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A MULTIVARIATE FAST DISCRETE WALSH TRANSFORM
WITH AN APPLICATION TO FUNCTION INTERPOLATION

KWONG-IP LIU, JOSEF DICK, AND FRED J. HICKERNELL

Abstract. For high dimensional problems, such as approximation and inte-
gration, one cannot afford to sample on a grid because of the curse of di-
mensionality. An attractive alternative is to sample on a low discrepancy set,
such as an integration lattice or a digital net. This article introduces a mul-
tivariate fast discrete Walsh transform for data sampled on a digital net that
requires only O(N log N) operations, where N is the number of data points.
This algorithm and its inverse are digital analogs of multivariate fast Fourier
transforms.

This fast discrete Walsh transform and its inverse may be used to ap-
proximate the Walsh coefficients of a function and then construct a spline
interpolant of the function. This interpolant may then be used to estimate
the function’s effective dimension, an important concept in the theory of nu-
merical multivariate integration. Numerical results for various functions are
presented.

1. Introduction

The idea of the fast Fourier transforms goes back to Gauss and has been popular
ever since the seminal work of Cooley and Tukey [5]. Let f be a function from [0, 1]
to the complex numbers. The task is to compute

f̃(k) =
N−1∑
n=0

f(n/N)e2πikn/N for k = 0, . . . , N − 1.

These are N sums, each consisting of N summands. Hence a straightforward cal-
culation would have complexity of O(N2) operations; but the sums have a certain
structure which can be exploited. Indeed, Cooley and Tukey showed that those
sums can be computed with O(N log N) operations. (There is some dependence of
the implied constant on the number N ; the algorithm works best if N is a prime
power; see [5].)

In higher dimensions an effect commonly referred to as the curse of dimension-
ality occurs. Let f : [0, 1]s → C and consider the discrete Fourier transform

f̃(k) =
p−1∑

n1,...,ns=0

f(n1/p, . . . , ns/p)e2πi(n1k1+···+nsks)/p
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for all k = (k1, . . . , ks) ∈ {0, . . . , p − 1}s. Here the number of points sampled is
N = ps. Hence if s is large, say 100 for example, then choosing even p = 2 yields
N = 2100 ≈ 1030 points, making such a computation infeasible for contemporary
computers.

In the example above the design or set of sample points is a grid aligned with
the coordinate axes, {(n1/p, . . . , ns/p) : 0 ≤ nj < p}. To avoid the curse of dimen-
sionality one needs a much smaller point set that is constructed differently. Such
point sets have previously been considered in the context of numerical integration;
see [14, 19]. Two popular construction methods are integration lattices (see [19])
and digital nets and sequences (see [14]). This article focuses on the latter fam-
ily of points. (Numerical approximation using lattice rule designs and an FFT
has been treated in [12, 29].) The first examples of digital sequences were given
by Sobol [20] and Faure [9] before Niederreiter introduced the general concept of
(t, m, s)-nets and (t, s)-sequences. See [15] for a recent survey. These construc-
tions yield extremely well distributed point sets if the quality parameter t is small.
Digital (t, m, s)-nets are a special construction of (t, m, s)-nets, and in the same
way, digital (t, s)-sequences are a special construction of (t, s)-sequences. Digital
constructions are introduced below.

Definition 1.1. Let Zp be a finite field of prime order p, let C1, . . . , Cs be s
m × m-matrices over Zp = {0, 1, . . . , p − 1}. The digital (t, m, s)-net P (C) =
{x0, . . . , xpm−1}, based on C = (C1, . . . , Cs), is then defined as follows: let 0 ≤
n < pm and n = n0 + n1p + · · · + nm−1p

m−1 be the base p representation of n.
Define �n = (n0, . . . , nm−1)T ∈ Zm

p and let

(1.1) �yj,n = Cj�n ∈ Z
m
p .

Express �yj,n as (yj,n,1, . . . , yj,n,m)T ∈ Zm
p , and then define

xj,n = yj,n,1p
−1 + · · · + yj,n,mp−m.

The n-th point xn of the digital net P (C) over the finite field Zp is given by xn =
(x1,n, . . . , xs,n).

The t value is a non-negative integer such that for all 0 ≤ d1, . . . , ds ≤ m − t

with d1 + · · · + ds = m − t the system of vectors c
(1)
1 , . . . , c

(1)
d1

, . . . , c
(s)
1 , . . . , c

(s)
ds

is

linearly independent over Zp. Here c
(j)
k refers to the k-th row of the matrix Cj . For

a geometrical interpretation of the t value see, for example, [14]. Smaller values of
t characterize more uniformly distributed nets.

Digital nets are often used in conjunction with certain wavelets, namely Haar
functions, first used by Sobol [21], and Walsh functions, first used by Larcher [10]
and Larcher and Traunfellner [11].

Next, Walsh functions, which are piecewise constant, in base p are defined. For
more information on Walsh functions see for example [4, 24] (or in the context
of numerical integration see [6]). Throughout this article let N0 denote the set of
non-negative integers and let N denote the set of positive integers.

Definition 1.2. Let p ≥ 2 be an integer. For a non-negative integer wavenumber
k with base p representation

k = k0 + k1p + · · · + ka−1p
a−1,
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with ki ∈ Zp, the Walsh function pwalk : [0, 1) −→ C is defined by

pwalk(x) := ωx1k0+···+xaka−1
p ,

where ωp = e2πi/p, for x ∈ [0, 1) with base p representation x = x1/p + x2/p2 + · · ·
(unique in the sense that infinitely many of the xi must be different from p− 1). If
it is clear which base p is chosen we simply write walk.

