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CONVERGENT DISCRETIZATION OF HEAT AND
WAVE MAP FLOWS TO SPHERES USING

APPROXIMATE DISCRETE LAGRANGE MULTIPLIERS

SÖREN BARTELS, CHRISTIAN LUBICH, AND ANDREAS PROHL

Abstract. We propose fully discrete schemes to approximate the harmonic
map heat flow and wave maps into spheres. The finite-element based schemes
preserve a unit length constraint at the nodes by means of approximate discrete
Lagrange multipliers, satisfy a discrete energy law, and iterates are shown to
converge to weak solutions of the continuous problem. Comparative compu-
tational studies are included to motivate finite-time blow-up behavior in both
cases.

1. Introduction

Let Ω ⊂ R
d (for d ≥ 1) be a bounded domain, and S

m−1 ⊂ R
m (for m ≥ 2) the

unit sphere. The energy of a map w : Ω → S
m−1 is defined as

(1.1) E(w) =
1
2

∫
Ω

|∇w|2 dx .

Critical points are called weakly harmonic maps into the sphere [22], which are of
interest in more extended models in micromagnetics [17], liquid crystal theory [1],
color image denoising [24, 25, 27, 5, 6], or (in generalized form) in general relativity
[20]. Related prototype nonstationary problems for solutions u : ΩT → S

m−1 are:
(A) the L2-gradient flow for (1.1),

ut − ∆u = |∇u|2u in ΩT := (0, T ) × Ω ,(1.2)
∂u
∂n

= 0 on ∂ΩT := (0, T ) × ∂Ω ,(1.3)

u(0, ·) = u0 in Ω ,(1.4)

and (B) the wave map flow into the sphere S
m−1,

utt − ∆u =
(
|∇u|2 − |ut |2

)
u in ΩT ,(1.5)

∂u
∂n

= 0 on ∂ΩT ,(1.6)

u(0, ·) = u0, ∂tu(0, ·) = v0 in Ω .(1.7)

In both cases, static solutions are harmonic maps to the sphere; clearly, evolution is
different in (A) and (B). For problem (A), existence of weak solutions can be found
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in [12]; the development of singularities in finite time, i.e., lim supt→T− ‖u(t, ·)‖W 1,∞

= ∞, is shown in [13, 11] for equivariant initial data. As to problem (B), (stable
self-similar) finite-time blow-up behavior of existing weak solutions (cf. [19, 9, 26])
is known in the (3+1)-dimensional case using equivariant initial data, and existence
of (k-)equivariant solutions (with winding number k ≥ 4) in a (2+1)-dimensional
Minkowski space-time setting is known, which lead to finite-time blow-up [18, 10].

Numerical analysis of problems (A) and (B) is nontrivial for the following reasons:

1) In order to approximate (or construct in the limit) weak solutions in both
cases (A) and (B) by using fully practical schemes based on finite elements,
we cannot benefit from regularity properties of solutions in both cases, but
we need to verify crucial stability properties, like discrete sphere constraint
and discrete energy identity.

2) Straightforward spatio-temporal discretizations, together with standard fi-
nite elements violate the sphere constraint, and lack a discrete energy law;
see e.g. [3, 15].

3) Convergent penalization strategies of problems (A) and (B) which use a
Ginzburg-Landau penalty (with parameter ε > 0) to approximate the
sphere constraint allow for convergent discretizations for every ε > 0; how-
ever, to specify this parameter in terms of discretization parameters is a
nontrivial task, in particular, in the context of blow-up behavior of weak
solutions to these problems; cf. [7] for computational evidence for problem
(B).

In [3, 4], a fully practical implicit scheme is given to solve problem (A), which is
based on a reformulation of (1.2) using cross products (m = 3),

ut + u × (u × ∆u) = 0 in ΩT .

Together with reduced spatial integration, midpoint formula, as well as projected
discrete Laplacian, a lowest order conforming finite element discretization enjoys a
discrete sphere constraint and energy law, and solutions unconditionally
(sub-)converge to weak solutions; moreover, a simple fixed point strategy is pro-
posed to successively solve linear problems, whose solutions still satisfy the discrete
sphere constraint, and conditionally converge to weak solutions by a contraction ar-
gument. Unfortunately, this strategy is not successful for problem (B); instead, an
explicit time-splitting scheme was proposed for problem (B) in [7], and conditional
convergence towards weak solutions is verified; here the idea, which originally was
given in [2] in a different context, is to discretize the following reformulation of (1.5),
which uses special test-functions w ∈ C

(
[0, T ) × Ω, Rm

)
which satisfy 〈u,w〉 = 0

a.e. in ΩT , such that ∫ T

0

(∂2
t u,w) dt +

∫ T

0

(∇u,∇w) dt = 0 .

In this work, we construct different convergent discretizations for both problems
(A) and (B), which use approximate discrete Lagrange multipliers. To motivate
the approach, recall that to describe the gradient flow for (1.1) requires mappings
u : ΩT → R

m, and a Lagrange multiplier λ : ΩT → R
+, such that

ut − ∆u = λu and |u| = 1 in ΩT .
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In fact, λ = |∇u|2 is easy to verify in the present case, where the target manifold
is the sphere. The following scheme uses an approximate discrete Lagrange mul-
tiplier to enforce both the discrete sphere constraint, i.e., unit length of (iterates
of) finite element functions at nodes of a triangulation Th and a discrete energy law.

We employ some notation which is further detailed in Section 2. Let Vh ⊂
W 1,2(Ω) be the lowest order conforming finite element space subordinate to a tri-
angulation Th of Ω, and Vh =

[
Vh

]m. By Nh, we denote the set of all nodes
associated with Th. Below, (·, ·)h denotes the discrete version (reduced integra-
tion) of the inner product in L2(Ω, Rm), and we use dtϕ

n := k−1(ϕn − ϕn−1), and
ϕn+1/2 := 1

2 (ϕn+1+ϕn) with n ≥ 1, for a sequence {ϕn}n≥0, and for an equidistant
time-step size k > 0. Then, the approximation scheme for problem (A) reads as
follows.

Algorithm A. For n ≥ 0, let Un ∈ Vh be given, and find
(
Un+1, λn+1

)
∈ Vh×Vh,

such that

(dtUn+1,ΦΦΦ)h + (∇Un+1/2,∇ΦΦΦ) =
(
λn+1Un+1/2,ΦΦΦ

)
h

∀ΦΦΦ ∈ Vh ,(1.8)

|Un+1(z)| = 1 ∀ z ∈ Nh .(1.9)

As we will show in Section 3, an explicit formula to compute λn+1 =λn+1(Un+1/2)
is available; however, in contrast to the continuous Lagrange parameter above, its
computation at a single node z ∈ Nh requires to consider values of Un+1/2 at
neighboring ones — which accounts for finite values k, h > 0 in the discretiza-
tion scheme. Conditional solvability of Algorithm A holds by Lemma 3.1. The
method is devised such that a discrete energy identity holds: choose ΦΦΦ = dtUn+1

in (1.8), and use reduced integration for the first and last term, together with
|Un+1(z)|2 − |Un(z)|2 = 0, for all z ∈ Nh, to obtain

‖dtUn+1‖2
h +

(
∇Un+1/2,∇dtUn+1

)
= 0 ,

and after summation over all iteration steps 0 ≤ n ≤ N ,

(1.10) E(UN+1) + k

N∑
n=0

‖dtUn+1‖2
h = E(U0) .

As is worked out in Section 3, this discrete energy law is then crucial to verify
(subsequence) convergence of iterates from Algorithm A to weak solutions of (1.2)–
(1.4); see Theorem 3.1.

Remark 1.1. Note that λn+1 ∈ Vh (for n ≥ 0) is not the Lagrange multiplier
associated to the discrete sphere constraint |Un+1(z)|2 = 1 for all z ∈ Nh, since
the right-hand side of (1.8) is modified from

(
λn+1Un+1,ΦΦΦ

)
h

to
(
λn+1Un+1/2,ΦΦΦ

)
h

to obtain the discrete energy law (1.10).

