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RATIONAL SZEGŐ QUADRATURES ASSOCIATED
WITH CHEBYSHEV WEIGHT FUNCTIONS

ADHEMAR BULTHEEL, RUYMÁN CRUZ-BARROSO, KARL DECKERS,

AND PABLO GONZÁLEZ-VERA

Abstract. In this paper we characterize rational Szegő quadrature formulas
associated with Chebyshev weight functions, by giving explicit expressions
for the corresponding para-orthogonal rational functions and weights in the
quadratures. As an application, we give characterizations for Szegő quadrature
formulas associated with rational modifications of Chebyshev weight functions.
Some numerical experiments are finally presented.

1. Introduction

Szegő quadrature formulas approximate integrals over the complex unit circle
T := {z ∈ C : |z| = 1} and are the analogs of Gauss quadrature formulas that
approximate integrals over an interval I := [−1, 1]. That is,∫

f(z)dµ(z) ≈
n∑

j=1

λjf(zj),

where µ is a positive measure on T, respectively I.
Gauss quadrature formulas are optimal in the sense that nodes zj ∈ I and

weights λj > 0 are chosen such that the quadrature formula is exact for all functions
f ∈ P2n−1 that are polynomials of degree up to 2n − 1 and it is not possible to
construct a quadrature formula of this form that is exact for all polynomials of
degree 2n. They have a maximal domain of validity. Therefore, the nodes have to
be chosen as the zeros of the nth polynomial orthogonal with respect to the inner
product 〈f, g〉 =

∫
f(z)g(z)dµ(z). These zeros are all simple and in I.

On the unit circle, one needs to define a positive definite Hermitian inner product
〈f, g〉 =

∫
f(z)g(z)dµ(z). The nth orthogonal polynomial with respect to this inner

product has all its zeros inside the open unit disk, and thus, they are not very
useful as nodes of a quadrature formula. Here, the para-orthogonal polynomials are
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producing the nodes that are needed. Para-orthogonal polynomials are orthogonal
to all polynomials of lower degree, except the constants. All their zeros are simple
and on T. These para-orthogonal polynomials have one free parameter τ ∈ T.
When using the zeros of the nth para-orthogonal polynomials, then there exist
positive weights such that the quadrature formula is exact for all f ∈ Rn−1, that
is, the space of all Laurent polynomials of degree at most n − 1, again a space of
dimension 2n − 1. Like for Gaussian formulas, this space is a maximal domain of
validity since it is not possible to have an n-point quadrature formula with distinct
nodes and positive weights that is exact in a space of Laurent polynomials of a larger
degree neither for the positive or the negative powers of z. The Szegő quadrature
formulas were first studied by Jones, Nj̊astad, and Thron [25] in connection with
the trigonometric moment problem.

The Joukowski transform is a map between the unit circle and the interval [−1, 1].
It implies a relationship between the Szegő and the Gauss quadrature formulas.
In fact, this was already studied by Szegő [28, Section 11.5] and Geronimus [21,
Chapter 9]. For τ = 1, a 2n-point Szegő formula results in an n-point Gauss
quadrature formula and for τ = −1, a (2n + 2)-point Szegő formula can be related
to an n-point Gauss-Lobatto formula, having two extra nodes in the endpoints of
the interval. Also Gauss-Radau formulas can be obtained taking (2n + 1)-point
Szegő formulas and τ = ±1, which fixes one of the endpoints of the interval; see
[1]. For other values of τ , the quadrature on the interval is not optimal; see [2].
Szegő-Lobatto and Szegő-Radau formulas on the unit circle were recently discussed
by Jagels and Reichel [24].

This theory has been generalized in a sequence of papers by Bultheel et al. to
the case where the (orthogonal) polynomials in the previous theory are replaced
by (orthogonal) rational functions having prescribed poles outside the closed unit
disk. If all these poles are at infinity, the polynomials reappear as a special case.
For a comprehensive survey see [5]. See also [6] for a survey.

So the Szegő quadrature formulas are replaced by rational Szegő quadrature
formulas. If Ln is the space of rational functions of degree n at most whose poles
are at {1/αk : k = 1, . . . , n} and Ln∗ is the space of rational functions of degree n
at most whose poles are at {αk : k = 1, . . . , n}, then the rational Szegő quadrature
formulas are exact in the space Rn−1 = Ln−1 +L(n−1)∗. The nodes are the zeros of
the nth rational para-orthogonal function that depends, as in the polynomial case,
on a parameter τ ∈ T.

A relation between orthogonal rational functions on the interval and on the unit
circle has been discussed in [16] and [32]. Rational Szegő-Lobatto and Szegő-Radau
formulas have been recently studied in [7].

Gauss-Chebyshev quadrature formulas are associated with a measure that is
generated by one of the Chebyshev weights. These weights are among the rare
examples where a translation to the unit circle gives explicit expressions for the
orthogonal polynomials. This is also true for the orthogonal rational functions,
which have been under investigation with respect to rational Gauss-Chebyshev
quadrature; see e.g. [15], [17], [18], [20], [29] and [30]. To get more general cases
where explicit expressions are obtained, a technique of rational modifications of
these Chebyshev weights are considered in [14].

In this paper we will continue in this line of developments by considering the
construction of explicit expressions for the para-orthogonal rational functions and
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for the weights in rational Szegő quadrature formulas that result from Chebyshev
weights as they are translated into the unit circle. As an application, characteri-
zation results for Szegő quadrature formulas associated with rational modifications
of these Chebyshev weights are obtained.

The outline of this paper is as follows. After giving the theoretical preliminaries
in Section 2, in Section 3 we give explicit expressions for the orthogonal rational
functions on the unit circle, associated with Chebyshev weight functions. Next, in
Sections 4 and 5 we characterize rational Szegő quadrature formulas associated with
Chebyshev weight functions, respectively, Szegő quadrature formulas associated
with rational modifications of Chebyshev weight functions. We conclude with some
numerical examples.

2. Preliminaries

Suppose µ is a positive bounded Borel measure on [−π, π], and consider the
general framework of the approximation of integrals on the unit circle T in the
complex plane, i.e., integrals of the form1

(1) Iµ(f) :=
∫ π

−π

f(eiθ)dµ(θ) =
∫

T

f(z)dµ(z).

As usual, estimations of Iµ(f) are produced when replacing f(z) in (1) by an
appropriate approximating (interpolating) function L(z), so that Iµ(L) can now be
easily computed. Let Λ := C[z, z−1] denote the complex vector space of Laurent
polynomials in the variable z. We then set Λp,q := span{zp, . . . , zq} for p, q ∈ Z,
with p ≤ q. Because of the density of Λ in C(T) = {f : T → C, f is continuous}
with respect to the uniform norm (see e.g. [13, pp. 304–305]), it seems reasonable
to approximate f(z) in (1) by an appropriate Laurent polynomial. This way, the
so-called “quadrature formulas on the unit circle”, or “Szegő rules”, introduced
in [25] (see also [22], [23, Chapter 4] and [27]) and of the form

(2) In(f) :=
n∑

j=1

λjf(zj), zj ∈ T, j = 1, . . . , n, zj �= zk if j �= k,

appear as the analogue on T of the Gaussian formulas when dealing with the esti-
mation of integrals with respect to a measure supported on an interval [a, b], with
−∞ ≤ a < b ≤ +∞ (see e.g. [19]).

Consider now the Hilbert space Lµ
2 (T) of measurable functions φ for which∫ π

−π
|φ(eiθ)|2dµ(θ) < +∞. Then the inner product induced by µ is given by

(3) 〈φ, ψ〉µ =
∫ π

−π

φ
(
eiθ

)
ψ (eiθ)dµ(θ), φ, ψ ∈ Lµ

2 (T).

In this paper we will deal with the more general framework of orthogonal rational
functions (ORFs). Suppose a sequence of complex numbers A = {α1, α2, . . .} ⊂ D

is given, and define the Blaschke factors

ζk(z) =
z − αk

1 − αkz
, k = 1, 2, . . . ,

and Blaschke products

B0(z) ≡ 1 , Bk(z) = Bk−1(z)ζk(z) , k = 1, 2, . . . .

1The measure µ on [−π, π] induces a measure on T for which we shall use the same notation µ.
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The space of rational functions with poles in {1/α1, . . . , 1/αn} is then defined as

Ln = span {B0(z), . . . , Bn(z)} ,

where we set L−1 = ∅ to be the trivial subspace. This way, the ordinary polynomial
situation is recovered by taking αk = 0 for every k = 1, 2, . . ., so that ζk(z) = z and
Bk(z) = zk.

We define the substar conjugate of a function f as f∗(z) = f(1/z), and the
super-star conjugation of a function fn ∈ Ln as

f∗
n(z) = Bn(z)fn∗(z).

Note that f∗(z) = f(z) whenever z ∈ T. Furthermore, for a given polynomial
Pn(z) =

∑n
k=0 ckzk of exact degree n, the super-star conjugate2 is given by P ∗

n(z) =∑n
k=0 cn−kzk. Consequently, define

π0(z) ≡ 1, πk(z) =
k∏

j=1

(1 − αjz) , k = 1, 2, . . . ,

and let Pn represent the space of polynomials of degree less than or equal to n.
Then, we equivalently have for every k = 1, 2, . . . that

Bk(z) =
π∗

k(z)
πk(z)

and

Ln =
{

pn(z)
πn(z)

: pn ∈ Pn

}
.

For a fixed natural number n we obtain a set of orthonormal rational functions
{χk(z)}n

k=0 by orthonormalizing the basis {Bk(z)}n
k=0 (in this order) with respect

to the measure µ and inner product given by (3). Note that χn(z) =
∑n

k=0 akBk(z)
is uniquely determined if we assume the leading coefficient an to be strictly positive.
Repeating the process for every n, an orthonormal system {χk(z)}∞k=0 is obtained,
so that χn ∈ Ln\Ln−1, χn ⊥ Ln−1 and 〈χn, χn〉µ = 1 for every n ≥ 0. We now
have the following lemma.