Definition 1.3. For dimension s ≥ 2, x1, . . . , xs ∈ [0, 1) and k1, . . . , ks ∈ N0 define
pwalk1,...,ks

: [0, 1)s −→ C by

pwalk1,...,ks
(x1, . . . , xs) :=

s∏
j=1

pwalkj
(xj).

For wavenumber vectors k = (k1, . . . , ks) ∈ Ns
0 and x = (x1, . . . , xs) ∈ [0, 1)s we

write
pwalk(x) := pwalk1,...,ks

(x1, . . . , xs).
Again, if it is clear which base is meant, we simply write walk(x).

Let a Walsh series f ∈ L2([0, 1]s) be defined by

f(x) =
∑

k∈N
s
0

f̂(k)walk(x),

where the Walsh coefficients are given by

(1.2) f̂(k) =
∫

[0,1]s
f(x)walk(x)dx,

since the Walsh functions are mutually orthonormal. Here a denotes the complex
conjugate of a complex number a.

The aim now is to approximate Walsh coefficients of a function f with wavenum-
bers lying in a certain set of wavenumbers, K(C), depending on the digital net P (C)
defined by the generating matrices C = (C1, . . . , Cs). The details of how K(C) is
chosen is explained in the next section. A digital net with pm points can be used
to estimate |K(C)| = pm Walsh coefficients, where | · | denotes the cardinality of a
set. For k ∈ K(C) we approximate f̂(k) by the finite sum

(1.3) f̃(k) =
1

pm

∑
x∈P (C)

f(x)walk(x).

We call f̃(k) the discrete Walsh coefficients because (1.3) is just a discrete version
of (1.2). Those discrete Walsh coefficients provide us with valuable information
about the function at hand.

A naive calculation of the pm discrete Walsh coefficients f̃(k) with k ∈ K(C)
would require O(p2m) operations, but using the fast discrete Walsh transform algo-
rithm described in the following section, we can reduce it to O(mpm log p) opera-
tions. In Section 3 the discrete Walsh coefficients are used to interpolate functions
based on observations on the digital net design. The inverse discrete Walsh trans-
form then provides an interpolatory approximation of the original function. The
ANOVA decomposition of this interpolation provides information about the effec-
tive dimension of the function as explained in Section 4. In the last section the fast
discrete Walsh transform is used to approximate Walsh coefficients and effective
dimensions of some explicit test functions.
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2. Multivariate fast discrete Walsh transform over digital nets

In this section we introduce an FFT-like algorithm for a multivariate fast discrete
Walsh transform over digital nets. An essential role is played by the dual net of a
digital net.

2.1. The dual net. Let C = (C1, . . . , Cs) be the vector of matrices generating a
digital (t, m, s)-net P (C) over a finite field Zp, where p is prime. For any wavenum-
ber vector k = (k1, . . . , ks) ∈ Ns

0, we define

C · k = CT
1
�k

(m)
1 + · · · + CT

s
�k(m)

s ∈ Z
m
p ,

where for kj = kj,0 + kj,1p + · · · we define �k
(m)
j = (kj,0, . . . , kj,m−1)T ∈ Zm

p as the
m-element truncation of �kj , and all operations are carried out in the finite field Zp.
The dual net D(C) of the digital net P (C) is the set of all wavenumbers which make
this dot product zero:

D(C) = {k ∈ N
s
0 : C · k = �0}.

The dual net appears in the worst-case error for multivariate integration in certain
Walsh spaces; see [6]. Therein the worst-case error is just the sum of a certain
function over all elements in the dual net except 0.

The dual net satisfies

(2.1)
1

pm

∑
x∈P (C)

walk(x) =
{

1 if k ∈ D(C),
0 otherwise,

which was shown, for example, in [6]. Indeed, this property could also be used to
define the dual net.

For k ∈ N0 with k = k0 + k1p + · · · let ν(0) = 0 and for k > 0 let ν(k) =
1 + max{i : ki �= 0}. For k = (k1, . . . , ks) ∈ Ns

0 define ν(k) =
∑s

i=1 ν(ki); see
[13, 16]. The function ν is a norm on the elements in the wavenumber space. It
depends on the most significant bit of the coordinates and can be related to the
t-value of a digital net; see [16].

For non-negative integers k, l ∈ N0 with k = k0+k1p+ · · · and l = l0+l1p+ · · · a
digitwise addition and subtraction in base p can be defined by k⊕ l = a0 +a1p+ · · ·
where ai ≡ ki + li (mod p) and k 	 l = b0 + b1p + · · · where bi ≡ ki − li (mod p).
For non-negative integer vectors the digitwise addition and subtraction are defined
componentwise.

Using this digitwise addition and subtraction we obtain a group structure on Ns
0

of which the dual net D(C) forms a subgroup. It can be checked that the cosets of
the subgroup D(C) are given by

D(�h) = {k ∈ N
s
0 : C · k = �h}

for �h ∈ Zm
p and hence there are pm cosets. Note that D(�0) = D(C), i.e., the coset

containing �0 is the dual net. The set of wavenumbers whose Walsh coefficients are
to be approximated, K(C), is then obtained by choosing exactly one representative
in each coset. For each �h ∈ Zm

p identify k ∈ D(�h) such that ν(k) ≤ ν(l) for all
l ∈ D(�h). This k is the representative of D(�h) chosen to be in K(C). In the case of
more than one k from the same coset satisfying this condition, one may choose, for
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example, the k that is the smallest in lexicographic order. That is,

K(C) =
{

k ∈ N
s
0 : k ∈ D(�h) for some �h ∈ Z

m
p , and for any l ∈ D(�h)

we have ν(k) ≤ ν(l) and if ν(k) = ν(l) for some l ∈ D(�h), then

k1 = l1, . . . , kj−1 = lj−1, kj < lj for some j = 1, . . . , s} .

