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ON THE COLLOCATION METHODS FOR SINGULAR
INTEGRAL EQUATIONS WITH HILBERT KERNEL

JINYUAN DU

Abstract. In the present paper, we introduce some singular integral oper-
ators, singular quadrature operators and discretization matrices of singular
integral equations with Hilbert kernel. These results both improve the clas-
sical theory of singular integral equations and develop the theory of singular
quadrature with Hilbert kernel. Then by using them a unified framework for
various collocation methods of numerical solutions of singular integral equa-
tions with Hilbert kernel is given. Under the framework, it is very simple
and obvious to obtain the coincidence theorem of collocation methods, then
the existence and convergence for constructing approximate solutions are also
given based on the coincidence theorem.

1. Introduction

Singular integral equations (SIEs) with Cauchy kernel often arise in mathemat-
ical models of physical phenomena. In the past thirty years, various collocation
methods for SIEs with Cauchy kernel have been the topic of a great many of pa-
pers, most of which can be found in the two surveys [1, 2]. D. Elliott successfully
studied the more complete analytic theory for these collocation methods in a series
of important papers [3]–[10]. In [11, 12], Du systematically introduced some sin-
gular integral operators, singular quadrature operators and discretization matrices
for singular integral equations with Cauchy kernel and gave a unified framework
for various collocation methods. Singular integral equations with Hilbert kernel are
also frequently encountered in physical and engineering applications. In this pa-
per, we shall consider the collocation methods for singular integral equations with
Hilbert kernel of the form

(1.1) a(t)ϕ(t)+
b(t)
2π

∫ 2π

0

ϕ(τ ) cot
τ−t

2
dτ +

λ

2π

∫ 2π

0

k(τ, t)ϕ(τ )dτ =f(t), 0≤t<2π.

In (1.1), the input real-valued functions a, b, f, k are Hölder-continuous functions
with period 2π for their arguments, denoted as a, b, f, k ∈ H2π, λ is a given constant,
and it is required to find the solution ϕ in the class H2π (see Chapter V in [13],
Chapter I in [14]), the first integral is understood as the principle value integral
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with Hilbert kernel and at t = 0 (or t = 2π) as

(1.2)
∫ 2π

0

ϕ(τ ) cot
τ

2
dτ = lim

δ→0+

∫ 2π−δ

δ

ϕ(τ ) cot
τ

2
dτ.

In 1978, S. Krenk discussed the numerical method for SIE (1.1) in the case that
a(t) and b(t) are constants [15]. In 1983, for the same case, N. I. Ioakimidis redis-
cussed it by using a somewhat different method [16]. He gave the result on the equiv-
alence of the approximate solutions obtained by the direct and indirect quadrature
methods via concrete calculations, which is called the coincidence theorem in the
present paper. For general cases, in [17, 18] Du discussed the numerical methods for
SIE (1.1), and the existence and convergence were demonstrated on the basis of the
coincidence theorem which is established by applying again specific computation. In
[19], J. Saranen and G. Vainikko thoroughly examined the more general frame-
work of the collocation method with trigonometric trial functions and uniform
grid. There, optimal convergence order in the scale of periodic Sobolev space is
established, but only the case of index 0 is treated, a simple matrix form of the
method. Then, J. Saranen and L. Schroderus extended some of the results in [19]
to the scale of periodic Hölder spaces [20].

In the present paper, we shall give a unified framework for various collocation
methods of SIE (1.1) and establish analytic theory for it. First of all we establish
some necessary preliminaries including some special concepts and symbols in §2–§4.
Some singular integral operators, singular quadrature operators and discretization
matrices are introduced in §5-§7, which possess very interesting properties. These
results improve both the classical theory of singular integral equations and the the-
ory of singular quadrature with Hilbert kernel. Then, using these tools we give a
unified framework for various collocation methods of SIE (1.1). The direct quad-
rature method of the framework is stated in §8, which is convenient for practical
application. The indirect quadrature method of the framework is stated in §9, which
is rather good for theoretical analysis. In §10, we verify the coincidence theorem
of collocation methods that the approximate solutions obtained by the direct and
indirect quadrature methods are completely the same, which is very simply and
obviously obtained under the framework here. In §11 we establish the existence
and convergence for the approximate solutions based on the coincidence theorem.
In §12, some examples are given, which bring into being some earlier results.

2. Normalized equation

In the first place, we must separate a weight function from the output function
ϕ in SIE (1.1). This step is very necessary, if not, the numerical method for SIE
(1.1) will be only effective for the case that a and b are constants. To do so, we
need some special concepts and symbols used throughout this paper.

Let

(2.1) Θ(t) = arg[a(t) − ib(t)],

and take a continuous branch on [0, 2π]. Since a(t) and b(t) are real 2π-periodic
functions, then the number

(2.2) κ =
1
2π

[Θ(2π) − Θ(0)]



COLLOCATION METHODS FOR SIE WITH HILBERT KERNEL 893

is an integer. We know that 2κ is just the index of SIE (1.1) (see Chapter V in
[13]).

The mean value of Θ on [0, 2π],

(2.3) θ =
1
2π

∫ 2π

0

Θ(τ )dτ,

is called the characteristic number of SIE (1.1) which plays an important role there-
inafter.

The canonical function X(z) and the fundamental function Z(t) of SIE (1.1) are,
respectively, [13]

(2.4)

X(z)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
{

1
2π

∫ 2π

0

[Θ(τ ) − κτ ] cot
τ−z

2
dτ + κiz

}
, if Im z > 0,

exp
{

1
2π

∫ 2π

0

[Θ(τ ) − κτ ] cot
τ−z

2
dτ − κiz

}
, if Im z < 0,

Z(t) = exp
{

1
2π

∫ 2π

0

[Θ(τ ) − κτ ] cot
τ − t

2
dτ

}
∈ H2π, if Im t = 0.

We assume that SIE (1.1) is of the normal type, i.e.,

(2.5) r(t) =
√

a2(t) + b2(t) �= 0.

The real-valued functions

(2.6) w1(t) =
Z(t)
r(t)

∈ H2π, w2(t) =
1

r(t)Z(t)
∈ H2π

are called, respectively, the weight functions of the first kind and the second kind
associated with SIE (1.1).

Let

(2.7) ϕ(τ ) = w1(τ )y(τ ),

then SIE (1.1) will become

a(t)w1(t)y(t) +
b(t)
2π

∫ 2π

0

w1(τ )y(τ ) cot
τ − t

2
dτ

+
λ

2π

∫ 2π

0

w1(τ )k(τ, t)y(τ )dτ = f(t), 0 ≤ t < 2π,

(2.8)

which is called the normalized equation of SIE (1.1). Now we easily get the following
result.

Theorem 2.1. With the relation (2.7), the solutions of SIE (1.1) in H2π are equiv-
alent to the solutions of SIE (2.8) in H2π.

3. Quasi-principal part

The mapping w=eiz maps, respectively, the upper strip region S+ ={z : Im z>
0, 0≤Re z ≤ 2π} and the lower strip region S− = {z : Im z < 0, 0 ≤ Re z ≤ 2π}
into the interior and exterior of the unit circle {w : |w| < 1} with the infinity
accumulation point z = +∞ i of S+ and the infinity accumulation point z = −∞ i
of S− to w = 0 and w = ∞, the straight lines Re z = 0 and Re z = 2π into the
upper and lower banks of the cut (0, +∞). Let Φ+(z) be a holomorphic function
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with period 2π on the upper complex half-plane C+ = {z : Im z > 0}, denoted by
Φ+ ∈A+

2π. Then (Φ+)∗(w) = Φ+(z) with w = eiz is just well defined and analytic
in 0 < |w| < 1, so (Φ+)∗ has a Laurent expansion; thus we know easily that there
is also the unique expansion in series form for Φ+ [21]:

Φ+(z) =
+∞∑
−∞

aj eijz (Im z > 0) with aj =
1
2π

∫
L

Φ+(z)e−ijzdz,

L := {z : z = x + ir, 0 ≤ x ≤ 2π with r > 0 being an arbitrary constant}(3.1)

or L := {z : z = x, 0 ≤ x ≤ 2π} while Φ+ is continuous to [0, 2π] .

We denote the whole complex plan by C. Let

(3.2) P.P
[
Φ+
]
(z) =

a0

2
+

+∞∑
j=1

a−j e−ijz, z ∈ C.

We call it the principal part of Φ+ at z = +∞ i. Obviously, it is an entire function
with period 2π, denoted by P.P [Φ+] ∈ A2π, and

(3.3)
P.P
[
Φ+
]
(−∞ i) = lim

y→−∞,0≤x≤2π
P.P
[
Φ+
]
(z) =

a0

2
,

lim
y→−∞,0≤x≤2π

[
Φ+(z) − P.P

[
Φ+
]
(z)
]

=
a0

2
,

where x = Re z and y = Im z which is always so thereinafter. If

(3.4) lim
y→+∞,0≤x≤2π

eimzΦ+(z) = A �= 0,

then we say that Φ+ has the pole of order m at z = +∞i, which is just equivalent
to that (Φ+)∗ has the pole of order m at w = 0. In this case, we get

(3.5) P.P[Φ+](z) =

⎧⎪⎨
⎪⎩

0, if m < 0,

a0

2
+

m∑
j=1

a−je
−ijz (a−m = A), if m ≥ 0.

If Φ−(z) is a holomorphic function with period 2π on the lower complex half-
plane C− = {z : Im z < 0}, denoted by Φ− ∈ A−

2π, similarly, it also has the unique
expansion in the series form:

Φ−(z) =
+∞∑
−∞

bje
ijz (Im z < 0) with bj =

1
2π

∫
Γ

Φ−(z)e−ijzdz,

Γ := {z : z = x − ir, 0 ≤ x ≤ 2π with r > 0 being an arbitrary constant}(3.6)

or Γ := {z : z = x, 0 ≤ x ≤ 2π} while Φ− is continuous to [0, 2π] .

We call

(3.7) P.P
[
Φ−] (z) =

b0

2
+

+∞∑
j=1

bj eijz, z ∈ C

the principal part of Φ−(z) at z = −∞ i. Obviously, P.P [Φ−] ∈ A2π and

(3.8)
P.P
[
Φ−] (+∞ i) = lim

y→+∞,0≤x≤2π
P.P
[
Φ−] (z) =

b0

2
,

lim
y→+∞,0≤x≤2π

[
Φ−(z) − P.P

[
Φ−] (z)

]
=

b0

2
.
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Similary, if

(3.9) lim
y→−∞,0≤x≤2π

e−imzΦ−(z) = B �= 0,

then we say that Φ− has the pole of order m at z = −∞i. In this case, we get

(3.10) P.P[Φ−](z) =

⎧⎪⎨
⎪⎩

0, if m < 0,

b0

2
+

m∑
j=1

bje
ijz (bm = B), if m ≥ 0.

If Φ(z) with period 2π is a sectionally holomorphic function with the x-axis as
its jump curve, i.e., Φ|C+ ∈ A+

2π and Φ|C− ∈ A−
2π and there exist the boundary

value functions (see Chapter II in [13])

(3.11) Φ+(τ ) = lim
z→τ,Imz>0,τ∈R

Φ(z) ∈ H2π, Φ−(τ ) = lim
z→τ,Imz<0,τ∈R

Φ(z) ∈ H2π,

where R denotes the set of all real numbers, then we denote it by Φ ∈ AH2π. By
(3.1) and (3.6) we have the following result.

Lemma 3.1. If Φ ∈ AH2π, then a−je
−ijz + bje

ijz = αj sin jz + βj cos jz with

αj =
1
2π

∫ 2π

0

[(
Φ+(τ ) + Φ−(τ )

)
cos jτ + i

(
Φ+(τ ) − Φ−(τ )

)
sin jτ
]
dτ,

βj =
1
2π

∫ 2π

0

[(
Φ+(τ ) + Φ−(τ )

)
sin jτ + i

(
Φ−(τ ) − Φ−(τ )

)
cos jτ
]
dτ.

Let

(3.12) Q.P[Φ](z) = P.P
[
Φ+
]
(z) + P.P

[
Φ−] (z), z ∈ C,

which is called the quasi-principal part of Φ. If

(3.13) �(Φ) =
a0 − b0

2
, �[Φ](z) = Φ(z) − Q.P[Φ](z)

(
∈ AH2π

)
,

they are respectively called the deficient number and deficient function of Φ.

Lemma 3.2.

�(Φ) =
1
4π

∫ 2π

0

[Φ+(τ ) − Φ−(τ )]dτ = �[Φ](+∞ i) = −�[Φ](−∞ i).

Proof. These results follow from (3.1), (3.3), (3.6), (3.8) and (3.13). �

Lemma 3.3. If Φ ∈ AH2π, then

1
2π

∫ 2π

0

[
Φ+(τ )−Φ−(τ )

]
cot

τ − t

2
dτ = Φ+(t) + Φ−(t) − 2Q.P[Φ](t).

Proof. Let ϕ(τ ) = Φ+(τ ) − Φ−(τ ) (Im τ = 0), we consider the jump problem (see
Chapter II in [13])

(3.14) ϕ(τ ) = Ψ+(τ ) − Ψ−(τ ), Im τ = 0.

It is evident that �[Φ] is a solution of the jump problem (3.14) and �[Φ](+∞ i) =
−�[Φ](−∞ i) = �(Φ) by Lemma 3.2. On the other hand, let

(3.15)
(
H[ϕ]
)
(z)=

1
4πi

∫ 2π

0

ϕ(τ ) cot
τ−z

2
dτ, Im z �=0,
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then the Plemelj formula holds for any ϕ ∈ H2π

(
see [22, 23], Chapter I in [13]

)

(3.16)

⎧⎪⎪⎨
⎪⎪⎩
(
H[ϕ]
)+(t) =

1
2
ϕ(t) +

1
4πi

∫ 2π

0

ϕ(τ ) cot
τ−t

2
dτ,

(
H[ϕ]
)−(t) = −1

2
ϕ(t) +

1
4πi

∫ 2π

0

ϕ(τ ) cot
τ−t

2
dτ,

t ∈ R.