A similar program is now evident for the wave map problem (1.5)–(1.7), where
(1.5) is of the form

utt − ∆u = λu and |u| = 1 in ΩT ,

with λ = (|∇u|2 − |ut|2) in the present form. In Section 4, we show conditional
convergence of the following implicit discretization, which again uses approximate
discrete Lagrange multipliers.
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Algorithm B. For n ≥ 0, let Un,Un−1 ∈ Vh be given, and find (Un+1, λn+1 ) ∈
Vh × Vh, such that

(d2
tU

n+1,ΦΦΦ)h + (∇Un+1/2,∇ΦΦΦ) =
(
λn+1Un+1/2,ΦΦΦ

)
h

∀ΦΦΦ ∈ Vh ,(1.11)

|Un+1(z)| = 1 ∀ z ∈ Nh .(1.12)

For given initial velocity V0, the second starting value is chosen as U−1 =
U0 − kV0. This value does not satisfy the sphere constraint, but it is used only for
starting the recurrence relation of the algorithm.

As for problem (A), a discrete energy law can be shown, using Eh

(
V,U

)
=

1
2

[
‖V‖2

h + ‖∇U‖2
]
,

(1.13) Eh

(
dtUN+1,UN+1

)
+

k2

2

N∑
n=0

‖d2
tU

n+1‖2
2 = Eh

(
V0,U0

)
( N ≥ 1)

and conditional solvability; cf. Lemma 4.1. As is evident from the second term in
(1.13), Algorithm B uses numerical dissipation, while a symmetric and conservative
discretization of (1.5)–(1.7), which replaces (1.11) by

(1.14) (d2
tU

n+1,ΦΦΦ)h +
(1

2
∇

[
Un+1 + Un−1

]
,∇ΦΦΦ

)
=

(λn

2
[Un+1 + Un−1],ΦΦΦ

)
h

,

is discussed in Remark 4.1. However, in the analysis for Algorithm B in Section 4,
its dissipative character is needed to conclude convergence of iterates towards weak
solutions of (1.5)–(1.7); see Theorem 4.1.

The main result for the heat flow of harmonic maps is Theorem 3.1, which verifies
subsequence convergence of iterates from the implicit Algorithm A towards weak
solutions of problem (A), provided that k ≤ Ch2; this (unexpected) mesh constraint
is sufficient for solvability for finite ( k, h ) > 0, whereas both, the discrete energy
law and the sphere constraint do not require mesh constraints. We remark that
no constraint is required for a different discretization of (1.2)–(1.4) in [3] for the
special case where the target is the two-dimensional sphere. For the wave-map
equation, conditional convergence towards weak solutions of problem (B) is verified
in Theorem 4.1; again, only Brouwer’s fixed-point argument to verify existence
of iterates requires a mesh-constraint k ≤ Chmax{d/2,1}, while a discrete energy
law and the sphere constraint hold unconditionally. For comparison, to validate
a (slightly perturbed) discrete energy law and eventually conclude convergence for
the splitting-based algorithm in [7] requires the more restrictive mesh-constraint
k = o(h

4+d
3 ) to hold. Interestingly, the fixed point iterations employed to solve the

nonlinear systems of equations in the numerical experiments reported in Section 5
seem to converge exactly under these constraints, which indicates that our results
may be sharp.

The remainder is organized as follows: Section 2 collects some notations which
are used throughout the paper. Section 3 verifies convergence of Algorithm A
to obtain weak solutions of problem (A) in the limit ( k, h ) → 0. Section 4 corre-
spondingly shows convergence of Algorithm B towards problem (B). Computational
experiments to motivate possible blow-up for both problems are reported in Sec-
tion 5, and are compared with corresponding studies in [3] (harmonic map heat
flow), and [7] (wave map equation).
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2. Preliminaries

Standard notation is adopted throughout this paper: 〈·, ·〉 denotes the standard
inner product of the Euclidean space R

d, (·, ·) := (·, ·)Ω is the standard L2-inner
product over the domain Ω ⊂ R

d. W �,p(Ω, Rm) denotes the (�, p)-Sobolev space
of vector-valued functions, and ‖ · ‖W �,p its norm. Throughout this paper, C > 0
is used as a generic positive ( k, h )-independent constant which may take different
values at different locations. We also introduce ut := ∂tu,∇u := ( ∂x1u, .., ∂xd

u ),
D := (∂t,∇), and define the nonlinear Sobolev space

W 1,2(Ω, Sm−1) =
{
u ∈ W 1,2(Ω, Rm); u ∈ S

m−1 a.e. in Ω
}

,

where boldface letters are used for vector-valued quantities.
For simplicity, let Ω be a bounded polygonal (when d = 2) or polyhedral (when

d = 3) domain. Let Th denote a quasiuniform triangulation of Ω into triangles or
tetrahedra with mesh size h > 0 for n = 2 or n = 3, respectively. For a domain
K ⊂ R

d, let P1(K) stand for the set of all affine functions on K. We define the
Lagrange finite element spaces

Vh :=
{
w ∈ C(Ω); w|K ∈ P1(K) ∀K ∈ Th

}
, Vh := [Vh]m.

Let Nh denote the set of all nodes associated with the finite element space Vh, and{
ϕz; z ∈ Nh

}
the nodal basis for Vh; we define the following nodal interpolation

operator Ih : C(Ω) → Vh by

Ihw :=
∑

z∈Nh

w(z)ϕz ∀w ∈ C(Ω) .

For any two functions v,w ∈ C(Ω, Rm), we define a discrete L2-inner product by

(v,w)h :=
∫

Ω

Ih(〈v,w〉) dx =
∑

z∈Nh

βz〈v(z),w(z)〉 ,

where βz =
∫
Ω

ϕz dx, for all z ∈ Nh. We also define ||w||h := (w,w)
1
2
h . It is easy

to check that there holds for all vh,wh ∈ Vh,

||wh||L2 ≤ ||wh||h ≤ (d + 2)
1
2 ||wh||L2 ,∣∣(vh,wh)h − (vh,wh)

∣∣ ≤ Ch ||vh||L2 ||∇wh||L2 .

3. Harmonic map heat flow to the sphere

We numerically approximate weak solutions of (1.2)–(1.4) in the sense of [22].
We refer to [22] and the references therein for proofs of existence of weak solutions.

Definition 3.1. Given u0∈W 1,2(Ω, Sm−1) and T >0, a function u ∈ W 1,2(ΩT , Rm)
is called a weak solution of (1.2)–(1.4) if (i) u(0, ·) = u0 ∈ W 1,2(Ω, Sm−1) in the
sense of traces, (ii) |u| = 1 almost everywhere in ΩT , (iii) for almost all T ′ ∈ (0, T )
there holds

(3.1)
1
2

∫
Ω

|∇u(T ′,x)|2 dx +
∫ T ′

0

‖∂tu(t, ·)‖2
L2 dt ≤ 1

2

∫
Ω

|∇u0(x)|2 dx ,

and (iv) for all φφφ ∈ C∞(ΩT , Rm) there holds

(3.2)
∫

ΩT

〈
∂tu,u ∧φφφ

〉
dxdt +

∫
ΩT

〈
∇u,∇(u ∧ φφφ)

〉
dxdt = 0 .
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For m = 3 here we have the usual wedge or cross product in R
3. For m > 3,

an expression 〈u,v ∧ w〉 is to be interpreted as the 3-volume of the parallelepiped
in the vector space spanned by u,v,w. It turns out that the usual differentiation
rules for 〈u,v ∧ w〉 as for the cross product in R

3 remain valid also in the higher-
dimensional case. The case m = 2 is also covered by taking φ as a scalar-valued
function and interpreting 〈u,v ∧ φ〉 = 〈u,v⊥φ〉 as φ times the oriented area of the
parallelogram spanned by u and v.

We recapitulate Algorithm A where the approximate discrete Lagrange multiplier
λn+1 is now specified explicitly. This is obtained by choosing Φ = Un+1/2(z) ϕz in
(1.8) and noting that then (dtUn+1,ΦΦΦ)h = βz

(
|Un+1(z)|2 − |Un(z)|2

)
/2k, which

should be zero for all z ∈ Nh. We use the expression for λn+1 both, in the implemen-
tation of the algorithm by a fixed-point iteration and to study necessary conditions
for well-posedness for finite (k, h) and convergence behavior for (k, h) → 0.

