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A NEW MULTIDIMENSIONAL

CONTINUED FRACTION ALGORITHM

JUN-ICHI TAMURA AND SHIN-ICHI YASUTOMI

Abstract. It has been believed that the continued fraction expansion of (α, β)
(1, α, β is a Q-basis of a real cubic field) obtained by the modified Jacobi-
Perron algorithm is periodic. We conducted a numerical experiment (cf. Table
B, Figure 1 and Figure 2) from which we conjecture the non-periodicity of

the expansion of (〈 3
√
3〉, 〈 3

√
9〉) (〈x〉 denoting the fractional part of x). We

present a new algorithm which is something like the modified Jacobi-Perron
algorithm, and give some experimental results with this new algorithm. From
our experiments, we can expect that the expansion of (α, β) with our algorithm

always becomes periodic for any real cubic field. We also consider real quartic
fields.

1. Introduction

The study of continued fractions has a long history dating back to J. Wallis
(1616–1703) and Ch. Huygens (1629–1695) [8]. In particular, many kinds of higher-
dimensional continued fractions have been studied starting with K.G. Jacobi (1804–
1851) [7]. A central problem has been to find a higher-dimensional generalization
of Legendre’s theorem concerning the periodic continued fractions. In fact, the
following conjecture has been believed.

Conjecture. Let 1, α1, . . . , αs be a Q-basis of real number field K with [K : Q] =
s+ 1. Then, the expansion of (α1, . . . , αs) by the Jacobi-Perron algorithm is even-
tually periodic; cf. [11].

Although Bernstein [1] gave some classes of periodic continued fractions obtained
by the Jacobi-Perron algorithm, the conjecture is still open. For example, the peri-
odicity of the Jacobi-Perron algorithm for ( 3

√
4,

3
√
42) has not been established (see

[2], [12]). We also gave a numerical experiments (cf. Table B, Figure 1 and Figure

2) from which we conjecture the non-periodicity of the expansion of (〈 3
√
3〉, 〈 3

√
9〉)

by the modified Jacobi-Perron algorithm.
In this paper, we give some candidates of algorithms of continued fraction ex-

pansion of dimensions 2 and 3, which can be easily generalized to any dimension.

By numerical experiments, we checked that, for instance, (〈 3
√
m〉, 〈 3

√
m2〉) (2 ≤

m ≤ 5000,m ∈ Z, 3
√
m /∈ Q) and (〈 4

√
m〉, 〈 4

√
m2〉, 〈 4

√
m3〉) (2 ≤ m ≤ 5000,m ∈

Z,
√
m /∈ Q) obtained by our algorithm become periodic. We showed the periodicity
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of the expansion of (α, β) ∈ K2 by our algorithm for small classes of cubic fields
K, including totally real cases, and pure cubic cases; cf. Theorems 2.4, 2.5.

The algorithms given in this paper are motivated by the algorithms given in [12],
which are quite different from the Jacobi-Perron algorithm, but our algorithms are
related to the so-called modified Jacobi-Perron algorithm; cf. [3], [4], [5], [10].

2. The cubic case

In this section we consider real cubic fields K (including totally real cases and
not totally real cases). We denote by XK the set defined by

XK := {(α, β) ∈ K2|1, α, β are linearly independent over Q}∩I2, where I = [0, 1).

We define the transformation TK on XK by

TK(α, β) :=

⎧⎨
⎩

( 1
α − � 1

α�,
β
α − �β

α�) if α√
|N(α)|

> β√
|N(β)|

,

(αβ − �α
β �,

1
β − � 1

β �) if α√
|N(α)|

< β√
|N(β)|

for (α, β) ∈ XK , where �x� is the floor function of x and N(x) is the norm of x ∈ K
over Q.

Lemma 2.1. The transformation TK is well defined.