Lemma 2.1. Let χn(z) = Pn(z)
πn(z) ∈ Ln \ Ln−1. Then Pn has exactly n zeros in

D := {z ∈ C : |z| < 1}.

Proof. Since all the zeros of χn are in D because of [5, Corollary 3.2.2(3)], a zero of
Pn that is not a zero of χn is only possible if it cancels a zero of πn. Suppose there
exists an α ∈ D such that 1/α is a zero of Pn with multiplicity m ≥ 1. For the
special case in which α = 0, we say that Pn has a zero at infinity with multiplicity
m iff Pn ∈ Pn−m. Hence it follows that there are at least m indices j ∈ {1, . . . , n}
for which αj = α.

Whatever the choice of the sequence of αk is, it should always hold that χn ∈
Ln \Ln−1. Now take all αk that are different from α fixed, and consider α variable.
Note that χn depends continuously on α, as do Pn and πn. So let us make this
explicit by writing χn(z, α) = Pn(z, α)/πn(z, α). Since Pn(z, α) is of the form

Pn(z, α) = (1 − αz)mP̂n−m(z, α) with P̂n−m ∈ Pn−m,

2In literature, this is also referred to as the reversed or reciprocal polynomial.
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we obtain for α → αn,

χn(z, αn) = lim
α→αn

(1 − αz)mP̂n−m(z, α)
πn(z, α)

=
(1 − αnz)m−1P̂n−m(z, αn)

πn−1(z, αn)
∈ Ln−1,

contradicting our assumption that χn(z, α) ∈ Ln \ Ln−1 for all possible choices of
α ∈ D. �

Next, consider for every n, p, q ≥ 0 the sets

Ln∗ = {f : f∗ ∈ Ln} ,

Lp,q = Lq · Lp∗ = {fg : f ∈ Lq, g ∈ Lp∗} =
{

P (z)
πq(z)π∗

p(z)
: P ∈ Pp+q

}

and Rn = Ln,n. Following the ordinary polynomial situation (see [25]), we say that
a sequence of functions Ψn(z) ∈ Ln is para-orthogonal whenever Ψn(z) ⊥ Ln−1 ∩
Ln(αn), where Ln(αn) = {f ∈ Ln : f(αn) = 0}, and 〈Ψn(z), 1〉µ ·〈Ψn(z), Bn(z)〉µ �=
0. Furthermore, Ψn(z) is called “κn-invariant” iff there exists a κn ∈ T so that
Ψ∗

n(z) = κnΨn(z) for every z ∈ C. Note that the concept of κn-invariance is usually
defined in literature for κn ∈ C\{0}. However, there can only exist κn-invariant
rational functions whenever κn ∈ T. Indeed, if Ψn(z) = Pn(z)

πn(z) ∈ Ln is κn-invariant,

then Ψ∗
n(z) = P ∗

n(z)
πn(z) = κnPn(z)

πn(z) . Consequently, it remains to prove the statement for
ordinary polynomials. If Pn(z) =

∑n
k=0 ckzk, with cn �= 0, is κn-invariant, then it

holds that c0 = P (0) �= 0, cn = κnc0 and c0 = κncn. Consequently, κn = cn

c0
= c0

cn
,

which implies that |cn| = |c0|, and hence, that κn ∈ T.
κn-invariant para-orthogonal rational functions for µ are characterized in [3] as

(4) Ψn(z) = Ψn(z, τn) = Cn [φn(z) + τnφ∗
n(z)] ∈ Ln; n ≥ 1, Cn ∈ C\{0},

where τn = Cnκn

Cn
∈ T, and φn(z) is an nth orthogonal rational function for µ.

Furthermore, it is proved in [7, Theorem 2.4] that it suffices to compute φn−1(z)
for the computation of Ψn(z).

The following result, proved by Bultheel et al. (see [5, Chapter 5]), is an extension
of a well-known characterization for Szegő quadrature formulas (see [25]) to the
rational case.

Theorem 2.2 (Rational Szegő quadrature). Let n ≥ 1 and τn ∈ T. Then,
(1) Ψn(z, τn), given by (4), has exactly n distinct zeros on T,
(2) there exist positive numbers λ1, . . . , λn so that

(5) In(f) =
n∑

j=1

λjf(zj) = Iµ(f) =
∫ π

−π

f(eiθ)dµ(θ), ∀f ∈ Rn−1,

where z1, . . . , zn are the zeros of Ψn(z, τn),
(3) Rn−1 is a maximal domain of validity, i.e., there cannot be exactness in

Ln−1,n, nor in Ln,n−1. �

A connection between quadrature formulas on the unit circle and the inter-
val [−1, 1] is given in [1]. If σ(x) is a weight function on [−1, 1], we obtain a
weight function on T by setting µ′(θ) = ω(θ) = σ(cos θ)| sin θ| (see [28]), where



1036 A. BULTHEEL, R. CRUZ-BARROSO, K. DECKERS, AND P. GONZÁLEZ-VERA

µ′ denotes the Radon-Nikodym derivative of the measure µ with respect to the
Lebesgue measure. In the special case in which σ(x) is a Jacobi weight function,
i.e., σ(x) = (1−x)α(1+x)β, with α, β > −1, the corresponding weight function on
T is given by

ω(θ) = (1 − cos θ)α(1 + cos θ)β
∣∣1 − cos2 θ

∣∣ 1
2

= (1 − cos θ)a(1 + cos θ)b , a = α + 1
2 > −1

2 , b = β + 1
2 > −1

2 .

Finally, if a, b ∈ {0, 1}, the so-called Chebyshev weight functions appear. Therefore,
we set

(6) ω1(θ) ≡ 1, ω2(θ) = sin2 θ, ω3(θ) = 1 − cos θ, ω4(θ) = 1 + cos θ.

In the remainder of this paper we shall be concerned with rational Szegő quadra-
tures associated with the Chebyshev weight functions ω(θ) = ωi(θ), i = 1, . . . , 4
given by (6). We start in the next section with giving explicit expressions for the
corresponding ORFs.

3. ORFs associated with Chebyshev weight functions

As it is known, few measures give rise to explicit expressions for orthogonal
polynomials and even less for ORFs; generally, the computation of such a family
proceeds by using a recursive process (see e.g. [5, Theorem 4.1.1]).

It is well known that the so-called Malmquist basis, given by

(7) φ
(1)
0 (z) ≡ 1 and φ(1)

n (z) =
zBn−1(z)
1 − αnz

, n > 0,

is an orthogonal basis for the Lebesgue measure dµ(θ) = ω1(θ)dθ ≡ dθ (see e.g. [5,
p. 51]). Recently, explicit expressions are derived in [16] for ORFs associated with
the weight functions ωi(θ), i ∈ {3, 4}, given by (6). Let Qn(z) be defined as

(8) Qn(z) = 1 + z
B

′

n−1(z)
Bn−1(z)

= 1 +
n−1∑
k=1

1 − |αk|2
|z − αk|2

for z ∈ T.

We then have the following theorem ([16]).

Theorem 3.1. Let i ∈ {3, 4} be fixed and set νi = (−1)i−1. Next, define

(9) X(i)
n (z) = a(i)

n + z2
(
z − b(i)

n

) Bn−1(z)
1 − αnz

,

where

(10) a(i)
n =

νiBn−1(νi)

(1 − νiαn)Q(i)
n + 1

, b(i)
n = νi +

1 − νiαn

Bn−1(νi)
a(i)

n

and Q
(i)
n = Qn(νi) (note that this way, X

(i)
n (νi) = X

(i)′

n (νi) = 0). Then the sequence

of rational functions
{

φ
(i)
n (z)

}∞

n=0
, where

(11) φ
(i)
0 (z) ≡ 1 and φ(i)

n (z) =
X

(i)
n (z)

(z − νi)2
, n > 0,
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forms a set of ORFs with respect to ωi(θ) = 1− νi cos θ. Furthermore, the sequence
{χ(i)

n (z)}∞n=0, with χ
(i)
n (z) = c

(i)
n φ

(i)
n (z), where

(12)
∣∣∣c(i)

0

∣∣∣2 =
1
2π

and
∣∣∣c(i)

n

∣∣∣2 = νi
(1 − |αn|2)(1 − νiαn)2

π
(
b
(i)
n − αn

)(
1 − αnb

(i)
n

) , n > 0,

forms a set of orthonormal rational functions with respect to ωi(θ). �

So far, explicit expressions for ORFs associated with the weight function ω2(θ)
in (6) are still not known (as indicated in [16]). So, in the remainder of this section
we will deal with this open problem.

Note that

ω2(θ) = sin2 θ = (1 + cos θ)(1 − cos θ) =
(

1 +
z2 + 1

2z

)
(1 − cos θ)

=
1
2
|z + 1|2(1 − cos θ) =

1
2
|z + 1|2ω3(θ), z = eiθ.

Hence, suppose φ
(3)
n+1 is a rational function with poles in {0, α1, . . . , αn} that is

orthogonal on the unit circle with respect to the weight function ω3(θ). Further,
let φ

(2)
n be a rational function with poles in {α1, . . . , αn} that is orthogonal on the

unit circle with respect to the weight function ω2(θ). Then for n > 0, it follows
from [14, Theorem 6] that there exist constants un, tn and vn so that

(13) (z + 1)2φ(2)
n (z) = (unz + tn)φ(3)

n+1(z) + vn(1 − αnz)φ(3)∗
n+1(z).

We now have the following two theorems.