Thus
(
H[ϕ]
)

is also a solution of the jump problem (3.14) and
(
H[ϕ]
)
(+∞ i) =

−
(
H[ϕ]
)
(−∞ i) = �(Φ) by using Lemma 3.2. Thus, δ(z) =

(
H[ϕ]
)
(z)−�[Φ](z) ∈

A2π and δ(±∞ i) = 0, so δ(z) ≡ 0. This is to say that Φ(z) =
(
H[ϕ]
)
(z)+Q.P[Φ](z);

so, again by the Plemelj formula (3.16), the proof is completed. �

4. Trigonometric and paratrigonometric polynomials

Let HT
n denote the class of all trigonometric polynomials with real coefficients

of degree not greater than n and regard HT
n = {0} if n < 0, and let HT∗

n denote
the class of all trigonometric polynomials of degree n (n ≥ 0). Let HT

n (α) denote
the family of trigonometric polynomials of the form

(4.1) f(t) = cn sin(nt + α) + Tn−1(t), Tn−1∈HT
n−1, 0≤α<π, n ≥ 1.

cn is called the coefficient of the highest term. Clearly, f is of degree n if and
only if cn �= 0 (n > 0). HT∗

n (α) denotes the family of trigonometric polynomials
of degree n in HT

n (α) (n > 0). Obviously, HT
0 (0) = {0} and HT

0 (α) = R (α �= 0),
HT∗

n (α1) ∩ HT∗
n (α2) = ∅ while α1 �= α2 and n > 0. Moreover, we regard HT∗

0 (α)
with any α as the set of all nonzero reals and HT∗

n = HT
n (α) = HT∗

n (α) = {0} if
n<0.

If f is Hölder-continuous and f(t+2π)=−f(t), we say that it is 2π-antiperiodic,
denoted as f ∈H2π. If

(4.2) f(t) =
n∑

j=0

[aj sin(j + 1
2
)t + bj cos(j + 1

2
)t] with a2

n + b2
n �= 0,

then we call it a paratrigonometric polynomial of degree
(
n + 1

2

)
and write f ∈

HT∗
n+ 1

2
, where the coefficients aj ’s and bj ’s are real. Let HT

n+ 1
2

denote the class of

all paratrigonometric polynomials of degree not greater than (n + 1
2 ). Obviously,

HT
n+ 1

2
⊂ H2π and regard HT

n+ 1
2

= {0} if n < 0. Let HT
n+ 1

2
(α) denote the family of

all paratrigonometric polynomials of the form

(4.3) cn sin[(n + 1
2
)t + α] + Tn− 1

2
(t), Tn− 1

2
∈HT

n− 1
2
, 0≤α<π, n ≥ 0.

cn is called the coefficient of the term of degree
(
n + 1

2

)
. If cn �= 0, we denote it

∈ HT∗
n+ 1

2
(α). Obviously, HT∗

n+ 1
2
(α1) ∩ HT∗

n+ 1
2
(α2)= ∅ while α1 �=α2. We also regard

HT∗
n+ 1

2
=HT∗

n+ 1
2
(α)=HT

n+ 1
2
(α)={0} while n<0.

Lemma 4.1 (see [24, 25]). If F ∈ HT∗
1
2 k

(α) (k > 0), G ∈ HT∗
1
2 r

(β) (r > 0), then

FG ∈ HT∗
1
2 (k+r)

([π/2+α+β]π) where [ϑ]π denotes the number congruent to ϑ (mod π)
in [0, π).
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Lemma 4.2 (see [25, 26]). If f ∈ HT∗
n (α) (n > 0) with the highest coefficient

cn, F (τ, t) = [f(τ )−f(t)] cot
τ−t

2
, then F (τ, t) = cn

[
cos(nτ +α)+cos(nt+α)

]
+∑n−1

j=1

[
Aj(t) sin(n−j)τ+Bj(t) cos(n−j)τ

]
where Aj , Bj ∈ HT∗

j .

Lemma 4.3 (Euclidean division formula). If Gβ
1
2 �
∈HT∗

1
2 �

(β) (�>0) and F 1
2 j ∈HT

1
2 j

,

then there uniquely exist Q 1
2 (j−�)∈HT

1
2 (j−�)

and R such that F 1
2 j = Gβ

1
2 �

Q 1
2 (j−�)+R,

where R∈HT
1
2 �

([π/2 + β]π) when (j − �) is even and R ∈ HT
1
2 (�−1)

when (j − �) is
odd.

Proof. The uniqueness is clear. For the existence, if j ≤ �, then the conclusion is
also obvious. If j > �, there is q 1

2 (j−�) ∈ HT
1
2 (j−�)

([π/2+α−β]π) such that F 1
2 j −

Gβ
1
2 �

q 1
2 (j−�)∈HT

1
2 (j−1)

by Lemma 4.1, then using the inductive method the proof is
completed. �

Lemma 4.4 (Factorization). If F 1
2 j ∈HT∗

1
2 j

(j>0) and F 1
2 j(t0) = 0, then F 1

2 j(t) =

sin 1
2 (t−t0)Q 1

2 (j−1)(t) where Q 1
2 (j−1) ∈ HT∗

1
2 (j−1)

.

Proof. Taking Gβ
1
2 �

(t)= sin 1
2 (t − t0) in Lemma 4.3, the proof is immediately com-

pleted. �

Example 4.1. This example is used frequently thereinafter. Let X be the canonical
function of SIE (1.1) and θ the characteristic number of SIE (1.1). By the Plemelj
formula we know

(4.4)

⎧⎪⎪⎨
⎪⎪⎩

X+(τ ) − X−(τ ) = −2ib(τ )w1(τ ),
X+(τ ) + X−(τ ) = 2a(τ )w1(τ ),
(X−1)+(τ ) − (X−1)−(τ )=−2ib(τ )w2(τ ),
(X−1)+(τ )+(X−1)−(τ )=2a(τ )w2(τ ).

This implies that αj and βj in Lemma 3.1 are real, while Φ = X. Moreover, noting
that

(4.5) lim
y→+∞,x∈R

[
e−iκzX(z)

]
=(−1)κeiθ, lim

y→−∞,x∈R

[
eiκzX(z)

]
=(−1)κeiθ.

Now we get, by (3.5),(3.10), (4.4) and Lemma 3.2,

(4.6)
Q.P[X] ∈ HT∗

−κ ([π/2 − θ]π) , Q.P
[
X−1
]
∈ HT∗

κ ([π/2 + θ]π) ,

�(X) =
1

2πi

∫ 2π

0

b(τ )w1(τ )dτ, �(X−1) =
1

2πi

∫ 2π

0

b(τ )w2(τ )dτ,

in particular,

(4.7)
Q.P[X](τ ) = Q.P[X−1](τ ) = cos θ, �(X) = −�

(
X−1
)

= i sin θ,

if κ = 0,

In general, we may get, in the same way,

(4.8)
Q.P[XTα

r ]∈HT∗
r−κ ([α−θ]π) , Q.P

[
X−1Tα

r

]
∈HT∗

r+κ ([α+θ]π) ,

for Tr ∈ HT∗
r (α) (r>0).



898 JINYUAN DU

5. Singular integral operators

We introduce the singular integral operators (SIOs)

(5.1)
(Ay)(t) = a(t)w1(t)y(t) +

b(t)
2π

∫ 2π

0

w1(τ )y(τ ) cot
τ − t

2
dτ,

(By)(t) = a(t)w2(t)y(t) − b(t)
2π

∫ 2π

0

w2(τ )y(τ ) cot
τ − t

2
dτ

and their adjoint operators

(5.2)
(A∗y)(t) = a(t)w1(t)y(t) +

1
2π

∫ 2π

0

w1(τ )b(τ )y(τ ) cot
τ − t

2
dτ,

(B∗y)(t) = a(t)w2(t)y(t) − 1
2π

∫ 2π

0

w2(τ )b(τ )y(τ ) cot
τ − t

2
dτ.

Remark 5.1. For convenience thereinafter, here we denote the adjoint operator of
A as B∗, of B as A∗, but as A′ and B′ in general texts (see Chapter V in [13],
Chapter I in [14]).

Remark 5.2. A,B,A∗,B∗ all are SIOs from H2π to H2π, i.e., A,B,A∗,B∗ : H2π →
H2π.

Theorem 5.1. Let T ∈ AH2π, then (A∗T ) (τ ) = Q.P[XT ](τ ), (B∗T ) (τ ) =
Q.P
[
X−1T

]
(τ ).

Proof. Taking, respectively, Φ = XT and Φ = X−1T in Lemma 3.3 and using (4.4),
the proof follows. �

Again, we introduce the integral operators

(5.3)
(D1y)(t)=

1
2π

∫ 2π

0

w1(τ )d1(τ, t)y(τ )dτ,

(D2y)(t)=
1
2π

∫ 2π

0

w2(τ )d2(τ, t)y(τ )dτ,

where

(5.4)
d1(τ, t) =

{
Q.P
[
X−1
]
(τ)−Q.P

[
X−1
]
(t)
}

cot
τ−t

2
−i�
(
X−1
)
,

d2(τ, t) =
{

Q.P[X](τ ) − Q.P[X](t)
}

cot
τ − t

2
− i�(X).

Remark 5.3. By (4.6) and (4.7) in Example 4.1 and quoting Lemma 4.2, we easily
see that

(5.5) d1(·, t) ∈ HT
κ ([θ]π), d2(·, t) ∈ HT

−κ([−θ]π);
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writing B1,κ(τ ) = 2(−1)κ+1 sin(κτ + θ) and B2,−κ(τ ) = 2(−1)κ+1 sin(−κτ − θ),
then

(5.6)

d1(τ, t) = B1,κ(τ )+
κ−1∑
j=1

[A1,j(t) sin(κ−j)τ+B1,j(t) cos(κ−j)τ ]

+
[
B1,κ(t)−i�

(
X−1
) ]

if κ>0,

d2(τ, t)= B1,κ(τ )+
κ−1∑
j=1

[A2,j(t) sin(κ−j)τ+B2,j(t) cos(κ−j)τ ]

+
[
B2,κ(t)−i�

(
X−1
) ]

if κ<0,

d1(τ, t) = −i�(X) = − sin θ, d2(τ, t) = −i�(X−1) = sin θ if κ=0,

where A1,j , B1,j , A2,j , B2,j are some trigonometric polynomials of degree j.

Theorem 5.2. AB = I+ bD2, BA = I− bD1, where I is the identity operator.

Proof. We only prove the first equality since the other is similar. By Remark 5.2
the compositions of A and B are well defined. By the Poincaré–Bertrand formula(
see Chapter I in [13] or [14]

)
, Theorem 5.1, (5.3), (4.6) and the equality

(5.7) cotα cotβ = cot(β − α)[cotα − cotβ] − 1,

we get

(ABy)(x) = a(x)w1(x)(B)(x) +
b(x)
2π

∫ 2π

0

w1(τ )a(τ )w2(τ )y(τ ) cot
τ − x

2
dτ

+
b2(x)
r2(x)

y(x) +
b(x)
2π

∫ 2π

0

w2(τ )y(τ )
[

1
2π

∫ 2π

0

w1(t)b(t) cot
t − τ

2
cot

t − x

2
dt

]
dτ

= y(x)+
b(x)
2π

∫ 2π

0

w2(τ )y(τ )
{[

(A∗1)(τ )−(A∗1)(x)
]
cot

τ−x

2
−i�(X)

}
dτ

= y(x) +
b(x)
2π

∫ 2π

0

w2(τ )y(τ )
{[

Q.P[X](τ ) − Q.P[X](x)
]
cot

τ − x

2
− i�(X)

}
dτ.

�

Remark 5.4. From (5.6) in Remark 5.3 we know D1 : H2π → HT
κ ([θ]π) and D2 :

H2π → HT
−κ([−θ]π). In particular, if κ > 0, then D2 = 0, this is to say that A has

the right inverse B (but no left inverse). If κ < 0, then D1 = 0, this is to say that
A has the left inverse B (but no right inverse). If κ = 0, then

(D1y)(t) = − sin θ

2π

∫ 2π

0

w1(τ )y(τ )dτ and (D2y)(t) =
sin θ

2π

∫ 2π

0

w2(τ )y(τ )dτ.

Corollary 5.1. Ima (D1) = HT
κ ([θ]π) and Ima (D2) = HT

−κ([−θ]π). If κ �= 0 or
κ = 0 with [θ]π = π/2, then ker(A)= bHT

κ ([θ]π), ker(B)= bHT
−κ([−θ]π), D1bT

θ
κ =

T θ
κ , D2bT

−θ
−κ =−T−θ

−κ where T θ
κ ∈HT

κ ([θ]π) and T−θ
−κ ∈ HT

−κ([−θ]π). If κ = 0 with
[θ]π �= π/2, then ker(A) = 0 and ker(B) = {0}. The symbols Ima (·) and ker(·)
denote, respectively, the image set and the kernel space of an operator.

Proof. (I) By Remark 4.5 we have Ima (D1)⊆ HT
κ ([θ]π). (II) If y ∈ ker(A), then

BAy = 0 which implies y = bD1y ∈ bHT
κ ([θ]π) by Theorem 5.2, i.e., ker(A) ⊆

bHT
κ ([θ]π). (III) If κ �= 0 or κ = 0 with [θ]π = π/2, then A(bT θ

κ ) = bA∗(T θ
κ ) =
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bQ.P[XT θ
κ ] = 0 for T θ

κ ∈ HT
κ (θ) by Theorems 5.1 and 5.2, (4.7) and (4.8), i.e.,

bHT
κ ([θ]π)⊆ ker(A). In particular, we have bT θ

κ = bD1(bT θ
κ ) by (II). Again noting

b �= 0 (does not vanish for some t) in the cases discussed now, hence T θ
κ = D1(bT θ

κ ),
this is just HT

κ ([θ]π) ⊆ Ima (D1). (IV) For the case κ=0 with [θ]π �=π/2, Ima (D1)=
HT

κ ([θ]π) is clear by Remark 5.4 and
∫ 2π

0
w1(τ )dτ > 0. Moreover, if Ay = 0, then

y = bD1y by (II), which implies 0=A(bD1y)=bD1yA∗1=cos θ bD1y since cos θ is
a nonzero constant; finally y=bD1y=0, i.e., ker(A)={0}. Similarly, the assertions
for B and D2 may be proved. �

Corollary 5.2. If κ �= 0 or κ = 0 with [θ]π = π/2, then bD1 and −bD2 are
idempotent, D1 and D2 are left zero divisors of B and A, respectively, bD1 and
bD2 are right zero divisors of A and B, respectively, i.e., D1B = 0, D2A = 0,
AbD1 = 0 and BbD2 = 0.

