 + EP]'—&-l(yj—&-l —yj) — ;Pj(yj —Yj-1)
j j
1 1 1
= (P + v ) (i1 — 25) = (g1 + [y ) — (25 — 25-1))
4 qj+1 4q;
1 1 1 1
—)\(—x- 1—(—+—)z; + —x-,l) =0,
qj+1 . (%‘+1 LIj) T
1 1 1 1 1
4.2 —(q; + q; »—(—x‘ - —-l——x--i——x-,):O
(4.2) 2( ! )Y dj+1 o (Qj+1 Qj) ! d; =
for j =1,..., N periodically in N. Here we again have used the abbreviations
1
g =lwj —xjal, 7= - (j—zj1), Pj=I1-7,01;
j

The initial value is given by z;(0) = zo(u;). Note that in this ODE system the
grid sizes h; in the parameter interval do not appear. In this sense our algorithm
is “intrinsic”.

For the implementation we used the following semi-implicit time discretization
of (1)), [@2). We adopt the generic notation

2™ =z(mr), m=0,...,mp

with mp7 = T for the evaluation of the function z on the m-th time level.

Algorithm 4.1 (Fully discrete elastic flow). Let 3 = xo(u;). For the steps m =
0,...,mp — 1 compute

mo_ pm
m_|m_m‘ m _ Tj—1 i1
4 = 1T —Tjalb T = m 0 =
4

and solve the linear system of equations

m+1 m+1 m+1

_(q]‘ + Qj+1)55] + ij+1(yj+1 Y; ) — P ( il m+1)

2T a4 @ i \Yj Yj-1
1 1 1 1 1 1 1
7 "1+l ) == (@55 = 23 = (P + " ) = (2 — )
q54+1 4q;
1 11 1 1
—A(— mAl (L S yamedl o o m+1) — (" + g )™,
g i G g ) = @ )
1 1 11 L1
(@ +ai)y T - (Tﬂcﬁﬁl (T )+ —m%nfll) =0
Bj+1 Gy 95 4

for j =1,..., N periodically with respect to N.
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Let us write the linear algebra form of this algorithm in order to show its sim-
plicity. We define the matrices

M = dlag( ! (g7 + q]+1))

1 1 1 1
S = trldlag( T m + s 77),
i G Gy G4
- 1
Sk = tr1d1ag< — 7m(5kl T k l)
qj
1

T((Sk‘l ]+1 kT +1 l) q (6k‘l ]+1 kT +1 l))

1
— Ok = 774770) +
qj 41 j+1

1 m
R= —tr1d1ag( (|yj PP+ |yj ),
]

(P P = P ), (2 + 9 0)
J q]+ q]+1

and omit the notation for the time dependence. The meaning of diag is obvious,

M is a diagonal matrix. tridiag denotes a tridiagonal matrix except for two entries

in the last column of the first row and in the first column of the last row, which are

due to the periodicity. If we now denote by

XE = (5’31,k, e 7$N,k), Y = (yl,ka .- -,yN,k),

the coefficient vectors of the k-th component, then the system in Algorithm [£] can
be written as

1
m+1 Zsklym+l + RXZLJrl + )\SXZIJrl — ;MXZL,

Myerl + S’XZ1+1 =0

fork=1,...,n
If we eliminate y from the first equation by using the second equation, then we
finally arrive at

1 1
(4.3) —Mx} x4 Z S M~ESx T 4 RxmH 4 ASxmH = —Mx,
=1

(k=1,...,n). We solve this linear system of equations with the BICG-method. It
should be mentioned that for this system also the CG-method converged.