This definition implies that the zero vector 0 is automatically in K(C), and that N
s
0

is the direct sum of K(C) and D(C).

2.2. Multivariate fast discrete Walsh transform over digital nets. Let a
Walsh series f ∈ L2([0, 1]s) be given by

f(x) =
∑

k∈Ns
0

f̂(k)walk(x).

For all k ∈ K(C) one may approximate f̂(k) by the discrete Walsh transform
(DWT), f̃(k), which is defined as

f̃(k) =
1

pm

∑
x∈P (C)

f(x)walk(x) =
∑
l∈Ns

0

f̂(l)
1

pm

∑
x∈P (C)

wall(x)walk(x).

Note that wall(x)walk(x) = wall�k(x) (see [6]), and hence the rightmost sum in
the equation above is one if l 	 k ∈ D(C) and zero otherwise. Thus it follows that

(2.2) f̃(k) = f̂(k) +
∑

l∈D(C)\{0}
f̂(k ⊕ l).

Hence, the terms f̂(k ⊕ l) are completely aliased with each other for all l ∈ D(C).
We have chosen k ∈ K(C) such that k is closest to 0. Hence if higher frequency
contributions are sufficiently small, that is, f̂(k) decays sufficiently fast the further
k is away from 0 with respect to the norm ν, then f̃(k) ≈ f̂(k).

A straightforward calculation of the discrete Walsh coefficients would require
O(p2m) operations, as we have pm sums to compute (one sum for each k ∈ K(C))
and each sum requires O(pm) operations. But as shown below, certain parts in the
summation above can be reused and thereby reducing the number of operations.

Let xn be the n-th point of the digital net P (C) and let k be the unique element
of D(�h) ∩ K(C). Then we have

walk(xn) = ω�n·�h
p ,

because
s∑

j=1

∞∑
i=1

yj,n,ikj,i = (�kT
1 C1 + · · · + �kT

s Cs)�n = �hT�n.

Hence

f̃(k) =
1

pm

pm−1∑
n=0

f(xn)ω−�n·�h
p ,

where �h = C · k. The above sum may be written as

f̃(k) =
1

pm

p−1∑
nm−1=0

ω−nm−1hm−1
p · · ·

p−1∑
n1=0

ω−n1h1
p

p−1∑
n0=0

f(xn)ω−n0h0
p .
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Now, computing first the innermost sum for each h0 = 0, . . . , p−1, then the second
innermost sum for each h1 = 0, . . . , p−1 and so on yields an algorithm which needs
only O(mpm+1) operations. The details are given as follows.

Algorithm 1 (Fast Discrete Walsh transform (FWT)). For n0, . . . , nm−1 ∈ Zp

we define G(0)(n0, . . . , nm−1) = f(xn0+···+nm−1pm−1). Then for r = 1, 2, . . . , m
compute for all nr, . . . , nm−1 ∈ Zp and all h0, . . . , hr−1 ∈ Zp the sums

(2.3) G(r)(h0, . . . , hr−1, nr, . . . , nm−1)

=
p−1∑

nr−1=0

ω−nr−1hr−1
p G(r−1)(h0, . . . , hr−2, nr−1, nr, . . . , nm−1).

For k ∈ K(C) with C · k = �h let

f̃(k) =
1

pm
G(m)(h0, . . . , hm−1).

Note that in each step one needs O(pm+1) operations, and as there are m steps,
one needs O(mpm+1) operations altogether. Note also that the number of terms in
the summation on the right side of (2.3) is p, which is a prime number. The index
nr−1 = 1, . . . , p − 1 (and hr−1) forms a group under the multiplication modulo p.
Thus, following the ideas of Rader’s algorithm [18], we can rewrite the indices as
nr−1 = gα mod p and hr−1 = gβ mod p, where g is a primitive root of this group,
and α = 0, . . . , p − 2, β = 0, . . . , p − 2. By applying Rader’s algorithm, we can
further reduce the total number of steps to O(mpm log p) [18].

3. Function interpolation

In this section we consider multivariate spline interpolation over digital nets
using the discrete Walsh coefficients described in the previous section. Multivariate
spline interpolation over lattice rules was considered in [29]. See also [23] for more
information on properties of splines.

3.1. Reproducing kernel Walsh space. Before we introduce the interpolation
algorithm we introduce reproducing kernel Hilbert spaces based on Walsh functions;
see [6]. In the following we define the weighted Hilbert space HK based on Walsh
functions.

Consider the set of functions

H0,K =

⎧⎨⎩f : f(x) =
n′−1∑
i=0

αiK(x, x′
i) : n′ ∈ N0, αi ∈ R, {x′

i}n′−1
i=0 ⊂ [0, 1)s

⎫⎬⎭ ,

defined in terms of a symmetric, positive definite kernel function K : [0, 1)2s → C.
The kernel allows us to define an inner product on H0,K as

〈f, g〉 =
nf−1∑
i=0

ng−1∑
j=0

αiβjK(x′
i, y

′
j)

for any two functions f =
∑nf−1

i=0 αiK(·, x′
i) and g =

∑ng−1
i=0 βiK(·, y′

i). The linear
space H0,K may then be completed to obtain a Hilbert space, HK , for which K, is
the reproducing kernel (see [1]),

K(·, y) ∈ HK , f(y) = 〈K(·, y), f〉 ∀y ∈ [0, 1)s, ∀f ∈ HK .
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The kernel functions considered here are based on Walsh functions and may be
written as

K(x, y) = K(x 	 y,0) =
∑

k∈Ns
0

K̂(k)walk(x 	 y),

where positive definiteness is ensured by requiring K̂(k) to be real and non-negative
for all k ∈ Ns

0. The finiteness of this kernel is ensured by requiring that K̂ be
summable. The inner product for the Hilbert space defined by this kernel may be
written as an �2 inner product in the spectral domain:

〈f, g〉HK
=

∑
k∈Ns

0

f̂(k)ĝ(k)

K̂(k)
=

〈
f̂√
K̂

,
ĝ√
K̂

〉
2

where f̂ and ĝ are the Walsh coefficients of f and g. The accompanying norm is
‖f‖HK

= 〈f, f〉1/2
HK

.