Proof. Let (α, β) ∈ XK . It suffices to show that α√
|N(α)|

	= β√
|N(β)|

. We suppose

α√
|N(α)|

= β√
|N(β)|

. Then, we have α =
√

|N(α)|
|N(β)|β. Since α and β are linearly

independent over Q, so that
√

|N(α)|
|N(β)| /∈ Q. Hence

√
|N(α)|
|N(β)| is a quadratic irrational

and
√

|N(α)|
|N(β)| ∈ K, which is a contradiction. It is easy to see that TK(α, β) ∈

XK . �

We define the integer-valued functions a, b and e on XK as follows:

a(α, β) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊
1

α

⌋
if α√

|N(α)|
> β√

|N(β)|
,

⌊
α

β

⌋
if α√

|N(α)|
< β√

|N(β)|
,

b(α, β) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊
β

α

⌋
if α√

|N(α)|
> β√

|N(β)|
,

⌊
1

β

⌋
if α√

|N(α)|
< β√

|N(β)|
,

e(α, β) :=

⎧⎨
⎩
0 if α√

|N(α)|
> β√

|N(β)|
,

1 if α√
|N(α)|

< β√
|N(β)|

for (α, β) ∈ XK .
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We put

(an, bn, en) = (an(α, β), bn(α, β), en(α, β))

:= (a(Tn−1
K (α, β), b(Tn−1

K (α, β), e(Tn−1
K (α, β)) (n ∈ Z>0),

S(α, β) := {(an(α, β), bn(α, β), en(α, β))}∞n=1.

The sequence S(α, β) will be referred to as the expansion of (α, β) ∈ XK by TK ;
TK gives rise to a 2-dimensional continued fraction expansion, which will be called
the Algebraic Jacobi-Perron Algorithm(AJPA). Throughout our paper αn, βn are
numbers defined by

(αn, βn) := Tn
K(α, β), (n ∈ Z≥0).

Notice that

(an, bn, en) ∈ Z≥0 × Z≥0 × {0, 1}, (n ∈ Z≥0).

For each (a′, b′, e′) ∈ Z>0 × Z≥0 × {0, 1}, we put

A(a′,b′,e′) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝0 0 1

0 1 b′

1 0 a′

⎞
⎟⎠ if e′ = 0,

⎛
⎜⎝1 0 a′

0 0 1

0 1 b′

⎞
⎟⎠ if e′ = 1,

(2.1)

Mn(α, β) =

⎛
⎝p′′n(α, β) p′n(α, β) pn(α, β)
q′′n(α, β) q′n(α, β) qn(α, β)
r′′n(α, β) r′n(α, β) rn(α, β)

⎞
⎠ := A(a1,b1,e1) · · ·A(an,bn,en).(2.2)

Definition. We denote by PK the set

{(α, β) ∈ XK |there exist m,n ∈ Z>0 such that m 	= n and Tm
K (α, β) = Tn

K(α, β)}.
If (α, β) ∈ PK , the expansion S(α, β) by TK becomes periodic, and vice versa. In

what follows we mean by “the period” the period obtained by choosing the shortest
period and preperiod. For the periodic continued fraction obtained by AJPA, we
have the following proposition. In a way similar to Perron [9], we can show

Proposition 2.2. Let (α, β) ∈ PK . Then, there exists a constant c(α, β) > 0 and
η(α, β) > 0 such that η(α, β) ≤ 3

2 and

|α− pn
rn

| ≤ c(α, β)

r
η(α,β)
n

,

|β − qn
rn

| ≤ c(α, β)

r
η(α,β)
n

,

holds. Furthermore, η(α, β) = 3
2 holds if and only if K is not a totally real cubic

field.

Remark 2.3.

(1) Based on our many experiments (cf. Tables A, C, D), we can hope that

XK = PK .
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(2) In view of Proposition 2.2, we see that

(α, β) 	= (α′, β′) ⇐⇒ S(α, β) 	= S(α′, β′),

for (α, β), (α′, β′) ∈ PK .