Proof. If κ �=0 or κ=0 with [θ]π =π/2, AbD1 =0 and BbD2 =0 are just the results
of Corollary 5.1. Thus (AB)2 = A (I− bD1)B = AB, i.e., AB is idempotent, so
is bD2. Noticing BAB = B − bD1B and BAB = B + BbD1 = B, thus D1B = 0.
The rest of the proofs are obtained in the similar way. �

Theorem 5.3. If κ > 0 and Nκ ∈ HT
κ ([θ]π) is a given trigonometric polynomial,

then under the condition D1y = Nκ,Ay = f possesses the unique solution y =
Bf + bNκ. If κ < 0, the condition of solvability for Ay = f is D2f = 0, and
Ay = f possesses the unique solution y = Bf when the condition of solvability
is fulfilled. If κ = 0 with [θ]π = π/2, the condition of solvability for Ay = f is
D2f = 0, and under the condition D1y = N where N is a given constant, Ay = f
possesses the unique solution y = Bf + bN while the condition of solvability is
fulfilled. If κ = 0 with [θ]π �= π/2, then Ay = f possesses the unique solution

y = Bf − b sec θD2f = Bf − b

2π
tan θ

∫ 2π

0

w2(τ )f(τ )dτ.

So we call D1 the unisolving operator and D2 the restricting operator.

Proof. When κ > 0, obviously y = Bf +bNκ implies Ay = f by Remark 5.4 and
Corollary 5.1, as well as D1y = Nκ by Corollaries 5.1–5.2, conversely, if Ay = f
and D1y = Nκ, then Bf = (BA)y = y− bD1y by Theorem 5.2, i.e., y = Bf + bNκ.
When κ < 0, if Ay = f , then D2f = 0 by Corollary 5.2, and y = Bf by Remark 5.4,
conversely, the latter two equations imply Ay = f by Theorem 5.2. When κ = 0
with [θ]π = π/2, if Ay = f with D1y = N , we then have that D2f = (D2A)y = 0
by Corollary 5.2 and y = Bf + bN from BAy = Bf by Theorem 5.2 and Corollary
5.1, conversely while D2f = 0 and y =Bf +bN , then Ay = f by Theorem 5.2 and
Corollary 5.1, as well as D1y = N by Corollaries 5.1 and 5.2. When κ = 0 with
[θ]π �= π/2, if Ay = f , then y is unique from ker(A) = 0 in Corollary 5.1, and if
y = Bf − b sec θD2f

(
its other form above may be obtained by Remark 5.4

)
then

Ay = ABf − A(b sec θD2f) = f + bD2f − bD2f = f . �

Remark 5.5. From Theorem 5.3, we now know that A has neither a left inverse nor
a right inverse if κ = 0 with [θ]π = π/2, and A has the inverse A−1 = B−b sec θD2

if κ=0 with [θ]π �= π/2.



COLLOCATION METHODS FOR SIE WITH HILBERT KERNEL 901

Remark 5.6. When κ < 0 or κ = 0 with [θ]π = π/2, D2f = 0 is equivalent to
f ⊥2 HT

−κ([−θ]π), i.e.,

(5.8)
∫ 2π

0

w2(τ )h−κ(τ )f(τ )dτ = 0 for any h−κ∈HT
−κ([−θ]π),

which is clear from (5.6) in Remark 5.3.

Remark 5.7. Obviously, for SIE By = f we also have results similar to those for
SIE Ay = f discussed above. For example, its condition of solvability when κ > 0
or κ = 0 with [θ]π = π/2 is

(5.9)
∫ 2π

0

w1(τ )hκ(τ )f(τ )dτ = 0 for any hκ ∈ HT
κ ([θ]π) ,

which is denoted by f ⊥1 HT
κ ([θ]π). When κ = 0 with [θ]π �= π/2, then By = f pos-

sesses a unique solution y = Af−b sec θD1f , or y = Af− b
2π tan θ

∫ 2π

0
w1(τ )f(τ )dτ.

Thereinafter we assume always that b in SIE (2.8) is a trigonometric polynomial
of degree µ.

Theorem 5.4. If Tr ∈HT∗
r (α) (r > 0), then A (Tr)∈HT∗

r−κ ([α−θ]π) for r >κ+µ

and B (Tr)∈HT∗
r+κ ([α+θ]π) for r>µ−κ.

Proof. The first result is clear from (ATr)(t) = Q.P[XTr](t)− 1
2π

∫ 1

−1
w1(τ )[b(τ )−

b(t)]Tr(τ ) cot τ−t
2 dτ and (4.8) in Example 4.1. The second result is similarly proved.

�

We will need a kind of singular integral operators with cosecant kernel. For
y ∈ H2π, we introduce

(5.10)

(
Ay
)
(t) = a(t)w1(t)y(t) +

b(t)
2π

∫ 2π

0

w1(τ )y(τ ) csc
τ − t

2
dτ,

(
By
)
(t) = a(t)w2(t)y(t) − b(t)

2π

∫ 2π

0

w2(τ )y(τ ) csc
τ − t

2
dτ.

The singular integral with cosecant kernel for y ∈ H2π is written as∫ 2π

0

y(τ ) csc
τ − t

2
dτ =
∫ 2π

0

y(τ ) sin
τ − t

2
dτ

+
∫ 2π

0

y(τ ) cos
τ − t

2
cot

τ − t

2
dτ,

(5.11)

where the first integral is a proper integral and the second integral is a singular
integral with Hilbert kernel. Obviously, A and B map H2π into H2π and possess
properties very similar to those of the SIOs A and B. For example, in a way similar
to Theorem 5.2, only substituting the equality (5.7) by the equality

(5.12) csc α csc β = csc(β − α)[cotα − cotβ],

we can get the following result.
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Theorem 5.5. AB = I + bD2, BA = I− bD1 where(
D1y
)
(t) =

1
2π

∫ 2π

0

w1(τ )y(τ )
{
Q.P
[
X−1
]
(τ ) − Q.P

[
X−1
]
(t)
}

csc
τ − t

2
dτ,

(
D2y
)
(t) =

1
2π

∫ 2π

0

w2(τ )y(τ ) {Q.P [X] (τ ) − Q.P [X] (t)} csc
τ − t

2
dτ.

Remark 5.8. The conditions of solvability of By = f and Ay = f are, respectively,

D1f = 0 or
∫ 2π

0

w1(τ )hκ− 1
2
f(τ )dτ = 0 for any h

κ− 1
2
∈ H T

κ− 1
2
,(5.13)

D2f = 0 or
∫ 2π

0

w2(τ )h−κ− 1
2
f(τ )dτ = 0 for any h−κ− 1

2
∈ H T

−κ− 1
2
.(5.14)

6. Singular quadrature operators

In this section, we construct some singular quadrature operators (SQOs) which
possess some properties similar to those of SIO A and B in the last section.

Definition 6.1. Let n = m + 2κ, �n(τ ) is a (half ) trigonometric polynomial of
degree n/2 with all simple zeros αn,j (j = 1, 2, · · · , n) lying in [0, 2π), �m(τ ) is
a (half ) trigonometric polynomial of degree m/2 with all simple zeros βm,j (j =
1, 2, · · · , m) lying in [0, 2π). We call (�n,�m) a pair of (half ) trigonometric poly-
nomials associated with (A,B), or simply, a pair of TPs, if and only if it satisfies
the relationship

(6.1)
A�n = �m, B�m = �n, �n ⊥1 HT

0 , �m ⊥2 HT
0 , when n is even,

A�n = �m, B�m = �n, when n is odd.

There are many such pairs of TPs. Some examples may be found in [17, 21, 26]
and shall be given in the final section of the present paper. It must be pointed that
the conditions given in (6.1) are not independent each other. To show this, we give
an example as follows.

Example 6.1. While n = 2� and κ > 0 or κ = 0 with θ = 0, by Remark 5.4,
Remark 5.5 and Remark 5.7, we know B�m =�n =⇒A�n =�m, �n⊥1 HT

κ ([θ]π).
Moreover, by Theorem 5.1 we get∫ 2π

0

w1(τ ) �n (τ ) Tr(τ ) dτ =
∫ 2π

0

w2(τ )�m (τ )(A∗Tr)(τ )dτ

=
∫ 2π

0

w2(τ ) �m (τ ) Q.P [XTr] (τ )dτ.

(6.2)

In this identity taking Tr ∈ HT
κ ([π/2 + θ]π), by (4.8) we get �m ⊥2 HT

0 =⇒
�n⊥1 HT

κ ([π/2 + θ]π), and finally �n⊥1 HT
κ . Similarly, while n = 2� and κ < 0

or κ = 0 with θ = 0 we get B�m = �n and �m⊥2 HT
−κ from A�n = �m and

�n⊥1 HT
0 . While n=2� and κ=0 with θ �=0, we know that, by using Theorem 5.2,

we get �n ⊥1 HT
0 and �m ⊥2 HT

0 from B�m =�n and A�n =�m.

Lemma 6.1. Let n = 2� be even. If (�n,�m) is a pair of TPs, then

(6.3) �n⊥1 HT
max{0,κ}, �m⊥2 HT

max{0,−κ}.

Proof. This follows from Example 6.1 above. �
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If hn(τ ) = c
∏n

j=1 sin
τ − tj

2
, a half-trigonometric polynomial, where c �= 0 is a

constant and tj ’s are pairwisely different points in [0, 2π), we denote the discretiza-
tion operator at the set of its zeros tj (j = 1, 2, · · · , n) by

(6.4) rh
nf = (f(t1), · · · , f(tn))T ,

and the trigonometric interpolation polynomial of normal form for f at the zeros
tj (j = 1, 2, · · · , n) by [26]–[28],

(6.5)
(
Lh

nf
)
(τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=1

hn(τ )
2h′

n(tj)
csc

τ − tj
2

f(tj) if n = 2� − 1 is odd,

n∑
j=1

hn(τ )
2h′

n(tj)
cot

τ − tj
2

f(tj) if n = 2� is even.

Let

(6.6) φ =
π

2
− 1

2

n∑
j=1

tj .

Obviously, by Lemma 4.1,

(6.7) hn ∈
{

HT
� ([φ]π) , if n = 2�,

HT
�− 1

2
([π/2 + φ]π) if n = 2� − 1.

Thus we have [27],

(6.8) ker
(
I − Lh

n

)
=

{
HT

� ([π/2 + φ]π) , if n = 2�,

HT
�−1, if n = 2� − 1.

If (�n,�m) is a pair of TPs, now we construct some quadrature formulae. For
the proper integral

(6.9) Uf =
1
2π

∫ 2π

0

w1(τ )f(τ )dτ,

let

(6.10) Q�U
n f

def== UL�
n f = E�U

n r�n f,

where

E�U
n = (un,1, · · · , un,n) with un,j =

�∗
n(αn,j)

4π �′
n (αn,j)

,(6.11)

�∗
n(z) =

⎧⎪⎪⎨
⎪⎪⎩

∫ 2π

0

w1(τ ) �n (τ ) cot
τ − z

2
dτ, if n is even,∫ 2π

0

w1(τ ) �n (τ ) csc
τ − z

2
dτ, if n is odd,

z ∈ C.(6.12)

�∗
n is called the associated function of �n with respect to the weight w1. We

approximate Q�U
n f to Uf and denote the remainder by

(6.13) R�U
n f = Uf − Q�U

n f.

Obviously, by (6.8)

(6.14) ker
(

R�U
n

)
⊇
{
HT

� ([π/2 + φ1]π) , if n = 2�,

HT
�−1, if n = 2�−1,

φ1 =
π

2
− 1

2

n∑
j=1

αn,j .
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Similarly, for the proper integral

(6.15) Vf =
1
2π

∫ 2π

0

w2(τ )f(τ )dτ,

let

(6.16) Q�V
m f

def== VL�
mf = E�V

m r�mf

where

(6.17) E�V
m = (vm,1, · · · , vm,m) with vm,j =

�∗
m(βm,j)

4π �′
m (βm,j)

,

�∗
m so-called the associated function of �m with respect to the weight w2 is given

as follows

(6.18) �∗
m(z) =

⎧⎪⎪⎨
⎪⎪⎩

∫ 2π

0

w2(τ ) �m (τ ) cot
τ − z

2
dτ, if m is even,∫ 2π

0

w2(τ ) �m (τ ) csc
τ − z

2
dτ, if m is odd,

z ∈ C.

Definition 6.2. If HT
k−1 ⊆ ker

(
R�U

n

)
, but there exists some Tk ∈ HT

k such that
R�U

n Tk �= 0, then we define the quadrature formula (6.13) to have trigonometric
precision of order (k−1), denoted as pr

(
Q�U

n

)
=k−1.

Definition 6.3. If pr
(
Q�U

n

)
= k − 1 and HT

k (α) ⊆ ker
(
R�U

n

)
, we say (6.13) is of

HT
k (α) type, denoted as ty

(
Q�U

n

)
= HT

k (α).

The two definitions above are seen in [27] in detail. The meanings of the
pr
(
Q�V

n

)
and ty

(
Q�V

m

)
are similar and obvious. Now we know the following

result from (6.8).

Lemma 6.2. pr
(
Q�U

n

)
≥
[

n−1
2

]
and pr

(
Q�V

m

)
≥
[

m−1
2

]
where [x] is the integer

part of x. When n=2� is even, then ty
(
Q�U

n

)
⊇HT

� ([π/2 + φ1]π) and ty
(
Q�V

m

)
⊇

HT
�−κ ([π/2 + φ2]π) where φ1 is given in (6.14) and

(6.19) φ2 =
π

2
− 1

2

m∑
j=1

βm,j .

Since (�n,�m) is a pair of TPs, we have a better result.

Lemma 6.3.

pr
(
Q�U

n

)
≥ max

{[n
2

]
,
[n
2

]
+ κ
}

and pr
(
Q�V

m

)
≥ max

{[m
2

]
,
[m

2

]
− κ
}

.