3.2. Interpolation of functions in the Walsh space. We now interpolate
functions in HK using a linear combination of the reproducing kernel function
where the second variable is fixed, K(·, xn), n = 0, . . . , pm − 1, and where the
xn are points taken from a digital net, P(C). Given the values of a function
f(xn), n = 0, . . . , pm − 1, one can approximately recover it by a spline, defined
as

Sf(x) =
pm−1∑
n=0

cnK(x, xn),

where the cn are the coefficients to be found by interpolation: f(xn) = Sf(xn) for
n = 0, . . . , pm − 1. This translates into solving the linear system

f(xn) =
pm−1∑
v=0

cvK(xn, xv) for n = 0, . . . , pm − 1,

for the coefficients c0, . . . , cpm−1 given the f(xn) and K(xn, xv). In the following
paragraphs we show that the cn can be computed in O(mpm log p) operations. See
[30] for an analogue for lattice rules in the context of Fredholm integral equations
of the second kind.

First observe that for any k ∈ K(C) the DWT of the function data is

f̃(k) =
1

pm

pm−1∑
n=0

f(xn)walk(xn) =
1

pm

pm−1∑
n=0

Sf(xn)walk(xn)

=
1

pm

∑
l∈Ns

0

K̂(l)
pm−1∑
r=0

crwalk(xr)
pm−1∑
n=0

wall(xn)walk(xn)

= pm
∑

d∈D(C)

K̂(k ⊕ d)c̃(k) = pmK̃(k)c̃(k),(3.1)

where c̃(k) = p−m
∑pm−1

n=0 cnwalk(xn) is the DWT of the coefficients, (cn)pm−1
n=0 ,

and K̃(k) =
∑

l∈D(C) K̂(k ⊕ l) is the DWT of the kernel data, (K(xn,0))pm−1
n=0 .
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This implies that the DWT of the coefficients is essentially the quotient of the
DWTs of the function data and the kernel data:

(3.2) c̃(k) =
f̃(k)

pmK̃(k)
.

Using the FWT algorithm we can compute all (f̃(k))k∈K(C) and (K̃(k))k∈K(C), and
hence (c̃(k))k∈K(C) in O(mpm log p) operations. To compute c0, . . . , cpm−1 requires
the inversion of the DWT, which is introduced in the next section.

3.3. Fast inverse discrete Walsh transform. The following lemma gives the
key to the inverse discrete Walsh transform over a digital net.

Lemma 3.1. Let P (C) = {x0, . . . , xpm−1} be a digital net with pm points. Let
c0, . . . , cpm−1 be arbitrary complex numbers and let (c̃(k))k∈K(C) denote the DWT
of (cn)pm−1

n=0 . Then for n = 0, . . . , pm − 1 the coefficients are

cn =
∑

k∈K(C)

c̃(k)walk(xn).

Proof. The sum on the right side of the above equation is∑
k∈K(C)

c̃(k)walk(xn) =
pm−1∑
v=0

cv
1

pm

∑
k∈K(C)

walk(xv)walk(xn)

=
pm−1∑
v=0

cv
1

pm

∑
k∈K(C)

walk(xn 	 xv).

The definition of the Walsh function and the net imply that walk(xn 	 xv) =

walk(xn�v) = ω
(�n��v)·�h
p , where k ∈ D(�h) ∩ K(C). Thus we have

1
pm

∑
k∈K(C)

walk(xn 	 xv) =
1

pm

∑
�h∈Zm

p

ω(�n��v)·�h
p

and the last sum is 1 if �n = �v, i.e. n = v, and 0 otherwise. Hence the result
follows. �

The above lemma describes the inversion of the discrete Walsh transform which
we might call the inverse discrete Walsh transform. As for the discrete Walsh
transform, there is also a fast inversion of the discrete Walsh transform which we
describe in the following.

Algorithm 2 (Fast Inverse Discrete Walsh Transform (FIWT)). For h0, . . . , hm−1

∈ Zp we define D(0)(h0, . . . , hm−1) = c̃(k) where k ∈ D(�h) ∩ K(C). Then for
r = 1, 2, . . . , m compute for all hr, . . . , hm−1 ∈ Zp and all n0, . . . , nr−1 ∈ Zp the
sums

D(r)(n0, . . . , nr−1, hr, . . . , hm−1)

=
p−1∑

hr−1=0

ωhr−1nr−1
p D(r−1)(n0, . . . , nr−2, hr−1, hr, . . . , hm−1).

Then for n = 0, . . . , pm − 1 with n = n0 + · · · + nm−1p
m−1 let

cn = D(m)(n0, . . . , nm−1).
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Hence c0, . . . , cpm−1 can also be computed from (c̃(k))k∈K(C) in O(mpm+1) op-
erations. As with the FWT algorithm, this number of operations can be further
reduced to O(mpm log p) if we apply Rader’s algorithm. Thus the spline interpo-
lation at a point, Sf(x), can be computed in O(mpm log p) operations, and each
additional point can be computed in O(pm) operations.