Bernstein [1] gave some classes of periodic continued fractions obtained by the
Jacobi-Perron algorithm. We can also give some examples of periodic expansions
obtained by the AJPA, for example:

Theorem 2.4. Let K = Q( 3
√
m3 + 1) with m ∈ Z>0. Let (α, β) = ( 3

√
m3 + 1 −

m, 3
√
(m3 + 1)2 −m2). Then, (α, β) ∈ PK and the length of the period is 2.

Proof. It is easy to see that (α, β) ∈ XK . We have |N(α)| = 1 and |N(β)| =
(m3 + 1)2 −m6 = 2m3 + 1.

First, we consider the case where m ≥ 2. Since
√
2m3 + 1 > 3

√
m3 + 1 +m, we

have α√
|N(α)|

> β√
|N(β)|

, so that e1 = 0. Therefore, we get

(α1, β1) = TK(α, β) = (
1

α
− a1,

β

α
− b1)

= ( 3
√
(m3 + 1)2 +m

3
√
m3 + 1 +m2 − 3m2,

3
√
m3 + 1 +m− 2m)

= ( 3
√
(m3 + 1)2 +m

3
√
m3 + 1− 2m2,

3
√
m3 + 1−m).

We see that |N(α1)| = 9m3 + 1 and |N(β1)| = 1. One can see that

3
√
(m3 + 1)2 +m 3

√
m3 + 1− 2m2

√
9m3 + 1

<
3
√
m3 + 1−m.

Therefore, we have e2 = 1. Thus, we get

(α2, β2) = TK(α1, β1) = (
α1

β1
− a2),

1

β1
− b2)

= (
3
√
m3 + 1 + 2m− 3m, 3

√
(m3 + 1)2 +m

3
√

m3 + 1 +m2 − 3m2)

= (
3
√
m3 + 1−m, 3

√
(m3 + 1)2 +m

3
√
m3 + 1− 2m2)

= (β1, α1).

Therefore, we have (α2, β2) = (β1, α1). Hence, {Tn
K(α, β)}∞n=0 is periodic with 2 as

the length of its (shortest) period. Thus, we get

n 1 2 3
an 3m2 3m 3m2

bn 2m 3m2 3m
en 0 1 0

an = an−2, bn = bn−2 and en = en−2 for all n ≥ 4.

Second, we consider the case m = 1, i.e., (α0, β0) = ( 3
√
2− 1, 3

√
4− 1). Then, we

see that

(α1, β1) = (
1

3
−

3
√
2

3
+

3
√
4

3
,−2

3
+

2 3
√
2

3
+

3
√
4

3
),

(α2, β2) = (α0, β0).

We get
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n 1 2
an 0 2
bn 1 1
en 1 0

an = an−2, bn = bn−2 and en = en−2 for all n ≥ 3. �

We put, for p
q (p, q ∈ Z are coprime),

dh(
p

q
) := max{�log10 |p|+ 1�, �log10 |q|+ 1�}, dh(0) := 0.

The function dh can be extended to Q[x]: for g(x) =
n∑

i=0

aix
i ∈ Q[x], put

dh(g) := max
0≤i≤n

{dh(ai)}.

Furthermore, we put, for (α, β) ∈ K2,

dh(α, β) := max{dh(mpol(α)), dh(mpol(β))},

where mpol(γ) ∈ Q[x] (γ ∈ K) is the monic minimal polynomial of γ. We put, for
n ∈ Z≥0 and (α, β) ∈ XK ,

dhAJPA(n;α, β) := dh(αn, βn),

rdhAJPA(n;α, β) :=
dh(αn, βn)

dh(α0, β0)
,

where (αn, βn) := Tn
K(α, β). The function dhAJPA(n;α, β) (resp., rdhAJPA(n;α, β))

is referred to as the nth decimal height of (α, β) (resp., the nth relative decimal
height of (α, β)) with respect to the AJPA.