Algorithm A. Let U0 ∈ Vh, with |U0(z)| = 1 for all z ∈ Nh. For n = 0, 1, 2, . . . ,
find (Un+1, λn+1 ) ∈ Vh × Vh, such that for all ΦΦΦ ∈ Vh and all z ∈ Nh there holds

(dtUn+1,ΦΦΦ)h + (∇Un+1/2,∇ΦΦΦ) = (λn+1Un+1/2,ΦΦΦ)h ,(3.3)

λn+1(z) =

{
0 if Un+1/2(z) = 0 ,
(∇Un+1/2,Un+1/2(z)⊗∇ϕz)

βz|Un+1/2(z)|2 else .
(3.4)

Next, we verify solvability for Algorithm A for restricted choices k = O(h2) and
quasiuniform meshes Th. The proof uses a regularization in a first step to apply
Brouwer’s fixed-point theorem; then, solutions are shown to satisfy (3.3)–(3.4), and
discrete versions of the sphere constraint and the energy law. In the following, we
use the notation for the energy given in (1.1).

Lemma 3.1. Let Th be a quasiuniform triangulation of Ω ⊂ R
d, and U0 ∈ Vh

such that |U0(z)| = 1 for all z ∈ Nh. For sufficiently small C̃ = C̃(Ω, Th) > 0
independent of k, h > 0 such that k ≤ C̃h2, there exists Un+1 ∈ Vh which satisfies
(3.3)–(3.4), |Un+1(z)| = 1 for all z ∈ Nh, and

(3.5) E(UN+1) + k

N∑
n=0

‖dtUn+1‖2
h = E(U0) (N ≥ 0) .

Proof. Step 1. Fix n ≥ 0. For every 1
8 < ε ≤ 1

4 , and all ΦΦΦ ∈ Vh, define the
continuous mapping Fε : Vh → Vh, where(

Fε(W),ΦΦΦ
)

:=
(2
k
{W − Un},ΦΦΦ

)
h

+ (∇W,∇ΦΦΦ)

−
∑

z∈Nh

( (∇W,W(z) ⊗∇ϕz)
βz max{|W(z)|2, ε} ϕzW,ΦΦΦ

)
h

.
(3.6)

We compute

(3.7)

(β−1
z (∇W,W(z) ⊗∇ϕz)

max{|W(z)|2, ε} ϕz, |W|2
)

h

=
|W(z)|2

max{|W(z)|2, ε}
(
∇W,W(z) ⊗∇ϕz

)
≤

(
|∇W|, |∇[W(z)ϕz]|

)
supp(∇ϕz)

≤ Ch−1(|∇W|, |W(z)|)supp(∇ϕz) .
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For all W = ΦΦΦ such that ‖W‖h ≥ ‖Un‖h, and values k ≤ C̃h2 for some existing
0 < C̃ ≡ C̃(Ω), on using Young’s inequality, and the fact that the number of nodes
y ∈ Nh such that (∇ϕy,∇ϕz) �= 0 is bounded independently of h > 0,(

Fε(W),W
)

≥ 2
k

(
‖W‖2

h − (Un,W)h

)
+ ‖∇W‖2 − Ch−1‖∇W‖‖W‖h

≥ 2
k
‖W‖h

(
(1 − Ck

h2
)‖W‖h − ‖Un‖h

)
+

1
2
‖∇W‖2 ≥ 0 ,

and a corollary to Brouwer’s fixed-point theorem [21, p. 37] then implies existence
of Un+1/2 ∈ Vh, such that Fε(Un+1/2) = 0.

Step 2. We proceed by induction to show that Un+1/2 ∈ Vh solves F0(Un+1/2) =
0, provided k ≤ C̃h2. Let n ≥ 1. For all 0 ≤ � ≤ n, suppose that U� ∈ Vh satisfies

(3.8) |U�(z)| = 1 ∀ z ∈ Nh , E
(
U�

)
+

k

2

�−1∑
j=0

‖dtUj+1‖2
h = E(U0) .

In order to validate F0(Un+1/2) = 0, it suffices to show for all z ∈ Nh (by the
triangle inequality)

(3.9) |Un+1/2(z)| ≥ 1 − k

2
|dtUn+1(z)|

!
>

1
2

.

By (3.6), the iterate Un+1 = 2Un+1/2 − Un satisfies for all ΦΦΦ ∈ Vh,(
dtUn+1,ΦΦΦ

)
h

+ (∇Un+1/2,∇ΦΦΦ)

=
∑

z∈Nh

( (∇Un+1/2,Un+1/2(z) ⊗∇ϕz)
βz max{|Un+1/2(z)|2, ε} ϕzUn+1/2,ΦΦΦ

)
h

.
(3.10)

We put ΦΦΦ = dtUn+1(z∗)ϕz for z∗ = argmaxy∈Nh
|dtUn+1(y)|, and use properties

of reduced integration, an inverse estimate, and ‖∇ϕz∗‖L1 ≤ βz∗h−1 to obtain

βz∗ |dtUn+1(z∗)|2 ≤
∣∣(∇Un+1/2, dtUn+1(z∗) ⊗∇ϕz∗

)∣∣
+C‖∇Un+1/2‖L∞‖∇ϕz∗‖L1 |dtUn+1(z∗)|

≤ C
∣∣∣k
2
‖∇dtUn+1‖L∞ + ‖∇Un‖L∞

∣∣∣ ∣∣dtUn+1(z∗)
∣∣ ‖∇ϕz∗‖L1

≤ Cβz∗h−2
[k

2

∣∣dtUn+1(z∗)
∣∣ + ‖Un‖L∞

]∣∣dtUn+1(z∗)
∣∣ .

By assumption (3.8) for all 0 ≤ � ≤ n, we then arrive at(
1 − Ck

h2

)
|dtUn+1(z∗)|2 ≤ C̃h−2 ,

for some C̃ ≡ C̃(Ω) > 0. Hence, assertion (3.9) is valid for values k ≤ C̃h2, and con-
sequently F0

(
Un+1/2

)
= 0. Therefore, upon testing (3.3) with ΦΦΦ = Un+1/2(z)ϕz

and using the definition of λn+1, we verify that |Un+1(z)| = 1 for all z ∈ Nh.
Moreover, the energy bound (3.8) holds for all 0 ≤ � ≤ n + 1. This finishes the
inductive argument. The asserted energy law follows as (1.10). �

Convergence behavior of iterates {Un} of Algorithm A towards weak solutions
of (1.2)–(1.4) for ( k, h ) → 0 is verified below. In the sequel, we define Uk,h : ΩT →
R

m, where for all ( t,x ) ∈ [tn, tn+1] × Ω,

Uk,h(t,x) :=
t − tn

k
Un+1(x) +

tn+1 − t

k
Un(x) ,
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and U+
k,h(t,x) := Un+1(x), respectively, Uk,h(t,x) := Un+1/2(x) for all ( t,x ) ∈

[tn, tn+1) × Ω.

Theorem 3.1. Let the assumptions of Lemma 3.1 be valid, E(u0) < ∞, and
U0 → u0 ∈ W 1,2(Ω, Sm−1) for h → 0. There exists a subsequence of {Uk,h} which
for ( k, h ) → 0 converges weakly in W 1,2(ΩT , Rm) to a weak solution of (1.2)–(1.4).

Proof. Step 1. The bounds of Lemma 3.1 yield the existence of convergent subse-
quences {Uk,h}, and u ∈ W 1,2(ΩT , Rm) such that for k ≤ C̃h2, and h → 0,

Uk,h,U+
k,h,Uk,h

∗
⇀ u in L∞(

0, T ; W 1,2(Ω, Rm)
)
,

Uk,h,U+
k,h,Uk,h → u in L2

(
ΩT , Rm

)
,

∂tUk,h ⇀ ut in L2(ΩT , Rm) .

Here, we use (3.5) again to conclude that sequences {Uk,h}, {U+
k,h}, and {Uk,h}

converge to the same limit as k, h → 0, since

∥∥Uk,h − U+
k,h

∥∥2

L2(0,T ;L2)
≤ C

N∑
n=1

‖Un − Un−1‖2
h

∫ tn

tn−1

(s − tn
k

)2

ds

= C
k3

3

N∑
n=1

‖dtUn‖2 → 0 .

Since |U+
k,h| = 1 for all z ∈ Nh and all t ∈ [0, T ], there holds Ih

[
|U+

k,h|2
]

= 1 for
all ( t,x ) ∈ [0, T ] × Ω, and for all K ∈ Th,

‖|U+
k,h|2 − 1‖L2(K) ≤ Ch‖∇

[
|U+

k,h|2 − 1
]
‖L2(K)

≤ Ch‖
(
U+

k,h)T∇U+
k,h‖L2(K) ≤ Ch‖∇U+

k,h‖L2(K) .

