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EXPONENTIAL SPLITTING FOR UNBOUNDED OPERATORS

ESKIL HANSEN AND ALEXANDER OSTERMANN

Abstract. We present a convergence analysis for exponential splitting meth-
ods applied to linear evolution equations. Our main result states that the
classical order of the splitting method is retained in a setting of unbounded
operators, without requiring any additional order condition. This is achieved
by basing the analysis on the abstract framework of (semi)groups. The con-
vergence analysis also includes generalizations to splittings consisting of more
than two operators, and to variable time steps. We conclude by illustrat-
ing that the abstract results are applicable in the context of the Schrödinger
equation with an external magnetic field or with an unbounded potential.

1. Introduction

In this paper, we are concerned with approximating the solution of the linear
evolution equation

(1.1) u̇ = Lu = (A + B)u, u(0) = u0,

where L, A and B are unbounded operators. As a numerical method, we will
employ an s-stage exponential splitting scheme, based on the linear operator

(1.2) S =
s∏

j=1

eγjhAeδjhB.

The numerical solution after one step of size h ∈ R is defined by Su0, and it
approximates the exact solution u(h) = ehLu0 of the problem. The idea behind the
splitting approach is that the action of the individual flows ehA and ehB on a vector
can be computed more efficiently than the corresponding quantity ehLu0. This is,
for example, the case for the Schrödinger equation with an external magnetic field
b(x) = ∇× a(x) and a real potential W (x).

The real coefficients γj and δj in (1.2) are chosen in such a way that the method
has classical order p. This is achieved by formally expanding S and ehL into Taylor
series in h and comparing the terms in the expansion up to order p. As long as the
remainders of these Taylor expansions stay moderately bounded, this concept serves
as a foundation of an error analysis. In the present study, we strive further and
develop a rigorous framework that enables the derivation of optimal convergence
orders even for unbounded operators.
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Splitting methods currently constitute a very active field. Recent surveys are
given in the monograph [7] and the article [13]. There, convergence results are
presented for the nonstiff situation with bounded operators. For unbounded oper-
ators, however, there still lacks a general convergence theory that yields optimal
convergence orders. For a brief overview of the partial results connected to the spe-
cial applications we refer to the following studies: Hyperbolic problems [2, 11, 16],
parabolic problems [4, 8, 9], and Schrödinger equations [10, 12, 18].

The outline of our paper is as follows: In Section 2, we introduce the employed
framework of C0 groups and we present our main result. It states that, under stan-
dard regularity assumptions, the classical order of the splitting method is retained
in the stiff case, without requiring any additional order condition. The crucial
step for conducting the proof is to derive a suitable consistency for unbounded
operators. This is achieved in Section 3. Generalizations to splittings involving
more than two operators, to variable step sizes and to semigroups are given in
Section 4. Two applications of our setting are given in Section 5. There we treat
the Schrödinger equation, once with an external magnetic field and once with the
harmonic potential.

2. Analytic framework and convergence

Throughout the paper, X will denote an arbitrary (complex) Banach space with
norm ‖ · ‖. The corresponding operator norm will also be referred to as ‖ · ‖.
Furthermore, p denotes the classical order of this splitting method, D(F ) denotes
the domain of an operator F in X, and C will be a generic constant which assumes
different values at different occurrences. Our analysis is built on the following two
assumptions.

Assumption 2.1. The linear (possibly unbounded) operators L, A and B, all
generate C0 groups on X, and the operators A and B satisfy in addition the bounds

‖etA‖ ≤ eω|t| and ‖etB‖ ≤ eω|t|

for some ω ≥ 0 and all t ∈ R.

We refer to [14] for an introduction to the theory of C0 groups. For splitting
methods with positive coefficients, the above assumption can be weakened to include
parabolic problems. This extension will be discussed in Section 4 below.

In our analysis, we will frequently encounter compositions of the operators A
and B that consist of exactly k factors. We will denote such terms generically by
Ek. For instance,

E3 ∈ {AAA, AAB, ABA, BAA, ABB, BAB, BBA, BBB}.
Next, we state our regularity assumption on the exact solution.

Assumption 2.2. All expressions of the form Ep+1u(t) are uniformly bounded on
the interval −T ≤ t ≤ T for some T > 0.

In our examples below, we will verify this assumption by identifying an appro-
priate subspace U ⊆ D(Lp+1) of initial values such that Ep+1etL : U → X is well
defined and Ep+1etLu0 is uniformly bounded in t ∈ [−T, T ] for any u0 ∈ U .