Let K = Q( 3
√
m) with m ∈ Z>0 and 3

√
m /∈ Q. We computed the length

of the periods of the expansion S(〈 3
√
m〉, 〈 3

√
m2〉) for all m with 2 ≤ m ≤ 5000

( 3
√
m /∈ Q) and these decimal heights; cf. Table A. For the calculation of the tables,

we used a computer equipped with GiNaC [6] on GNU C++. We confirmed that

(〈 3
√
m〉, 〈 3

√
m2〉) ∈ PK for all m with 2 ≤ m ≤ 5000( 3

√
m /∈ Q). There are no reports

on the periodicity of any of these pairs of numbers obtained by the Jacobi-Perron
algorithm or any modified Jacobi-Perron algorithms except for the algorithms of
[12].

In [2] Elsner and Hasse gave numerical results for 36 pairs of cubic numbers with
the Jacobi-Perron algorithm. They found 14 cases of periodicity but no sign of
periodicity for the other 22 cases.

In [12] the first author computed the dh(Tn(〈 3
√
m〉, 〈 3

√
m〉2) for some n and m,

where T is the transformation related to the Jacobi-Perron algorithm. Tamura
observed that it becomes gradually bigger and bigger as a function of n for many
2 ≤ m ≤ 104. This suggests that for some m,

lim
n→∞

dh(Tn(〈 3
√
m〉, 〈 3

√
m〉2) = ∞,

i.e., an explosion of the size of minimal polynomials. We computed dh(T̄n( 3
√
3 −

1, 3
√
9 − 2) for 0 ≤ n ≤ 2 × 104, where the transformation T̄ , which is associated

with the modified Jacobi-Perron algorithm, is defined by the following:
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For (x, y) ∈ [0, 1)2 (1, x, y are linearly independent over Q),

T̄ (x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
y

x
,
1

x
− � 1

x
�) if x > y,

(
1

y
− �1

y
�, x

y
) if x < y;

cf. Podsypanin [10]. This algorithm has been studied in connection with simulta-
neous diophantine approximation [3], [4] and [5].

Table B gives dh(T̄n( 3
√
3−1, 3

√
9−2) for 0 ≤ n ≤ 2×104. The table also suggests

an explosion phenomenon related to the modified Jacobi-Perron algorithm.

Theorem 2.5. Let δm be the root of x3 −mx+ 1 = 0 (m ∈ Z,m ≥ 3) determined
by 0 < δm < 1. Then, K = Q(δm) is a cubic number field and (δm, δ2m) ∈ PK .

Proof. The irreduciblity of g := x3 −mx + 1 is clear. It is also clear that g has a
unique root δm in [0, 1). We consider Tn

K(α, β) with (α, β) = (δm, δ2m).

Since |N(δm)| = |N(δ2m)| = 1 and 0 < δm < 1, we have δm√
|N(δm)|

>
δ2m√

|N(δ2m)|
,

so that e1 = 0, and

(α1, β1) = TK(α, β) = (
1

α
− a(α, β),

β

α
− b(α, β))

= (m− δ2m − (m− 1), δm)

= (1− δ2m, δm).

Therefore,

α1√
|N(α1)|

=
1− δ2m√

|N(1− δ2m)|
=

1− δ2m√
m(m− 2)

,

β1√
|N(β1)|

= δm.

One can check that
1− δ2m√
m(m− 2)

> δm if and only if (1 − δ2m)2 > m(m − 2)δ2m.

Since (1− δ2m)2 −m(m− 2)δ2m = 2(m− 2)δ2m + 2(δ2m − δ3m) + δ4m − δ6m > 0, we get
α1√

|N(α1)|
>

β1√
|N(β1)|

. Therefore, e2 = 0, and

(α2, β2) = TK(α1, β1) = (
1

α1
− a(α1, β1),

β1

α1
− b(α1, β1))

=

(
−(m− 1)δ2m − δm +m2 − 2m+ 1

m2 − 2m
− 1,

−δ2m − (m− 1)δm + (m− 1)

m2 − 2m

)

=

(
−(m− 1)δ2m − δm + 1

m2 − 2m
,
−δ2m − (m− 1)δm + (m− 1)

m2 − 2m

)
.