As a consequence, |U+
k,h| → 1 almost everywhere in ΩT , and hence |u| = 1 almost

everywhere.
We use weak lower semicontinuity of norms and U0 → u0 in W 1,2(Ω, Rm) to

conclude from (3.5) that u ∈ W 1,2(Ω, Sm−1) satisfies (3.1). Since the trace operator
is bounded and linear, it is weakly continuous as an operator from W 1,2(ΩT ) into
L2(Ω), and we deduce u(0, ·) = u0 in the sense of traces.

Step 2. It remains to verify property (3.2) for u. For this purpose, we rewrite
(3.3) as

(∂tUk,h(t, ·),ΦΦΦ)h + (∇Uk,h(t, ·),∇ΦΦΦ)

=
∑

z∈Nh

( (∇Uk,h(t, ·),Uk,h(t, z) ⊗∇ϕz)
βz|Uk,h(z)|2

ϕzUk,h(t, ·),ΦΦΦ
)

h

(3.11)

for ΦΦΦ ∈ Vh, and all t ∈ (0, T ). Let ΨΨΨ ∈ C∞(ΩT , Rm); thanks to 〈a ∧ b, a〉 = 0, the
choice ΦΦΦ = IIIh

[
Uk,h(t, ·) ∧ΨΨΨ(t, ·)

]
then leads to

(3.12)(
∂tUk,h(t, ·),Uk,h(t, ·) ∧ΨΨΨ(t, ·)

)
h

+
(
∇Uk,h(t, ·),∇IIIh

[
Uk,h(t, ·) ∧ΨΨΨ(t, ·)

])
= 0 .
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We compute(
∂tUk,h,Uk,h ∧ΨΨΨ

)
h
−

(
∂tu,u ∧ΨΨΨ

)
=

(
∂tUk,h,IIIh

[
Uk,h ∧ΨΨΨ

])
h
−

(
∂tUk,h,IIIh

[
Uk,h ∧ΨΨΨ

])
+

(
∂tUk,h,IIIh

[
Uk,h ∧ΨΨΨ

]
− Uk,h ∧ΨΨΨ

)
+

(
∂tUk,h, [Uk,h − u] ∧ΨΨΨ

)
+

(
∂t[Uk,h − u],u ∧ΨΨΨ

)
.

(3.13)

The properties of (·, ·)h, W 1,2(Ω)-stability of Ih for elementwise smooth functions,
and ‖Uk,h‖L∞ ≤ 1 yield∣∣∣(∂tUk,h,IIIh

[
Uk,h ∧ΨΨΨ

])
h
−

(
∂tUk,h,IIIh

[
Uk,h ∧ΨΨΨ

])∣∣∣
≤ Ch‖∂tUk,h‖ ‖∇IIIh

[
Uk,h ∧ΨΨΨ

]
‖ ≤ Ch‖∂tUk,h‖

(
‖∇Uk,h‖ + 1

)
‖ΨΨΨ‖W 1,∞ .

Similarly,∣∣∣(∂tUk,h,IIIh

[
Uk,h ∧ΨΨΨ

]
− Uk,h ∧ΨΨΨ

)∣∣∣ ≤ Ch‖∂tUk,h‖
(
‖∇Uk,h‖ + 1

)
‖ΨΨΨ‖W 1,∞ .

Convergence towards zero (h → 0) of the last two terms in (3.13) follows from
Uk,h → u in L2(ΩT , Rm), and ∂tUk,h ⇀ ∂tu in L2(ΩT , Rm), and (3.1), (3.5).
Summing up, we find for k ≤ C̃h2,

(3.14) lim
k,h→0

∫ T

0

(∂tUk,h,Uk,h∧ΨΨΨ)h dt =
∫ T

0

(∂tu,u∧ΨΨΨ) dt ∀ΨΨΨ ∈ C∞(ΩT , Rm) .

Next, we wish to verify for the second term in (3.12) that in case k ≤ C̃h2,

lim
k,h→0

∫ T

0

(
∇Uk,h,∇IIIh

[
Uk,h ∧ΨΨΨ

])
dt

=
∫ T

0

(∇u,∇[u ∧ΨΨΨ]) dt ∀ΨΨΨ ∈ C∞(ΩT , Rm) .

(3.15)

Therefore, on using the identities 〈∇Uk,h,∇{Uk,h ∧ ΨΨΨ}〉 = 〈∇Uk,h,Uk,h ∧ ∇ΨΨΨ〉,
and 〈∇u,∇{u ∧ΨΨΨ}〉 = 〈∇u,u ∧∇ΨΨΨ〉 almost everywhere,∫ T

0

(
∇Uk,h,∇IIIh

[
Uk,h ∧ΨΨΨ

])
− (∇u,∇[u ∧ΨΨΨ]) dt

=
∫ T

0

(
∇Uk,h,∇{IIIh

[
Uk,h ∧ΨΨΨ

]
− Uk,h ∧ΨΨΨ}

)
dt

+
∫ T

0

(
∇Uk,h, [Uk,h − u] ∧∇ΨΨΨ

)
dt

+
∫ T

0

(
∇[Uk,h − u],u ∧∇ΨΨΨ

)
dt =: I + II + III .

We compute I ≤ Ch‖∇Uk,h‖
(
‖∇Uk,h‖+1

)
‖ΨΨΨ‖W 2,∞ , by an interpolation estimate,

using D2Uk,h

∣∣
K

= 0 for all K ∈ Th. For the terms II and III, we use Uk,h → u
in L2(ΩT , Rm), and ∇Uk,h ⇀ ∇u in L2(ΩT , Rm), respectively, to conclude that
II, III → 0, for k ≤ C̃h2, and ( k, h ) → 0. Therefore, the limit u : ΩT → R

m

satisfies (3.2). �
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4. Wave map to the sphere

We recall the notion of weak solutions to (1.5)–(1.7) from [20] in the following
definition. Below, let E

(
v,w

)
:= 1

2

[
‖v‖2 + ‖∇w‖2

]
.

Definition 4.1. Given T > 0 and (u0,v0 ) ∈ W 1,2(Ω, Sm−1) × L2(Ω, Rm) with
〈u0,v0〉 = 0 a.e. in Ω, we call u : ΩT → R

m a weak solution of (1.5)–(1.7) if (i)
Du ∈ L2(ΩT , Rm), (ii) |u| = 1 almost everywhere in ΩT ,

(iii) −
∫ T

0

(
ut ∧ u,φφφt

)
dt +

∫ T

0

(
∇u ∧ u,∇φφφ

)
dt =

(
v0 ∧ u0,φφφ(0, ·)

)
∀φφφ ∈ C∞

0

(
[0, T ); W 1,2(ΩT , Rm)

)
,

(iv) E
(
ut(t, ·),u(t, ·)

)
≤ E(v0,u0) for a.e. t ≥ 0 ,

(v) u(t, ·) → u0 in W 1,2(Ω; Rm) , ut(t, ·) → v0 in L2(Ω, Rm) (t → 0) .

We numerically approximate weak solutions of (1.5)–(1.7). Next, we give an
explicit formula for λn+1 in Algorithm B to study well-posedness, which is again
obtained by choosing ΦΦΦ = Un+1/2(z) ϕz.

Algorithm B. Given Un,Un−1 ∈ Vh, find (Un+1, λn+1 ) ∈ Vh × Vh, such that
for all ΦΦΦ ∈ Vh and all z ∈ Nh, there holds

(d2
tU

n+1,ΦΦΦ)h +
(
∇Un+1/2,∇ΦΦΦ

)
=

(
λn+1Un+1/2,ΦΦΦ

)
h

,

λn+1(z) =

{
0 for Un+1/2(z) = 0 ,
− 1

2 [|dtU
n(z)|2+〈dtU

n(z),dtU
n+1(z)〉]+(∇Un+1/2(z),Un+1/2(z)⊗∇ϕz)

βz|Un+1/2(z)|2 else.

We set U−1 = U0 − kV0 with the given initial velocity V0, so that V0 = dtU0,
and use the above algorithm for n ≥ 0. We let

Vn = dtUn for n ≥ 1.