Proof. We only prove the first conclusion. When n = 2�−1 and κ > 0, noting
that �n ∈ HT∗

�− 1
2

and using the Euclidean division formula in Lemma 4.3, we get

HT
�+κ−1 =�nH T

κ− 1
2
⊕HT

�−1. So, by Lemma 6.2 and (5.13) we know R�U
m

(
HT

�+κ−1

)
=

{0}. When n = 2�, noting that �n∈HT∗
� ([φ1]π) and using the Euclidean division

formula, we get HT
�+max{0,κ} =�nHT

max{0,κ} ⊕ HT
� ([π/2 + φ1]π) . Thus, by Lemma

6.1 and Lemma 6.2 we know R�U
n

(
HT

�+max{0,κ}
)

= {0}. �
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Now we set up the quadrature formulae of D1 and D2, respectively,

(Q�D1
n f)(t) = E�D1

n (t)r�n f

≡
(
un,1 d1(αn,1, t) , un,2 d1(αn,2, t) , · · · , un,n d1(αn,n, t)

)
r�n f,

(6.20)

(Q�D2
m f)(t) = E�D2

m (t)r�mf

≡
(
vm,1 d2(βm,1, t) , vm,2 d2(βm,2, t) , · · · , vm,m d2(βn,n, t)

)
r�mf.

(6.21)

Lemma 6.4. pr
(
Q�D1

n

)
≥
[

n
2

]
and pr

(
Q�D2

m

)
≥
[

m
2

]
, where the definitions

pr
(
Q�D1

n

)
and pr

(
Q�D2

m

)
are similar to Definition 6.2. In particular, Q�D1

n f =
D1L

�
n f , Q�D2

m f =D2L
�
mf .

Proof. When κ < 0 and κ = 0 with [θ]π = 0, since D1 = 0 and Q�D1
n = 0 by (5.6)

and Remark 5.4, we agree that pr
(
Q�D1

n

)
= +∞, thus the conclusion required is

trivial. For the case of κ > 0 and κ = 0 with [θ]π �= 0, by Lemma 6.3 and (5.5), the
conclusions required follow. �

From [27] we may obtain the singular quadrature operators (SQOs) Q�A
n for A

and Q�B
m for B .

(6.22)
(
Q�A

n f
)

(t) =
�m(t)
�n(t)

f(t) + b(t)E�A
n (t)r�n f

where

(6.23) E�A
n (t) =

(
un,1 cot

αn,1 − t

2
, un,2 cot

αn,2 − t

2
, · · · , un,n cot

αn,n − t

2

)
,

and

(6.24)
(
Q�B

m f
)

(t) =
�n(t)
�m(t)

f(t) − b(t)E�B
m (t)r�mf

where

(6.25) E�B
m (t)=

(
vm,1 cot

βm,1 − t

2
, vm,2 cot

βm,2 − t

2
, · · · , vm,m cot

βm,m − t

2

)
.

Definition 6.4. While (�n,�m) is a pair of TPs of SIOs (A,B), then (Q�A
n ,Q�B

m )
given by (6.22) and (6.24) is said to be a pair of associated SQOs relative to (A,B).

Remark 6.1. We easily obtain

(6.26)
un,j b(αn,j) =

�m (αn,j)
2 �′

n (αn,j)
(
j = 1, 2, · · · , n

)
,

vm,k b(βm,k) =
�n (βm,k)

2 �′
m (βm,k)

(
k = 1, 2, · · · , m

)
.

For example, by (6.1) and (6.11) we get

�m(αn,j) =
1
2π

b(αn,j)�∗
n (αn,j) = 2 �′

n (αn,j) b(αn,j)un,j .

Let C ′
2π(hn) denote the family of continuous functions with period 2π and pos-

sessing derivates at the zeros of hn. By Remark 6.1 we may obtain the following
conclusion.

Remark 6.2. Q�A
n : C ′

2π(�n) → C ′
2π(�m) and Q�B

m : C ′
2π(�m) → C ′

2π(�n).
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From [27] or directly using Lemma 6.3, we also obtain the following result.

Lemma 6.5. pr
(
Q�A

n

)
≥
[

n
2

]
+ max{0, κ} and pr

(
Q�B

m

)
≥
[

m
2

]
+ max{0,−κ}.

Now we assume that n is sufficiently large. The following theorem is completely
parallel to Theorem 5.2.

Theorem 6.1. Q�A
n Q�B

m = I + bQ�D2
m , Q�B

m Q�A
n = I− bQ�D1

n .

Proof. Only prove the second equality. The compositions of Q�A
n and Q�B

m are
just reasonable by Remark 6.2. First suppose f ∈ ker(r�n ), we get Q�B

m Q�A
n f = f .

For a general function f , we then have

Q�B
m Q�A

n f = f − L�
n f + BAL�

n f (by Lemma 6.5 and Theorem 5.4)

= f − L�
n f + (I− bD1)L�

n f (by Theorem 5.2)

= f − bQ�D1
n f (by Lemma 6.4). �

Remark 6.3. If κ > 0, then Q�D2
m = 0 by (5.5), this is to say that Q�A

n has the
right inverse Q�B

m . If κ < 0, then Q�D1
n = 0 by (5.5), this is to say that Q�A

n has
the left inverse Q�B

m . If κ = 0, then Q�D1
n = − sin θ Q�U

n and Q�D2
m = sin θQ�V

m

by (5.6).

Using Theorem 6.1 and Lemma 6.5, we may get the following results, which are
parallel to those in the last section and their proofs follow trivially in a completely
analogous way to that used there.

Corollary 6.1. Ima
(
Q�D1

n

)
= HT

κ ([θ]π) and Ima
(
Q�D2

m

)
= HT

−κ([−θ]π). If κ �= 0
or κ = 0 with [θ]π = π/2, then ker

(
Q�A

n

)
= bHT

κ ([θ]π), ker
(
Q�B

m

)
= bHT

−κ([−θ]π),
Q�D1

n bTκ =Tκ when Tκ ∈ HT
κ ([θ]π), Q�D2

m bT−κ = −T−κ when T−κ ∈ HT
−κ([−θ]π).

If κ = 0 with [θ]π �= π/2, then ker
(
Q�A

n

)
= ker
(
Q�B

m

)
= {0}.

Corollary 6.2. If κ �= 0 or κ = 0 with [θ]π = π/2, then bQ�D1
n and −bQ�D2

m

are idempotent, Q�D1
n and Q�D2

m are right zero divisors of Q�B
m and Q�A

n , re-
spectively, bQ�D1

n and bQ�D2
m are left zero divisors of Q�A

n and Q�B
m , respectively,

i.e., Q�D1
n Q�B

m = 0, Q�D2
m Q�A

n = 0, Q�A
n bQ�D1

n = 0 and Q�B
m bQ�D2

m = 0.

Theorem 6.2. If κ > 0 and Nκ ∈ HT
κ ([θ]π) is a given trigonometric polynomial,

then under the condition Q�D1
n y = Nκ,Q�A

n y = f possesses the unique solution
y = Q�B

m f+bNκ. If κ < 0, the condition of solvability for Q�A
n y = f is Q�D2

m f = 0
and it possesses the unique solution y = Q�B

m f when it is fulfilled. If κ = 0 with
[θ]π = π/2, the condition of solvability for Q�A

n y = f is Q�D2
m f = 0 and when

it is fulfilled it possesses the unique solution y = Q�B
m f + bN under the condition

Q�D1
n y = N where N is a given constant. If κ = 0 with [θ]π �= π/2, then Q�A

n y = f
possesses the unique solution y = Q�B

m f − b sec θQ�D2
m f.

Remark 6.4. If κ = 0 with θ �= π/2, then we know
(
Q�A

n

)−1 =Q�B
m −b sec θ Q�D2

m =
Q�B

m −b tan θ Q�V
m , by Corollary 6.1 and Theorem 6.2.

7. Discretization matrices

In this section, we discuss the compositions of the associated SQOs and the
discretization operators. Applying r�m to Q�A

n we get

(7.1) r�mQ�A
n f = Am,nr�n f
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where the (m, n) matrix Am,n is just

(7.2) Am,n = (ak,j), ak,j =

⎧⎪⎪⎨
⎪⎪⎩

b (βm,k) un,j cot
αn,j − βm,k

2
, if αn,j �= βm,k,

�′
m (βm,k)

�′
n (αn,j)

− 2b′ (βm,k) un,j , if αn,j = βm,k.

In (7.2), the case αn,j �= βm,k is obvious. If αn,j = βm,k, from Remark 6.1 we know
b (βm,k)un,j = 0, so,

(7.3)
ak,j = lim

t→βm,k

[
�m(t)
�n(t)

+ b(t)un,j cot
αn,j − t

2

]

=
�′

m (βm,k)
�′

n (αn,j)
− 2b′ (βm,k) un,j .

Remark 7.1. If αn,j = βm,k and un,j �= 0, then ak,j = a (αn,j) w1 (αn,j), from (6.1)
and (7.3).

The matrix Am,n arises from discretizing Q�A
n by r�m. We call it the discretiza-

tion matrix of Q�A
n . By analogy, discretizing Q�B

m by r�n , we also have

(7.4) r�n Q�B
m f = Bn,mr�mf

where the (n, m) matrix Bn,m called the discretization matrix of Q�B
m is

(7.5) Bn,m = (bj,r), bj,r =

⎧⎪⎪⎨
⎪⎪⎩

b (αn,j) vm,r cot
αn,j − βm,r

2
, if αn,j �= βm,r,

�′
n (αn,j)

�′
m (βm,r)

+ 2b′ (αn,j) vm,r, if αn,j = βm,r.

Remark 7.2. If αn,j = βm,r and vm,r �= 0, then bj,r = a (βm,r)w2 (βm,r) .

Definition 7.1. (Am,n, Bn,m) in (7.2) and (7.5) is called the pair of associated
matrices of

(
Q�A

n ,Q�B
m

)
.

Lemma 7.1. Let (Am,n, Bn,m) be the pair of associated matrices and let Ik de-
note the unit square matrix of order k. Then Am,nBn,m = Im when κ > 0 and
Bn,mAm,n = In when κ < 0.

Proof. We only prove the first equality. From Remark 6.3, we have Q�A
n Q�B

m f =
f . Applying rq

m to both sides of this equality, we get r�mf = r�mQ�A
n Q�B

m f =
Am,nr�n Q�B

m f = Am,nBn,mr�mf by (7.1) and (7.4). Noting that r�mf is arbitrary,
finally, Am,nBn,m = Im. �

First, we treat the case of κ > 0. We arbitrarily choose 2κ different points
βm,m+k (k = 1, 2, · · · , 2κ) in [0, 2π), only requiring that

(7.6) ϑ2 =

[
π

2
− 1

2

2κ∑
k=1

βm,m+k

]
π

�= [θ]π.

Let

(7.7) ∨2κ(τ ) =
2κ∏

k=1

sin
τ − βm,m+k

2
.
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Then the trigonometric interpolation of f in HT
κ ([θ]π) on the zeros of ∨2κ is (e.g.

see (2.4) in [27])

(7.8)

(L∨
2κf) (τ ) =

2κ∑
k=1

∨κ,k(τ )f (βm,m+k)

with ∨κ,k (τ )=
∨2κ(τ ) sin

(
τ−βm,m+k

2 +θ−ϑ2

)
∨′

2κ (βm,m+k) sin(θ−ϑ2)
csc

τ−βm,m+k

2
.

Discretizing Q�D1
n by the discretization operator r∨2κ at the set of zeros of ∨2κ, we

get

(7.9) r∨2κQ
�D1
n f = A2κ,nr�n f,

where the (2κ, n) matrix A2κ,n is

(7.10) A2κ,n = (am+k,j) with am+k,j = un,j d1(αn,j , βm,m+k).

Applying r�n to bL∨
2κf we get

(7.11) r�n (bL∨
2κf) = Bn,2κr∨2κf,

where the (n, 2κ) matrix Bn,2κ is

(7.12) Bn,2κ = (bj,m+r) with bj,m+r = b (αn,j) ∨κ,r (αn,j) .

Let the partitioned matrices (square matrices of order n)

(7.13) An =
(

Am,n
A2κ,n

)
, Bn = (Bn,m, Bn,2κ).

Lemma 7.2. Let κ > 0, An and Bn be as above, then AnBn = In.

So An and Bn are called the supplemented matrices of Am,n and Bn,m, respec-
tively.

Proof. By Corollary 6.1 and noting L∨
2κf ∈ HT

κ ([θ]π), we have Q�D1
n (bL∨

2κf) =
L∨

2κf . Thus, by (7.9) and (7.11) we get r∨2κf = r∨2κ (L∨
2κf) = r∨2κQ

�D1
n (bL∨

2κf) =
A2κ,nr�n (bL∨

2κf) = A2κ,nBn,2κr∨2κf. Noting that r∨2κf is arbitrary, finally, we get
A2κ,nBn,2κ = I2κ. Let Ok,j denote the (k, j) zero matrix. By Corollary 6.1, (7.1)
and (7.11), we have On,1 = r�mQ�A

n (bL∨
2κf) = An,mr�n (bL∨

2κf) = An,mBm,2κr∨2κf ,
i.e., An,mBm,2κ = On,2κ. By Corollary 6.2, (7.9) and (7.4) we get O2κ,1

= r∨2κQ
�D1
n Q�B

m f = A2κ,nr�n Q�B
m f = A2κ,nBn,mr�mf, so A2κ,nBn,m = O2κ,m.

Finally, noting Lemma 7.1, the proof is completed. �

By analogy, when κ < 0, we arbitrarily choose (−2κ) different points αn,n+k

(k = 1, · · · ,−2κ) in [0, 2π) with

(7.14) ϑ1 =

[
π

2
− 1

2

−2κ∑
k=1

αn,n+k

]
π

�= [−θ]π,

and set

(7.15) ∧−2κ(τ ) =
−2κ∏
k=1

sin
τ − αn,n+k

2
.
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We know that the trigonometric interpolation of f in HT
−κ ([−θ]π) on the zeros of

∧−2κ is [27]

(7.16)

(
L∧
−2κf
)
(τ )=

−2κ∑
k=1

∧−κ,k(τ )f (αn,n+k)

with ∧−κ,k (τ )=
∧−2κ(τ ) sin

(
τ−αn,n+k

2 −θ−ϑ1

)
∧′
−2κ (αn,n+k) sin(−θ − ϑ1)

csc
τ−αn,n+k

2
.