Theorem 3.2. Suppose

(14)
a+ = Bn−1(1)

1−αn
, a− = Bn−1(−1)

1+αn
,

b+ = 1 + Q
(3)
n + 1

1−αn
, b− = 1 + Q

(4)
n + 1

1+αn
,

where Q
(3)
n and Q

(4)
n are defined as before in Theorem 3.1. Next, let

x = (dn, en, fn, gn)T , y = (−a+, a−,−a+(b+ + 2), a−(b− + 2))T

and

A =

⎛
⎜⎜⎝

1 1 a+ a+

1 −1 −a− a−

0 1 a+b+ a+(b+ + 1)
0 −1 −a−b− a−(b− + 1)

⎞
⎟⎟⎠ ,

and assume

(15) x = A−1y =
1
�n

⎛
⎜⎜⎝

4a+a−(b+a− − b−a+)
−4a+a−[a+(b− + 1) + a−(b+ + 1)]

(a+ + a−)2 + 4a+a−(b+ + b− + b+b−)
−2[2a+a−(b+ − b−) + (a+ + a−)(a+ − a−)]

⎞
⎟⎟⎠ ,

where �n is given by

(16) �n = (a+ + a−)2 − 4a+a−b+b− .

Define X
(2)
n by

(17) X(2)
n (z) = dn + enz + z3

(
fn + gnz + z2

) Bn−1(z)
1 − αnz

,
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and set

φ
(2)
0 (z) ≡ 1 and φ(2)

n (z) =
X

(2)
n (z)

(z2 − 1)2
.

Then the sequence of rational functions
{

φ
(2)
n (z)

}∞

n=0
forms a set of ORFs with

respect to ω2(θ) = sin2 θ.

Proof. (The computations are cumbersome; therefore, we will only give the outline
of the proof.) From Theorem 3.1 and (13) it follows that for n > 0, φ

(2)
n (z) should

be of the form

φ(2)
n (z) = Cn

X
(2)
n (z)

(z2 − 1)2
, Cn �= 0,

where X
(2)
n is given by (17). For the sake of simplicity, we may as well assume that

Cn = 1. Furthermore, we should have that φ
(2)
n ∈ Ln. Consequently, it must hold

that X
(2)
n (±1) = X

(2)′

n (±1) = 0. This leaves us with a system of four equations
in the four unknowns dn, en, fn and gn. Solving this system for the coefficients
dn, en, fn and gn then gives (15). The analytic solution of (15), given by the second
equality in (15) and (16), has been computed with the aid of Maple 103. �

Theorem 3.3. The sequence {χ(2)
n (z)}∞n=0, with χ

(2)
n (z) = hnφ

(2)
n (z), where

(18) |h0|2 =
1
π

, |hn|2 =
−2(1 − |αn|2)(1 − α2

n)2

π(fn + gnαn + α2
n)(fnα2

n + gnαn + 1)
, n > 0,

and φ
(2)
n (z) is defined as before in Theorem 3.2, forms a set of orthonormal rational

functions with respect to ω2(θ) = sin2 θ.

Proof. The expression for n = 0 is easily verified; so, we continue for n > 0. First,
note that

sin2(θ)dθ = −(z2 − 1)2
dz

4iz3
, z = eiθ.

Hence, we have that〈
χ(2)

n , Bn

〉
ω2

= − 1
4i

∫
T

χ(2)
n (z)Bn∗(z)(z2 − 1)2

dz

z3

= −hn

4i

[∫
T

(dn + enz)Bn∗(z)
z3

dz +
∫

T

(fn + gnz + z2)Bn−1(z)
(1 − αnz)Bn(z)

dz

]

= −hn

4i

[
−

∫
T

(dn + enz)Bn∗(z)
z3 dz +

∫
T

fn + gnz + z2

z − αn
dz

]

= −hn

4i

[∫
T

(dnz + en)Bn(z)dz +
∫

T

Gn(z)dz

]

= −hn

4i

[∫
T

Fn(z)dz +
∫

T

Gn(z)dz

]
.

3Maple and Maple V are registered trademarks of Waterloo Maple, Inc.
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Clearly, Fn is analytic in D := {z ∈ C : |z| < 1}, so that〈
χ(2)

n , Bn

〉
ω2

= −hn

4i

∫
T

Gn(z)dz = −hn

4i

∫
T

fn + gnz + z2

z − αn
dz

= −hnπ

2
Res

{
fn + gnz + z2

z − αn
, αn

}
= −hnπ(fn + gnαn + α2

n)
2

.

Finally, suppose χ
(2)
n is of the form

χ(2)
n (z) =

n∑
k=0

akBk(z).

Then it is easily verified that
〈
χ

(2)
n , Bn

〉
ω2

= 1
an

, with

an = χ(2)∗
n (αn) =

hn(fnα2
n + gnαn + 1)

(1 − |αn|2)(1 − α2
n)2

.

Consequently,

|hn|2 = − 2(1 − |αn|2)(1 − α2
n)2

π(fn + gnαn + α2
n)(fnα2

n + gnαn + 1)
,

which ends the proof. �

Finally, we will also need the following lemma.

Lemma 3.4. It holds that
dn + enε �= 0,

where ε ∈ {±1}, and dn and en are defined as before in Theorem 3.2.

Proof. Suppose dn + enε = 0 for a fixed ε ∈ {±1}. We then have that

dn + enz = en(z − ε).

Since a+ and a−, given by (14), are different from zero, and X
(2)
n (ε) = 0, we also

have that
(fn + gnz + z2) = (z − ε)(z − fnε).

Consequently,

X(2)
n (z) = (z − ε)

[
en + z3(z − fnε)

Bn−1(z)
1 − αnz

]
= (z − ε)X̂n(z).

Note that for z ∈ T it holds that

X̂ ′
n(z) = z2 Bn−1(z)

1 − αnz

[
z

(
2 + Qn(z) +

1
1 − αn

)
− fnε

(
1 + Qn(z) +

1
1 − αn

)]
,

where Qn(z) is defined as before in (8), so that{
X

(2)′

n (1) = 0
X

(2)′

n (−1) = 0
⇔

{
X̂ ′

n(1) = 0
X̂ ′

n(−1) = 0
⇔

{
a+ [(1 + b+)−fnεb+] = 0
a− [(1 + b−)+fnεb−] = 0

⇔
{

fnε = 1 + 1
b+

fnε = −
(
1+ 1

b−

) ⇔
{

fnε = 1+ 1
b+

1
b+ + 1

b− = −2 .
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Furthermore, since αn ∈ D, we have that 0 < �
{

1
1±αn

}
< ∞. From (8) and (14)

we then deduce that 2 < �{b+},�{b−} < ∞, so that

−2 = �
{

1
b+

+
1
b−

}
= �

{
1
b+

}
+ �

{
1
b−

}
> 0.

This is a contradiction, and hence, dn + enε �= 0. �

4. Rational Szegő quadratures associated

with Chebyshev weight functions

The aim of this section is to characterize rational Szegő formulas In(f), given
by (5), associated with the Chebyshev weight functions ωi(θ), i = 1, . . . , 4, given
by (6). Therefore, we will derive explicit expressions for the associated para-
orthogonal rational functions Ψn(z, τn) by means of (4) along with the results
provided in the previous section. The zeros {zj}n

j=1 of Ψn(z, τn) are the nodes
we need for In(f). First, let us consider the reproducing kernel function for Ln

associated with a general measure µ, namely

Kn(z, ξ) =
n∑

k=0

χk(z)χk(ξ).

The following Christoffel-Darboux formula has been proved in [5, Theorem 3.1.3]:

(19) Kn(z, ξ) =
χ∗

n+1(z)χ∗
n+1(ξ) − χn+1(z)χn+1(ξ)

1 − ζn+1(z)ζn+1(ξ)
, n ≥ 1.

Moreover, the following well-known expression for the weights in a Szegő quadrature
formula has been proved for the rational case in [5, Theorem 5.4.2]:

(20) λj =
1∑n−1

k=0 |χk(zj)|2
; j = 1, . . . , n.

We are now able to prove the following proposition.

Proposition 4.1. Let {zj}n
j=1 and {λj}n

j=1 represent the set of nodes and weights
of a rational Szegő quadrature formula (5) for µ, and suppose χn(z) is the corre-
sponding nth orthonormal rational function. It then holds that

(21) λ−1
j =

zj |zj − αn|2

1 − |αn|2

∣∣∣∣∣ χn(zj) χ∗
n(zj)

(χ∗
n)

′
(zj) χ

′

n(zj)

∣∣∣∣∣ , j = 1, . . . , n.

Proof. From (19) and (20) it follows that

(22) λ−1
j = lim

z→zj

z∈T

Kn−1(z, zj) =
(χ∗

n)
′
(zj)χ∗

n(zj) − χ
′

n(zj)χn(zj)
−ζ ′

n(zj)ζn(zj)
.

The statement is now easily verified by taking into account that ζn(z) = 1/ζn(z)
and ζ

′

n(z) = 1−|αn|2
z|z−αn|2 ζn(z) for z ∈ T. �

We start with the Lebesgue measure dµ(θ) = ω1(θ)dθ ≡ dθ. From (4) and (7) it
follows that, up to a multiplicative factor,

Ψ(1)
n (z, τn) =

V
(1)
n (z, τn)
πn(z)

, z, τn ∈ T,
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where

(23) V (1)
n (z, τn) = p

(1)
0 (z)πn−1(z) + τnzp

(1)∗
0 (z)π∗

n−1(z)

and

(24) p
(1)
0 (z) ≡ τn.