Below, the discrete energy is denoted as

Eh

(
V,U

)
=

1
2
(
‖V‖2

h + ‖∇U‖2
)
.

In the following, the time step restriction k = O(hmax{d/2,1}) and quasiuniform
meshes Th are sufficient to verify solvability of Algorithm B. The proof uses a
regularization in a first step to apply Brouwer’s theorem; then, solutions are shown
to satisfy discrete versions of the sphere constraint and the energy law in the case
of a mesh constraint, and converge to weak solutions of (1.5)–(1.7).

Lemma 4.1. Let Th be a quasiuniform triangulation of Ω ⊂ R
d, and (U0,V0 ) ∈

Vh × Vh with |U0(z)| = 1 and 〈U0(z),V0(z)〉 = 0 for all z ∈ Nh. For n ≥ 1,
for sufficiently small C̃ = C̃(Ω, Th) > 0 independent of k, h > 0 such that k ≤
C̃hmax{d/2,1}, there exists Un+1 ∈ Vh, which satisfies Algorithm B, |Un+1(z)| = 1
for all z ∈ Nh, and

(4.1) Eh

(
VN+1,UN+1

)
+

k2

2

N∑
n=0

‖dtVn+1‖2
h = Eh

(
V0,U0

)
(N ≥ 0) .

A verification of this lemma follows the steps of the proof of Lemma 3.1 adapted
to the present case.
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Proof. The discrete energy law (4.1) follows from the first equation in Algorithm
B, on choosing ΦΦΦ = dtUn+1.

Step 1. Fix n ≥ 0. For every 1
8 < ε ≤ 1

4 , and all ΦΦΦ ∈ Vh, define the continuous
function Fε : Vh → Vh, where(

Fε(W),ΦΦΦ
)

:=
2
k2

(
W + Un−1/2 − 2Un,ΦΦΦ

)
h

+
(
∇W,∇ΦΦΦ

)
−

∑
z∈Nh

[
Iε
z(W;ΦΦΦ) + IIε

z(W;ΦΦΦ)
]
,

for

Iε
z(W;ΦΦΦ) :=

(−1
2

[
|dtUn(z)|2 + 2

k 〈dtUn(z),W(z) − Un(z)〉
]

βz max{|W|2, ε} ϕzW,ΦΦΦ
)

h

IIε
z(W;ΦΦΦ) :=

( (∇W,W(z) ⊗∇ϕz)
βz max{|W|2, ε} ϕzW,ΦΦΦ

)
h

.

We compute
∑

z∈Nh

Iε
z

(
W;W(z)ϕz

)
≤ |W(z)|2

max{|W(z)|2, ε}

[
C‖dtUn‖2

h +
1

4k2
‖W − Un‖2

h

]

≤ C‖dtUn‖2
h +

1
4k2

‖W − Un‖2
h ,

(4.2)

and

IIε
z

(
W;W(z)ϕz

)
=

|W(z)|2
max{|W(z)|2, ε}

(
∇W,W(z) ⊗∇ϕz

)
≤

(
|∇W|, |∇[W(z)ϕz]|

)
supp(∇ϕz)

≤ Ch−1(|∇W|, |W(z)|)supp(∇ϕz) .

(4.3)

Choose W = ΦΦΦ, and use Young’s inequality, and the fact that the number of
nodes y ∈ Nh is such that (∇ϕy,∇ϕz) �= 0 is bounded independent from h > 0.
Estimates (4.2), (4.3), and rearranging terms lead to

(
Fε(W),W

)
h
≥ 2

k2

(
‖W‖2

h − |(Un−1/2,W)h| − 2|(Un,W)h|
)
+‖∇W‖2

− C‖dtUn‖2
h − 1

4k2
‖W − Un‖2

h − Ch−1‖∇W‖‖W‖h

≥ 1
k2

‖W‖h

(
(1 − Ck2

h2
)‖W‖h − 4‖Un−1/2‖h − 4‖Un‖h

)
+

1
2
‖∇W‖2

− C‖dtUn‖2 − 1
4k2

‖Un‖2
h .

Suppose that k ≤ C̃h, for some C̃ ≡ C̃(Ω) > 0 sufficiently small. It is then possible
to find R1 > 0, such that for all {W ∈ Vh : ‖W‖h ≥ R1} there holds

(
Fε(W),W

)
h
≥ 1

2k2
‖W‖2

h − C‖dtUn‖2
h − 1

4k2
‖Un‖2

h ≥ 0 .

Hence, there exist some 0 < R1 ≤ R2 < ∞ such that
(
Fε(W),W

)
h
≥ 0 for all

W ∈ Vh, which satisfy ‖W‖h ≥ R2. Then, Brouwer’s fixed-point theorem implies
existence of Un+1/2 ∈ Vh, such that Fε

(
Un+1/2

)
= 0.
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Step 2. We show that Un+1/2 ∈ Vh solves F0(Un+1/2) = 0. For this purpose,
it suffices to show for all z ∈ Nh,

(4.4) |Un+1/2(z)| ≥ 1 − k

2
|dtUn+1(z)|

!
>

1
2

.

We proceed by induction to verify this result for k ≤ C̃hmax{d/2,1}. Let n ≥ 1: For
all 0 ≤ � ≤ n, suppose that U� ∈ Vh verifies |U�(z)| = 1, for all z ∈ Nh, and

(4.5) Eh

(
Vn,Un) +

k2

2

n∑
�=1

‖dtV�‖2
h = Eh

(
V0,U0

)
.

The iterate Un+1 := 2Un+1/2 − Un ∈ Vh satisfies, for all ΦΦΦ ∈ Vh,(
d2

tU
n+1,ΦΦΦ

)
h

+
(
∇Un+1/2,∇ΦΦΦ

)
= −

∑
z∈Nh

Iε
z(Un+1/2;ΦΦΦ) + IIε

z(Un+1/2;ΦΦΦ) .(4.6)

On putting ΦΦΦ = dtUn+1, we obtain
1
2
dt

[
‖dtUn+1‖2

h + ‖∇Un+1‖2
]

+
k

2
‖d2

tU
n+1‖2

h

= −
∑

z∈Nh

Iε
z(Un+1/2; dtUn+1) + IIε

z(Un+1/2; dtUn+1) .

We use k dtUn+1 = 2Un+1/2 − 2Un to control∑
z∈Nh

Iε
z |(Un+1/2; dtUn+1)| ≤

(1 + |dtUn|
{
|dtUn+1| + |dtUn|

}
βz max{|Un+1/2|, ε} , |dtUn+1|

)
h

≤ C

k

(
1 +

C

ε
‖Un‖L∞

)
‖dtUn‖h

(
‖dtUn‖h + ‖dtUn+1‖h

)
.

For the second term, we conclude∑
z∈Nh

IIε
z |(Un+1/2; dtUn+1)| ≤ Ch−1‖∇Un+1/2‖L2‖dtUn+1‖h .

Putting things together yields
1
2k

(
1 − 1

8
− Ck

h

)
‖dtUn+1‖2

h +
1
2k

(
1 − 1

8
− Ck

h

)
‖∇Un+1‖2

h +
k

2
‖d2

tU
n+1‖2

h

≤ 1
2k

(
1 + C

[
1 +

C

ε2
‖Un‖2

L∞
])

‖dtUn‖2
h + C

(1
k

+
1
h

)
‖∇Un‖2

h .

By inverse estimate, induction assumption, and for values k ≤ C̃h,

k2

2
‖dtUn+1‖2

L∞ ≤ Ck2h−d‖dtUn+1‖2
h ≤ Ck2h−d

[
C(1+

1
ε2

)‖dtUn‖2
h +2‖∇Un‖2

]
.

Hence, assertion (4.4) holds for values k ≤ C̃hmax{d/2,1}, and hence F0(Un+1/2) =
0. This implies |Un+1(z)| = 1 for all z ∈ Nh, as well as (4.5) for n + 1, and hence
the induction argument is complete.

