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A TARGETED MARTINET SEARCH

ERIC D. DRIVER AND JOHN W. JONES

Abstract. Constructing number fields with prescribed ramification is an im-
portant problem in computational number theory. In this paper, we consider
the problem of computing all imprimitive number fields of a given degree which
are unramified outside of a given finite set of primes S by combining the tech-
niques of targeted Hunter searches with Martinet’s relative version of Hunter’s
theorem. We then carry out this algorithm to generate complete tables of
imprimitive number fields for degrees 4 through 10 and certain sets S of small
primes.

An important problem in the study of fields is to determine all number fields of
a fixed degree having a prescribed ramification structure. This paper will focus on
finding all imprimitive number fields of a given degree unramified outside of a finite
set of primes.

Hunter’s theorem has been used extensively for computing all primitive number
fields of a given degree with absolute discriminant below a given bound. In [13],
Martinet gives a version of Hunter’s theorem suitable for relative extensions which
has been used to carry out similar searches for imprimitive fields [4, 5, 16, 17, 18, 19].
Note, however, that for even modest degree fields and small sets of primes, such as
S = {2, 3}, using a standard Hunter search to find all fields unramified outside S can
become computationally burdensome. This can be ameliorated by carrying out a
targeted Hunter search where one searches for all fields with specific discriminants,
but only those possible for fields unramified away from S. This approach was
introduced in [6] and refined in [7] to determine all sextic and septic fields with
S = {2, 3}, respectively. It has subsequently been used to investigate fields of
degrees 8 and 9 ramified at a single prime in [11, 12].

In this paper, we combine Martinet’s theorem with the targeted search technique
to form what we call a targeted Martinet search. We then demonstrate the algorithm
by using it to compute complete tables of imprimitive decic fields with prescribed
ramification.

Section 1 describes the process of conducting a number field search based on
Martinet’s theorem. The size of the relative extensions considered in applications
here are larger than those in the literature. Section 2 describes how targeting can be
used with a search described in Section 1, with details on combining congruences
and archimedean bounds given in Section 3. Finally, Section 4 summarizes the
results of several searches carried out using the methods in this paper.
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1. Martinet’s theorem and Archimedean bounds

If K is a number field, OK will be its ring of integers and dK ∈ Z will denote its
discriminant. Hermite’s constant for j-dimensional lattices will be denoted γj .

A standard approach to computing complete tables of degree n extensions of Q

with discriminant |dK | ≤ B for some bound B is to use Hunter’s theorem. This
approach is only guaranteed to find all primitive extensions, i.e., those with no
intermediary fields. We will be interested in imprimitive extensions and will make
use of Martinet’s generalization of Hunter’s theorem for relative extensions [13].

Theorem 1 (Martinet). Let K be a number field of degree m over Q and let L be
a finite extension of K of relative degree n = [L : K]. Let σ1, . . . , σm denote the
embeddings of K into C. Then there exists α ∈ OL − OK such that

mn∑
i=1

|αi|2 ≤ 1
n

m∑
j=1

|σj(TrL/K(α))|2 + γm(n−1)

(
|dL|

nm|dK |

)1/m(n−1)

,

where the αi’s are the conjugates of α. Furthermore, α can be chosen arbitrarily
modulo addition by elements of OK and also modulo multiplication by roots of unity
in OK .

We will use the notation in Martinet’s theorem for the remainder of this paper.
We also use the standard notation T2(α) :=

∑mn
i=1 |αi|2.

1.1. Archimedean bounds. Let α ∈ OL−OK be the element given by Martinet’s
theorem and let fα,K(x) ∈ OK [x] be the characteristic polynomial for α over K.
We write

fα,K(x) = xn + a1x
n−1 + · · · + an−1x + an

where each ai ∈ OK . If ω1, ω2, . . . , ωm is an integral basis for K/Q, then we may
write ai =

∑m
j=1 aijωj where each aij ∈ Z. When working with ai in this basis, we

will denote the column vector (ai1, . . . , aim)T by �ai. Note that

〈�ai,�ai〉 =
m∑

j=1

|σj(ai)|2

is a positive definite quadratic form on �ai. Here, we will mainly report on upper
bounds for 〈�ai,�ai〉. More details can be found in [4, 10, 16, 17].