Discretizing Q�D2
n by the discretization operator r∧−2κ at the set of zeros of ∧−2κ,

we get

(7.17) r∧−2κQ
�D2
m f = B−2κ,mr�mf,

where the (−2κ, m) matrix

(7.18) B−2κ,m = (bn+j,r) with bn+j,r = vm,rd2(αn,n+j , βm,r).

From

(7.19) r�m
(
−bL∧

−2κf
)

= Am,−2κr∧−2κf,

we get (m,−2κ) matrix

(7.20) Am,−2κ = (ak,n+j), ak,n+j = −b(βm,k) ∧−κ,j (βm,k).

Let

(7.21) Bm =
(

Bn,m
B−2κ,m

)
, Am = (Am,n, Am,−2κ).

In exactly the same way, we may prove BmAm = Im. So, we still call Am and Bm

the supplemented matrices of Am,n and Bn,m, respectively.

Lemma 7.3. Let κ < 0, Am and Bm be given by (7.21), then AmBm = Im.

When κ = 0 (n = m) with [θ]π �= π/2, Am,n given in (7.2) is a square matrix,
denoted as An. But we use Bn in the present case to denote the following square
matrix

(7.22) Bn = Bn,m − tan θ
(
r�n b
)
E�V

m = {bj,r − tan θ vm,r b (αn,j)} ,

where Bn,m and E�V
m are given in (7.5) and (6.17), respectively, which is called the

supplemented matrix of Bn,m. Obviously, by Remark 6.4

(7.23) r�n
(
Q�B

m − sec θbQ�D2
m

)
f = Bnr�mf.

Thus, by Remark 6.4 one can show r�n f = r�n
(
Q�B

m − sec θbQ�D2
m

)
Q�A

n f =
Bnr�mQ�A

n f = BnAnr�n f, i.e., BnAn = In. Thus, we also have the following
result.

Lemma 7.4. If κ=0 with [θ]π �=π/2, then AnBn =In where Bn is given in (7.22)
and An =Am,n in (7.2).

When κ = 0 (n = m) with [θ]π = π/2 (sin θ = ±1), let

(7.24) An+1,n =
(

Am,n

E�U
n

)
, Bn,n+1 =

(
Bn,m,− sinθ r�n b

)
,
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where Am,n, E�U
n and Bn,m are, respectively, given in (7.2), (6.11) and (7.5). Let

(7.25) An+1,1 =
(
− sinθ r�mb

0

)
, B1,n+1 =

(
E�V

m , 0
)
,

where E�V
m is still given in (6.17). Finally, we set

(7.26) An+1 = (An+1,n, An+1,1) , Bn+1 =
(

Bn,n+1

B1,n+1

)
,

which are called the supplement matrices of Am,n and Bn,m, respectively.

Lemma 7.5. If κ = 0 with [θ]π = π/2, then An+1Bn+1 = In+1 where An+1 and
Bn+1 are given in (7.26).

Proof. (I) r�n f = r�n [Q�B
m Q�A

n + bQ�D1
n ]f =

[
Bn,mAm,n−sinθ (r�n b) E�U

n

]
r�n f =

Bn,n+1An+1,nr�n f by Theorem 6.1, Lemma 6.3 and (7.24), i.e., Bn,n+1An+1,n = In.
(II) By Corollary 6.1, (7.4), (7.24) and (7.25) we may get On,1 = − sinθ r�n Q�B

m b=
− sinθ Bn,mr�mb = Bn,n+1An+1,1. (III) By Corollary 6.2, Remark 6.4, (7.24) and
(7.25) we have 0 = Q�D2

m Q�A
n f = sinθ E�V

m r�mQ�A
n f = sinθ E�V

m Am,nr�n f =
− sinθ B1,n+1An+1,nr�n f , i.e., B1,n+1An+1,n = O1,n. (IV) We have 1=−Q�D2

m b=
− sinθ E�V

m r�mb = B1,n+1An+1,1 by Corollary 6.1, (7.24) and (7.25). The proof is
now completed by (7.26). �

Theorem 7.1. Let δn = (δn,1, δn,2, · · · , δn,n)T , fn = (fn,1, fn,2, · · · , fn,n)T
. If

κ > 0, then Anδn = fn has the unique solution δn = Bnfn where An and Bn are
the supplement matrices given in (7.13). If κ < 0, then the condition of solvability
for Am,nδn = fm is B−2κ,mfm = O−2κ,1 and it possesses a unique solution δn =
Bn,mfm when the condition of solvability is fulfilled, where Am,n, Bn,m and B−2κ,m

are given in (7.2), (7.5) and (7.18), respectively. If κ = 0 with [θ]π �= π/2, then
Anδn = fn has the unique solution δn = Bnfn where An =Am,n and Bn are given
in (7.2) and (7.22). If κ = 0 with [θ]π = π/2, then the condition of solvability
for An+1,nδn = fn+1 is B1,n+1fn+1 = 0 and it possesses a unique solution δn =
Bn,n+1fn+1 when the condition of solvability is fulfilled, where An+1,n, Bn,n+1 and
B1,n+1 are given in (7.24) and (7.25), respectively.

Proof. (I) The proofs for the cases of κ > 0 and κ = 0 with [θ]π �= π
2 are obvious

by using Lemma 7.2 and Lemma 7.4. (II) For the case of κ < 0, if Am,nδn = fm,
then, using, respectively, Bn,m and B−2κ,m, by Lemma 7.3 we get δn = Bn,mfm

and B−2κ,mfm = O−2κ,nδn = O−2κ,1. Conversely, if B−2κ,mfm = O−2κ,1, let δn =
Bn,mfm, then, by Lemma 7.3 we get Am,nδn = Am,nBn,mfm +Am,−2κB−2κ,mfm =
AmBmfm = fm where Am,−2κ is given in (7.20). (III) The proof for the case of κ = 0
with [θ]π = π/2 is similar to (II). �

8. Direct quadrature method

In this section, we introduce the direct quadrature method of SIE (2.8) rewritten
in the form

(8.1) (A + λK)y = f with (Ky)(t) =
1
2π

∫ 2π

0

w1(τ )k(τ, t)y(τ )dτ.

From Remark 6.2 we know that, in general, Q�B
m is not defined if f ∈ H2π.

This is not convenient in applications, therefore we must firstly improve Q�B
m .
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We introduce the interpolation operator L�
m

(
f �→ L�

mf
)
, which possesses the

interpolation property and differentiability at the zeros of �m,

(8.2) r�mL�
mf = r�mf, L�

mf ∈ C ′
2π(�m).

For example, the trigonometric interpolation polynomial operator L�
m given by (6.5)

is just one.
We introduce again the operator Q�K

n as(
Q�K

n f
)
(t) = E�K

n (t)r�n f

≡
(
un,1

(
L�

mkτ

)
(αn,1, t) , · · · , un,n

(
L�

mkτ

)
(αn,n, t)

)
r�n f

(8.3)

where

(8.4)
(
L�

mkτ

)
(τ, ·) =

(
L�

mkτ

)
(·),

namely, applying L�
m to k(τ, t) for the second variable t while the first variable τ

is treated as a parameter we obtain the function L�
mk of two variables which is

sometimes also denoted as
(
L�

mk
)
(τ, t).

Remark 8.1. Obviously, Ima (Q�K
n ) ⊆ C ′

2π(�m).

Again applying the discretization operator r�m to (8.3) we get

(8.5) r�mQ�K
n f = Km,nr�n f

where the (m, n) matrix

(8.6) Km,n = (ki,j) with ki,j = un,jk(αn,j , βm,i).

Now we introduce the direct quadrature method. We must separately consider
four cases for the index κ.

The case of κ > 0. In this case, by Theorem 5.3, in order that SIE (8.1) has a
unique solution, we must further require that

(8.7) D1y = Nκ ∈ HT
κ ([θ]π)

(
a given trigonometric polynomial

)
.

In the system of equations (SE)

(8.8)
{

(A + λK)y = f,
D1y = Nκ,

replacing the operators A, K, D1 and f with Q�A
n , Q�K

n , Q�D1
n and L�

mf re-
spectively, we may construct the system of two functional equations

(8.9)

{ (
Q�A

n + λQ�K
n

)
yn = L�

mf,

Q�D1
n yn = Nκ,

which is called the (direct) approximate equation (AE) of SE (8.8). Its solutions are
called the (direct) approximate solutions of SE (8.8). Discretizing the first equation
by r�m and the second equation in (8.9) by r∨2κ, we get a system of linear algebraic
equations, which is called the (direct) numerical equation (NE) of AE (8.9) and SE
(8.8),

(8.10) (An + λKn)δn = fn,

where An is given in (7.13) and

(8.11) Kn =
(

Km,n

Oκ,n

)
, fn =

(
r�mf

r∨2κNκ

)
, δn =

(
δn,1, δn,2, · · · , δn,n

)T
,
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where Km,n is given in (8.6) and Oκ,n is the (k, n) zero matrix. The solutions of
NE (8.10) are called the (direct) numerical solutions of AE (8.9) and SE (8.8).

We point out that there is a very interesting relation between the approximate
solution and the numerical solution. Obviously, if yn is an approximate solution,
then δn = r�n yn is just a numerical solution. Contrarily, if δn is a numerical solution,
we construct the extension operator

(8.12)
(
E�

n δn

)
(t) =

�n(t)
�m(t)

[(
L�

mf
)
(t) − b(t)E�A

n (t)δn − λE�K
n (t)δn

]
.

Since δn is a numerical solution, the above E�
n δn is exactly well defined and E�

n δn ∈
C ′

2π(�n) by (8.2) and Remark 6.1. Moreover, we may show that it possesses the
interpolation property

(8.13) r�n E�
n δn = δn.

To prove this, let δ denote a function which possesses r�n δ = δn, for example, the
trigonometric interpolation polynomial. Then we have

r�n E�
n δn = r�n

{
δ +

�n

�m

[
L�

mf −
(
Q�A

n + λQ�K
n

)
δ
]}

= r�n δ = δn

by (8.12), since δn is a numerical solution.

Remark 8.2. Now the first equation in (8.9) may be rewritten as

(8.14) yn = E�
n r�n yn.

Therefore, by (8.13) E�
n δn satisfies the first equation in (8.9) if δn is a numerical

solution.

Remark 8.3. Noting (7.9) and (8.13), we know r∨2κQ
�D1
n E�

n δn = A2κ,nr�n E�
n δn =

A2κ,nδn = r∨2κNκ. Again, by Corollary 5.1, Q�D1
n E�

n δn ∈ HT
κ ([θ]π); finally, by

the uniqueness of the trigonometric interpolation on HT
κ ([θ]π) [24, 26], we get

Q�D1
n E�

n δn = Nκ, i.e., E�
n δn satisfies the second equation in (8.9) .

Combining Remark 8.2 and Remark 8.3, we know E�
n δn is an approximate so-

lution. Thus, we may solve AE (8.9) via solving NE (8.10). More precisely, noting
(8.13) and (8.14) we have the following theorem.

Theorem 8.1. Let FD be the set of the (direct) approximate solutions and ED the
set of the (direct) numerical solutions , then the extension operator E�

n : ED → FD

given in (8.12) and the discretization operator r�n : FD → ED are inverse to each
other.

The case of κ < 0. In this case, prescribing that (8.1) has a solution, by The-
orem 5.3 we see that the following constraint condition must be satisfied:

(8.15) D2

[
f − λKy

]
= 0.

Now we cannot directly construct the first functional equation in (8.9), because
it is difficult to ensure its solvability when κ < 0. In fact, by Theorem 6.2 if it has
a solution yn, then necessarily

(8.16) Q�D2
n g∗ = 0 with g∗ = L�

mf − λQ�K
n yn.
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In general, (8.16) does not follow from (8.15). A reasonable method is to consider
both (8.1) and the constraint condition (8.15). It may be seen that the solution of
(8.1) must be the solution of the equation

(8.17) (A + λK)y = f + bD2(f − λKy).

In this equation, replacing the operators A,K,D2, f with Q�A
n ,Q�K

n , Q�D2
m ,

L�
mf , respectively, we construct the functional equation(

Q�A
n + λQ�K

n + λbQ�D2
m Q�K

n

)
yn = f∗

= L�
mf + bN−κ

(
N−κ = Q�D2

m f ∈ HT
−κ ([−θ]π)

)
.

(8.18)

Discretizing (8.18) by r�m, we get the system of linear algebraic equations

(8.19) (Am,n + λKm,n + λK∗
m,n)δn = f∗

m = r�mf∗,

where Am,n, Km,n are as before, and the (m, n) matrix

(8.20)
K∗

m,n =(k∗
i,j), k∗

i,j =b(βm,i)un,jk
j
−κ(βm,i),

kj
−κ =Q�D2

m kj ∈HT
−κ ([−θ]π) , kj =k(αn,j , t).

Remark 8.4. K∗
m,nr�n f = r�m

(
bQ�D2

m Q�K
n

)
f.

Now, we call (8.18) and (8.19) the (direct) approximate equation (AE) and
the (direct) numerical equation (NE) of (8.17), respectively. Their solutions are
called the (direct) approximate solution and the (direct) numerical solution of (8.1),
respectively. If δn is a numerical solution, by setting the extension operator
(8.21)

(E�
n δn)(t) =

�n(t)
�m(t)

{
f∗(t) −

[
b(t)E�A

n (t) + λE�K
n (t) + λb(t)E�K∗

n (t)
]
δn

}
where

(8.22)
E�K∗

n (t)=
(
un,1k

∗ (αn,1, t) , un,2k
∗ (αn,2, t) , · · · , un,nk∗ (αn,n, t)

)
with k∗(τ, t)=

(
Q�D2

m L�
mkτ

)
(τ, t)

in which the first variable τ is always treated as a parameter, then Theorem 8.1
still holds and the proof follows from working in a way analogous to that in the
case κ > 0.