We are now in the position to state the main result of our paper. The theorem
below states that, under an appropriate regularity assumption, any exponential
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splitting method of classical order p will retain its order in the present framework
of unbounded operators.

Theorem 2.3. For the numerical solution of (1.1), consider an exponential split-
ting method (1.2) of classical order p. If Assumptions 2.1 and 2.2 are valid, then∥∥(

Sn − enhL
)
u0

∥∥ ≤ C |h|p , |nh| ≤ T,

where the constant C can be chosen uniformly on bounded time intervals and, in
particular, independent of n and h.

Proof. By applying the telescopic identity we obtain

(
Sn − enhL

)
u0 =

n−1∑
ν=0

Sn−ν−1
(
S − ehL

)
eνhLu0.

Assumption 2.1 yields at once the stability bound ‖S‖ ≤ ecω|h|, with a constant
c that only depends on the coefficients of the method. If we assume, for the time
being, that the consistency bound

(2.1)
∥∥(

S − ehL
)
eνhLu0

∥∥ ≤ C |h|p+1

is valid, then the sought after error bound follows from

∥∥(
Sn − enhL

)
u0

∥∥ ≤ ecωT
n−1∑
ν=0

∥∥(
S − ehL

)
eνhLu0

∥∥ ≤ C |h|p .

The desired consistency bound (2.1) will be derived in the next section. �

3. Consistency proof

One of the main difficulties when proving convergence of splitting schemes in
the context of unbounded operators is to establish a suitable consistency. We will
present here a general methodology to derive consistency bounds of the form (2.1)
for splittings of arbitrary order.

We start by introducing some useful notation and terminology. For a linear
operator F : D(F ) ⊆ X → X generating a C0 group and a scalar h ∈ R, we define
the (possibly unbounded) operator f = hF , and the bounded operators ϕ0 = ef

and

ϕk =
∫ 1

0

e(1−τ)f τk−1

(k − 1)!
dτ, for k ≥ 1.

Henceforth, we will always denote these bounded operators by the corresponding
greek letters. From this definition it is straightforward to prove the recurrence
relation

(3.1) ϕk = 1

k!
I + fϕk+1, k ≥ 0.

This relation will be a key tool for our analysis. An immediate implication is that
the operator fϕk : X → X is bounded for all k ≥ 1, and as F is densely defined on
X one also obtains that the commutation

fϕk = ϕkf

is well defined on the whole space X. Hence, ϕkf : X → X, with k ≥ 1, is a
bounded operator as well.
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With the syntax at hand, we define

a = γhA, b = δhB, and � = hL,

for γ, δ ∈ R, and the corresponding operators αk, βk, λk. When required, we also
use the more precise notation

a[j] = γjhA and b[j] = δjhB.

The related operators are then denoted by α
[j]
k and β

[j]
k . Via the recurrence relation

(3.1), we derive the following algebraic relations which we collect for later use.

Lemma 3.1. For k ≥ 1, the following assertions hold:

(i) αk = 1

k!
α0 +

(
αk+1 − 1

k!
α1

)
a.

(ii) βk = 1

k!
β0 +

(
βk+1 − 1

k!
β1

)
b.

Proof. This follows at once from (3.1) by expressing the identity from the corre-
sponding relation for k = 0, i.e. I = α0 − α1a in the first assertion. �

Lemma 3.2. For m ≥ 0 and k ≥ 1, the following assertions hold:
(i) αkaβm = αkβma + αkaβm+1b − αkβm+1ba on D(A).
(ii) βkbαm = βkαmb + βkbαm+1a − βkαm+1ab on D(B).

Proof. The first assertion follows from (3.1) and the identities

αka
(
βm − βm+1b

)
= 1

m!
αka = αk

(
βm − βm+1b

)
a

on D(A), and the second one is proven in the same way. �

Lemma 3.3. For any q ≥ 0, the following identity holds on D(Lq+1):

I −
q∑

m=0

(−1)m

m!
hmLmλ0 = hq+1

q∑
m=0

(−1)m+1

m!
λq−m+1L

q+1.

Proof. This identity follows by a simple induction argument. For q = 0, the asser-
tion reduces to I − λ0 = −λ1�, which is again (3.1) for k = 0.

In the induction step, we obtain

I −
q+1∑
m=0

(−1)m

m!
hmLmλ0 = hq+1

q+1∑
m=0

(−1)m+1

m!
λq−m+1L

q+1.