Moreover, for this special case it is well known that (see [4])

(25) λ
(1)
j =

2π

Qn

(
z
(1)
j

) , j = 1, . . . , n,

with Qn(z) given by (8). Indeed, let χ
(1)
n (z) = knφ

(1)
n (z) with φ

(1)
n (z) given by (7)

and |kn|2 = 1−|αn|2
2π for n ≥ 1. Then it follows from Proposition 4.1 that

λ
(1)
j =

1 − |αn|2

z
(1)
j

∣∣∣z(1)
j − αn

∣∣∣2

×

∣∣∣∣∣∣∣∣
kn(

z
(1)
j −αn

)
Bn−1

(
z
(1)
j

) knz
(1)
j(

z
(1)
j −αn

)

− knαn(
1−αnz

(1)
j

)2

knBn−1

(
z
(1)
j

)
Qn

(
z
(1)
j

)
(
1−αnz

(1)
j

) −
knαnz

(1)
j Bn−1

(
z
(1)
j

)
(
1−αnz

(1)
j

)2

∣∣∣∣∣∣∣∣

−1

=
1 − |αn|2

z
(1)
j

∣∣∣z(1)
j − αn

∣∣∣2 ×

⎡
⎣ |kn|2Qn

(
z
(1)
j

)
(
z
(1)
j − αn

)(
1 − αnz

(1)
j

)
⎤
⎦
−1

=
1 − |αn|2

|kn|2Qn

(
z
(1)
j

) .

Thus, we have the following theorem.

Theorem 4.2. Let n ≥ 1 and τn ∈ T. The nodes of an n-point rational Szegő
quadrature In(f) for Iω1(f), given by (5) and (6), are then the zeros of V

(1)
n (z, τn)

given by (23) and (24), while the weights are given by (25). �

Next, consider the weight functions ωi(θ) = 1 − νi cos θ, with i ∈ {3, 4} and
νi = (−1)i−1. From (4) and Theorem 3.1 it follows that, up to a multiplicative
constant,

Ψ(i)
n (z, τn) =

V
(i)
n (z, τn)

(z − νi)2πn(z)
, i = 3, 4 , z, τn ∈ T,

where

(26) V (i)
n (z, τn) = p

(i)
1 (z)πn−1(z) + τnz2p

(i)∗
1 (z)π∗

n−1(z)

and

(27) p
(i)
1 (z) = a(i)

n (1 − αnz) + τn(1 − b
(i)
n z).

Explicit expressions for the weights can be deduced as well from Theorem 3.1
and (21). Suppose zj = z

(i)
j �= νi for every j ∈ {1, . . . , n} and fixed i ∈ {3, 4}.

Next, let

T (i)
n = X

(i)
n (zj) [(Qn+1(zj) + 1) (1 − νizj) + 2νizj ] + zj

(
X

(i)
n (zj)

)′

(1 − νizj).
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Then, with λj = λ
(i)
j and

∣∣∣c(i)
n

∣∣∣2 given by (12), it follows that

λ−1
j =

∣∣∣c(i)
n

∣∣∣2 zj |zj − αn|2

1 − |αn|2

∣∣∣∣∣∣
φ

(i)
n (zj) φ

(i)∗
n (zj)(

φ
(i)∗
n

)′

(zj) φ
(i)′

n (zj)

∣∣∣∣∣∣
=

∣∣∣c(i)
n

∣∣∣2 zj |zj − αn|2

1 − |αn|2

∣∣∣∣∣∣
z2

j

(1−νizj)2
X

(i)
n (zj)

X(i)
n (zj)

Bn(zj)(zj−νi)2

zjBn(zj)
(1−νizj)3 T

(i)
n

X(i)′
n (zj)

(zj−νi)2
− 2X(i)

n (zj)
(zj−νi)3

∣∣∣∣∣∣
=

∣∣∣c(i)
n

∣∣∣2 zj |zj − αn|2

(1 − |αn|2)(zj − νi)4

∣∣∣∣∣∣
z2
j X

(i)
n (zj)

X(i)
n (zj)

Bn(zj)

zjBn(zj)
1−νizj

T
(i)
n X

(i)′

n (zj) − 2X(i)
n (zj)

zj−νi

∣∣∣∣∣∣
=

∣∣∣c(i)
n

∣∣∣2 |zj − αn|2

(1 − |αn|2) |zj − νi|4

×
{

zj

[
X

(i)
n (zj)X(i)′

n (zj) − X(i)
n (zj)

(
X

(i)
n (zj)

)′]

−
∣∣∣X(i)

n (zj)
∣∣∣2 (Qn+1(zj) + 1)

}

=
∣∣∣c(i)

n

∣∣∣2 |zj − αn|2

(1 − |αn|2) |zj − νi|4

×
{

2�
[
zjX

(i)
n (zj)X(i)′

n (zj)
]
−

∣∣∣X(i)
n (zj)

∣∣∣2 (Qn+1(zj) + 1)
}

.

Here, the last equality is due to the fact that for z ∈ T, and for every f(z) that
is analytic in a small annulus containing the complex unit circle, it holds that (see
e.g. [31, Lem. 3.3])

(28)
(
f(z)

)′

=
df

dz
=

df

dz
· dz

dz
= −f ′(z)

z2
.

From (9) we deduce that

X(i)′

n (z) =
z2(z − b

(i)
n )Bn−1(z)

1 − αnz

[
2
z

+
B′

n−1(z)
Bn−1(z)

+
1

z − b
(i)
n

+
αn

1 − αnz

]
,

so that for z ∈ T it holds that

(29) zX(i)′

n (z) =
(
X(i)

n (z) − a(i)
n

)(
1 + Qn(z) +

z

z − b
(i)
n

+
αnz

1 − αnz

)

=
(
X(i)

n (z) − a(i)
n

)(
1 + Qn+1(z) +

z(b(i)
n − αn)

(z − b
(i)
n )(z − αn)

)
.
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Consequently,

λ−1
j =

∣∣∣c(i)
n

∣∣∣2 |zj − αn|2

(1 − |αn|2) |zj − νi|4

×

⎡
⎢⎢⎣(

|X(i)
n (zj)|2 − 2�{a(i)

n X
(i)
n (zj)}

)
[1 + Qn+1(zj)]

+2�

⎧⎪⎪⎨
⎪⎪⎩

zj(b
(i)
n − αn)

(∣∣∣X(i)
n (zj)

∣∣∣2 − a
(i)
n X

(i)
n (zj)

)
(zj − b

(i)
n )(zj − αn)

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦ .

Finally, we have that

|X(i)
n (z)|2 − 2�{a(i)

n X
(i)
n (z)} =

∣∣∣∣∣z − b
(i)
n

z − αn

∣∣∣∣∣
2

− |a(i)
n |2 ,

|X(i)
n (z)|2 − a(i)

n X
(i)
n (z) =

∣∣∣∣∣z − b
(i)
n

z − αn

∣∣∣∣∣
2

+ a
(i)
n

z2(z − b
(i)
n )Bn−1(z)

1 − αnz

and4

(30) z2
j Bn−1(zj) = −τn

p
(i)
1 (zj)

p
(i)∗
1 (zj)

,

where p
(i)
1 (z) is given by (27), so that

(31)

λ−1
j =

∣∣∣c(i)
n

∣∣∣2
(1 − |αn|2) |zj − νi|4

⎡
⎣(

|zj − b(i)
n |2 − |a(i)

n |2|zj − αn|2
)

[1 + Qn+1(zj)]

+2�

⎧⎨
⎩(b(i)

n − αn)

⎛
⎝1 − b

(i)
n zj

zj − αn
− a

(i)
n τn

p
(i)
1 (zj)

p
(i)∗
1 (zj)

⎞
⎠
⎫⎬
⎭
⎤
⎦ .

Whenever zj = νi for a certain j ∈ {1, . . . , n}, computing λj by the aid of (21)

requires two times the application of l’Hôpital’s rule to compute χ
(i)
n (νi), χ

(i)∗
n (νi),(

χ
(i)∗
n

)′

(νi) and χ
(i)′

n (νi). This gives rise to tedious calculations along with an
inappropriate expression for computational purposes. Since zj �= zk for j �= k,
there can be at most one index j for which zj = νi. Therefore, λj can then be
computed as follows:

(32) λj =
∫ π

−π

ωi(θ)dθ −
n∑

k=1
k �=j

λk = 2π −
n∑

k=1
k �=j

λk.

4There are no τn ∈ T and γ ∈ T \ {νi} so that p
(i)∗
1 (γ) = 0; hence, the right-hand side of (30)

is well defined. A proof for this statement is given in the Appendix.
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Note that there exists an index j so that zj = νi iff τn = − φ(i)
n (νi)

φ
(i)∗
n (νi)

. From (11)

and (28) it follows that

(33) − φ
(i)
n (νi)

φ
(i)∗
n (νi)

=
−1

Bn(νi)
lim

z→νi
z∈T

X
(i)
n (z)

X
(i)
n (z)

=
1

Bn(νi)
lim

z→νi
z∈T

X
(i)′

n (z)

X
(i)′
n (z)

=
−1

Bn(νi)
X

(i)′′

n (νi)

X
(i)′′
n (νi)

.

Let

Y (i)
n (z) = 1 + Qn+1(z) +

z(b(i)
n − αn)

(z − b
(i)
n )(z − αn)

.

Then it follows from (29) that

zX(i)′′

n (z) = X(i)′

n (z)
(
Y (i)

n (z) − 1
)

+
(
X(i)

n (z) − a(i)
n

)
Y (i)′

n (z),

and hence,

X(i)′′

n (νi) = −a(i)
n νiY

(i)′

n (νi) = a(i)
n

[
νi(b

(i)
n − αn)(1 − αnb

(i)
n )

(νi − b
(i)
n )2(νi − αn)2

− νiQ
′
n+1(νi)

]

= R(i)
n eiγ(i)

n , R(i)
n > 0 and γ(i)

n ∈ [0, 2π),

where

(34) zQ′
n+1(z) = 2i

n∑
k=1

�{αkz}(1 − |αk|2)
|z − αk|4

for z ∈ T.

Consequently, there exists an index j so that zj = νi iff τn = ei(2γ
(i)
n −π)

Bn(νi)
.

We now have proved the following theorem.