The case of κ = 0 with [θ]π = π/2. Assume (8.1) has a solution, then the con-
straint condition, by Theorem 5.3 and (5.9),

(8.23) Vg = 0 with g = f − λKy,

must be satisfied; moreover, in order to find the determined solution we need the
unisolving condition

(8.24) Uy = −N csc θ (N is a given constant and csc θ = ±1).

For the discussion of the numerical solution under the present case, we must keep
an eye on both the constraint condition (8.23) and the unisolving condition (8.24).
Obviously, the solution of (8.1) is the solution of the equation (8.17). As before,
from

(8.25)

{
(A + λK)y = f + bD2(f − λKy),
Uy = −N csc θ,
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we get the (direct) approximate equation (AE)

(8.26)

⎧⎪⎨
⎪⎩
(
Q�A

n + λQ�K
n + λb sin θ Q�V

m Q�K
n

)
yn = f∗

where
(
L�

mf
)
+ b sin θQ�V

m f,

Q�U
n yn = −N csc θ,

and the (direct) numerical equation (NE)

(8.27)
(
An+1,n + λKn+1,n + λK∗

n+1,n

)
δn = f∗

n+1

where An+1,n is given in (7.25),

(8.28)
Kn+1,n =

(
Km,n
O1,n

)
, K∗

n+1,n =
(

K∗
m,n

O1,n

)
,

f∗
n+1 = (f∗(βm,1) , · · · , f∗(βm,m) ,−N csc θ)T

with Km,n as (8.6) and K∗
m,n as (8.20).

In the present case, we call the solutions of (8.26) and (8.27) the (direct) approx-
imate solution and the (direct) numerical solution of (8.25), respectively. If we set
the extension operator the same as (8.21), then Theorem 8.1 still holds.

The case of κ = 0 with [θ]π �= π/2. Treating (8.1) as before, we obtain the
functional equation and the linear algebraic equation(

Q�A
n + λQ�K

n

)
yn = L�

mf,(8.29)

(An + λKn) δn = fn ≡ (f (βm,1) , f (βm,2) , · · · , f (βm,m))T(8.30)

where An = Am,n and Kn = Km,n given in (7.2) and (8.6), respectively, are the
square matrices since m=n.

As before, (8.29) and (8.30) are called, respectively, the (direct) approximate
equation (AE) and the (direct) numerical equation (NE) of (8.1). Their solutions
are called the (direct) approximate solution and the (direct) numerical solution
of (8.1), respectively. If δn is a numerical solution, by still setting the extension
operator E�

n as (8.12), then Theorem 8.1 holds again.

9. Indirect quadrature method

In the present section, we discuss the indirect quadrature method. When κ>0,
applying B to both sides of (8.1) and taking into account the unisolving condition
(8.7), (8.8) becomes as, by Theorem 5.3,

(9.1)
(I + λL)y = F ≡ Bf + bNκ

with (Ly)(t) =
(
BKy
)
(t) =

1
2π

∫ 2π

0

w1(τ )l(τ, t)y(τ )dτ

where
l(τ, t) = (Bkτ ) (t) = (Bk) (τ, t)

≡ a(t)w2(t)k(τ, t)− b(t)
2π

∫ 2π

0

w2(x)k(τ, x) cot
x − t

2
dx.

(9.2)

In the above Bkτ we also treat τ as a parameter.
In the case of κ < 0, noting Theorem 5.2, Remark 5.4 and Corollary 5.2, applying

B to (8.17) we again obtain (9.1), but we must treat Nκ = 0 in (9.1) (this is just
in agreement with what we agreed before).
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Similarly, in the case of κ = 0 with [θ]π = π/2, applying B to both sides of
(8.17) and taking into account the unisolving condition (8.24), by using Theorem
5.3, Remark 5.4 and Corollary 5.2, we still obtain (9.1) by treating N0 = N given
in (8.24).

In the case of κ = 0 with [θ]π �= π/2, applying B − b sec θD2 to both sides of
(8.1), by Remark 5.5 we also obtain (9.1) with the understanding of

(9.3) l(τ, t) = (Bkτ ) (τ, t) − b(t) tan θ

2π

∫ 2π

0

w2(t)k(τ, t)dt, N0 = − tan θVf.

We call the Fredholm integral equation (9.1) the regularizing equation, respec-
tively, of (8.8) when κ > 0, of (8.17) when κ < 0, of (8.25) when κ = 0 with
[θ]π = π/2, of (8.1) when κ = 0 with [θ]π �= π/2, with the understanding for l and
Nκ in (9.1) and (9.2),

l =
{

l given in (9.2), when κ �= 0 or κ = 0 with [θ]π = π/2,
l given in (9.3), when κ = 0 with [θ]π = π/2,(9.4)

Nκ =

⎧⎪⎪⎨
⎪⎪⎩

Nκ given in (8.7), when κ > 0,
0, when κ < 0,
N given in (8.24), when κ = 0 with [θ]π = π/2,
− tan θ Vf, when κ = 0 with [θ]π �= π/2.

(9.5)

In this way, the discussion below shall be valid for all cases of the index κ.

Remark 9.1. From Remark 5.2, F and l are functions in H2π for all cases of κ.

Instead of (9.2), we use the operator(
Q�L

n y
)
(t) = E�L

n (t)r�n y

≡ (un,1l (αn,1, t) , un,2l (αn,2, t) , · · · , un,nl (αn,n, t)) r�n y,
(9.6)

then (9.1) becomes

(9.7)
(
I + λQ�L

n

)
y = F.

Again, setting

(9.8) ln(τ, t)=

⎧⎪⎪⎨
⎪⎪⎩

(
Q�B

m L�
mkτ

)
(τ, t)−b(t) tan θ

(
Q�V

m L�
mkτ

)
(τ ),

if κ=0 with [θ]π �=π/2,(
Q�B

m L�
mkτ

)
(τ, t), otherwise,

where

(9.9)

(
Q�B

m L�
mkτ

)
(τ, t)=

�n(t)
�m(t)

(
L�

mkτ

)
(τ, t)

−b(t)
m∑

j=1

vm,j cot
vm,j − t

2
(
L�

mkτ

)
(τ, vm,j),

(
Q�V

m L�
mkτ

)
(τ )=Q�V

m L�
mkτ =

m∑
j=1

vm,j

(
L�

mkτ

)
(τ, vm,j).

In (9.6) replacing l by ln, we have(
Q�Ln

n y
)
(t) = E�Ln

n (t)r�n y

≡ (un,1ln(αn,1, t) , un,2ln(αn,2, t) , · · · , un,nln(αn,n, t)) r�n y.
(9.10)
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Remark 9.2. We easily see ln(τ, ·) ∈ C ′
2π(�n) by Remark 6.2, so Ima

(
Q�Ln

n

)
⊆

C ′
2π(�n).

Remark 9.3. From (8.3), (9.9) and (9.10) we get Q�Ln
n =

[
Q�B

m −b tan θQ�V
m

]
Q�K

n ,
while κ = 0 with [θ]π �= π/2 and Q�Ln

n = Q�B
m Q�K

n , while κ �= 0 or κ = 0 with
[θ]π =π/2.

Remark 9.4. If κ �= 0 or κ = 0 with [θ]π = π/2, applying Q�A
n and Q�D1

n to
Q�Ln

n =Q�B
m Q�K

n , we get Q�A
n Q�Ln

n =Q�K
n +bQ�D2

m Q�K
n and Q�D1

n Q�Ln
n = 0

by Theorem 6.2 and Corollary 6.2.

Now we construct the functional equation

(9.11)
(
I + λQ�Ln

n

)
yn = Fn ≡ Q�B

m L�
mf + bNκ

(
Nκ in (9.5)

)
.

(9.11) is called the approximate equation (AE) of (9.1) or, respectively, the
(indirect) approximate equation of (8.8) under the case κ > 0, of (8.17) under the
case κ < 0, of (8.25) under the case κ = 0 with [θ]π = π/2, of (8.1) under the case
κ = 0 with [θ]π �= π/2. Its solutions are called the (indirect) approximate solutions,
the set of which is written as F I .

Remark 9.5. F I ⊆ C ′
2π(�n), namely, in essence we find the approximate solutions

in C ′
2π(�n).

Discretizing (9.11) by r�n , we get a system of linear algebraic equations as

(9.12) (In + λLn)δn = r�n Fn,

where the square matrix of order n is

(9.13) Ln = (lj,r) with lj,r = un,rln(αn,r, αn,j).

Remark 9.6. r�n Q�Ln
n = Lnr�n .

(9.12) is called the numerical equation (NE) of AE (9.11), or respectively, the
(indirect) numerical equation of (8.8) under the case κ > 0, of (8.17) under the case
κ < 0, of (8.25) under the case κ = 0 with [θ]π = π/2, of (8.1) under the case κ = 0
with [θ]π �= π/2. Its solutions are called (indirect) numerical solutions. EI denotes
the set of the (indirect) numerical solutions.

Now working in a way analogous to that used in the last section, we can easily
show that, between the (indirect) approximate solutions and the (indirect) numer-
ical solutions there exists the following relation.

Theorem 9.1. Either both the (indirect) approximate solutions and the (indirect)
numerical solutions exist or neither exists. If they exist, then they are in one-to-one
correspondence: r�n being a one-to-one operator for F I → EI ,E�

n being a one-to-
one operator for EI → F I and they are inverse to each other, where the operator
E�

n is an extension operator as follows:

(9.14) (E�
n δn)(t) = Fn(t) − λE�Ln

n (t)δn if δn ∈ EI .

In the direct quadrature method and indirect quadrature method, we only require
that the interpolation operator L�

m satisfies (8.2). Therefore, we may choose the L�
m

according to the input condition and the requirement of the problem. There are two
useful choices of L�

m (the other will be introduced in another paper). If the input
functions f, k ∈ C ′

2π, for the higher trigonometric precision, sometimes one chooses
L�

m = I (the identity operator). For the general case that the input functions f, k
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are in the class H2π, we take L�
m = L�

m, the trigonometric interpolation polynomial
operator given in (6.5).

Obviously, under any choice for L�
m, the numerical solutions are always the same.

We call the approximate solutions for the case L�
m = I the approximate solutions

of the first kind, i.e., Nyström’s interpolation approximate solutions. For case
L�

m = L�
m, in Remark 10.2 of the next section we will see that the approximate

solution is just the trigonometric interpolation polynomial at the zeros of �n via
the numerical solution, which is called the approximate solution of the second kind.
In the framework given here, both the approximate solutions of the first and second
kinds are the natural interpolation solutions via (8.12) or (8.21) or (9.14).

10. Coincidence

In the present section, we shall verify that the direct quadrature method and the
indirect quadrature method stated above are equivalent. Due to this reason, we
only need to discuss the existence and convergence of the (indirect) approximate
solution and the (indirect) numerical solution. Such a coincidence technique is first
studied by Ioakimidis [16] for the simplest case that a and b are constants. Here
we discuss it in a quite simple and obvious way, so the results are more general and
accurate.

Theorem 10.1. If κ>0, then (8.8) is equivalent to the regularizing equation (9.1).
If κ < 0, then (8.17) is equivalent to the regularizing equation (9.1). If κ = 0 with
[θ]π =π/2, then (8.25) is equivalent to the regularizing equation (9.1). If κ=0 with
[θ]π �=π/2, then (8.1) is equivalent to the regularizing equation (9.1).

Proof. These conclusions directly result from Theorem 5.3 and Corollaries 5.1 and
5.2. For example, when κ < 0, let f# = f − λKy + bD2(f − λKy) in (8.17), then
D2f

# = 0 by Corollary 5.1, thus (8.17) has the solution y if and only if y is the
solution of (9.1) by Theorem 5.3 and Corollary 5.2. �

Theorem 10.2. If κ>0, then AE (8.9) is equivalent to AE (9.11). If κ<0, then
AE (8.18) is equivalent to AE (9.11). If κ = 0 with [θ]π = π/2, then AE (8.26) is
equivalent to AE (9.11). If κ = 0 with [θ]π �= π/2, then AE (8.29) is equivalent to
AE (9.11). In a word, FD = F I .

Proof. These conclusions directly result from Theorem 6.2 and Corollaries 6.1 and
6.2. For example, when κ=0 with [θ]π =π/2, let

f# =f∗−
(
λQ�K

n +λb sin θ Q�V
m Q�K

n

)
yn

in (8.26), noting Q�D2
m = b sin θ Q�V

m , then Q�D2
m f# = 0 by Corollary 6.2. Thus

(8.26) has the solution yn if and only if yn is the solution of (9.11) by using Theorem
6.2, Corollary 6.2 and Remark 9.4. �

Remark 10.1. In passing, we point out an interesting fact. While κ < 0, from
Theorem 10.2 we see that, to solve AE (8.18) it does not need to know N−κ and
kj
−κ introduced in (8.18) and (8.20), since they do not arise in (9.11). This shows

that the method here is both complete in the theoretical analysis and convenient
in the actual computation.

Theorem 10.3. If κ > 0, then NE (8.10) is equivalent to NE (9.12). If κ < 0,
then NE (8.19) is equivalent to NE (9.12). If κ = 0 with [θ]π = π/2, then NE (8.27)
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is equivalent to NE (9.12). If κ = 0 with [θ]π �= π/2, then NE (8.30) is equivalent
to EN (9.12). In a word, ED = EI .

More precisely, we give some lemmas. These lemmas imply Theorem 10.3. For
simplicity, we use some pictographic symbols, for example, let us denote to apply
Bn to both sides of (8.10) by Bn × (8.10).

Lemma 10.1. If κ> 0, An and Bn are given in (7.13), then Bn×(8.10)⇒ (9.12)
and An×(9.12)⇒(8.10).

Proof. We prove the the first conclusion, since the second follows by it and Lemma
7.2. First, we have Lnr�n y = r�n Q�Ln

n y = r�n Q�B
m Q�K

n y = Bn,mr�mQ�K
n y =

Bn,mKm,nr�n y, by Remark 9.6, Remark 9.3, (7.4) and (8.5), thus, Ln = Bn,mKm,n.
So, from (7.13) and (8.11) we get Ln =BnKn. Second, we get r�n Fn =r�n Q�B

m L�
mf+

r�n (bNκ) = Bn,mr�mf + r�n (bL∨
2κNκ) = Bn,mr�mf + Bn,2κr∨2κNκ = Bnfn by (9.11),

(8.2), (7.11) and (8.11). So, r�n Fn =Bnfn. Now, the proof is completed. �
Lemma 10.2. If κ < 0, Am,n and Bn,m are given in (7.2) and (7.5), then Bn,m ×
(8.19) ⇒ (9.12) and Am,n × (9.12) ⇒ (8.19).