Using once more (3.1), namely in the form

λq−m+1 = 1

(q − m + 1)!
I + λq−m+2hL,

gives the desired result. �

We are now in the position to prove the consistency bound (2.1).

Theorem 3.4. Under Assumptions 2.1 and 2.2, we have the consistency bound∥∥(
S − ehL

)
eνhLu0

∥∥ ≤ C |h|p+1

with a constant C that can be chosen uniformly on bounded time intervals and, in
particular, independent of ν and h.
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Proof. First, replace all factors of the time stepping operator S for which the pa-
rameters γj or δj are equal to zero by identities. If the number of stages s is rescaled,
we obtain one of the following three principle types of time stepping operators:

S =

⎧⎪⎨
⎪⎩

α
[1]
0 β

[1]
0 . . . α

[s]
0 β

[s]
0 ,

β
[1]
0 . . . α

[s]
0 β

[s]
0 ,

α
[1]
0 β

[1]
0 . . . α

[s]
0 .

Without any loss of generality, we will assume that S is of the first type.
As a technical tool, we will need linear combinations of operators of the form

Tm,q = α[1]â[1]β[1]b̂[1] . . . α[s]â[s]β[s]b̂[s]Eq,

with â[k] = a[k] or â[k] = I, and b̂[k] = b[k] or b̂[k] = I. The first index m of Tm,q

is the number of operators â[k] and b̂[k] which are not equal to I. Again, we have
used a generic notation that captures the essential features of these operators. As
a minor technical convention, operators of the form Tm,q with b̂[s] = b[s] are by
definition interpreted as being of the form Tm−1,q+1 when 0 ≤ q ≤ p. The order of
an operator of the form Tm,q is defined as

ord Tm,q = m + q,

and any linear combination of operators of the form Tm,q will be denoted by Tm,q.
The main step of our proof will be to write

ehL =
(
SQ + hp+1R

)
ehL

with appropriate operators Q and R. For this purpose, we consider the represen-
tation

I =
s∏

j=1

(
α

[j]
1 − α

[j]
2 a[j]

)(
β

[j]
1 − β

[j]
2 b[j]

)

which follows again from (3.1). Writing out this product yields a linear combination
of operators of the form Tm,0 and Tm,1. The idea is now to transform these operators
into terms of the form hrSEr, with 0 ≤ r ≤ p, or into remainder terms of the form
hp+1Tk,p+1, with 0 ≤ k ≤ 2s − 1. This is achieved by iteratively applying the
following two reduction steps.
Step 1. For every term of the form T0,r with 0 ≤ r ≤ p, apply Lemma 3.1 from the

left to the first operator αk or βk, with k > 0. This procedure replaces the
old term with a new T0,r term and two additional terms of the form T1,r

or T0,r+1. Applying this procedure, at most 2s times, yields one SEr term
and higher order terms of the form T1,r or T0,r+1.

Step 2. For every term of the form Tm,q, with m ≥ 1 and q ≤ p, apply Lemma 3.2
to the first sequence αaβ or βbα found from the right. Denote the index of
the encountered a or b by µ. This replacement procedure generates three
terms. One of them is either of the form Tm−1,q+1 or Tm,q, where terms
of the latter form have the operator a or b shifted to a position with index
greater than µ, i.e., to the right. The remaining two terms are either of the
form Tm,q+1 or Tm+1,q, both of higher order with a new operator a or b
created in a position with index greater than µ. Repeating this procedure
a finite number of times eventually reduces the operator Tm,q to a linear
combination of operators of the form T0,r with q+1 ≤ r ≤ p and remainder
terms of the form Tk,p+1 with 0 ≤ k ≤ 2s − 1.
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As we are increasing the order in all steps, the whole procedure will, after a finite
number of iterations, produce the following representation

(3.2) I =
p∑

q=0

hqSEq + hp+1
2s−1∑
k=0

Tk,p+1,

where Eq denotes a certain linear combination of operators of the type Eq. Multi-
plying this relation from the right with ehL gives

(3.3) S − ehL = S
(
I −

p∑
q=0

hqEqehL
)
− hp+1

2s−1∑
k=0

Tk,p+1ehL.