In view of N(α2) =
1

m(m− 2)
and N(β2) =

1

m(m− 2)
, we get

α2√
|N(α2)|

=
δ2
√
m(m− 2)

1− δ2m
<

δ
√
m(m− 2)

1− δ2m
=

β2√
|N(β2)|

.
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Thus, we get e3 = 1, and

(α3, β3) = TK(α2, β2) = (
α2

β2
− a(α2, β2),

1

β2
− b(α2, β2))

= (δm,−δ2m − δm +m− (m− 1))

= (δm,−δ2m − δm + 1).

Since |N(β3)| = m2 − 4m+ 4, α3√
|N(α3)|

< β3√
|N(β3)|

holds if and only if

β3

√
N(α3)− α3

√
N(β3) = (−δ2m − δm + 1)− δm(m− 2) > 0,

which is equivalent to

−δ4m + δ2m − 2δm + 1 > 0.(2.3)

The inequality (2.3) holds, since 0 < δm < 1
2 , which can be easily seen. Therefore,

we get e4 = 1, and we have

(α4, β4) = TK(α3, β3) = (
α3

β3
− a(α3, β3),

1

β3
− b(α3, β3))

=

(
−δm + 1

m− 2
,
−δ2m +m− 1

m− 2
− 1

)

=

(
−δm + 1

m− 2
,
−δ2m + 1

m− 2

)
,

and |N(α4)| = 1
(m−2)2 and |N(β4)| = m

(m−2)2 follows. Thus, we have α4√
|N(α4)|

>

β4√
|N(β4)|

. Therefore, we see e5 = 0 and

(α5, β5) = TK(α4, β4) = (
1

α4
− a(α4, β4),

β4

α4
− b(α4, β4))

= (−δ2m − δm +m− 1− (m− 2), δm + 1− 1)

= (−δ2m − δm + 1, δm),

which implies (α6, β6) = (
−δ2m+1
m−2 , −δm+1

m−2 ) and (α7, β7) = (α3, β3). Thus, we obtain

(α3+4j , β3+4j) = (α3, β3) for all integer j ≥ 0.
Thus, we get

n 1 2 3 4 5 6 7
an m− 1 1 0 0 m− 2 1 1
bn 0 0 m− 1 1 1 0 m− 2
en 0 0 1 1 0 0 1

an = an−4, bn = bn−4 and en = en−4 for all n ≥ 8. �

We also confirmed that (〈τm〉, 〈τ2m〉) ∈ PK for all integers m with 2 ≤ m ≤ 5000,
where τm is the maximal root of x3 − mx + 1, while the length of the (shortest)
period is very long in some cases. Table C gives these results.



2216 JUN-ICHI TAMURA AND SHIN-ICHI YASUTOMI

3. The quartic case

Let K be a real quartic field over Q. In this section, we mean by X ′
K and XK

the sets defined by

X ′
K := {(α1, α2, α3) ∈ K3|1, α1, α2, α3 are linearly independent over Q} ∩ I3,

XK := {(α1, α2, α3) ∈ X ′
K |there exists i ∈ {1, 2, 3} such that K = Q(αi)}.

For x ∈ K ∩ I we define φ(x) by

φ(x) :=

{
x

3
√

|N(x)|
if K = Q(x),

−1 if K 	= Q(x).

In a similar manner to the cubic case, one can show the following.

Lemma 3.1. Let (α1, α2, α3) ∈ XK . If φ(αi), φ(αj) > 0 and φ(αi) = φ(αj) for
integers i and j with 1 ≤ i, j ≤ 3, then i = j.