There is no stability estimate for the fully discrete scheme yet. Experimentally
we observed that a time step restriction of the form 7 < eh? was sufficient for
stability of the fully discrete scheme. A better choice is, and this is what we used
for long time computations,

(44) O0<7t<e ) inf |l‘j — xj_l\s.

j=1,...,N
Here we typically have chosen € = 0.1 and s = 2. In computations with large
deformations of the curve which appear in short time we have chosen s = 3. Note
that condition (4.4) makes the time step size time dependent.
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Example 4.1. We start with a test for convergence. For this we use an exact
solution of the problem for A = 0. Following [5] we use

(4.5) z(u, t) (1+ 275)i (cos (u+ 0.1sinw),sin (u + 0.1sinu)),
(4.6) ylu,t) = —(1+ 275)7i (cos (u+0.1sinu),sin (u 4+ 0.1sinwu))

for u € [0,27], t € [0,1] and n = 2. We computed the discrete solution with
Algorithm BT and with a time step size 7 = 0.1h%. Then we computed the following
errors. For generic continuous and discrete functions z and z; we use the notation

E(00,2,2) = sup |z(-,m7) — 2|,
1<m<mr

B(2.2,2) = (3 ls(,mm) = 2717)
m=1

We computed the errors E(o0,2,x2), E(c,2,y), E(2,2,2,), E(2,2,y,). For this
we used integration formulas which are exact in P3. In addition we computed the
errors in the following expression:

o1 1, ... "o
E(c0,00,2) = sup  sup |2((j + 5)h,m7) — = (27 (jh) + 21 ((F + 1)h)) |
1<m<mr 0<j<N 2 2

for z = x and z = y. The results for the position vector x are shown in Table
[ and for the curvature vector y in Table @l They confirm our theoretical results
for the norms which involve gradients and indicate that quadratic convergence can
be expected for the L? and L* norms. We add Table [3 which shows errors and
experimental orders of convergence for E(co,2, |z,|) and F(2,2,x;). The numbers
in the tables are not rounded but just cut off after four digits.

TABLE 1. Errors and orders of convergence for the position vector
z in Example [£.]1

h E(c0,2,2) eoc | E(2,2,z,) eoc | E(oco,00,2) eoc
0.6283 | 0.01500 — 0.9309 — 0.06877 -
0.3141 | 0.003320 2.175 | 0.4720 0.979 | 0.01789 1.942
0.1570 | 0.0008437  1.976 | 0.2366 0.996 | 0.004517 1.986
0.07853 | 0.0002122  1.990 | 0.1184 0.999 | 0.001132 1.996
0.03926 | 0.00005311 1.998 | 0.05921 0.999 | 0.0002831  1.999
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TABLE 2. Errors and orders of convergence for the curvature vec-
tor y in Example [4.11

h E(,2,y) eoc | FE(2,2,y,) eoc | E(co,00,y) eoc
0.6283 | 0.01876 — 0.6691 — 0.05365 —
0.3141 | 0.004371 2.102 | 0.3413 0.971 | 0.01454 1.883
0.1570 | 0.001091 2.001 | 0.1712 0.995 | 0.003708 1.971

0.07853 | 0.0002733  1.998 | 0.08566 0.999 | 0.0009314  1.993
0.03926 | 0.00006842 1.997 | 0.04283 0.999 | 0.0002331  1.998

TABLE 3. Errors and orders of convergence for the test Example 411

h E(00,2,|zy|) eoc | E(2,2,x¢) eoc
0.6283 | 0.08550 — 0.01372 —
0.3141 | 0.03893 1.134 | 0.003371 2.025
0.1570 | 0.01863 1.062 | 0.0008610  1.969
0.07853 | 0.009201 1.018 | 0.0002166  1.990
0.03926 | 0.004585 1.004 | 0.00005424 1.997

Example 4.2. Next we compute the evolution of an ellipse under the elastic
flow. Here we have chosen zg(u) = (cos(u),4sin (u),0) for v € [0,27] as initial
parametrization. We have chosen xpg ; = xo((j — 1)h) and the computational data
were n = 3, N = 100, h = 0.06283, 7 = 0.0001240 and A = 0.025. In Figure [0l we
show the evolving curve. The grid does not degenerate according to our theoretical
results. But the difference in size of the faces of the polygon becomes quite large.
Note that this is due to the fact that we solve the full PDE (22)), (Z3]) for the
position vector z. Since the elastic flow of curves has purely normal direction and
since we approximate this flow, the discrete solution also has this property approx-
imately. Thus the nodes at regions of high curvature of the initial ellipse have to
become close in the end. Since we do not impose tangential motion onto the system
this effect has to appear. Otherwise we would not solve the correct problem.