3.4. Best possible interpolation. Splines as defined above provide optimal in-
terpolation of a function in at least two senses. The spline approximation is the
smallest function in HK that interpolates the data

Sf = min
g∈HK

g(xi)=f(xi), i=0,...,pm

‖g‖HK
.

Moreover, the spline algorithm is the best linear algorithm, i.e., algorithm of the
form Af =

∑n−1
i=0 f(xi)wi(x) for any choice of the wi(x):

Sf(x) = argmin
Af

sup
‖f‖H(K)≤1

|f(x) − Af(x)| .

The proofs of these assertions are contained in [8, Chapter 18] and elsewhere.

4. ANOVA decomposition of the interpolation

Based on the spline interpolation of a function, one can also approximate its
analysis of variance (ANOVA) effects, i.e., the pieces of the function depending on
a subset of the s variables. This provides a way to estimate the truncation and
superposition dimensions of functions via their spline interpolations.

Let 1 : s denote the set of coordinate indices, {1, . . . , s}, for short. Let u denote
a subset of 1 : s and let ū denote 1 : s \ u. For any x ∈ [0, 1]s, let xu = (xj)j∈u

denote the vector of coordinates indexed by u. The ANOVA decomposition [7, 22]
of a function f : [0, 1]s −→ R, is denoted

(4.1a) f(x) =
∑

u⊆1:s

fu(xu),

where the ANOVA effect, fu, is defined recursively by taking the integral over [0, 1]ū

and then subtracting the lower order effects:

(4.1b) f∅ =
∫

[0,1]s
f(x) dx, fu(xu) =

∫
[0,1]ū

f(x) dxū −
∑
v⊂u

fv(xv).

We emphasize that ⊂ on the right side of this last equation denotes the proper
subset. Also, [0, 1]u denotes the Cartesian product of |u| copies of [0, 1], where |u|
is the cardinality of u.

The ANOVA effects, fu, of the function f ∈ HK lie in subspaces, HKu
for kernels

constructed appropriately. The kernels Ku are products of a univariate kernel, K ′.
The kernel K ′ for univariate functions is defined as

K ′(x, y) = K ′(x 	 y, 0) =
∞∑

k=1

K̂ ′(k)walk(x 	 y),

where the Walsh coefficients of the kernel must be non-negative. One reasonable
choice is

K̂ ′(k) =
pα − p

pα(p − 1)
p−αa
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for k = k0 +k1p+ · · ·+kapa ∈ N with ka �= 0, and where α > 1 is a parameter that
measures the digital smoothness of the kernel. These Walsh coefficients have been
normalized so that

K ′(x, x) = K ′(0, 0) =
∞∑

k=1

K̂ ′(k) = 1.

Because K ′ does not include the constant function, i.e., K̂ ′(0) = 0 implicitly, it
follows that

∫ 1

0
K ′(x, y) dy = 0. A computable short form of K ′ can be obtained

[6], namely for x = x1p
−1 +x2p

−2 + · · · and y = x1p
−1 +x2p

−2 + · · ·+xi−1p
−i+1 +

yip
−i + yi+1p

−i−1 + · · · with yi �= xi we have

K ′(x, y) = K ′(x 	 y, 0) = 1 − pi(1−α) p
α − 1
p − 1

.

The kernel for functions of s variables is a product involving K ′, namely,

K(x, y) = K(x 	 y,0) =
∑

k∈Ns
0

K̂(k)walk(x 	 y)

=
s∏

j=1

[1 + γjK
′(xj , yj)] =

s∏
j=1

[1 + γjK
′(xj 	 yj , 0)]

=
∑

u⊆1:s

γuKu(xu, yu) =
∑

u⊆1:s

γuKu(xu 	 yu,0),

where the tuning parameter γu has a product form,

γu =
∏
j∈u

γj , γ∅ = 1,

and the Walsh coefficients of these multivariate kernels have expressions in terms
of the Walsh coefficients of K ′:

K̂(k) =
s∏

j=1

[δkj ,0 + γjK̂ ′(kj)] =
∑

u⊆1:s

γuK̂u(ku)δkū,0
,

Ku(xu, yu) = Ku(xu 	 yu,0) =
∑

ku∈Nu
0

K̂u(ku)walku(x 	 y)

=
∏
j∈u

K ′(xj , yj) =
∏
j∈u

K ′(xj 	 yj , 0),

K̂u(ku) =
∏
j∈u

K̂ ′(kj), K̂∅ = 1.

The spline approximation via this kernel may be expressed as the sum of its
ANOVA effects:

Sf(x) =
pm−1∑
n=0

cnK(x, xn) =
pm−1∑
n=0

cnK(x 	 xn,0) =
∑

u⊆1:s

(Sf)u(xu),

where these ANOVA effects are written in terms of the kernels Ku:

(4.2) (Sf)u(xu) = γu

pm−1∑
n=0

cnKu(xu, xn,u) = γu

pm−1∑
n=0

cnKu(xu 	 xn,u,0).
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These (Sf)u may be verified as the ANOVA effects of Sf defined in (4.1) by noting
that

∫ 1

0
K ′(x, y) dy = 0 for all x.

The special form of the reproducing kernel defined here facilitates the calculation
of the variance of (Sf)u, denoted σ2((Sf)u). Noting that for |u| > 0, (Sf)u has
zero mean, it follows that

σ2((Sf)u) =
∫

[0,1]u

[
Sfu(xu) −

∫
[0,1]u

Sfu(x′
u)dx′

u

]2

dxu

=
∫

[0,1]u
[Sfu(xu)]2dxu

= γ2
u

pm−1∑
n,v=0

cncv

∫
[0,1]u

Ku(xu, xn,u)Ku(xu, xv,u) dxu

= γ2
u

pm−1∑
n,v=0

cncv

∏
j∈u

∫ 1

0

K ′(xj , xn,j)K ′(xj , xv,j) dxj .