For α = (α1, α2, α3) ∈ XK , we define ρ(α) and

ρ(α) = max{φ(αi)|i ∈ {1, 2, 3}}.

For α = (α1, α2, α3) ∈ XK , from Lemma 3.1 it follows that

	{i ∈ {1, 2, 3}|ρ(α) = φ(αi)} = 1,

and we denote by ω(α) the uniquely determined number i ∈ {1, 2, 3} with ρ(α) =
φ(αi). We define the transformation TK on XK as follows: For α = (α1, α2, α3) ∈
XK , TK(α) = (β1, β2, β3) with

βi :=

{
1
αi

− � 1
αi
� if i = ω(α),

αi

αω(α)
− � αi

αω(α)
� if i 	= ω(α) (i = 1, 2, 3).

We define PK , in a similar fashion in Section 2, that is,

PK := {α ∈ XK |there exist m,n ∈ Z>0 such that m 	= n and Tn
K(α) = Tm

K (α)}.

We also define dh, dhAJPA and rdhAJPA in a similar manner to Section 2, namely,
for α = (α1, α2, α3) ∈ XK and n ∈ Z≥0

dh(α) := max
i∈{1,2,3}

{dh(p4/deg(pi)
i )},

dhAJPA(n;α) := dh(Tn
K(α)),

rdhAJPA(n;α) :=
dh(Tn

K(α))

dh(α)
,

where pi = mpol(αi) ∈ Q[x] (i ∈ {1, 2, 3}) is the monic minimal polynomial of αi.

We computed the length of the period of the expansion of (〈 4
√
m〉, 〈 4

√
m2〉, 〈 4

√
m3〉)

obtained by TK for m all 2 ≤ m ≤ 5000 and relative decimal heights given above;

cf. Table D. We confirmed that (〈 4
√
m〉, 〈 4

√
m2〉, 〈 4

√
m3〉) ∈ PK for all 2 ≤ m ≤

5000(
√
m /∈ Q).
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4. A conjecture

Conjecture. Let K be a real cubic field or a real quartic field. Then:

(1) XK = PK .
(2) There exists an absolute constant c independent of K and α ∈ XK such

that rdhAJPA(α) ≤ c holds. (Probably we can take c = 6.)

(3) There are infinitely many α ∈ XK (including (〈 3
√
3〉, 〈 3

√
9〉)) such that the

expansion of α obtained by the Jacobi-Perron Algorithm modified by Podsy-
panin is not periodic.

In Table A, L(m1,m2), H(m1,m2) and R(m1,m2) are numbers defined by
L(m1,m2) := the maximum value of the length of the shortest period of the ex-

pansion of (〈 3
√
m〉, 〈 3

√
m2〉) by our algorithm for m1 ≤ m ≤ m2 with 3

√
m /∈ Q,

H(m1,m2) := max
m1≤m≤m2, 3

√
m/∈Q,0≤n<∞

dhAJPA(n; 〈 3
√
m〉, 〈 3

√
m2〉),

R(m1,m2) := max
m1≤m≤m2, 3

√
m/∈Q,0≤n<∞

rdhAJPA(n; 〈 3
√
m〉, 〈 3

√
m2〉),

which are well defined by the periodicity.