For practical purposes one can introduce tangential motion into the scheme which
keeps the grid pleasant. The easiest possibility to do this is to reparametrize the
curve after some time steps according to arc length. Another possibility is presented
in [I]. We did not use any of these approaches for our computations since we wanted
to treat the pure elastic flow problem.

Let us mention that the scheme in [B] is quite similar to our scheme except
for integration by parts in the continuous variational equation. That scheme suf-
fered from undesired tangential motions which do not appear in our scheme. Our
scheme has the property that it respects the variational structure of the elastic flow
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t=0.0 t=1.24 t=06.2 t=124 t =248

FIGURE 1. Evolution of an ellipse under elastic flow and distribu-
tion of the nodes (Example [2)).

E sigma
2.90f T = functional 13.50 [ I I I 1
2.80F - 13.00 4
270 - 12.50 | 4
2.60r B 12.00 B
2.50 B 11.50 4
2.40F 7 11.00 -
2.30f 7 10.50 - g
2.20F . 10.00 | 4
2.10F B 9.50 | |
2.00 B 9.00 L ]
1.90F B 8.50 I |
1.80F B 3.00 L i
) : -
1.50- - 700 iy
140k . 1. 650 - . . . .
0.00 50.00 0.00 20.00 40.00 60.00

FIGURE 2. Evolution of the functional Ey (left) and evolution of
the grid parameter o (right) for Example

problem also in the discrete setting; cf. Remark Il However, at present it is
unclear whether the energy also decreases for solutions of the fully discrete scheme,
Algorithm (11

In Figure[2 we present the value of the functional E) together with a graph which
describes the behaviour of the grid by showing the evolution of the parameter

SuPj=1,....N |zj — 2]

infj—y N |zj — 25|

Example 4.3. We finally compute the evolution under elastic flow for a curve
which for 6 = 0 is a hypocycloid. The parametrization of the initial curve is given
by

o) = (- g cos (1) + 4 cos (5u), —g sin (u) + 4sin (5u), 3sin (3u) ).

Grid
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It is well known [6] that multiple coverings of a circle are stable stationary solutions
for codimension one, i.e. for n = 2. This is not true for higher codimension (n > 3).
Obviously for n = 2 the initial curve evolves to a five-fold covering of a circle (Figure
[B). Here the computational parameters are A = 0.025, N = 200 and the time step
was chosen as in ([£4]) with e = 0.1 and s = 2.

It is worth noting that our scheme keeps the initial curve planar even if we
compute in three dimensions, i.e. n = 3. There are no round off errors introduced
into the third component of the solution of the elastic flow.

If we start with an initial curve which is slightly perturbed in a vertical direction,
we have chosen § = 0.1, then for “small” times up to about ¢ = 1000.0 the evolution
is quite similar to the two-dimensional case. But then the curve begins to unfold
in a complicated manner and evolves to a single circle. This is shown in Figure

The computational parameters are A\ = 0.025, N = 200 and the time step was
chosen as in ([@4) with e = 0.1 and s = 3.

t=20.0 t =690.1 t =3011.9

\

t =4930.5 t = 7889.5 t =10441.2

FicUre 3. Example for § = 0: evolution of a planar hypocy-
cloid towards a five-fold covering of a circle. The curves are graph-
ically rescaled to have similar size.

In Figure @ we plot the value of E) against time for planar and perturbed
hypocyloid. Finally, Figure [3l shows the evolution of the grid parameter ¢ in both
cases.
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T T T functional
7.00

6.50 - 1
6.00 - 1
5.50 - 1
5.00 - 1
- . 4.50 - 1
4.00 - 1
3.50 1
L _ 3.00 F 1
2.50 - 1
2.00 - 1
150 F 1

0.00 5.00 10.00 0.00 5.00

FIGURE 4. Value of the functional during the evolution for Exam-
ple @3l for § = 0 (left) and 6 = 0.1 (right).
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F1cURE 5. Value of the grid parameter o during the evolution for
Example 3 for 6 = 0 (left) and § = 0.1 (right).
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FIGURE 6. Example 4.3
turbed hypocycloid towards a circle.
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