Theorem 4.3. Let i ∈ {3, 4} be fixed and set νi = (−1)i−1. Further, assume
τn ∈ T, for n ≥ 1. An n-point rational Szegő quadrature In(f) for Iωi

(f), given
by (5) and (6), is then characterized as follows:

(1) Denote by {νi, νi, z1, . . . , zn} the set of zeros of V
(i)
n (z, τn), given by (26)

and (27). Then {z1, . . . , zn} is the set of nodes for In(f).
(2) For every j ∈ {1, . . . , n} for which zj �= νi, the jth weight is given by (31).

Whenever zj = νi for a certain j ∈ {1, . . . , n}, the associated weight is
given by (32). �

To conclude this section, we consider the weight function ω2(θ). From (4) and
Theorem 3.2 it now follows that, up to a multiplicative factor,

Ψ(2)
n (z, τn) =

V
(2)
n (z, τn)

(z2 − 1)2πn(z)
, z, τn ∈ T,

where

(35) V (2)
n (z, τn) = p

(2)
2 (z)πn−1(z) + τnz3p

(2)∗
2 (z)π∗

n−1(z)

and

(36) p
(2)
2 (z) = (dn + enz)(1 − αnz) + τn(fnz2 + gnz + 1).
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Explicit expressions for the weights can be deduced as well from (21) and The-
orems 3.2 and 3.3. Assume ε ∈ {±1} and suppose zj = z

(2)
j �= ε for every

j ∈ {1, . . . , n}. Next, let

T (2)
n =

[
Qn+1(zj) + 3 −

4z2
j

z2
j − 1

]
zjX

(2)
n (zj) − X

(2)′
n (zj).

Then, with λj = λ
(2)
j and |hn|2 given by (18), it now follows that

λ−1
j = |hn|2

zj |zj − αn|2

1 − |αn|2

∣∣∣∣∣∣
φ

(2)
n (zj) φ

(2)∗
n (zj)(

φ
(2)∗
n

)′

(zj) φ
(2)′

n (zj)

∣∣∣∣∣∣
= |hn|2

zj |zj − αn|2

1 − |αn|2

∣∣∣∣∣∣
z4

j

(z2
j−1)2

X
(2)
n (zj)

X(2)
n (zj)

Bn(zj)(z2
j−1)2

z2
j Bn(zj)

(z2
j−1)2

T
(2)
n

X(2)′
n (zj)

(z2
j−1)2

− 4zjX(2)
n (zj)

(z2
j−1)3

∣∣∣∣∣∣
= |hn|2

zj |zj − αn|2

(1 − |αn|2)
(
z2
j − 1

)4

∣∣∣∣∣∣
z4
j X

(2)
n (zj)

X(2)
n (zj)

Bn(zj)

z2
j Bn(zj)T

(2)
n X

(2)′

n (zj) − 4zjX(2)
n (zj)

z2
j−1

∣∣∣∣∣∣
= |hn|2

|zj − αn|2

(1 − |αn|2)
∣∣z2

j − 1
∣∣4

×
{

2�
[
zjX

(2)
n (zj)X(2)′

n (zj)
]
−

∣∣∣X(2)
n (zj)

∣∣∣2 (Qn+1(zj) + 3)
}

.

From (17) we deduce that

X(2)′

n (z) =
z3(fn + gnz + z2)Bn−1(z)

1 − αnz

×
[

3
z

+
B′

n−1(z)
Bn−1(z)

+
gn + 2z + en

1−αnz
z3Bn−1(z)

fn + gnz + z2
+

αn

1 − αnz

]
,

so that for z ∈ T it holds that

zX(2)′

n (z) =
[
X(2)

n (z) − (dn + enz)
]

×

⎧⎨
⎩2 + Qn(z) +

z
(
gn + 2z + en

1−αnz
z3Bn−1(z)

)
fn + gnz + z2

+
αnz

1 − αnz

⎫⎬
⎭

=
[
X(2)

n (z) − (dn + enz)
]

×
{

3 + Qn+1(z) +
z2Gn(z)

(fn + gnz + z2)(z − αn)

}
,(37)

where

Gn(z) = αnfnz2 − 2fnz − (αn + gn) + en|z − αn|2z3Bn−1(z).
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Consequently,

λ−1
j = |hn|2

|zj − αn|2

(1 − |αn|2)
∣∣z2

j − 1
∣∣4

×

⎡
⎢⎢⎣
(
|X(2)

n (zj)|2 − 2�{(dn + enzj)X
(2)
n (zj)}

)
[3 + Qn+1(zj)]

+2�

⎧⎪⎨
⎪⎩

z2
j Gn(zj)

(
|X(2)

n (zj)|2 − (dn + enzj)X
(2)
n (zj)

)
(fn + gnzj + z2

j )(zj − αn)

⎫⎪⎬
⎪⎭
⎤
⎥⎦ .

Finally, we have that

|X(2)
n (z)|2 − 2�{(dn + enz)X(2)

n (z)} =
∣∣∣∣fn + gnz + z2

z − αn

∣∣∣∣
2

− |dn + enz|2 ,

|X(2)
n (z)|2 − (dn + enz)X(2)

n (z)

=
∣∣∣∣fn + gnz + z2

z − αn

∣∣∣∣
2

+ dn + enz
z3(fn + gnz + z2)Bn−1(z)

1 − αnz

and5

(38) z3
j Bn−1(zj) = −τn

p
(2)
2 (zj)

p
(2)∗
2 (zj)

,

where p
(2)
2 (z) is given by (36). Consequently,

Gn(zj) = αnfnzj
2 − 2fnzj − (αn + gn) − τnen|zj − αn|2

p
(2)∗
2 (zj)

p
(2)
2 (zj)

,

so that

(39) λ−1
j =

|hn|2

(1 − |αn|2)
∣∣z2

j − 1
∣∣4

×

⎡
⎣ (

|fn + gnzj + z2
j |2 − |dn + enzj |2|zj − αn|2

)
[3 + Qn+1(zj)]

+2�
{

Gn(zj)

[
fnz2

j + gnzj + 1
zj − αn

− τn(dnzj + en)
p
(2)
2 (zj)

p
(2)∗
2 (zj)

]}]
.

Whenever zj = ε for a certain j ∈ {1, . . . , n}, computing λj by the aid of (21)

again requires two times the application of l’Hôpital’s rule to compute χ
(2)
n (ε),

χ
(2)∗
n (ε),

(
χ

(2)∗
n

)′

(ε) and χ
(2)′

n (ε). This gives rise to tedious calculations along with
an inappropriate expression for computational purposes. Since zj �= zk for j �= k,

5If there are no τn ∈ T and γ ∈ T \ {±1} so that p
(2)∗
2 (γ) = 0, then the right-hand side of (38)

is well defined. At this moment of writing no proof has been found for this statement in general,
but a proof is given in the Appendix for the special case in which n = 1 or αn = 0.
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there can be at most one index j for which zj = ε. Therefore, if zk �= −ε for every
k ∈ {1, . . . , n} \ {j}, λj can be computed as follows:

(40) λj =
∫ π

−π

ω2(θ)dθ −
n∑

k=1
k �=j

λk = π −
n∑

k=1
k �=j

λk.

If, on the other hand, there exist indices j and k in {1, . . . , n} so that zj = −zk = 1,
then λj and λk can be computed by solving the following system of equations:

(41)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λj + λk = π −
n∑

s=1
s/∈{j,k}

λs,

λj

∣∣∣χ(2)
1 (1)

∣∣∣2 + λk

∣∣∣χ(2)
1 (−1)

∣∣∣2 = 1 −
n∑

s=1
s/∈{j,k}

λs

∣∣∣χ(2)
1 (zs)

∣∣∣2 ,

where we computed χ
(2)
1 (z) with the aid of Maple 10 to find that

(42)
∣∣∣χ(2)

1 (z)
∣∣∣2 =

1
π

⎛
⎜⎝ 1 − |α1|2

1 −
∣∣∣ α1
2−α2

1

∣∣∣2
⎞
⎟⎠

∣∣∣∣∣z + α1
2−α12

1 − α1z

∣∣∣∣∣
2

.

Note that there exists an index j so that zj = ε iff τn = − φ(2)
n (ε)

φ
(2)∗
n (ε)

. From Theorem

3.2 and proceeding as in (33) it follows that

− φ
(2)
n (ε)

φ
(2)∗
n (ε)

=
−1

Bn(ε)
X

(2)′′

n (ε)

X
(2)′′
n (ε)

.

Let

Y (2)
n (z) = 3 + Qn+1(z) +

z2Gn(z)
(fn + gnz + z2)(z − αn)

.

Then it follows from (37) that

zX(2)′′

n (z) = X(2)′

n (z)
(
Y (2)

n (z) − 1
)
− enY (2)

n (z) +
(
X(2)

n (z) − (dn + enz)
)

Y (2)′

n (z).

It also follows from (37) that

0 = εX(2)′

n (ε) =
(
X(2)

n (ε) − (dn + enε)
)

Y (2)
n (ε) = −(dn + enε)Y (2)

n (ε),

so that Y
(2)
n (ε) = 0 due to Lemma 3.4. Thus,

X(2)′′

n (ε) = −(dn + enε)εY (2)′

n (ε)

= (dn + enε)

⎡
⎣ε

(
kn(ε) + enBn−1(ε)ln(ε)

)
(1 + fn + gnε)2(ε − αn)2

− εQ′
n+1(ε)

⎤
⎦

= R(2)
n,εe

iγ(2)
n,ε , ε ∈ {±1}, R(2)

n,ε > 0 and γ(2)
n,ε ∈ [0, 2π),

where

kn(ε) = fnαn(6 − fn) − (1 + gnαn)(αn + gn) − fn(gn + 4ε)(1 + α2
n)

ln(ε) = |ε − αn|2 [2(gn − αn) + ε(3 + fn − gnαn)]
+

[
|ε − αn|2Qn(ε) − ε2i�{αn}

]
(1 + fn + gnε)(ε − αn),
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and with Qn(z) and zQ′
n+1(z) given, respectively, by (8) and (34). Consequently,

there exists an index j so that zj = ε iff τn = ei(2γ
(2)
n,ε−π)

Bn(ε) .
Finally we have proved the following theorem.