Proof. We prove the second conclusion, since the first one follows by it and Lemma
7.1. First,

Am,nLnr�n y=Am,nr�n Q�Ln
n y=r�mQ�A

n Q�Ln
n y=r�m

(
Q�K

n y+bQ�D2
m Q�K

n y
)

by using Remark 9.6, (7.1), Remark 9.3 and (8.5), thus Am,nLn = Km,n + K∗
m,n

from Remark 8.4. Second, by (9.11), (7.1), Theorem 6.4 and (8.18),

Am,nr�n Fn = r�mQ�A
n Fn =r�mQ�A

n Q�B
m L�

mf =r�m
(
L�

mf + bQ�D2
m f
)

=r�mf∗
m. �

Lemma 10.3. If κ = 0 with [θ]π = π/2, then Bn,n+1 × (8.27) ⇒ (9.12) and
An+1,n × (9.12) ⇒ (8.27) where An,n+1 and Bn,n+1 are given in (7.24).

Proof. We prove the the second conclusion, since the first one follows by it and
Lemma 7.5. By Remark 9.4, Remark 6.3, (6.10), and Remark 9.6 and noting
sin θ = ±1, we have

0 = Q�D1
n Q�Ln

n y = ±Q�U
n Q�Ln

n y=±E�U
n r�n Q�Ln

n y

= ±E�U
n Lnr�n y, i.e., E�U

n Ln = O1,n.
(10.1)

Noting that the equality Am,nLn = Km,n+K∗
m,n still holds in the present case in

exactly the same way to the last lemma, and by (7.24) and (8.28), (10.1), we get

(10.2) An+1,nLn =Kn+1,n + K∗
n+1,n.

By (6.10) and (9.11), Remark 6.3, Corollaries 6.1 and 6.2, we have

(10.3) E�U
n r�n Fn =Q�U

n Fn =− csc θ Q�D1
n

(
Q�B

m L�
mf + bN

)
=−N csc θ.

Noting that the equality Am,nr�n Fn =r�mf∗ still holds in the present case in exactly
the same way to the last lemma and (7.24) and (8.28), we finally get

(10.4) An+1,nr�n Fn = f∗
n+1.

Now, by (10.2) and (10.4), the second conclusion follows. �
Lemma 10.4. If κ = 0 with [θ]π �= π/2, then Bn × (8.30) ⇒ (9.12) and An ×
(9.12) ⇒ (8.30) where An and Bn are given in (7.2) and (7.22), respectively.
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Proof. We prove the the second conclusion, since the first one follows by it and
Lemma 7.4 in exactly the same way to Lemma 10.1. The equalities BnKn = Ln

and Bnfn = r�n Fn still hold in the present case. For example, Bnfn = Bnr�mL�
mf =

r�n
[
Q�B

m −b tanθ Q�V
m

]
L�

mf = r�n Fn. �

Theorem 10.4. If κ > 0 or κ = 0 with [θ]π �= π/2, the extension operator defined
by (8.12) and the extension operator defined by (9.14) are the same. If κ < 0 or
κ = 0 with [θ]π = π/2, the extension operator defined by (8.21) and the extension
operator defined by (9.14) are the same.

Proof. By Theorem 8.1 (holds for any case), Theorem 9.1, Theorems 10.2 and 10.3,
we know that all extension operators defined in §7 and §8 are the inverse operator
of r�n : FD → ED, so they are the same. �

Remark 10.2. If L�
m = L�

m is the trigonometric interpolation operator given in (6.5),
we may see that, L�

mf, E�K
n , f∗ and E�K∗

n in (8.12) and (8.21) are all trigonometric
polynomials. From this and noting that n − m = 2κ is even, we know that E�

n δn

given in both (8.12) and (8.21) are trigonometric polynomials of degree
[

n
2

]
at most,

so E�
n δn is given in (9.14).

Some researchers studied the various coincidence theorems for a simple case such
as (2.8) with the constants a and b, but they all first proved ED = EI , which is
based on Theorem 8.1 and obtained by very technical calculation, then they ver-
ify Theorem 10.4 and finally obtain the coincidence Theorem 10.2. This way is
complex and difficult, and we can find the general law with difficulty. Under our
framework the coincidence Theorems 10.2–10.4 are obtained by applying the ab-
stract properties of SIOs, SQOs and DMs associated with SIE (2.8) in a completely
parallel way, hence can be applied more generally.

11. Existence and convergence

Suppose that there is a sequence of pairs (�n,�m) of TPs of SIOs (A,B), say
{�n,�m}. We discuss now the existence and convergence of the approximate solu-
tion and the numerical solution. It suffices to discuss the existence and convergence
of the indirect approximate solution by Theorems 10.2–10.4 and Theorem 9.1, pro-
vided that λ is not an eigenvalue of (9.1), hence (9.1) possesses a unique solution.
Therefore, by using Theorem 10.1, (8.8) also possesses a unique solution when κ > 0
and (8.1) also possesses a unique solution when κ = 0 with [θ]π �= π/2 . When
κ < 0, (8.17) possesses a unique solution but (8.1) has possibly no solution. In this
case we further assume that (8.1) is solvable, thus it only possesses a unique solu-
tion. Similarly, when κ = 0 with [θ]π = π/2 we also assume that (8.1) is solvable,
thus (8.1) under the unisolving condition (8.24) possesses a unique solution. We
again suppose that the spaces considered are equipped with the Chebyshev norm
‖ · ‖, namely, the maximum of the absolute values of a function [34]. We will quote
the theorems in [29, 30] with the same technical term there.

Lemma 11.1. Suppose that the sequence
{
Q�U

n

}
is uniformly bounded, then the

sequence
{
Q�L

n

}
pointwisely approximates the operator L, and

{
I + λQ�L

n

}
is sta-

ble.

Proof. By Remark 9.1 we may denote the modulus of continuity of l(τ, t)y(t)
as ω(ly, ·). We then have

∥∥(L− Q�L
n

)
y
∥∥ ≤ 12

(
‖U‖ +

∥∥Q�U
n

∥∥)ω (ly, 2/n) by
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Theorem 5.1 in [30]. Observing that
{
Q�U

n

}
is uniformly bounded and ‖U‖ =

U1, thus, we know that the sequence
{
Q�L

n

}
pointwisely approximates the op-

erator L. Again noting
∥∥Q�L

n

∥∥ ≤ ‖l‖
∥∥Q�U

n

∥∥ , ∣∣(Q�L
n y
)
(t1) −

(
Q�L

n y
)
(t2)
∣∣ ≤

‖y‖
∥∥Q�U

n

∥∥ω (l, |t1 − t2|) and the (uniform) continuity of l by Remark 9.1, as well
as using the Arzela–Ascoli lemma, we see that the

{
Q�L

n

}
is globally totally con-

tinuous. Therefore,
{
I + λQ�L

n

}
is stable by Theorem 2.3 in [30]. �

Theorem 11.1. Suppose (C1), the sequence
{
Q�U

n

}
is uniformly bounded, (C2)

limn→∞ ‖F − Fn‖ = 0 and limn→∞ ‖l − ln‖ = 0, then the numerical solution and
the approximate solution uniquely exist for sufficiently large n, and the latter uni-
formly converges to the solution of SIE (9.1) with (9.4) and (9.5).

Proof.
∥∥Q�L

n − Q�ln
n

∥∥ ≤
∥∥Q�U

n

∥∥ ‖l − ln‖ ≤ const ‖l − ln‖ → 0 (as n → ∞),
thereby, by further using Theorem 2.4 in [30] and Lemma 11.1 here,

{
I + λQ�Ln

n

}
is stable. By (C2) and Theorem 2.5 in [30], the proof is completed. �

We must demonstrate that (C1) and (C2) are satisfied when we use Theorem
11.1.

Remark 11.1. If
{
Q�U

n

}
is a sequence of nonnegative operators, i.e., un,j ≥ 0 (j =

1, · · · , n), then we have
∥∥Q�U

n

∥∥ =
∑n

j=1 un,j = U1; of course, it is uniformly
bounded. The example will be given in the next section.

For (C2) in Theorem 11.1 we give two useful lemmas. From Theorem 5.2 in [27]
we have the following.

Lemma 11.2. If f ∈ C ′
2π (i.e., f ′ ∈ C2π), then∥∥Bf − Q�B
m f
∥∥ ≤ const

(
‖V ‖ +

∥∥Q�V
m

∥∥)ω(f ′,
m

2

)
.

In particular, If
{
Q�V

m

}
is uniformly bounded, then limm→∞

∥∥Bf − Q�B
m f
∥∥ = 0.

Lemma 11.3. If f ∈ Hµ
2π (with the Hölder index µ in H2π), pr

(
Q�B

m L�
m

)
≥ [m−1

2 ]

and
∥∥∥Q�B

m L�
m

∥∥∥ = o(mµ), then limm→∞

∥∥∥Bf − Q�B
m L�

mf
∥∥∥ = 0.

Proof. Denoting the best approximate trigonometric polynomial of degree not
greater than ν =

[
m−1

2

]
of f by Jν and fν(τ ) = f(τ )− Jν(τ ), then, by the Jackson

theorem [31, 32], ‖fν‖ ≤ 12ω(f, 1
ν ), hence,

|(Bfν)(t)| ≤ 12‖B1‖ω
(

f,
1
ν

)
+‖b‖

∣∣∣∣∣∣
π+t∫

−π+t

w2(τ )
fν(τ )−fν(t)

τ−t

[
(τ−t) cot

τ−t

2

]
dτ

∣∣∣∣∣∣
≤ 12‖B1‖ω

(
f,

1
ν

)
+

C‖w‖
ν µ−ε

π+t∫
−π+t

dτ

|τ−t|1−ε
(0 < ε < µ)

(
by Lemma 5.2 and (5.5) in [27] or cf. [33], Hilfssatz 2, Sect. 2, Kapitel 2

)
≤ C1‖B1‖

ν µ
+

C2‖w‖
εν µ−ε

(C, C1, C2 are some constants only depending on µ and ε).
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Again,
∥∥(Q�B

m L�
m)fν

∥∥ ≤ ∥∥Q�B
m L�

m

∥∥ ‖fν‖ ≤ C3ν
−µ
∥∥Q�B

m L�
m

∥∥ where C3 is also a

constant only depending on µ and ε, and
[
B−Q�B

m L�
m

]
f =
[
B−Q�B

m L�
m

]
fν by

pr
(
Q�B

m L�
m

)
≥ν. So, limn→∞

∥∥∥Bf−Q�B
m L�

mf
∥∥∥=0. �

Quoting the above lemmas and Theorem 11.1 we have the following two theorems
for the existence and convergence of the approximate solutions.

Theorem 11.2. If f ∈ C ′
2π, k ∈ C ′

2π × C ′
2π (i.e., k has continuous partial

derivatives),
{
Q�U

n

}
and
{
Q�V

m

}
are uniformly bounded, then the approximate

solution of the first kind exists uniquely and converges uniformly to the solution of
SIE (9.1) with (9.4) and (9.5).

Theorem 11.3. If f, k ∈ Hµ
2π,
{
Q�U

n

}
is uniformly bounded and ‖Q�B

m L�
m‖ =

o(mµ), then the approximate solution of the second kind exists uniquely and con-
verges uniformly to the solution of SIE (9.1) with (9.4) and (9.5) while κ �=0 or κ=0
with [θ]π =π/2. If κ=0 with [θ]π �=π/2, further assume

∥∥Q�V
m

∥∥=o(mµ), then the
approximate solutions of the second kind exist uniquely and converge uniformly to
the solution of SIE (8.1).

Remark 11.2. How to check ‖Q�B
m L�

m‖ = o(mν), more precisely, how to estimate
the order of ‖Q�B

m L�
m‖. This problem is rather difficult, it will be studied in another

forthcoming paper.

If we take L�
m as the Lagrange interpolating polynomial operator L�

m, let

(11.1) �m,j(τ ) =

⎧⎪⎪⎨
⎪⎪⎩

�m(τ )
2 �′

m (βm,j)
csc

τ − βm,j

2
, if m is odd,

�m(τ )
2 �′

m (βm,j)
cot

τ − βm,j

2
, if m is even.

Then ∣∣∣ (Q�B
m L�

mf
)
(t)
∣∣∣

=

∣∣∣∣∣
m∑

j=1

[
a(t)w1(t) �m,j (t) − b(t)

2π

∫ 2π

0

�m,j(τ ) cot
τ − t

2
dτ

]
f (βm,j)

∣∣∣∣∣
≤ ‖aw1‖Σm + ‖b‖σm,

(11.2)

where

(11.3)

Σm =
m∑

j=1

‖ �m,j ‖ (the Lebesgue number of L�
m),

σm =
m∑

j=1

∥∥∥∥ 1
2π

∫ 2π

0

w2(τ ) �m,j (τ )
τ − t

2
dτ

∥∥∥∥ .
Again, we have by Remark 6.1 that

(11.4) (Q�B
m L�

mf)(t) =
m∑

j=1

{
Λm,j(t) + [b(t)−b(βm,j)] cot

t−βm,j

2
vm,j

}
f(βm,j)
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where

(11.5) Λm,j(t)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
�′

m(βm,j)

[
�n(t)−�n(βm,j)

]
cot

t−βm,j

2
,

if n is even,
1

�′
m(βm,j)

[
�n(t)−�n(βm,j) cos

t − βm,j

2

]
csc

t−βm,j

2
,

if n is odd.

So, we also get

(11.6) ‖Q�B
m L�

m‖ ≤ ρm + 2‖b′‖λm, ρm =
m∑

j=1

‖Λm,j‖, λm =
m∑

j=1

|vm,j |.

For some {�m}, used often, we easily estimate ‖Q�B
m L�

m‖ by estimating Σm, σm,
ρm and λm (see §12).

12. Examples

We give only three examples, more general examples will be introduced in an-
other paper in order to keep this paper within reasonable bounds.