As all resulting operators of the form α[1]â[1]β[1]b̂[1] . . . α[s]â[s]β[s]b̂[s] are bounded
on X, the consistency bound follows from Assumption 2.2, whenever

(3.4) I −
p∑

q=0

hqEqehL = hp+1PEp+1ehL

for some bounded operator P : X → X. If we merely consider the current proof for
the nonstiff case (let for example L, A and B be matrices of a fixed size), it follows
by (3.3) that

e−hL −
p∑

q=0

hqEq =
(
I −

p∑
q=0

hqEqehL
)
e−hL = O(hp+1),

as the splitting method is of classical order p. Recall that terms Eq are polyno-
mials in A and B of degree q. Thus, by a Taylor expansion of e−hL, one has the
identification

Eq = (−1)q

q!
Lq

for the terms in (3.2). As this equality is a pure algebraic relation, it is also valid for
the general case with unbounded operators. The desired relation (3.4) now follows
via Lemma 3.3. �

Remark 3.5. It seems to be more natural (and also simpler) to start the above proof
with the identity

I =
s∏

j=1

(
α

[j]
0 − α

[j]
1 a[j]

)(
β

[j]
0 − β

[j]
1 b[j]

)
.

Indeed, this is possible for s = 1 and for the Strang splitting. In general, however,
the arising term containing

α1a β0α0β0

cannot be reduced, as α1β0aα0β0 is unbounded; see Lemma 3.2.

We close this section with an example that illustrates the ideas of the above
proof for a concrete situation. We choose s = 1 and γ1 = δ1 = 1 which corresponds
to the first order exponential Lie splitting

S = ehAehB = α0β0.

Expanding the product I = (α1 − α2a)(β1 − β2b) gives the terms

α1β1 − α2aβ1 − α1β2b + α2aβ2b
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of the forms T0,0, T1,0, T0,1, and T1,1, respectively. Note that in this particular case,
one can derive a shorter proof by using the expansion presented in Remark 3.5. Even
so, we omit this as it does not illuminate our proof technique.

We start by applying the reduction step 1 to the terms of the form T0,r, i.e.,
α1β1 and −α1β2b. First,

α1β1 = α0β1 + α2aβ1 − α1aβ1,

which results in a new T0,0 term and two new T1,0 terms. Applying this reduction
once more to the newly created T0,0 term gives a desired term SE0 and two new
T0,1 terms, as

α0β1 = α0β0 + α0β2b − α0β1b.

Summing up gives us the representation

α1β1 = α0β0 + α0β2b − α0β1b + α2aβ1 − α1aβ1.

Applying reduction step 1 twice to the term −α1β2b yields

−α1β2b = −1

2
α0β0b − α2aβ2b + α1aβ2b − α0β3b

2 + 1

2
α0β1b

2,

and we conclude the reduction step 1 by collecting all the terms:

I = α0β0 − 1

2
α0β0b +

(
α0β2b − α0β1b

)
− α1aβ1 + α1aβ2b +

(
−α0β3b

2 + 1

2
α0β1b

2
)
.

In order to proceed with reduction step 2, we need to consider terms of the form
Tm,q with m ≥ 1 and q ≤ 1, i.e., −α1aβ1 and α1aβ2b. Applying Lemma 3.2 to the
first term gives us

−α1aβ1 = −α1β1a − α1aβ2b + α1β2ba,

and we have thereby developed a T1,0 term into three terms of the forms T0,1, T1,1,
and T0,2, respectively. By coincidence, the T1,1 term in the expansion of −α1aβ1

cancels out the term α1aβ2b, and step 2 is therefore completed. Hence, this first
iteration results in the representation

I = α0β0 − 1

2
α0β0b +

(
α0β2b − α0β1b − α1β1a

)
+

(
−α0β3b

2 + 1

2
α0β1b

2 + α1β2ba
)

= SE0 + hSE1 + hT0,1 + h2T0,2,

and we have eliminated all T0,0 terms. In the next (and final) iteration, we apply
reduction step 1 to the three terms of the form T0,1, and thereafter perform another
step 2. This finally results in the sought after representation

I = S
(
I − hL

)
+ h2

(
T0,2 + T1,2

)
.

4. Generalizations

The aim of this section is to collect some extensions to the above results. In
particular, we illustrate once more the general applicability of our approach.
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4.1. More operators. The above approach is not limited to splitting up into two
operators. It can easily be generalized to splitting methods of the form

S =
s∏

j=1

M∏
m=1

eγj,mhAm

where L = A1 + · · · + AM . The only modification required in order to extend the
consistency proof concerns Lemma 3.2. Its proof relies on representing the identity
operator by relation (3.1), which now has to be generalized. In the case of three
operators L = A + B + F , we make use of the representation

1

m!q!
I = (βm − βm+1b)(ϕq − ϕq+1f)

= βmϕq − βm+1bϕq − βmϕq+1f + βm+1bϕq+1f.