Theorem 4.4. Let τn ∈ T for n ≥ 1 and suppose ε ∈ {±1}. An n-point rational
Szegő quadrature In(f) for Iω2(f), given by (5) and (6), is then characterized as
follows:

(1) Denote by {1, 1,−1,−1, z1, . . . , zn} the set of zeros of V
(2)
n (z, τn), given by

(35) and (36). Then {z1, . . . , zn} is the set of nodes for In(f).
(2) For every j ∈ {1, . . . , n} for which zj �= ε, the jth weight is given by (39).

Whenever zj = ε for a certain j ∈ {1, . . . , n} and zk �= −ε for every
k ∈ {1, . . . , n} \ {j}, the jth weight is given by (40). Finally, if there
exist two distinct indices j and k in {1, . . . , n} so that zj = −zk = 1, the
associated weights are given by (41). �

5. Szegő quadratures associated with rational modifications

of Chebyshev weight functions

In this section we will consider a rational modification of a measure µ that is a
measure of the form

(43) dµ̃(θ) =
dµ(θ)
|h(z)|2

; z = eiθ,

with h(z) a given polynomial of degree m whose zeros cannot be on T. Without
loss of generality, we can assume

(44) h(z) =
m∏

l=1

(z − αl) , |αl| < 1, αl �= 0, l = 1, . . . , m.

We will then consider Szegő quadrature formulas with respect to the measure µ̃.
In this respect, we recall that an n-point Szegő rule (2) for a measure µ has maximal
domain of validity Λ−(n−1),n−1 = span{z−(n−1), . . . , zn−1}, with dimension 2n− 1,
and that the nodes are the zeros of a para-orthogonal polynomial associated with
µ; see e.g. [1, 8, 9, 10, 11, 22, 24, 25]. We also recall that for κn ∈ T, κn-invariant
para-orthogonal polynomials associated with µ are characterized in [25] as

(45) Φn(z) = Cn [ρn(z) + τnρ∗n(z)] ∈ Pn , n ≥ 1, Cn ∈ C\{0},

where τn = Cnκn

Cn
∈ T and {ρk(z)}∞k=0 is a sequence of Szegő polynomials associated

with µ; see e.g. [26], [28].
When dµ(θ) = dθ, rational modifications of the Lebesgue measure appear such

that Szegő polynomials for µ̃ were earlier considered by Szegő in [28]. Observe
that when m = 1, µ̃ gives rise to the so-called Poisson kernel. In relation to
this, Waadeland considered in [33] for the first time Szegő quadrature formulas for
the measure dµ̃(θ) = dθ

|z−α|2 , providing one of the first examples of this type of
quadratures in the literature.

Rational modifications of the Lebesgue measure are very suitable in order to
approximate other measures. For instance, the following important result is given
in [26, Theorem 1.7.8]: Let η be a probability measure supported on T, and suppose
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{ϕn(z)}∞n=0 is a sequence of orthonormal polynomials associated with η. For every
n it then holds that ∫ π

−π

dθ

2π |ϕn(eiθ)|2
= 1

and

dηn(θ) =
dθ

2π |ϕn(eiθ)|2
−→ dη weakly when n → ∞.

Consider now the polynomial h(z) given by (44) and set αk = 0 for every k > m.
For every n ≥ m we then have that

π∗
n(z) =

n∏
j=1

(z − αj) = zn−mh(z), πn(z) =
n∏

j=1

(1 − αjz) =
m∏

j=1

(1 − αjz) = h∗(z).

So, let χn(z) denote the nth orthonormal rational function associated with µ. Then
for every n ≥ m, χn(z) = Pn(z)

h∗(z) with Pn(z) ∈ Pn\Pn−1. Moreover, if n > m, we

have that 〈χn(z), uk(z)〉µ = 0, where uk(z) = zk

h∗(z) with k = 0, 1, . . . , n−1, implying
that

0 =
∫ π

−π

Pn(z)
h∗(z)

(
zk

h∗(z)

)
dµ(θ) =

∫ π

−π

Pn(z)zk
dµ(θ)
|h∗(z)|2

=
∫ π

−π

Pn(z)zk
dµ(θ)
|h(z)|2

with z = eiθ and k = 0, 1, . . . , n − 1. Consequently, the numerator of the nth
orthonormal rational function associated with the measure µ coincides for n > m
with an nth orthonormal polynomial associated with the measure µ̃ given by (43).

Example 5.1. Take the Lebesgue measure dµ(θ) = ω1(θ)dθ ≡ dθ; see (6). Then
for every n > m it follows from (7) that

χn(z) = cnz
∏n−1

j=1

(
z−αj

1−αjz

)
= cnz

∏m
j=1

(
z−αj

1−αjz

)∏n−1
j=m+1

(
z−αj

1−αjz

)
= cn

zn−mh(z)
h∗(z) , cn �= 0.

Hence, Pn(z) = zn−mh(z) represents the nth monic Szegő polynomial for the mea-
sure dµ̃(θ) = dθ

|h(z)|2 with z = eiθ (compare with the first approach given in [28, pp.
289–290]; actually, this expression for Pn(z) also holds for n = m).

Let us see next what happens with the quadrature formulas. Assume as above
αk = 0 for k > m and αl ∈ D\{0} for l = 1, . . . , m. Let h(z) =

∏m
l=1(z − αl) ∈

Pm\Pm−1, and suppose n > m. From Theorem 2.2 we then have that

In(f) =
n∑

j=1

λjf(zj) = Iµ(f) =
∫ π

−π

f(eiθ)dµ(θ) , ∀f ∈ Rn−1.

Consider now the case in which f(z) = zk

π∗
n−1(z)πn−1(z) ∈ Rn−1 for k = 0, 1, . . . , 2n−

2, and observe that πn−1(z) = zn−1π∗
n−1(z) for z ∈ T. Taking into account that

k = 0, 1, . . . , 2n − 2, it then follows that

f(z) =
zk−(n−1)∣∣π∗

n−1(z)
∣∣2 =

zk+1−n

|h(z)|2
=

zs

|h(z)|2
, −(n − 1) ≤ s ≤ n − 1 , z ∈ T.
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Hence, ∫ π

−π
f(z)dµ(θ) =

∫ π

−π
zs

|h(z)|2 dµ(θ) =
∑n

j=1 λj
zs

j

|h(zj)|2
=

∑n
j=1 λ̃jz

s
j

=
∫ π

−π
zsdµ̃(θ) , z = eiθ , −(n − 1) ≤ s ≤ n − 1,

where λ̃j = λj

|h(zj)|2
for j = 1, . . . , n and dµ̃(θ) is given by (43). It follows from The-

orem 2.2 that {zj}n
j=1 are the zeros of Ψn(z, τn) = χn(z) + τnχ∗

n(z). Furthermore,
setting χn(z) = Pn(z)

πn(z) and

χ∗
n(z) = Bn(z)χn∗(z) = Bn(z)

Pn(1/z̄)
πn(1/z̄)

=
Bn(z)P ∗

n(z)
znπn(1/z̄)

=
P ∗

n(z)
πn(z)

,

we obtain that

Ψn(z, τn) =
Pn(z) + τnP ∗

n(z)
πn(z)

=
Pn(z) + τnP ∗

n(z)
h∗(z)

.

Thus, we have proved the following theorem.

Theorem 5.2. Let h(z) =
∏m

l=1(z − αl) with αl ∈ D\{0} for every l = 1, . . . , m,
and set αk = 0 for every k > m. Further, let n > m and suppose χn(z) = Pn(z)

h∗(z)

with Pn(z) ∈ Pn\Pn−1 is the nth orthonormal rational function associated with the
measure µ. Then for a given τn ∈ T, In(f) =

∑n
j=1 λ̃jf(zj) is an n-point Szegő

quadrature formula for dµ̃(θ) = dµ(θ)

|h(eiθ)|2 , if and only if

(1) the nodes {zj}n
j=1 are the zeros of Pn(z) + τnP ∗

n(z), and
(2) λ̃j = λj

|h(zj)|2
, where {λj}n

j=1 is the set of weights corresponding to the n-
point rational Szegő quadrature for µ. �

As an application of the previous theorem, we will now deduce characterization
theorems for Szegő quadrature formulas associated with the measures dµ̃(θ) =
ωi(θ)dθ

|h(z)|2 , where z = eiθ and ωi(θ) is given by (6) for i ∈ {1, . . . , 4}.
We start with the Lebesgue measure (compare with [12, Theorem 4.2]).

Theorem 5.3. Assume h(z) =
∏m

l=1(z − αl) with αl ∈ D\{0} for every l =
1, . . . , m. Let τn ∈ T and set dµ̃(θ) = dθ

|h(eiθ)|2 . An n-point Szegő formula for µ̃ and
n > m is then given by

In(f) =
n∑

j=1

λ̃jf(zj),

where the nodes {zj}n
j=1 are the zeros of zn−mh(z)+τnh∗(z) and the weights {λ̃j}n

j=1

are given by

λ̃j =
2π

|h(zj)|2
[
n − m +

∑m
l=1

1−|αl|2
|zj−αl|2

] ; j = 1, . . . , n. �

In the following theorem we characterize a Szegő quadrature formula associated
with a rational modification of the Chebyshev weight functions 1 ± cos θ.