Substituting the Walsh expansions of the univariate kernels in the above integral
and noting that the Walsh functions are orthogonal yields an expression for the
integral in terms of a related univariate kernel:∫ 1

0

K ′(xj , xn,j)K ′(xj , xv,j) dxj = R′(xn,j , xv,j),

where

R′(x, y) = R′(x 	 y, 0) =
∞∑

k=0

R̂′(k)walk(x 	 y), R̂′(k) =
[
K̂ ′(k)

]2

,

R̂′(0) = 0 and R̂′(k) =
[

pα − p

pα(p − 1)

]2

p−2αa

for k = k0 + k1p + · · · + kapa ∈ N with ka �= 0. Moreover, as is the case for K ′,
there is a computationally simple form for R′ as well. For x = x1p

−1 +x2p
−2 + · · ·

and y = x1p
−1 + x2p

−2 + · · · + xi−1p
−i+1 + yip

−i + yi+1p
−i−1 + · · · with yi �= xi

we have

R′(x, y) = R′(x 	 y, 0) =
(pα − p)2

(p − 1)(p2α − p)

[
1 − pi(1−2α) p

2α − 1
p − 1

]
.

The product of the univariate kernels R′ is then used to define the kernels Ru:

Ru(xu, yu) = Ru(xu 	 yu,0) =
∏
j∈u

R′(xj , yj) =
∑

k∈Nu
0

R̂u(ku)walku
(xu 	 yu),

R̂u(ku) =
∏
j∈u

R̂′(kj).

This definition allows the variance of (Sf)u to be written in terms of the kernel Ru:

σ2((Sf)u) = γ2
u

pm−1∑
n,v=0

cncvRu(xn,u, xv,u).

The sum above may be evaluated naively using O(p2m) operations. However,
using the FWT allows evaluation with only O(mpm log p) operations. First, the
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spline coefficients, cn and cv are written in terms of their inverse discrete Walsh
transform coefficients via Lemma 3.1:

σ2((Sf)u) = γ2
u

pm−1∑
n,v=0

∑
k∈K(C)

c̃(k)walk(xn)
∑

l∈K(C)

c̃(l)wall(xv)Ru(xn,u, xv,u)

= γ2
u

∑
k,l∈K(C)

c̃(k)c̃(l)
pm−1∑
n,v=0

Ru(xn,u 	 xv,u,0)walk(xn)wall(xv).

The double sum of the kernel Ru may be further simplified by applying certain
elementary properties of Walsh functions for any k, l ∈ K(C):

pm−1∑
n,v=0

Ru(xn,u 	 xv,u,0)walk(xn)wall(xv)

=
pm−1∑
n,v=0

Ru(xn,u 	 xv,u,0)walk(xn 	 xv,u)walk�l(xv)

=
∑

x∈P (C)

Ru(xu,0)walk(x)
pm−1∑
n,v=0

walk�l(xv) = p2mδk,lR̃u(k)

where the DWT of Ru is

R̃u(k) =
1

pm

∑
x∈P (C)

Ru(xu,0)walk(x).

Substituting the formula for the double sum of the kernel Ru in terms of its DWT
yields

(4.3) σ2((Sf)u) = γ2
up2m

∑
k∈K(C)

|c̃(k)|2 R̃u(k).

Since the DWT of the spline coefficients and Ru may each be calculated in
O(mpm log p) operations by the FWT algorithm, it follows that each σ2((Sf)u)
may be calculated in O(mpm log p) operations.

Calculating the variances of all the Sfu may be too burdensome, since there are
2s ANOVA effects. However, sums of the σ2((Sf)u) are useful for determining the
effective dimension of f [3], which is an important factor in the performance of
quasi-Monte Carlo methods.

The truncation variance of order d, denoted σ2
trc(f ; d) is defined as the sum of

the variances of all ANOVA effects involving the first d or fewer variables:

σ2
trc(f ; d) =

∑
u⊆1:d

σ2(fu).

The superposition variance of order d, denoted σ2
sup(f ; d) is defined as the sum of

the variances of all ANOVA effects involving d or fewer variables:

σ2
sup(f ; d) =

∑
0<|u|≤d

σ2(fu).
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It follows from these two definitions that the truncation variance is no more than
the superposition variance, and for all d between 0 and s,

0 = σ2
trc(f ; 0) = σ2

sup(f ; 0) ≤ σ2
trc(f ; d) ≤ σ2

sup(f ; d)

≤ σ2
trc(f ; s) = σ2

sup(f ; s) = σ2(f).

The truncation dimension, dtrc, and the superposition dimension, dsup are defined
as the smallest dimensions for which the truncation and superposition variances,
respectively, are 99% of the total variance of the function, i.e.,

σ2
trc(f ; dtrc − 1) < 0.99σ2(f) ≤ σ2

trc(f ; dtrc),

σ2
trc(f ; dsup − 1) < 0.99σ2(f) ≤ σ2

sup(f ; dsup).