The related commutator relation is then

αkaβmϕq = αkβmϕqa + αkaβm+1bϕq + αkaβmϕq+1f − αkaβm+1bϕq+1f

− αkβm+1bϕqa − αkβmϕq+1fa + αkβm+1bϕq+1fa,

which is valid on D(A). This, together with the two other commutator relations,
enables us once again to shift operators to the right. The consistency proof therefore
follows along the same lines as in the case of two operators, and the generalization
to more than three operators is now obvious.

4.2. More general splittings. The consistency of linear combinations of expo-
nential splittings can be studied with our techniques as well. As an example,
consider the fourth order splitting

(4.1) S = 4

3
Sh

2
Sh

2
− 1

3
Sh

which is obtained by extrapolating the Strang splitting Sh = e
h
2 AehBe

h
2 A. Our

consistency proof applies to each term of (4.1) separately. We note that stability
might be a serious problem for such types of splittings. A stability result for (4.1),
however, is given in [5].

4.3. Variable step sizes. Furthermore, our approach extends at once to variable
step sizes. Consider again the case of two operators, for which the variable step
size formulation is built on the operators

(4.2) Sν =
s∏

j=1

eγjhνAeδjhνB .

The following corollary follows from the observation that the step size h only plays
the role of a parameter in the proof of the consistency.

Corollary 4.1. For the numerical solution of (1.1), consider an exponential split-
ting method (4.2) of classical order p. If Assumptions 2.1 and 2.2 are valid, then

∥∥(
Sn . . . S1 − e(h1+···+hn)L

)
u0

∥∥ ≤ C

n∑
ν=1

|hν |p+1
, |h1 + · · · + hn| ≤ T,

where the constant C can be chosen uniformly on bounded time intervals and, in
particular, independent of the chosen step size sequence.
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4.4. Semigroups. If all coefficients γj and δj are positive, then the splitting opera-
tor S can even be defined for generators of C0 semigroups. They arise, for example,
in the context of parabolic problems. We refer to [14] for an introduction to the
theory of C0 semigroups. In this setting, Theorem 2.3 can be rephrased on bounded
time intervals 0 ≤ nh ≤ T by replacing Assumption 2.2 by the following one.

Assumption 4.2. The linear operators L, A and B, all generate C0 semigroups
on X, and the operators A and B satisfy, in addition, the bounds

‖etA‖ ≤ eωt and ‖etB‖ ≤ eωt

for some ω ∈ R and all t ≥ 0.

We finally note that the positivity requirement on the coefficients restricts the
splitting method to be of second order at most; see [1]. A prominent example
of a second order method with positive coefficients is the Strang splitting where
γ1 = γ2 = 1/2, δ1 = 1 and δ2 = 0.

5. Examples

In order to exemplify how the derived convergence results may be used in prac-
tice, we will devote this section to the validation of Assumptions 2.1 and 2.2 in
the context of the Schrödinger equation with different types of potentials. A brief
background to the presented examples can be found in [3, Chapter I.A, Sections
4.3 and 6.2] and [17].

5.1. The Schrödinger equation with an external magnetic field. The wave
function u of a single negatively charged particle in R

3 exposed to a magnetic field
b(x) = ∇× a(x) and a potential W (x) = V (x) − |a(x)|2 can be modeled as

iu̇ =
(
−i∇− a(x)

)2
u + W (x)u.

Note that physical parameters, such as mass and electric charge, have been omitted
in the equation as these (real) quantities do not alter the analysis. If the vector
potential a(x) is assumed to satisfy the Coulomb condition, i.e., ∇ · a(x) = 0, we
can rewrite the above equation as u̇ = Lu = (A + B)u, with

A = i∆ and B = 2a(x) · ∇ − iV (x).

As the analysis itself is not restricted to R
3, we consider the problem on R

d, d ≥ 1,
and assume that a : R

d → R
d and V : R

d → R are real 2p times continuously
differentiable functions with bounded derivatives. The aim is now to validate As-
sumptions 2.1 and 2.2 for X = L2(Rd).