Step 3. The last step deletes the first possibility in (B), provided k ≤ C̃hmax{d/2,1}.
In order to compute λn+1(z), for every z ∈ Nh, we put ΦΦΦ = Un+1/2(z)ϕz. For the
leading term, we find〈

d2
tU

n+1(z),Un+1/2(z)
〉

= −1
2

[
|dtUn(z)|2 + 〈dtUn(z), dtUn+1(z)〉

]
,(4.7)

thanks to dt|Un+1(z)|2 = 0 for all z ∈ Nh. �
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Convergence behavior of iterates {Un} ⊂ Vh of Algorithm B towards weak
solutions of (1.5)–(1.7) for ( k, h ) → 0 is verified below. In the sequel, given {ΦΦΦn} ⊂
Vh, we define ΦΦΦk,h : ΩT → R

m, where for all ( t,x ) ∈ [tn, tn+1) × Ω,

ΦΦΦk,h(t,x) :=
t − tn

k
ΦΦΦn+1(x) +

tn+1 − t

k
ΦΦΦn(x) ,

ΦΦΦ+
k,h(t,x) := ΦΦΦn+1(x) , ΦΦΦk,h(t,x) := ΦΦΦn+1/2(x) .

Subsequently, we drop subindices k, h and use (U+,U,U ), respectively, ( λ+, λ),
and (V+,V ) to stand for (U+

k,h,Uk,h,Uk,h ), respectively, ( λ+
k,h, λk,h), and

(V+
k,h,Vk,h ). For ΦΦΦ ∈ C∞

0

(
[0, T );Vh

)
, on putting Vn+1 = dtUn+1, we may

rewrite the first equation of Algorithm B as follows:

(4.8)
∫ T

0

[
(Vt,ΦΦΦ)h +

(
∇U,∇ΦΦΦ

)
−

(
λ+U,ΦΦΦ

)
h

]
dt = 0 .

We first derive the following reformulation of Algorithm B.

Lemma 4.2. Suppose that the assumptions of Lemma 4.1 are valid. There holds
for all ΨΨΨ ∈ C∞

0

(
[0, T ); C∞(Ω, Rm)

)
,

∣∣∣∫ T

0

[
−

(
Ut, [U ∧ΨΨΨ]t

)
h

+
(
∇U,∇IIIh[U ∧ΨΨΨ]

)]
dt −

(
V0,U(0, ·) ∧ΨΨΨ(0, ·)

)
h

∣∣∣
≤

∣∣∣∫ T

0

(
V+ − V, [U ∧ΨΨΨ]t

)
h

dt
∣∣∣ + Ck1/2Eh

(
V0,U0

)
‖ΨΨΨ‖L∞(ΩT ) ,(4.9)

where U(0, ·) = k
2V

0 + U0.

Proof. Let ΨΨΨ ∈ C∞
0

(
[0, T ); C∞(Ω, Rm)

)
, and take ΦΦΦ = IIIh

[
U ∧ ΨΨΨ

]
in (4.8). We

then restate the integrand of the first term in (4.8) as follows:

(4.10)
(
Vt,U ∧ψψψ

)
h

=
(
Vt,U ∧ψψψ

)
h

+
(
Vt, [U − U] ∧ψψψ

)
h

.

We use the following identity in Ω,

(4.11) U(t, ·) = U(t, ·) +
[1
2
(tn+1 + tn) − t

]
V+(t, ·) ∀ t ∈ [tn, tn+1) ,

the estimate
(
Vt, [U− U] ∧ΨΨΨ

)
h
≤ k

2‖Vt‖h‖V+‖h‖ΨΨΨ‖L∞ , and the energy identity
(4.1) to bound the last term in (4.10) as follows:∫ T

0

(
Vt, [U − U] ∧ΨΨΨ

)
h

dt ≤ Ck1/2
(
k

∫ T

0

‖Vt(t, ·)‖2 dt
)1/2

‖ΨΨΨ‖L∞(ΩT )

≤ C
√

kEh(V0,U0)1/2‖ΨΨΨ‖L∞(ΩT ) .

For the first term on the right-hand side of (4.10) we use integration by parts, and
V+(t, ·) = Ut(t, ·) in Ω, for all t ∈ [tn, tn+1),∫ T

0

(
Vt,U ∧ΨΨΨ

)
h

dt = −
∫ T

0

(
V, [U ∧ΨΨΨ]t

)
h

dt −
(
V0,U(0, ·) ∧ψψψ(0, ·)

)
h

=
∫ T

0

(
−[V − V+] − Ut, [U ∧ΨΨΨ]t

)
h

dt −
(
V0,U(0, ·) ∧ψψψ(0, ·)

)
h

.

Putting things together then yields the assertion of the lemma. �



1282 SÖREN BARTELS, CHRISTIAN LUBICH, AND ANDREAS PROHL

Effects like numerical integration, interpolation, and combination of successive
iterates in (4.9) are considered next to establish convergence of iterates of Algorithm
B to weak solutions of (1.5)–(1.7).

Theorem 4.1. Let the assumptions of Lemma 4.1 be valid, and U0 → u0 ∈
W 1,2(Ω, Rm), respectively, V0 → v0 ∈ L2(Ω, Rm), for h → 0. There exist u ∈
L∞(

0, T, W 1,2(Ω; Rm)
)
∩ W 1,∞(

0, T ; L2(Ω, Rm)
)
, and a subsequence {Uk,h} such

that for ( k, h ) → 0,

Uk,h
∗
⇀ u in L∞(

0, T ; W 1,2(Ω, Rm)
)
,

(Uk,h)t
∗
⇀ ut in L∞(

0, T ; L2(Ω, Rm)
)
.

Moreover, u : ΩT → R
m is a weak solution of (1.5)–(1.7).

Throughout the proof, we again drop subindices.

Proof. Step 1. The bounds of Lemma 4.1 yield the existence of u ∈
L∞(

0, T ; W 1,2(Ω, Rm)
)
∩ W 1,∞(

0, T ; L2(Ω, Rm)
)
, such that for k ≤ C̃hmax{d/2,1}

and h → 0,

U,U+,U ∗
⇀ u in L∞(

0, T ; W 1,2(Ω, Rm)
)
,

U,U+,U → u in L2(ΩT , Rm) ,(4.12)

Ut,V,V+ ∗
⇀ ut in L∞(

0, T ; L2(Ω, Rm)
)
.

Here, the energy identity (4.1) is used to verify convergence of both, {V} and {V+}
towards the same limit as k, h → 0, since

‖V − V+‖2
L2(0,T ;L2) ≤ C

N∑
n=1

‖Vn − Vn−1‖2
h

∫ tn

tn−1

(s − tn
k

)2

ds

= C
k3

3

N∑
n=1

‖dtVn‖2
h → 0 ,

and a corresponding result holds for the triple {U}, {U+}, and {U}.
Since |U+|(z) = 1 for all z ∈ Nh and all t ∈ [0, T ], there holds Ih

[
|U+|2

]
= 1

for all ( t,x ) ∈ ΩT , and for all K ∈ Th,

‖|U+|2 − 1‖L2(K) ≤ Ch‖∇U+‖L2(K) .

Consequently, |U+| → 1 almost everywhere in ΩT , and hence |u| = 1 almost
everywhere.

Step 2. We pass to the limit in each of the terms in (4.9). For the first term,
because of the wedge product in it, we only need to show limk,h→0

(
Ut,U∧ψψψt

)
h

=(
ut,u ∧ψψψt

)
.∣∣∣(Ut,U ∧ΨΨΨt

)
h
−

(
ut,u ∧ΨΨΨt

)∣∣∣ ≤ ∣∣∣(Ut,IIIh[U ∧ΨΨΨt]
)
h
−

(
Ut,IIIh[U ∧ΨΨΨt]

)∣∣∣
+

∣∣∣(Ut,IIIh[U ∧ΨΨΨt] − U ∧ΨΨΨt

)∣∣∣ +
∣∣∣(Ut, [U − u] ∧ΨΨΨt

)∣∣∣
+

∣∣∣(ut − Ut,u ∧ΨΨΨt

)∣∣∣ =: I + · · · + IV .

(4.13)

We use properties of (·, ·)h, W 1,2(Ω)-stability of Ih, and ‖U‖L∞ ≤ 1 to find

I ≤ Ch‖Ut‖ ‖∇IIIh[U ∧ΨΨΨt]‖ ≤ Ch‖Ut‖
(
‖∇U‖ + 1

)
‖ΨΨΨt‖W 1,∞ .
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The term II can be bounded correspondingly. Convergence towards zero (h → 0)
of the terms III and IV follows from U → u in L2(ΩT , Rm), and Ut ⇀ ut in
L2(ΩT , Rm). Hence, for k ≤ C̃hmax{d/2,1},

lim
k,h→0

∫ T

0

(Ut,U ∧ΨΨΨt)h dt

=
∫ T

0

(ut,u ∧ΨΨΨt) dt ∀ΨΨΨ ∈ C∞
0

(
[0, T ); C∞(Ω, Rm)

)
.