The truncation and superposition dimensions of a function may be estimated by
the truncation and superposition dimensions of their spline approximations. To do
this requires computationally efficient formulas for the truncation and superposition
variances. The truncation variance may be written as

σ2
trc(Sf ; d) =

∑
u⊆1:d

σ2((Sf)u) =
∑

u⊆1:d

γ2
up2m

∑
k∈K(C)

|c̃(k)|2 R̃u(k)

= p2m
∑

k∈K(C)

|c̃(k)|2 R̃d(k),

where R̃d is the DWT of the kernel Rd defined as

Rd(x, y) = Rd(x 	 y,0)

=
∑

u⊆1:d

γ2
uRu(xu, yu) =

∑
u⊆1:d

γ2
uRu(xu 	 yu,0)

=
d∏

j=1

[1 + γ2
j R′(xj , yj)] =

d∏
j=1

[1 + γ2
j R′(xj 	 yj , 0)].

By convention R(x, y) is defined as Rs(x, y). Note that the total variance of the
spline approximation to f is given by taking d = s above:

(4.4) σ2(Sf) = p2m
∑

k∈K(C)

|c̃(k)|2 R̃(k) = p2m
∑

k∈K(C)

|f̃(k)|2 R̃(k)

|K̃(k)|2
,

where (3.2) has been used.
For γj of the form βγ̃j and thus γu = β|u|γ̃u the DWT R̃(k) may be written as

an s-degree polynomial in β2 with vanishing constant term:

R(x, y) = R(x 	 y,0) =
s∑

j=1

β2j
∑

u⊆1:s
|u|=j

γ̃2
uRu(xu 	 yu,0),

R̃(k) =
s∑

j=1

β2jQ̃(k, j),
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where the Q̃(k, j) are the coefficients of this polynomial in β2 and are given by

Q̃(k, j) = γ̃2
u

∑
u⊆1:s
|u|=j

R̃u(k).

The coefficients Q̃(k, j) may be obtained by evaluating R̃(k) at s different values
of β2, and then performing polynomial interpolation, a relatively inexpensive pro-
cedure requiring O(s2) operations. These Q̃(k, j) may then be used to evaluate the
superposition variance as follows:

σ2
sup(f ; d) =

∑
0<|u|≤d

σ2((Sf)u) =
∑

0<|u|≤d

γ2
up2m

∑
k∈K(C)

|c̃(k)|2 R̃u(k)

= p2m
∑

k∈K(C)

|c̃(k)|2
∑

0<|u|≤d

β2|u|γ̃2
uR̃u(k)

= p2m
∑

k∈K(C)

|c̃(k)|2
d∑

j=1

β2jQ̃(k, j)

= σ2
sup(f ; d − 1) + p2mβ2d

∑
k∈K(C)

|c̃(k)|2 Q̃(k, d).

Thus, both the truncation and superposition dimensions may be evaluated via the
FWT algorithm using O(s2mpm log(p)) operations.

5. Numerical results

5.1. Optimization of the kernel parameters. The γj are weights in the ANOVA
decomposition of the kernel and α controls the rate of decay of Fourier coefficients
of the kernel. Their optimal values for spline interpolation depend on the partic-
ular function f to be interpolated. Assume that p = 2, and assume that we have
a digital net with 2N points, {x0, . . . ,x2N−1}, whose first N points themselves
constitute a digital net, as do the second N points. We can construct the spline
interpolant by the values of f(xn) for n = 0, . . . , N −1, and then estimate the error
of the spline by the cost function

(5.1)
2N−1∑

n=N+1

(f(xn) − Sf(xn))2.

The values of Sf(xn) for n = N, . . . , 2N−1 can be evaluated by a fast discrete Walsh
transform. There are s optimization parameters γj and the optimization process
becomes slow when s increases. In order to reduce the number of optimization
parameters, the values of γj are assumed to be of the following form in this section,

γj = βjq

where q is a new optimization parameter. Thus, for any s, there are only three
optimization parameters: β, α and q. Their optimal values in Sections 5.2 and 5.3
were found by optimizing (5.1) using the function fminsearch in MATLAB.
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Table 1. The effective dimensions of the multiplicative functions

ak s dtrc dsup

Exact Wang & Fang Spline Exact Wang & Fang Spline
10 10 10 10 3 - 2

1 20 20 20 20 5 - 2
40 40 39 40 8 - 2
10 10 10 10 2 – 2

k 20 18 19 18 2 – 2
40 33 34 31 2 – 2
10 5 5 5 2 - 2

k2 20 5 5 5 2 - 2
40 5 5 5 2 - 2

5.2. Effective dimension of multiplicative functions. Consider a class of test
functions in [25]

f(x) =
s∏

k=1

|4xk − 2| + ak

1 + ak
,

where ak are parameters. We consider three possible choices of ak: ak = 1, ak = k
and ak = k2 for k = 1 . . . s. The effective dimension in both senses of these functions
can be computed analytically, or estimated by the algorithm in [25]. We compare
them with the effective dimensions of the interpolating spline as described in the
previous section. Table 1 shows the results using a Sobol point set with m = 12
and p = 2, so N = 4096.

Note that dsup cannot be calculated by the method in [25]. The spline method de-
scribed in the previous section can estimate both dsup and dtrc well in all cases except
for dsup in the cases ak = 1 and s = 20, 40. Table 2 shows σ2(f) by analytical calcu-
lation and two approximations: σ2

QMC(f) = 1
N

∑N−1
n=0 f2(xn) − ( 1

N

∑N−1
n=0 f(xn))2

and σ2(Sf) by (4.4). Table 2 also shows the ratio σ2(Sf)/σ2
QMC(f) as an indicator

of how well these two approximations agree. One can prove that σ2(Sf)/σ2
QMC(f)

≤ 1. We find that the values of σ2(Sf)/σ2
QMC(f) are close to unity for most cases

but are extremely small for ak = 1, s = 20, 40. It was reported in [26] that the
errors of the numerical integration by the QMC methods were also large for these
latter cases.