Theorem 5.4. Suppose h(z) =
∏m

l=1(z − αl) with {αl}m
l=1 ⊂ D\{0}, n > m,

τn ∈ T, νi = (−1)i−1 for fixed i ∈ {3, 4}, and let

dµ̃(θ) =
1 − νi cos θ

|h(eiθ)|2
dθ.
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Next, let Qn(z) = n−m+
∑m

l=1
1−|αl|2
|z−αl|2 and define Q̃

(i)
n = [1 + Qn(νi)]

−1 . Further,

assume a
(i)
n = νn

i
h(νi)

h(νi)
Q̃

(i)
n and b

(i)
n = νi

(
1 + Q̃

(i)
n

)
. An n-point Szegő formula for

µ̃ is then given by In(f) =
∑n

j=1 λ̃jf(zj), where the set of nodes and weights are
determined as follows:

(1) Denote by {νi, νi, z1, . . . , zn} the set of zeros of

V
(i)
n (z, τn) = zn+1−m

[
−b

(i)
n +

(
1 + τna

(i)
n

)
z
]
h(z)

+zm
[
a
(i)
n + τn

(
1 − b

(i)
n z

)]
h(z).

Then {z1, . . . , zn} is the set of nodes for In(f).
(2) For every j ∈ {1, . . . , n} for which zj �= νi, the jth weight is given by

λ̃−1
j = νi

|h(zj)|2
(
|zj − b

(i)
n |2 − |a(i)

n |2
)

πb
(i)
n |zj − νi|4

×
[
1 + Qn+1(zj) + 2b(i)

n �
{[

−b(i)
n +

(
1 + τna

(i)
n

)
zj

]−1
}]

.

Whenever zj = νi for a certain j ∈ {1, . . . , n}, the associated weight is
given by λ̃j = λj/|h(zj)|2, where λj is given by (32). �

Finally, for the remainder Chebyshev weight function we have the following the-
orem.

Theorem 5.5. Suppose h(z) =
∏m

l=1(z − αl) with {αl}m
l=1 ⊂ D\{0}, n > m,

τn ∈ T, ε ∈ {±1}, and let

dµ̃(θ) =
sin2 θ

|h(eiθ)|2
dθ.

Next, let Qn(z) = n − m +
∑m

l=1
1−|αl|2
|z−αl|2 and define

a+ =
h(1)
h(1)

, a− = (−1)n−1 h(−1)
h(−1)

, b+ = 2 + Qn(1) , b− = 2 + Qn(−1).

Further, assume x = (dn, en, fn, gn)T is the solution of the system given by (15)
and (16). An n-point Szegő formula for µ̃ is then given by In(f) =

∑n
j=1 λ̃jf(zj),

where the set of nodes and weights are determined as follows:
(1) Let {+1 + 1,−1,−1, z1, . . . , zn} be the set of zeros of

V
(2)
n (z, τn) = zn+2−m

[(
1 + τndn

)
z2 + (gn + τnen) z + fn

]
h(z)

+zm
[
τnfnz2 + (en + τngn) z + τn + dn

]
h(z).

Then {z1, . . . , zn} is the set of nodes of In(f).
(2) For every j ∈ {1, . . . , n} for which zj �= ε, the jth weight is given by

λ̃−1
j =

2|h(zj)|2(|dn+enzj |2−|fn+gnzj+z2
j |

2)
πfn|z2

j−1|4

×

⎡
⎣3 + Qn+1(zj) −

2�
{

τn(2fnzj+gn)zjp
(2)
2 (zj)+enzjp

(2)
2 (zj)

}
∣∣∣p(2)

2 (zj)
∣∣∣2

⎤
⎦ ,
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where p
(2)
2 (zj) = (dn + enzj) + τn

(
fnz2

j + gnzj + 1
)
. Whenever zj = ε for

a certain j ∈ {1, . . . , n} and zk �= −ε for every k ∈ {1, . . . , n} \ {j}, the jth
weight is given by λ̃j = λj/ |h(zj)|2, where λj is given by (40). Finally, if
there exist two distinct indices j and k in {1, . . . , n} so that zj = −zk = 1,
the associated weights are given by λ̃j = λj/ |h(zj)|2 and λ̃k = λk/ |h(zk)|2,
where λj and λk are given by (41) and (42). �

6. Numerical examples

The aim of this final section is to present some numerical illustrations of the
results given in Section 5 in the construction of Szegő-type quadrature formulas
with respect to rational modifications of Chebyshev weight functions.

We start by recalling that the parameter τn ∈ T in (45) can be choosen freely
to fix a complex number λ ∈ T as a node of the Szegő quadrature formula. By
setting τn = − ρn(λ)

λnρn(λ)
∈ T, the so-called “Szegő-Radau rules” arise (see e.g. [10,

Proposition 2.8]). Recently, Jagels and Reichel have characterized Szegő-Lobatto
quadrature formulas in [24], i.e. Szegő rules with two prescribed nodes on T.
Suppose zα and zβ are two distinct points on T. Let N ≥ 2 be fixed, and as-
sume there exist N − 2 distinct nodes z1, . . . , zN−2 on T such that zj �= zα and
zj �= zβ for 1 ≤ j ≤ N − 2. Furthermore, suppose there exist positive weights
A1, A2, λ1, . . . , λN−2 so that

∀f ∈ Λ−(N−2),N−2 :

IN (f) := A1f(zα) + A2f(zβ) +
N−2∑
j=1

λjf(zj) =
∫

T

f(z)dµ(z) =: Iµ(f) .

Then, IN (f) is called an N -point Szegő-Lobatto quadrature formula for µ with
prescribed nodes zα and zβ . We now have the following theorem (for the proof,
see [24]).

Theorem 6.1 (Szegő-Lobatto quadrature). Let zα and zβ be two distinct fixed

points on T and set a = zn−1
α

ρn(zα)
ρn(zα) ∈ T and b = zn−1

β
ρn(zβ)
ρn(zβ) ∈ T. Then one of the

following statements holds:
(1) If azα = bzβ, we have that an n-point Szegő formula In(f) has zα and zβ

as nodes by setting τn = −ρn(zα)
ρ∗

n(zα) = −ρn(zβ)
ρ∗

n(zβ) ∈ T.
(2) If a = b, an (n + 1)-point Szegő formula In+1(f) has zα and zβ as nodes

by setting τn+1 = −zα
ρn(zα)
ρ∗

n(zα) = −zβ
ρn(zβ)
ρ∗

n(zβ) ∈ T.
(3) Suppose azα �= bzβ and a �= b, and denote by Γ the circle with center c =

− zα−zβ

azα−bzβ
and radius r =

∣∣∣ a−b
azα−bzβ

∣∣∣. Let δ̃n+1 ∈ Γ ∩ D, a circular arc that

is proved to be a non-empty set, and set τn+2 = −azα−bzβ

a−b δ̃n+1 − zα−zβ

a−b ∈
T. Then, there exists an (n + 2)-point Szegő-Lobatto quadrature formula
whose nodes are the zeros of Φ̃n+2(z, τn+2) = zρ̃n+1(z) + τn+2ρ̃

∗
n+1(z) with

ρ̃n+1(z) = zρn(z) + δ̃n+1ρ
∗
n(z). �

Remark 6.2. In the special case in which δ̃n+1 = ρn+1(0) in Theorem 6.1(3), the
(n+2)-point Szegő-Lobatto formula is actually an (n+2)-point Szegő formula and
consequently, exact in Λ−(n+1),n+1.
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Γ

(–5/6,5/6)

δRe(  )

δIm(  )

–1

–0.5

0

0.5

1

–1 –0.5 0.5 1

Figure 1. The circular arc Γ ∩ D.

In analogy with the real line situation (see e.g. [19]), the set of Szegő, Szegő-
Radau and Szegő-Lobatto rules we call Szegő-type quadratures.

Example 6.3. Consider the rational modification of the Lebesgue measure given
by

dµ̃(θ) =
dθ

5/4 − sin(2θ)
=

dθ

|z2 − i/2|2 , z = eiθ.

From Example 5.1 it then follows that the corresponding monic Szegő polynomials
are explicitly given by ρn(z) = zn−2(z2 − i/2) for every n ≥ 2. Next, let n = 10,
and suppose zα = 1 and zβ = i. From Theorem 6.1 we then deduce that

a =
3 + 4i

5
and b =

4 + 3i
5

,

where clearly a − b = −1+i
5 �= 0 and azα − bzβ = 6

5 �= 0. Consequently, we are
dealing with the third situation of Theorem 6.1. Elementary calculation yields that
Γ is the circle with center c = 5

6 (−1+ i) and radius r =
√

2
6 , and δ̃11 ∈ Γ∩D iff (see

also Figure 1)

(46) δ̃11 = c + reiθ, with − θ0 < θ < −θ1, θ0 = arctan(7), θ1 =
π

2
− θ0.

Since ρ11(0) = 0 �∈ Γ ∩ D, it follows that the 12-point Szegő-Lobatto formula
associated with δ̃11 is not a 12-point Szegő formula (see Remark 6.2); thus, the



1054 A. BULTHEEL, R. CRUZ-BARROSO, K. DECKERS, AND P. GONZÁLEZ-VERA

domain of exactness is Λ−10,10. Therefore, the nodes in the 12-point Szegő-Lobatto
formula associated with δ̃11 are the zeros of Φ̃12(z, τ12), given by

Φ̃12(z, τ12) = zρ̃11(z) + τ12ρ̃
∗
11(z),

where
ρ̃11(z) = zρ10(z) + δ̃11ρ

∗
10(z) = z9(z2 − i/2) + δ̃11(1 + z2i/2),

and τ12 = 3(1 + i)δ̃11 + 5. Let zj , j = 1, . . . , 12, denote the zeros of Φ̃12(z, τ12).
We have used Maple 10 with 40 digits to compute these zeros for the case in which
δ̃11 = −3

4 + 10−
√

7
12 i (that is, (46) with θ = − arctan(

√
7)) and τ12 =

√
7+1
4 −

√
7−1
4 i,

respectively, for the case in which δ̃11 = 2
3 (−1 + i) (that is, (46) with θ = −π/4)

and τ12 = 1. The results are given in Table 1, respectively, Table 2.
Finally, since δ̃11 �= ρ11(0), we are dealing with a modified measure so that we can

not use Theorem 5.3 to compute the corresponding weights. Let ϕ̃11(z) denote the
polynomial of degree 11 that is orthonormal with respect to this modified measure.
We then have the following Christoffel-Darboux formula in the ordinary polynomial
situation (see also [5, Theorem 3.1.3]):

K11(z, ξ) =
ϕ̃∗

11(z)ϕ̃∗
11(ξ) − zξϕ̃11(z)ϕ̃11(ξ)

1 − zξ
.