(4.14)

Next, we verify that the limit for the second term in (4.9) for k ≤ C̃hmax{d/2,1} is

lim
k,h→0

∫ T

0

(
∇U,∇IIIh

[
U ∧ΨΨΨ

])
dt

=
∫ T

0

(∇u,∇[u ∧ΨΨΨ]) dt ∀ΨΨΨ ∈ C∞
0

(
[0, T ); C∞(Ω, Rm)

)
.

(4.15)

For this purpose, since 〈∇U,∇[U ∧ΨΨΨ]〉 = 〈∇U,U ∧ ∇ΨΨΨ〉, and 〈∇u,∇[u ∧ΨΨΨ]〉 =
〈∇u,u ∧∇ΨΨΨ〉 almost everywhere,(

∇U,∇IIIh

[
U ∧ΨΨΨ

])
− (∇u,∇[u ∧ΨΨΨ]) =

(
∇U,∇{IIIh

[
U ∧ΨΨΨ

]
− U ∧ΨΨΨ}

)
+

(
∇U, [U− u] ∧∇ΨΨΨ

)
+

(
∇[U − u],u ∧∇ΨΨΨ

)
=: I + II + III .

We compute I ≤ Ch‖∇U‖
(
‖∇U‖+1

)
‖ΨΨΨ‖W 2,∞ , by an interpolation estimate, using

D2U
∣∣
K

= 0 for all K ∈ Th. For the terms II, respectively, III, we use U → u
in L2(ΩT , Rm), and ∇U ⇀ ∇u in L2(ΩT , Rmd), respectively, to conclude that∫ T

0
II dt,

∫ T

0
III dt → 0, for k ≤ C̃hmax{d/2,1}, and h → 0. Therefore, assertion

(4.15) is valid.
Convergence

(
V0,U(0, ·) ∧ΨΨΨ(0, ·)

)
h
→

(
v0,u0 ∧ΨΨΨ(0, ·)

)
, for k ≤ C̃hmax{d/2,1},

and h → 0 follows from properties of (·, ·)h, and V0 → v0 in L2(Ω, Rm), respec-
tively, U0 → u0 in W 1,2(Ω, Rm). Finally, since |U| ≤ 1, we conclude∫ T

0

(
V+ − V, [U ∧ΨΨΨ]t

)
h

dt

≤ Ck1/2
(
k

∫ T

0

‖Vt‖2 dt
)1/2(

1 +
∫ T

0

‖Ut‖2 dt
)1/2

(1 + ‖ΨΨΨ‖W 1,∞(ΩT )) ,

for all but one term in (4.9). Therefore, u : ΩT → R
m satisfies assertion (iii) of

Definition 4.1.
Step 3. We verify assertion (iv) of Definition 4.1. u0 = limt→0 limk,h→0 U(t, ·)

in L2(Ω, Rm) follows from (4.12). It remains to show Ut(t, ·) → v0 in L2(Ω, Rm) as
t → 0. Therefore, multiply (utt − ∆u) ∧ u = 0 with ΨΨΨ ∈ C∞

0

(
[0, T ); C∞(Ω, Rm)

)
,

integrate by parts on ΩT , and subtract the resulting equation from (4.9). We find
for the limit k, h → 0,(

ut(0, ·) − v0,u0 ∧ΨΨΨ
)

= 0 ∀ΨΨΨ ∈ C∞
0

(
[0, T ); C∞(Ω, Rm)

)
.

On noting 〈v0(x),u0(x)〉 = 〈ut(0,x),u0(x)〉 = 0 for almost every x ∈ Ω, it follows
from the vector identity v = 〈u,v〉u − u ∧ (u ∧ v) — with v = ut(0, ·) − v0 and
u = u0 — that ut(t, ·) ⇀ v0 in L2(Ω, Rm) as t → 0.
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We also need to show ut(t, ·) → v0 in L2(Ω, Rm) as t → 0. By weak lower
semicontinuity of L2-norm and Fatou’s lemma

‖Du(t, ·)‖L2 ≤ lim inf
k,h→0

‖DU(t, ·)‖L2 t ≥ 0 .

Hence, for all t ≥ 0, because of properties of (·, ·)h, and assumptions on initial data,

E
(
ut(t, ·),u(t, ·)

)
≤ lim inf

k,h→0
E

(
Ut(t, ·),U(t, ·)

)
= lim inf

k,h→0
Eh

(
Ut(t, ·),U(t, ·)

)
≤ E

(
v0,u0

)
.

Therefore,

lim sup
t→0

‖ut(t, ·)‖L2 ≤ ‖v0‖L2 , lim sup
t→0

‖∇u(t, ·)‖L2 ≤ ‖∇u0‖L2 ,

and the weak convergence ut(t, ·) ⇀ v0 in L2(Ω, Rm) and ∇u(t, ·) ⇀ ∇u0 in
L2(Ω, Rmd) implies strong convergence ut(t, ·) → v0 and ∇u(t, ·) → ∇u0 in
L2(Ω, Rmd) as t → 0. Consequently, u : ΩT → R

m attains prescribed initial
data continuously in W 1,2(Ω, Rm) × L2(Ω, Rm).

Since all requirements of Definition 4.1 are verified, hence, the map u : ΩT → R
m

is a weak solution to (1.5)–(1.7). The proof is complete. �

Remark 4.1. A symmetric variant of Algorithm B is: For n=1, 2, ..., find (Un+1, λn )
∈ Vh × Vh, such that for all ΦΦΦ ∈ Vh, and all z ∈ Nh, there holds

(d2
tU

n+1,ΦΦΦ)h +
(1

2
∇

[
Un+1 + Un−1

]
,∇ΦΦΦ

)
=

(λn

2
[Un+1 + Un−1],ΦΦΦ

)
h

,

λn(z) =

⎧⎪⎪⎨
⎪⎪⎩

0 for [Un+1 + Un−1](z) = 0 ,
−〈dtU

n(z),dtU
n+1(z)〉

| 12 [Un+1+Un−1](z)|2

+1
4

(
∇[Un+1+Un−1],[Un+1+Un−1](z)⊗∇ϕz

)
βz| 12 [Un+1+Un−1](z)|2 else .

This choice of λn again ensures that |Un+1(z)| = 1 for all z ∈ Nh. The discrete
energy is denoted as Ẽh

(
Vn, {Un−j}1

j=0

)
= 1

2

[
‖Vn‖2

h + 1
2

(
‖∇Un‖2 +‖∇Un−1‖2

)]
,

for Vn := dtUn. Again, existence of solutions Un+1 ∈ Vh in the case k ≤
C̃hmax{d/2,1} can be shown, and

Ẽh

(
VN+1, {UN+1−j}1

j=0

)
=

1
2

[
‖V0‖2

h +
1
2
(‖∇U1‖2 + ‖∇U0‖2)

]
(N ≥ 0) .

However, convergence for ( k, h ) → 0 is not clear because of the absence of the
second term on the left-hand side of (4.1), which gives enough control over temporal
variations of {dtUn} to pass to the limit ( k, h ) → 0 in every term in (B).

5. Computational studies

In this section, we report on the practical performance of Algorithms A and B.
The nonlinear systems of equations in each time step were approximately solved
using fixed-point iterations (which utilize the old λn+1,� defined through the actual
iterate Un+1,� to determine the update Un+1,�+1). Both algorithms were imple-
mented in MATLAB with a direct solution of linear systems of equations. The
initial data that we employ for both, the harmonic map heat flow as well as the
wave map evolution, in the following two subsections are defined in the following
example.
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Example 5.1. Given w > 0, let Ω := (0, 2+w)×(0, 1). With rj ≡ rj(x) := |x−pj |
and aj = aj(x) :=

(
1 − 2rj(x)

)4 for x ∈ Ω, j = 1, 2, and p1 := (1/2, 1/2) and
p2 := (3/2, 1/2), we define for x = (x1, x2) ∈ Ω,

u0(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
0, 0,−1

)
, x1 ∈ (0, 1) and r1 ≥ 1/2,(

2(x1−1/2)a1,2(x2−1/2)a1,a2
1−r2

1

)
a2
1+r2

1
, x1 ∈ (0, 1) and r1 ≤ 1/2,(

0, sin((x1 − 1)π/w), cos((x1 − 1)π/w)
)
, x1 ∈ (1, 1 + w)(

0, 0, 1
)
, x1 ∈ (1 + w, 2 + w) and r2 ≥ 1/2,(

2(x1−1/2)a2,2(x2−1/2)a2,a2
2−r2

2

)
a2
1+r2

1
, x1 ∈ (1 + w, 2 + w) and r2 ≤ 1/2.