5.3. Asian option pricing. The pricing of an Asian option is based on the arith-
metic average of the stock prices in a particular period of time. The payoff of the
call option at the end of period T is

payoff = max

⎛⎝1
s

s∑
j=1

Sj − K, 0

⎞⎠ ,

where Sj is the stock price at time tj = jT/s, j = 0, . . . , s, ts = T and K is the
strike price. Based on the risk-neutral valuation principle, the price of the call
option at t = 0 should be

E(e−rT payoff),
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Table 2. The variances of the multiplicative functions estimated
by a QMC method and the variances of the splines.

ak s σ2(f) σ2
QMC(f) σ2(Sf) σ2(Sf)/σ2

QMC(f)
10 1.2265 1.9990 1.0434 0.5220

1 20 3.9573 2.7 × 103 0.2692 9.9704 × 10−5

40 23.5745 2.98 × 1010 0.2393 8.0302 × 10−12

10 0.1992 0.2025 0.1960 0.9679
k 20 0.2154 0.2340 0.2073 0.8859

40 0.2246 0.3134 0.2088 0.6662
10 0.1038 0.1039 0.1037 0.9981

k2 20 0.1039 0.1040 0.1038 0.9981
40 0.1039 0.1041 0.1038 0.9971

Table 3. The estimated effective dimensions of the Asian option
pricing problem.

Wang & Fang Spline
s standard BB PCA dtrc dsup

8 7 5 2 7 2
16 14 7 2 14 2
32 27 7 2 27 2

where E(·) is the expected value of different path movements of the stock price and
r is the risk-free interest rate. The stock price movement is assumed to follow a
geometric Brownian motion,

Sj = Sj−1e(r−0.5σ2)T/s+σ
√

T/sZj ,

where σ is the volatility, and Z1, . . . , Zs are independent standard normal random
variables. See [27] for the details.

Table 3 shows the results of the estimated effective dimension in both senses for
an Asian option pricing problem with the following parameters: N = 214, S0 = K =
100, σ = 0.2, r = 0.1, and T = 1 year using a Sobol point set. The results in [25]
are also duplicated. The column “standard” is the estimated truncation dimension
of the original pricing function by their method. The columns “BB” and “PCA”
are the estimated truncation dimensions when the Brownian bridge and principle
component analysis dimension reduction methods are applied, respectively. The dtrc

of the spline are exactly the same as the results in [25]. The dsup are also the same as
the truncation dimension after applying PCA, which is the best dimension reduction
method in [25]. Moreover, the superposition dimension dsup = 2 is consistent with
the analytical results in [27]. The variances of the discounted payoff for the Asian
option pricing problem computed by the sample variance and the variance of the
spline are shown in Table 4, which indicate that the accuracy of the spline for
estimating effective dimension should be reasonably good.
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Table 4. The variances of the Asian option price problem esti-
mated by a QMC method and the variances of the splines.

s σ2
QMC(f) σ2(Sf) σ2(Sf)/σ2

QMC(f)
8 70.3669 69.4148 0.9865
16 71.6402 69.0217 0.9634
32 72.6395 67.8101 0.9335

6. Conclusion and remarks

A fast discrete Walsh transform over digital nets is derived in this article. This
transform can be applied to reduce the cost of calculating the discrete Walsh coef-
ficients from O(N2) to O(N log N). Because the kernel used is piecewise constant,
the spline interpolant based on this kernel may not be particularly accurate. How-
ever, the spline interpolant does facilitate the estimation of coarser quantities, such
as the variances of the ANOVA effects and the effective dimension of the function.
The numerical results for two different families of functions are compared with the
analytical results and the results from the literature showing that the estimation
of effective dimension via the spline is accurate and efficient.

Finally, we would like to add two remarks. The function values in our interpola-
tion method were sampled over a digital net, which was originally constructed for
numerical quadrature. Sparse grids [2] are another sampling scheme and approx-
imation method that can be applied to both numerical quadrature and function
interpolation. Both methods can be classified as a priori grid optimization [2].
However, the point sets are based on different criteria. Digital nets minimize the
discrepancy of the point set [14], while the sparse grid is selected based on the
importance of the components in a tensor product of hierarchical function spaces.
Sparse grids use O(h−1 (log h−1)s−1) points where h is the mesh size in each di-
mension. This number is substantially smaller than O(h−s), the number of points
needed for an ordinary grid, but the number of points for a sparse grid increases
exponentially with dimension for a given mesh size. On the other hand, there exist
digital nets with N = pm points for m = 0, 1, . . ., independent of the dimension s.
Error bounds have been developed for sparse grid methods. An error analysis of
the spline algorithm for digital nets is the object of future work.

The second remark is that the fast algorithms in this paper are due to the cor-
respondence between the point set and the kernel. In [29], a similar technique was
applied to integration lattices and the fast Fourier transform (FFT). For computer
experiments, one typically has control over where to sample the underlying func-
tion, but for some problems of approximating a function based on observational
or field data, the locations of the points where the function is sampled cannot be
selected in advance. Such problems are suited to the Nonequidistant Fast Fourier
Transform (NFFT) pioneered by Potts [17]. The NFFT provides a fast and rela-
tively accurate, but only approximate, discrete Fourier transform of the data. The
FFT applied to data sampled on an integration lattice and the Fast Walsh Trans-
form (FWT) introduced here applied to data sampled on digital nets both provide
fast discrete transforms with accuracy only limited by machine precision.
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