Setting λ−1
j = K11(zj , zj) and proceeding as in Section 4, it is easily verified that

λ−1
j = 2�

{
zjϕ̃11(zj)ϕ̃

′

11(zj)
}
− 10 |ϕ̃11(zj)|2 .

Further, with ϕ̃11(z) = cρ̃11(z) we obtain that

λ−1
j = |c|2µ−1

j , µ−1
j := 2�

{
zj ρ̃11(zj)ρ̃

′

11(zj)
}
− 10 |ρ̃11(zj)|2 ,

so that it remains to determine |c|2. It should now hold that

12∑
j=1

λj =
∫ π

−π

dθ

|e2iθ − i/2|2
=

8π

3
=

∑12
j=1 µj

|c|2 ,

and hence,

|c|2 =
3
8π

12∑
j=1

µj .

The resulting weights are given in Tables 1 and 2 for the case in which δ̃11 = −3
4 +

10−
√

7
12 i and τ12 =

√
7+1
4 −

√
7−1
4 i, respectively, for the case in which δ̃11 = 2

3 (−1+ i)
and τ12 = 1.

With these nodes and weights, the integral is computed to within the numerical
precision for∫ π

−π

(
5
4
− sin(2θ)

)
dµ̃(θ), and for

∫ π

−π

eikθdµ̃(θ), k = −10, . . . , 10.

Example 6.4. Consider the rational modifications

dµ̃(θ) =
ωi(θ)dθ

|z − 1/4|2 , i = 2, 3, 4, z = eiθ,
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Table 1. The nodes zj and weights λj in the 12-point Szegő-
Lobatto formula for the case in which δ̃11 = −3

4 + 10−
√

7
12 i and

τ12 =
√

7+1
4 −

√
7−1
4 i.

j zj λj

1 1 0.4516560678
2 0.9638145989 + 0.2665734776i 0.1232452240
3 0.8316896358 + 0.5552408033i 1.3564329045
4 0.5255107494 + 0.8507869605i 1.3244867113
5 i 0.4907276839
6 −0.5936593393 + 0.8047164649i 0.2935974363
7 −0.9584388804 + 0.2852979365i 0.3549235398
8 −0.9499460287 − 0.3124140564i 0.8469595298
9 −0.7027746634 − 0.7114125192i 1.6733022550
10 −0.2969879126 − 0.9548812386i 0.8202977524
11 0.3024297035 − 0.9531716920i 0.3490662051
12 0.8140918496 − 0.5807361367i 0.2928850997

Table 2. The nodes zj and weights λj in the 12-point Szegő-
Lobatto formula for the case in which δ̃11 = 2

3 (−1+ i) and τ12 = 1.

j zj λj

1 1 0.4833219467
2 0.8615961242 + 0.5075944433i 1.1348377814
3 (1 + i)/

√
2 0.5132214093

4 0.5075944433 + 0.8615961242i 1.1348377814
5 i 0.4833219467
6 −0.5892211604 + 0.8079717966i 0.2926150925
7 −0.9562662716 + 0.2924975517i 0.3518577037
8 −0.9522800017 − 0.3052258155i 0.8334298010
9 −(1 + i)/

√
2 1.6722343497

10 −0.3052258155 − 0.9522800017i 0.8334298010
11 0.2924975517 − 0.9562662716i 0.3518577037
12 0.8079717966 − 0.5892211604i 0.2926150925

where ωi(θ) is given by (6), and let

f1(z) =
(z − 1/4) sin(z)

8πz
, f2(z) =

(4 − z) sin(1/z)
8πz

and f3(z) =
sin(z)
8πz

.

For these functions, we have used Maple 10 with 40 digits to compute the absolute
error of the n-point Szegő quadrature formula, i.e.,

eµ̃(fj) = |Iµ̃(fj) − In(fj)|, j = 1, 2, 3,

for n = 8, 16, 24 with τn = 1. The results are given in Tables 3–5.
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Table 3. The absolute error eµ̃(f1) for the n-point Szegő quadra-
ture formula with respect to the rational modification of the weight
functions ωi(θ).

i = 2 i = 3 i = 4
n = 8 4.381892940 × 10−8 6.032565503 × 10−7 7.738268455 × 10−7

n = 16 4.417815525 × 10−17 6.151507562 × 10−16 7.903210143 × 10−16

n = 24 1.010117754 × 10−27 1.410431794 × 10−26 1.812756380 × 10−26

Table 4. The absolute error eµ̃(f2) for the n-point Szegő quadra-
ture formula with respect to the rational modification of the weight
functions ωi(θ).

i = 2 i = 3 i = 4
n = 8 5.094348466 × 10−5 9.843173970 × 10−5 9.705465650 × 10−5

n = 16 1.925426989 × 10−13 3.815676087 × 10−13 3.801621369 × 10−13

n = 24 9.701673019 × 10−24 1.932272042 × 10−23 1.92904885 × 10−23

Table 5. The absolute error eµ̃(f3) for the n-point Szegő quadra-
ture formula with respect to the rational modification of the weight
functions ωi(θ).

i = 2 i = 3 i = 4
n = 8 1.750776412 × 10−7 3.438809772 × 10−7 3.376229665 × 10−7

n = 16 1.766481103 × 10−16 3.512396863 × 10−16 3.491851390 × 10−16

n = 24 4.039751881 × 10−27 8.056536588 × 10−27 8.033580897 × 10−27

7. Appendix

Theorem 7.1. There are no τn ∈ T and γ ∈ T \ {νi} so that p
(i)∗
1 (γ) = 0.

Proof. Suppose there are τn ∈ T and γ ∈ T \ {νi} so that τnp
(i)∗
1 (γ) = 0. Clearly,

it then holds that p
(i)
1 (γ) = 0 as well. Hence, from (27) we then deduce that

τn = −a
(i)
n (1 − αnγ)

1 − b
(i)
n γ

= − γ − bn(i)

a
(i)
n (γ − αn)

, γ ∈ T \ {νi}.

Therefore,

0 = γ
(
|γ − b(i)

n |2 − |a(i)
n |2|γ − αn|2

)
(47)

= (|a(i)
n |2αn − b

(i)
n )γ2 + [1 + |b(i)

n |2 − |a(i)
n |2(1 + |αn|2)]γ + (|a(i)

n |2αn − b(i)
n )

= (γ − νi)
[
(|a(i)

n |2αn − b
(i)
n )γ − (|a(i)

n |2αn − b(i)
n )

]
, γ ∈ T \ {νi},
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where the last equality is due to the fact that the equality in (47) clearly holds for
γ = νi. Since we assumed γ �= νi, it follows that

γ = νi
|a(i)

n |2αn − b
(i)
n

|a(i)
n |2αn − b

(i)
n

.

But from (10) we deduce that

|a(i)
n |2αn − b(i)

n =
2�{αn} − νi[|1 − νiαn|2Q(i)

n + 1]

|(1 − νiαn)Q(i)
n + 1|2

− νi ∈ R,

so we again find that γ should equal νi. �

Theorem 7.2. If n = 1 or αn = 0, there are no τn ∈ T and γ ∈ T \ {±1} so that
τnp

(2)∗
2 (γ) = 0.

Proof. Similarly, as in the proof of Theorem 7.1, we find that there are τn ∈ T and
γ ∈ T \ {±1} so that τnp

(2)∗
2 (γ) = 0 iff

0 = γ2
(
|fn + gnγ + γ2|2 − |dn + enγ|2|γ − αn|2

)
(48)

= (γ2 − 1)
[
(endnαn + fn)γ2 + �nγ − (endnαn + fn)

]
, γ ∈ T \ {±1},

where the last equality is due to the fact that the equality in (48) clearly holds for
γ = ±1, and �n ∈ R is given by

�n = gn + fngn + αn(|dn|2 + |en|2) − dnen(1 + |αn|2)
= gn + gnfn + αn(|dn|2 + |en|2) − endn(1 + |αn|2).

Since we assumed γ /∈ {±1}, it should hold that

(endnαn + fn)γ2 + �nγ − (endnαn + fn) = 0.

Note that for the parameters a+, a−, b+ and b−, given by (14), we have that

a+ = 1
a+|1−αn|2 , a− = 1

a−|1+αn|2 ,

b+ = b+ + 2i	{αn}
|1−αn|2 , b− = b− − 2i	{αn}

|1+αn|2 .

With this observation in mind, we computed �n with the aid of Maple 10 to find
that �n = 0, so it should hold that

(49) γ2 =
endnαn + fn

endnαn + fn

.

For the special case in which αn = 0, it follows from (18) that fn = −2
π|hn|2 ∈ R, so

we again find that γ should equal ±1. For n = 1, on the other hand, we have that

a+ =
1

1 − α1
, a− =

1
1 + α1

, b+ = 2 + a+ and b− = 2 + a−.

We then computed γ2, given by (49) with n = 1, to find that γ2 = 1. At this
moment of writing, however, we could not verify whether γ2, given by (49), equals
one for the more general case of αn �= 0 and n > 1. �
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