Example 12.1. We discuss the numerical solution for the dominant equation with
constant coefficients

(12.1) ay(t) +
b

2π

∫ 2π

0

y(τ ) cot
τ − t

2
dτ = f(t), 0 ≤ t < 2π.

Now κ = 0, a − ib = reiθ where θ is the characteristic number of (12.1), w1(t) =
w2(t) = 1.

If [θ]π = π/2, then this equation becomes (noting a = 0 and taking b = 1)

(12.2)
1
2π

∫ 2π

0

y(τ ) cot
τ − t

2
dτ = f(t), 0 ≤ t < 2π.

Under the constraint condition and the unisolving condition

(12.3)
1
2π

∫ 2π

0

f(τ ) dτ = 0,
1
2π

∫ 2π

0

y(τ ) dτ = N
(
N is a given constant

)
,

(12.2) possesses the unique solution

(12.4) y(t) = − 1
2π

∫ 2π

0

f(τ ) cot
τ − t

2
dτ + N.

We take �n(t) = sin
n

2
t and �n(t) = cos

n

2
t, then (�n,�n) is a pair of TPs and

(12.5) αn,j =
2π

n
, βn,j =

(2j + 1)π
n

, un,j = vn,j =
1
n

, j = 0, 1, · · · , n − 1.

We easily know that the numerical solution and approximate solution of the first
kind for SIE (12.2) are

yn(αn,j) =
1
n

n−1∑
k=0

f(βn,k) cot
αn,j − βn,k

2
+ N, j = 0, 1, · · · , n − 1,(12.6)

yn(t) = f(t) cot
n

2
t − 1

n

n−1∑
k=0

f(βn,k) cot
βn,k − t

2
+ N.(12.7)
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If [θ]π �= π/2, we rewrite (12.1) for simplicity in the form

(12.8)
a√

a2 + b2
y(t) +

b

2π
√

a2 + b2

∫ 2π

0

y(τ ) cot
τ − t

2
dτ =

f(t)√
a2 + b2

.

In this case, it possesses the unique solution

(12.9) y(t) =
a

a2 + b2
f(t) − b

2π(a2 + b2)

[∫ 2π

0

f(τ ) cot
τ − t

2
dτ +
∫ 2π

0

f(τ ) dτ

]
.

We take �n(t) = sin
n

2
t and �n(t) = sin

(n
2

t − θ
)
, then (�n,�n) is a pair of

TPs for SIE (12.9) and

(12.10) αn,j =
2jπ

n
, βn,j =

2 (jπ + [θ]π)
n

, un,j = vn,j =
1
n

, j = 0, 1, · · · , n − 1.

According to the prior proceeding, the numerical solution and the approximate
solution of the first kind for SIE (12.8) are, respectively,

yn(αn,j) =
b

a2 + b2

n−1∑
k=0

f(βn,k) cot
αn,j − βn,k

2
+

b2

na(a2+2)

n−1∑
k=0

f(βn,k),(12.11)

yn(t) =
f(t)

a + b cot n
2 t

+
b

n(a2 + b2)

[
n−1∑
k=0

f(βn,k) cot
t − βn,k

2
+

n−1∑
k=0

f(βn,k)

]
.

(12.12)

This simple example is just the result given in [16] by Ioakimidis; but he did not
discuss the convergence for the approximate solution. Here, noting

∑n−1
j=0 |un,j | =∑n−1

j=0 |vn,j | = 1 and the foregoing result

(12.13) lim
n→∞

‖y − yn‖ = 0 for f ∈ C ′
2π,

so, the convergence is very clear.

Example 12.2. We still consider SIE (12.1). If [θ]π = π/2, now we take more
generally

(12.14) �n(t) = sin
(n

2
t + ϑ
)

, �n(t) = cos
(n

2
t + ϑ
)

,

where ϑ is an arbitrary real number. Then, (�n,�n) is a pair of TPs for SIE (12.2)
and

(12.15)
αn,j =

2(jπ−[ϑ]π)
n

, βn,j =
2(jπ+π/2−[ϑ]π)

n
, un,j =vn,j =

1
n

,

j=0, 1, · · · , n−1.

Under the constraint condition and the unisolving condition (12.3), the numerical
solution is still (12.6) with αn,j and βn,j given in (12.15) and the approximate
solution of the second kind for SIE (12.2) is, by (11.5)

(12.16) yn(t) =
n−1∑
k=0

Λn,k(t)f(βn,k)
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with

(12.17) Λn,j(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−1)j

n

[
cos
(n
2

t+
π

2
+[ϑ]π
)
−cos
(n
2

βn,j +
π

2
+[ϑ]π
)]

cot
t−βn,j

2
,

if n is even,

− 1
n

[
cos

n(t − βn,k)
2

− cos
t − βn,k

2

]
csc

t−βn,j

2
,

if n is odd.

If [θ]π �= π/2, we take

(12.18) �n(t) = sin
(n

2
t + ϑ
)

, �n(t) = cos
(n

2
t + ϑ − θ

)
,

then (�n,�n) is a pair of TPs for SIE (12.8) and

(12.19)
αn,j =

2(jπ−[ϑ]π)
n

, βn,j =
2(jπ+π/2−[ϑ−θ]π)

n
,

un,j =vn,j =
1
n

, j =0, 1, · · · , n − 1.

Now the numerical solution is still (12.11) with αn,j and βn,j given in (12.19), and
the approximate solution of the second kind for SIE (12.9) is

(12.20) yn(t) =
n−1∑
k=0

Λn,k(t)f(βn,k) +
b2

na(a2 + b2)

n−1∑
k=0

f(βn,k),

where Λn,k is still (12.17) with αn,j and βn,j given in (12.19).
In this example, taking ϑ = 0 we get the result in [15] by Krenk. He also did

not give the convergence for the approximate solution. In fact, the approximate
solution of the second kind is convergent in any case, i.e., limn→∞ ‖y − yn‖ = 0 for
f ∈ H2π. To do so, by using the foregoing result in the present paper, it is enough
to prove the following lemma.

Lemma 12.1. For any case mentioned above, we have ρn =
∑n−1

j=0 ‖Λn,j‖
≤ 2(π + lnn).

Proof. For illustration, we consider the case of Λn,j(t) given in (12.17). For fixed t,
we use the symbol τt to denote the congruent point of τ , lying in [−π+t, π+t).
By this view, we rearrange

{
(βn,j)t , j = 0, · · · , n − 1

}
as
{
β∗

n,k, k = 1, · · · , n
}

according to β∗
n,1 < β∗

n,2 < · · · < β∗
n,n. Obviously,

(12.21) β∗
n,k+1−β∗

n,k =
2π

n
for k = 1, · · · , n−1, β∗

n,� ≤ t < β∗
n,�+1 for certain �.

Writing

Λ∗
n,k(t) = Λn,j(t) when β∗

n,k = (βn,j)t ,

F1(t) =
�−2∑
k=1

∣∣Λ∗
n,k(t)
∣∣ , F2(t) =

n∑
k=�+3

∣∣Λ∗
n,k(t)
∣∣ ,
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with the assumptions F1(t) = 0 if � < 3 and F2(t) = 0 if � > n − 3, we have, for
odd n,

∣∣Λ∗
n,k(t)
∣∣ = 1

n

∣∣∣∣2 sin
n + 1

4
(t−β∗

n,k) sin
n − 1

4
(t−β∗

n,k) csc
t−β∗

n,k

2

∣∣∣∣
≤
∣∣∣∣ t−β∗

n,k

2
csc

t−β∗
n,k

2

∣∣∣∣ ≤ π

2
.

(12.22)

In the last inequality we used | sin x| ≥ 2
π |x| for |x| ≤ π

2 . Then, also using this
inequality and (12.21), we get

(12.23)

F1(t) =
1
2π

�−2∑
k=1

∣∣∣∣∣
∫ β∗

n,k+1

β∗
n,k

[
cos

n(t − β∗
n,k)

2
− cos

t − β∗
n,k

2

]
csc

t − β∗
n,k

2
dx

∣∣∣∣∣
≤ 1

π

∫ β∗
n,�−1

−π+t

csc
t − x

2
dx = − 2

π
ln cot

t − t∗�−1

4

≤ − 2
π

ln sin
π

2n
≤ ln n.

Similarly, ‖F2‖ ≤ ln n. For even n, the proof is obtained by working in a similar
way. �

Example 12.3. We have seen that, in the above examples, the TPs (�n,�m)
all are just some orthogonal polynomials. Now we consider the general SIE (2.8).
First, we set up the inner product space L2

w1
[0, 2π] and L∗2

w1
[0, 2π], respectively,

with the inner product

(12.24) (f, g)1 =
∫ 2π

0

w1(τ )f(τ )g(τ ) dτ, (f, g)∗1 =
∫ 2π

0

w1(2τ )f(τ )g(τ ) dτ.

It is well known that, by applying the Gram–Schmidt orthogonalization process to
the system of linear independent polynomials {1, sin τ, cos τ, · · · , sin(n−1)τ, cos(n−
1)τ, sin(nτ +ϑ)} (0 ≤ ϑ < π), we may get the orthogonal trigonometric polynomial
Πϑ

n(τ ) in L∗2
w1

[0, 2π] (see [34]), i.e.,

(12.25)

{
Πϑ

n(τ ) = c sin(nτ + ϑ) + terms of lower degree, c �= 0,(
Πϑ

n, Tr

)∗
1

= 0 for Tr ∈ HT
n−1.

Similarly, we also may get the orthogonal trigonometric polynomial �n in
L2

w1
[0, 2π],

(12.26)

⎧⎨
⎩ �ϑ

n(τ ) = c sin
(n

2
τ + ϑ
)

+ δn
2 −1(τ ), δn

2 −1 ∈ HT
n
2 −1, c �= 0,(

�ϑ
n, Υr

)
1

= 0 for Υr ∈ HT
n
2 −1.

Remark 12.1. If c = 1 in (12.25) and (12.26), we say that they are monic. The
monic Πϑ

n uniquely exists in each class HT
n (ϑ). The monic �ϑ

n uniquely exists in
each class HT

n
2
(ϑ). Sometimes we simply write them as Πn and �n.

Lemma 12.2 (Du [26]). Πn(τ ) = a
∏n

j=1 sin
(
τ − 1

2αn,j

)
where a �= 0 and αn,j ’s

are distinct points in [0, 2π).

Lemma 12.3. �n(τ )=Πn

(
τ
2

)
=a
∏n

j=1 sin τ−αn,j

2 , where Πn is as above.
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Proof. When (n + j) is even, for any σ we have, by Lemma 12.2,

(12.27)
∫ 2π

0

w1(2τ )Πn(τ ) sin(jτ + σ) dτ =
∫ 2π

0

w1(τ )Πn

(
1
2
τ

)
sin
(

j

2
τ + σ

)
dτ.

Thus, the proof is completed by the uniqueness of the monic orthogonal trigono-
metric polynomial. �

Remark 12.2. By changing w1 to w2, we also introduce the inner product space
L2

w2
[0, 2π] and L∗2

w2
[0, 2π], then we may obtain similar results. �m

2
denotes the

orthogonal polynomial in the class HT
m
2
(ϑ) on L2

w2
[0, 2π].

Lemma 12.4. Let n = 2� be even, let �n be an orthogonal polynomial in the
class HT

� (ϑ) on L2
w1

[0, 2π] and let �m be an orthogonal polynomial in the class
HT

�−κ([ϑ− θ]π) on L2
w2

[0, 2π]. Then A�n = a�m and B�m = b�n where a and b
are nonzero constants.

Proof. We only prove the second conclusion. It results directly from (6.2) and
(4.8). �

Lemma 12.5. For even n large enough, B�m = �n and A�n = �m are equiva-
lent.

Proof. B�m = �n implies A�n = �m + bD2�m = �m by Theorem 5.2 and
(5.5). �

Lemma 12.6. Let n = 2�−1 be odd, let �n be an orthogonal polynomial in the class
HT

�− 1
2

on L2
w1

[0, 2π] and let �m be an orthogonal polynomial in the class HT
�−κ− 1

2

on L2
w2

[0, 2π]. Then A�n = a�m and B�m = b�n where a and b are nonzero
constants.

Proof. Introducing the operator
(12.28)[

A
∗
Tj− 1

2

]
(x) = a(x)w1(x) Tj− 1

2
(x)+

1
2π

∫ 2π

0

w1(τ )b(τ ) Tj−1
2
(τ ) csc

τ−x

2
dτ,

writing Sj(τ ) = sin τ
2Tj− 1

2
(τ ) and Cj(τ ) = cos τ

2Tj− 1
2
(τ ), by (5.10) we have

[
A

∗
Tj− 1

2

]
(x) =

1
2π

∫ 2π

0

w1(τ )b(τ ) Tj− 1
2
(τ ) sin

τ−x

2
dτ

+ sin
x

2
[A∗Sj ] (x) + cos

x

2
[A∗Cj ] (x),

hence, by Theorem 5.4 and Lemma 4.1,

(12.29) A
∗
Tj− 1

2
∈ HT

max{j−κ+ 1
2 , 1

2}
for Tj− 1

2
∈ HT

j− 1
2
.

Again noting

(12.30)
∫ 2π

0

w1(τ )
(
B�m

)
(τ ) T (τ ) dτ =

∫ 2π

0

w2(x) �m (x)
[
A

∗
T
]
(x)dx,

thus, B�m = b�n. Similarly, we may prove A�n = a�m. �

Moreover, we also have

Lemma 12.7. B�m = �n and A�n = �m are equivalent for odd n large enough.
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Summing up the above discussion, we get the main result of this example.

Conclusion. Let �n be an orthogonal polynomial in the class HT
n
2

on L2
w1

[0, 2π],
take �m = A�n while n is even and �m = A�n while n is odd. From the above
discussion we know that (�n,�m) is just a pair of TPs for SIE (2.8). Under this
scheme, we get the results in [17] and [18] by installing the foregoing proceeding in
the present paper to SIE (2.8).

Remark 12.3. In [17], we have proved the convergence of approximate solution of the
first kind, because un,j and vm,k are all positive. The convergence of approximate
solution of the second kind depends on the condition ‖Q�B

m L�
m‖=o(nν), which is

now an open problem. We guess that it is true for the present case.
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