The standard approach to prove that the operators L, A and B all generate
unitary groups is to first prove that the imaginary unit i times the highest order
differential operators, i.e,

(5.1) −∆ and 2ia(x) · ∇,

are selfadjoint on X. Second, observe that the operators (5.1) remain selfadjoint
(with the same domains) when perturbed by symmetric lower order differential
operators. We refer to [3, Proposition IX.B.2.2 and Example IX.B.2.2d] for further
details. The desired generating properties of L, A and B then follow by Stone’s
theorem [14, Theorem 1.10.8].

To prove the selfadjointness of the operators (5.1), it is convenient to recall
that a densely defined and symmetric operator F on a Hilbert space is selfadjoint
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whenever the range condition R(F ± iI) = X is fulfilled [15, Theorem VIII.3].
The operators −∆ : H2(Rd) → X and 2ia(x) · ∇ : H1(Rd) → X are both densely
defined and symmetric. The latter follows simply by integrating by parts. A Fourier
transformation yields that R(−∆± iI) = X, and −∆ : H2(Rd) → X is therefore a
selfadjoint operator. Finally, we note that the closure of 2ia(x) · ∇ : H1(Rd) → X
is again symmetric and it satisfies the range condition, which is a consequence
of the general theory of symmetric hyperbolic systems [6, Theorem 3.5.2]. Hence,
2ia(x)·∇ is selfadjoint when equipped with a (possibly) larger domain than H1(Rd).

With the above results, we obtain that Assumption 2.1 is valid. Next, consider
Assumption 2.2 and choose U = H2(p+1)(Rd) = D(Lp+1). As etL : D(Lp+1) →
D(Lp+1) and the operator Ep+1 is merely a differential operator of (at most) or-
der 2(p+1), it also holds true that Ep+1etLu0 : [−T, T ] → X is uniformly bounded
for all u0 ∈ U , which validates the assumption.

5.2. The Schrödinger equation with a harmonic potential. The splitting re-
sults can also be applied to the Schrödinger equation with an unbounded potential.
To this end, consider the equation related to the harmonic oscillator,

iu̇ = −∆u + |x|2u,

which typically arises when modeling the vibrations of molecules. We have again
omitted the related physical parameters in the equation. Writing the equation in
the form u̇ = Lu = (A + B)u gives us

A = i∆ and B = −i |x|2 .

Let X = L2(Rd). The operator A : H2(Rd) → X then generates a unitary group,
as shown in the previous example, and the same trivially holds true for the operator
B : {v ∈ X : |x|2 v ∈ X} → X, as(

etBu0

)
(x) = e−it|x|2u0(x).

Next, we define the (d-dimensional) Hermite functions {Hk} as the tensor products
of their one-dimensional counterparts. The generating properties of the full opera-
tor L : {v ∈ X : Lv ∈ X} → X then follow by observing that {Hk} constitutes an
eigenbasis to L in X, and the related group can then be expressed as

(5.2) etLu0 =
∑

k

ck[u0]e−itλkHk, where u0 =
∑

k

ck[u0]Hk

and λk are the related eigenvalues. For complete proofs see [3, Section XV.5.2].
Note that the unitary property follows by Parseval’s equality. This verifies As-
sumption 2.1.

To validate Assumption 2.2, we momentarily restrict our attention to the one-
dimensional case, d = 1. Here, the Hermite functions are defined as

Hk(x) =
(−1)k√
2kk!

√
π

ex2/2Dke−x2
, for k ∈ N,

where D = d/dx. These functions are known to satisfy the relations

xHk =
√

k/2 Hk−1 +
√

(k + 1)/2Hk+1

and

DHk =
√

k/2 Hk−1 −
√

(k + 1)/2Hk+1,
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for k ≥ 0. Thus, terms of the form AHk and BHk can always be given a finite
representation in the Hermite basis. This observation yields that Ep+1 may be
characterized as

Ep+1v = lim
K→∞

Ep+1

K∑
k=0

ck[v]Hk =
∑
k∈N

ck[v]Ep+1Hk =
∑
k∈N

c̃k[v]Hk,

with new coefficients c̃k, and the domain of the operator in X is now readily

D(Ep+1) =
{
v ∈ X :

∑
k∈N

|c̃k[v]|2 < ∞
}
.

The representation (5.2) together with Parseval’s equality implies that the group
etL is invariant over D(Ep+1) for all t ∈ [−T, T ], and Assumption 2.2 is therefore
valid in R, with U = D(Ep+1). The very same argumentation can be used in R

d,
d > 1, as the higher dimensional Hermite functions are merely compositions of the
one-dimensional ones.
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