For the coefficient a1, one can shift the components so that −�n−1
2 � ≤ a1j ≤ �n

2 �
for each j and 0 ≤ a11 ≤ �n

2 �. If a11 through a1k are all zero, we may normalize
the next coefficient 0 ≤ a1,k+1 ≤ �n

2 �. Finally, whenever m = 2 we observe that
any search with a given a1 is the equivalent to one that uses the Galois conjugate
of a1, so we may remove any a1 from our list of candidates whose Galois conjugate
is already on the list. A short table of explicit values for a1 can be found in
[10, §2.1] for degree [L : Q] = mn ≤ 10.

Once the value for a1 has been fixed, we have an exact numerical value for
Martinet’s bound:

T2(α) ≤ Ca1 :=
1
n

m∑
j=1

|σj(a1)|2 + γm(n−1)

(
|dL|

nm|dK |

)1/m(n−1)

.

It may be possible to replace a1 with an equivalent element for which
∑m

j=1 |σj(a1)|2
is smaller, and hence gives a more efficient bound Ca1 . This improvement was
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incorporated into Martinet-type searches for nonics in [5]. In the most interesting
case here, namely when the base field is quadratic (i.e. m = 2), it is not hard to
prove that the values for a1 given in [10] are already optimal in this regard.

For the constant coefficient an, there is a standard bound derived from the
arithmetic/geometric mean inequality, yielding

(1) 〈�an,�an〉 ≤
(

Ca1

n

)n

.

To bound the other coefficients, we first bound the power sum sk =
∑n

j=1 αk
j , and

then inductively use Newton’s formula to get bounds on ak. The power sums sk

satisfy

(2) 〈�sk, �sk〉 ≤ Ck
a1

.

Given ai and si for i ∈ {1, 2, . . . , k−1}, set�b = −
∑k−1

j=1 ak−jsj . Then the coefficient
ak satisfies the relation

�ak =
1
k

(�b − �sk).

1.2. The method of Pohst. It is possible to improve the bounds on sk when
k ≥ 3 based on a method of M. Pohst [15]. Define

Tk :=
n∑

j=1

|αj |k,

where the αj ’s are the roots of fα,K . Clearly, |sk| ≤ Tk. Suppose that an has been
fixed and let t2 be a bound for T2. The method of Pohst uses Lagrange multipliers
to minimize the bounds on Tk (3 ≤ k ≤ n − 1) subject to the constraints that∑n

j=1 |αj |2 ≤ t2 and
∏n

j=1 |αj | = |an|. A more detailed description can be found
in [3, p. 458].

In carrying out number field searches based on Martinet’s theorem, there is
little need for better bounds on the sk when n = 2 or 3. The only other case in the
literature is where n = 4, in which case Pohst’s theorem is applied to the degree mn
polynomial NormK/Q(fα,K) (see e.g., [17]). Here, the need for good archimedean
bounds was more pressing for the n = 5 cases under consideration. We find it useful
to apply Pohst’s theorem to both the degree mn polynomial and individually to
fα,K and its conjugates. We explain the derivation of the latter bounds below.

For the i-th conjugate polynomial of fα,K , we define

T
(i)
k :=

n∑
j=1

|σij(α)|k (1 ≤ i ≤ m).

In order to get a bound t
(�)
2 for T

(�)
2 , we use the Martinet bound to give us

(3) T
(�)
2 =

n∑
j=1

|σ�j(α)|2 ≤ Ca1 −
m∑

i=1
i �=�

n∑
j=1

|σij(α)|2.

Next, from the arithmetic/geometric mean inequality we have

n∑
j=1

|σij(α)|2 ≥ n

⎡
⎣ n∏

j=1

|σij(α)|2
⎤
⎦

1/n

= n|σi(an)|2/n.
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Substituting this into (3), we finally get

T
(�)
2 ≤ Ca1 − n

m∑
i=1
i �=�

|σi(an)|2/n.