A projection of the nodal interpolant of the vector field u0 onto the xy-plane is
shown in the top plot of Figure 5. For the simulation of the wave flow we also
define the initial velocity v0 := 0. All employed triangulations were obtained from
uniform refinements of the triangulation T0 of Ω which consists of 6 triangles which
are all halved squares if w = 1. The discrete initial data is obtained by nodal
interpolation of u0. Unless otherwise stated, we set w = 1.

5.1. Experimental results for the wave map problem. We run Algorithm B
for Example 5.1 with the triangulation T3 obtained from three uniform (“red-”)
refinements of T0 and with k = h/8, where h = 2−3. We stopped the time stepping
at t = 1/4, i.e., after 32 time steps, and replaced V(t, ·) by −V(t, ·) at t = 1/4 to re-
verse the evolution and run another 32 time steps. The numerical results for t = 1/4
and the almost recovered initial data are shown in the second and third (from top)
plot of Figure 5. Owing to an instability related to occurrence of large (maximal)
gradients which motivates finite-time blow-up, we cannot (approximately) recover
the initial data when we reverse the evolution at t = 1/2, which is beyond the in-
stability; cf. the fourth and fifth plots in Figure 5. This behavior does not improve
when we significantly decrease the stopping criterion for the fixed point iteration,
i.e., when we solve the nonlinear systems of equations almost exactly.

In order to compare the performance of Algorithm B to the projection strategy
proposed in [7] we display in Figure 1 the total energy of the approximations ob-
tained with the two schemes on uniform triangulations with mesh-size h = 2−3, 2−4,
and for time-step sizes k = h, h/10. We recall that Algorithm 3.1 in [7] involves a
projection step. In particular, given

(
Uj ,Vj) ∈ V2

h satisfying |Uj(z)| = 1 and for
all nodes z each iteration of that algorithm performs the following two steps:
(1) Compute Vj+1 ∈ Vh such that Uj(z) · Vj+1(z) = 0 for all z ∈ Nh and

(dtVj+1,ΦΦΦ)h = (∇Uj ,∇ΦΦΦ) ∀ΦΦΦ ∈ Vh.

(2) Define Uj+1 ∈ Vh through

Uj+1(z) =
Uj+1(z) + kVj+1(z)∣∣Uj+1(z) + kVj+1(z)

∣∣ for all z ∈ Nh.

We observe that the total energy is for all pairs of discretization parameters
decreasing for the numerical approximation obtained with Algorithm B. This is not
the case for the approximations computed with the explicit projection scheme of [7];
in fact, the energy rapidly increases for k = h which indicates strong numerical
instabilities. Nevertheless, for k = h/10 all results are qualitatively comparable.
The total energy, the kinetic energy Ekin

h

(
V(t, ·)

)
:= 1

2 ||V(t, ·)||2h, and the W 1,∞(Ω)-
semi-norm as functions of time t ∈ (0, 1/2) for the two different schemes on a
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triangulation with h = 2−5 and k = h/10 are displayed in Figure 2. We observe that
large gradients occur and that energy is lost when a large change of the W 1,∞(Ω)-
norms takes place.

The experimental results are slightly different when the symmetric but theoret-
ically unjustified scheme of Remark 4.1 is used to compute numerical approxima-
tions. As opposed to Algorithm B and the projection scheme of [7], the evolution
can always be reversed. The reported irreversibility in Example 5.1 which is related
to a numerical instability when the vectors at (1/2, 1/2) or (3/2, 1/2) changes its
direction within a small time interval is different here and the vectors remain fixed
when the symmetric scheme is used. Also, there is no loss of (the modified) energy
as can be seen in Figure 3. Nevertheless, we emphasize that the symmetric scheme
is not known to converge to a weak solution.

5.2. Experimental results for the heat flow problem. Our numerical experi-
ments for the harmonic map heat flow problem based on Algorithm A do not show
significant advantages of the proposed scheme over the algorithms developed in
[6, 3]. The reason for this is that the fixed point iteration requires in all of our
numerical studies that k ≤ h2/5, and therefore does not improve existing results.
However, for this choice of the time-step size we obtain reasonable results for the
evolution defined by the initial data specified in Example 5.1. Figure 6 displays
snapshots of the numerical solution for t = 0, 0.01875, 00375, 0.05625, 0.075. Large
(maximal) gradients occur for t ≈ 0.05 and afterwards the solution appears to be
smooth and converges to a steady (uniformly constant) state. We remark that
the numerical results do not change qualitatively when we employ other values for
the parameter w. Rapid decay of the energy accompanied by occurrence of large
gradients on each mesh when k ≤ h2/5 are the main conclusions of the practical
experience with Algorithm A.

5.3. Effect of different winding numbers. As is detailed in [14], weak solutions
of the Dirichlet problem for the harmonic map heat flow for �-equivariant maps,
with � = 2, do not blow up. This is in contrast to the wave-map flow, where finite-
time blow-up behavior is still expected; cf. [18, Remark 1.6]. The following example
reports on corresponding numerical studies in an equivariant setting but restricted
to a square centered around the origin. The initial data that we use are defined as
follows.

Example 5.2. Set Ω := (−2, 2)2 and for � = 1 or � = 2 define

u0(r, θ) :=

⎛
⎝ sin χ(r, �θ) sin �θ

sin χ(r, �θ) cos �θ
cos χ(r, �θ)

⎞
⎠ v0(r, θ) ≡ 0,

where (r, θ) denotes polar coordinates in R
2 and χ(r, �θ) := (r3/4) exp(−(4(r −

2)/10)4).

We ran Algorithm B in Example 5.2 on uniform triangulations of Ω with h =
4 ·2−5 and h = 4 ·2−6 and time-step size defined through k = h/5. Figure 7 displays
the total energies and W 1,∞ semi-norm as functions of t ∈ [0, 4]. We observe that
large gradients occur for � = 1 while they do not occur for � = 2.
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Figure 1. Total energy for numerical approximations obtained
with Algorithm B and with the projection scheme of [7] for various
discretization parameters in the wave map problem defined with
initial data from Example 5.1.
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Figure 2. Total energy, kinetic energy, and W 1,∞(Ω)-semi-norm
for numerical approximations obtained with Algorithm B and with
the projection scheme of [7] for fixed discretization parameters in
the wave map problem defined with initial data from Example 5.1.
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Figure 3. Total energy, kinetic energy, and W 1,∞(Ω)-semi-norm
for numerical approximations obtained with the symmetric scheme
from Remark 4.1 for fixed discretization parameters in the wave
map problem defined with initial data from Example 5.1.
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Figure 4. Energy and W 1,∞ semi-norm for numerical approxi-
mations of the harmonic map heat flow problem obtained with Al-
gorithm A for various discretizations parameters and with initial
data defined in Example 5.1.
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Figure 5. Numerical solutions obtained with Algorihm B in Ex-
ample 5.1. Initial data (top plot), numerical approximations at
t = 1/4 and t = 1/2 (second and fourth plots from top), and ap-
proximations at t = 0 when the evolution is reversed at t = 1/4
and t = 1/2 (third and fifth plots). All vectors are scaled by the
factor 1/8 for graphical purposes.
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Figure 6. Snapshots of the numerical solutions for evolution
governed by harmonic map heat flow in Example 5.1 and simu-
lated with Algorithm A. Displayed solutions correspond to t =
0, 0.01875, 00375, 0.05625, 0.075 (from top to bottom). All vec-
tors are scaled by the factor 1/8 for graphical purposes.
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Figure 7. Energy and W 1,∞ semi-norm for numerical approxi-
mations of the wave map problem obtained with Algorithm B for
various discretizations parameters and with initial data defined in
Example 5.2.
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