Now let t
(i)
k be the bound for T

(i)
k obtained by applying the method of Pohst

to the ith conjugate polynomial; we then have |σi(sk)| ≤ t
(i)
k . Combining these

bounds together we get

〈�sk, �sk〉 =
m∑

i=1

|σi(sk)|2 ≤
m∑

i=1

[
t
(i)
k

]2

.

2. Targeting

For the number field K, if p is a prime ideal of OK we denote the completion
of K by Kp, and p the prime below p. Then Op will denote the ring of integers
of Kp and Pp the maximal ideal of Op. The factorization pOL will be denoted
P

e1
1 · · ·Peg

g and fi will denote the residue field degrees. Notations for completions
LP are analogous to those for K described above. Finally, if S is our set of integral
primes, then we let SK denote the set of prime ideals of OK which lie above some
p ∈ S.

Fix a prime ideal p ∈ SK . Then the decomposition pOL = P
e1
1 · · ·Peg

g corre-
sponds to the decomposition of the local algebra

(4) L ⊗K Kp
∼=

g∏
i=1

LPi
.

At the finest level, a local target for p can be a candidate for L ⊗K Kp, a separa-
ble degree n algebra over Kp. For practical reasons, we typically consider larger
targets. For the searches in Section 4, our targets consisted of unordered collec-
tions of triples (ei, fi, ci) representing the ramification indices, residue field degrees,
and discriminant exponents of the extensions LPi

/Kp. Note, however, that in all
cases, a local target provides sufficient information to determine the P-part of dL.
Combining this for all primes dividing dK and primes in S gives dL for applying
Martinet’s theorem. Then, larger targets, such as all extensions where the relative
extension is unramified outside S, can then be searched by searching a series of
smaller targets.

As in Section 1, fα,K denotes the characteristic polynomial of α over K where
L = K(α). Then fα,K factors into irreducibles over OKp

as fα,K = h1 · · ·hg which
correspond to the factorization of L ⊗K Kp in equation (4). Moreover, since α is
integral over OK , each hi has coefficients in OKp

. For congruences derived from
this factorization, we note that for all k, we have fα,K ≡ h̃1 · · · h̃g (mod pk) where
we may take each h̃i ∈ OK [x] because OK is dense in OKp

. The basic process
is to simply compute congruences for the h̃i modulo pk, and then multiply these
polynomials to obtain congruences for fα,K modulo pk.

Let Γ ⊆ OK be a complete set of representatives for OK/p with 1 ∈ Γ. Then we
immediately have

(5) hi ≡ rei
i (mod PKp

)

where ri is a degree fi monic polynomial with coefficients in Γ.
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For tamely ramified primes, equation (5) suffices. When the ramification is wild,
however, the congruences given by equation (5) can be improved significantly by
working modulo a power of PKp

. We use Ore congruences as in [7]. We illustrate
the general situation with an example.

Consider the case of a cubic extension where we have e = p = 3 and f = 1.
Let ρ be a uniformizer for Kp, and let π be a uniformizer for LP. Let e0 be the
ramification index of PKp

over pZp, so that νπ(p) = 3e0. The minimal polynomial
for π over Kp is Eisenstein, so it can be written

fπ(x) = x3 + ρk1Ax2 + ρk2Bx + ρC ∈ Kp[x],

where A, B, C ∈ OKp
. If we let d denote the exponent of PLP

in D(LP/Kp), then

d = νπ(f ′
π(π))

= νπ(3π2 + 2ρk1Aπ + ρk2B)

= min{νπ(3π2), νπ(2ρk1Aπ), νπ(ρk2B)}
= min{3e0 + 2, 3k1 + νπ(A) + 1, 3k2 + νπ(B)}.

It is easy to see that we can always take 1 ≤ k1 ≤ k2 ≤ e0 + 1. Thus, we would
work modulo pk2 .

The coefficients of the characteristic polynomial for any β ∈ PLP
will satisfy the

same divisibility conditions as the coefficients of fπ; and any element β ∈ OLP
is a

translate by some γ ∈ Γ of an element in PLP
. Therefore, the corresponding local

factor hi will take the form

hi = (x + γ)3 + ρk1A(x + γ)2 + ρk2B(x + γ) + ρC

≡ (x + γ)3 + ρk1A(x + γ)2 + ρC (mod Pk2
Kp

)

for some A, B, C ∈ OKp
and some γ ∈ Γ. We then write A and C as power series

in ρ with coefficients from Γ to obtain explicit congruences.

3. Algorithm implementation

The bounds derived earlier take the form

(6) 〈�a,�a〉 ≤ B

for a positive definite quadratic form 〈 , 〉 where B is a positive real number and
the column vector �a = (a1, . . . , am)T ∈ Zm represents the element a =

∑m
i=1 aiωi

which is either a polynomial coefficient or a power sum.
Explicitly, if Q = [σi(ωj)]ij , then 〈�a,�a〉 = �aT QHQ�a where QH denotes the

conjugate transpose of Q and �aT is simply the transpose of �a. Since �a ∈ Zm and
〈�a,�a〉 are real, let A be the matrix of real parts of QHQ, and our bound (6) becomes
�aT A�a ≤ B.

To get efficient bounds on the components of �a, we use the Cholesky decom-
position of the quadratic form associated to A as in [2], section 2.7.3. In our
applications, the lattice has very small dimension, so we used a simple approach
to enumerating short vectors in the lattice. With larger lattices, one might use
Fincke-Pohst instead.

Now, suppose we want to find elements a =
∑m

i=1 aiωi ∈ OK which are congruent
to c =

∑m
i=1 ciωi ∈ OK modulo the ideal a. The ideal a is a free Z-module of rank
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m = [K : Q], so there exist µj ∈ OK such that

a = µ1Z + µ2Z + · · · + µmZ.

Each µj may be written µj =
∑m

i=1 µijωi where µij ∈ Z. We choose our basis for
a so that the matrix M = (µij) is in Hermite normal form.

Now if a ≡ c (mod a), then a − c ∈ a which implies
m∑

i=1

aiωi −
m∑

i=1

ciωi = k1µ1 + · · · + kmµm

= k1

m∑
i=1

µi1ωi + · · · + km

m∑
i=1

µimωi

for some ki ∈ Z. Equating the coefficients of the ωi’s, we get the following matrix
equation:

�a = M�k + �c.

Now define �k′ = �k + M−1�c. Then

�a = M(�k + M−1�c) = M�k′.

We now use the bound on �a to give bounds on the ki’s. From equation (6) we get

(�k′)T (QM)H(QM)�k′ ≤ B.

As before, there exists an auxiliary matrix A such that (�k′)T A�k′ ≤ B and A is a
positive definite real symmetric matrix. Using the Cholesky decomposition for A we
can enumerate small vectors �k′, i.e., those satisfying 〈�k′,�k′〉A ≤ B for the positive
definite quadratic form given by A. If we write these bounds as L′

i ≤ k′
i ≤ U ′

i , then
we get the following bounds on the ki’s,

�L′
i − c′i
 ≤ ki ≤ �U ′

i − c′i�
where �c ′ = M−1�c. We will write these bounds as Li ≤ ki ≤ Ui. Note that the
bounds Li and Ui depend on the current values of ki+1, . . . , km. So to obtain all
values for �k, we first loop over the range for km. The current value for km is used
to get looping bounds for km−1. Then the current values for km and km−1 are used
to get looping bounds for km−2, and so on.

The search algorithm loops over all combinations of the ki’s, and for each com-
bination, computing �a = M�k + �c. Observe that the bounds on the ki’s are smaller
than the bounds on the ai’s so that the search region has been reduced. This
is analogous to the one-dimensional case where one considers all elements a such
that a = c + kp (here µ1 = p is the modulus of the congruence vector). If the
archimedean bounds are |a| < B, then k = a−c

p so that −B−c
p ≤ k ≤ B−c

p .
The above method is modified slightly when the bound is on a power sum instead

of a polynomial coefficient. Suppose we are interested in the jth (2 ≤ j ≤ n − 1)
polynomial coefficient and we have the following bound on the jth power sum:

〈�sj , �sj〉 ≤ B.

From Newton’s formula, we may write

j �aj = �bj − �sj

where �bj = −
∑j−1

i=1 aj−isi ∈ Zm.
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If we define
�c ′ :=

1
j
M−1(�bj − j�c)

and
�k′ := �c ′ − �k,

then we have

�sj = �bj − j �aj

= �bj − j(M�k + �c)

= jM

[
1
j
M−1(�bj − j�c) − �k

]

= jM�k′.

The bound on �sj can now be used to get a bound on �k′:

〈�sj , �sj〉 = (jM�k′)HQHQ(jM�k′) = j2(�k′)T (QM)H(QM)�k′

=⇒ 〈�k′,�k′〉QM =
1
j2

〈�sj , �sj〉 ≤
B

j2
.

As before, there exists an auxiliary matrix A such that 〈�k′,�k′〉A ≤ B
j2 and A is

a positive definite real symmetric matrix. The rest of the algorithm remains the
same.

4. Applications

The targeted Martinet search was used to construct complete tables of imprim-
itive number fields with prescribed ramification. We did this for degrees 4, 6, 8, 9,
and 10; the results of which can be found on our websites [8, 9]. The algorithm was
programmed in C using the pari library [14].

The web site [8] contains results of Hunter searches for sextic fields which were
known to be complete for all Galois groups except for C2

3 : C4 and C2
3 : D4. In [6],

the search for sextic fields with S = {2, 3} was shown complete for these groups by
class field theory. Using the methods of this paper, the tables were proven complete
for 33 other values of S.

In this section, we consider the specific case of degree 10 fields unramified outside
the set S = {2, 3}. The search was done in two parts. The first part did a search
for quadratic extensions of a quintic base field, and the second part searched for
quintic extensions of a quadratic base field.

The results of our quadratic over quintic search are summarized in Table 1, where
the fields are sorted by Galois group. Searches involving quadratic extensions are
inherently easier than quintic extensions. This is a relatively simple computation,
so we completed this search in two ways, by targeted Martinet searches as described
above, and by class field theory. We note that computing quadratic extensions of
quintic fields by Martinet searches has appeared previously in the literature (see
[18, 19]). Class field theory is especially easy to apply in this situation because it
just entails taking square roots of the appropriate elements of quintic fields. This
is simplified further by the fact that we are allowing ramification above 2, and that
the 6 quintic base fields all have narrow class number one. This search took roughly
1.5 hours by a targeted Martinet search and 10 seconds by class field theory using
a script written for gp [14].
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Table 1. All decics unramified outside S = {2, 3} and having a
quintic subfield.

T4 T5 T12 T22 T24 T25 T29 T37 T38 T39 Total
1 6 5 30 7 7 42 91 91 546 826

Table 2 gives the results for the much more difficult quintic over quadratic search.
The data is sorted vertically by quadratic base field, and horizontally by Galois
group. The results are complete for all 7 of the quadratic base fields which are
unramified outside {2, 3}. Run times for the first 6 base fields varied from 25
hours for the Q(

√
−3) case to 30 days for the Q(

√
2) case. Run times are heavily

dependent on the discriminant of the base field. For the last base field Q(
√

6), we
decided to use a distributed computing approach using BOINC [1]. We found a
dozen volunteer host machines, including a dual Clovertown (8 cores) and a pair of
quad-core Xeon servers. The Q(

√
6) case was finally settled after about 60 days of

hard-core processing. The total processing time summed over all host machines was
41216 hours (4.7 years), justifying the need for a distributed computing approach.

Table 2. All decics unramified outside S = {2, 3} and having a
quadratic subfield, Q(

√
d) with d ∈ {−1,±2,±3,±6}.

K T4 T5 T12 T22 T28 T40 T41 T42 T43 Total
Q(

√
−3) 1 5 1 2 3 12

Q(
√
−1) 1 5 2 6 14

Q(
√

2) 1 2 3 1 4 7 18 31 67
Q(

√
−2) 1 5 5 41 52

Q(
√

3) 1 1 4 4 6 41 57
Q(

√
−6) 1 1 4 2 2 10

Q(
√

6) 1 1 4 3 4 61 74
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