Table A

range of m L(m1,m2) H(m1,m2) R(m1,m2)
m1 ≤ m ≤ m2

2 ≤ m ≤ 200 494 5 3/2
201 ≤ m ≤ 400 898 6 3/2
401 ≤ m ≤ 600 1702 6 3/2
601 ≤ m ≤ 800 1938 6 6/5
801 ≤ m ≤ 1000 2802 7 7/5
1001 ≤ m ≤ 1200 4062 7 7/5
1201 ≤ m ≤ 1400 5586 7 7/5
1401 ≤ m ≤ 1600 5090 8 8/5
1601 ≤ m ≤ 1800 8022 7 7/5
1801 ≤ m ≤ 2000 7854 8 8/5
2001 ≤ m ≤ 2200 5486 7 7/5
2201 ≤ m ≤ 2400 6422 7 7/5
2401 ≤ m ≤ 2600 7758 8 7/5
2601 ≤ m ≤ 2800 6026 8 4/3
2801 ≤ m ≤ 3000 9970 8 4/3
3001 ≤ m ≤ 3200 11562 8 4/3
3201 ≤ m ≤ 3400 6734 9 3/2
3401 ≤ m ≤ 3600 6650 8 4/3
3601 ≤ m ≤ 3800 12350 8 4/3
3801 ≤ m ≤ 4000 19230 8 4/3
4001 ≤ m ≤ 4200 11454 8 4/3
4201 ≤ m ≤ 4400 16410 8 4/3
4401 ≤ m ≤ 4600 14618 8 4/3
4601 ≤ m ≤ 4800 18158 8 4/3
4801 ≤ m ≤ 5000 14918 8 4/3
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In Table B, U(m1,m2), V (m1,m2) are numbers defined by

U(m1,m2) := max
m1≤n≤m2

dh(T̄n(
3
√
3− 1,

3
√
9− 2),

V (m1,m2) := min
m1≤n≤m2

dh(T̄n(
3
√
3− 1,

3
√
9− 2).

We define integral-valued functions U and V by

U(x) := U(1000n1 + 1, 1000(n1 + 1)), if 1000n1 < x ≤ 1000(n1 + 1),

V (x) := V (1000n1 + 1, 1000(n1 + 1)), if 1000n1 < x ≤ 1000(n1 + 1),

for x, n1 ∈ Z≥0.

Table B

range of n U(m1,m2) V (m1,m2)
0 ≤ n ≤ 1000 93 1
1001 ≤ n ≤ 2000 175 92
2001 ≤ n ≤ 3000 253 174
3001 ≤ n ≤ 4000 321 252
4001 ≤ n ≤ 5000 397 319
5001 ≤ n ≤ 6000 484 396
6001 ≤ n ≤ 7000 555 483
7001 ≤ n ≤ 8000 624 554
8001 ≤ n ≤ 9000 716 624
9001 ≤ n ≤ 10000 773 716
10001 ≤ n ≤ 11000 850 772
11001 ≤ n ≤ 12000 923 847
12001 ≤ n ≤ 13000 1000 921
13001 ≤ n ≤ 14000 1074 1000
14001 ≤ n ≤ 15000 1139 1073
15001 ≤ n ≤ 16000 1212 1137
16001 ≤ n ≤ 17000 1284 1211
17001 ≤ n ≤ 18000 1370 1284
18001 ≤ n ≤ 19000 1444 1370
19001 ≤ n ≤ 20000 1514 1444
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Figure 1. The graph of U
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Figure 2. The graph of V
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In Table C, L(m1,m2), H(m1,m2) and R(m1,m2) are numbers defined by
L(m1,m2) := the maximum value of the length of the shortest period of the ex-
pansion of (〈τm〉, 〈τ2m〉) by our algorithm for m1 ≤ m ≤ m2, where τm is a maximal
root of x3 −mx+ 1,

H(m1,m2) := max
m1≤m≤m2,0≤n<∞

dhAJPA(n; 〈τm〉, 〈τ2m〉),

R(m1,m2) := max
m1≤m≤m2,0≤n<∞

rdhAJPA(n; 〈τm〉, 〈τ2m〉),

which are well defined by the periodicity.
In Table D, L(m1,m2), H(m1,m2) and R(m1,m2) are numbers defined by

L(m1,m2) := the maximum value of the length of the shortest period of the expan-

sion of (〈 4
√
m〉, 〈 4

√
m2〉, 〈 4

√
m3〉) by our algorithm for m1 ≤ m ≤ m2 with

√
m /∈ Q,

H(m1,m2) := max
m1≤m≤m2,

√
m/∈Q,0≤n<∞

dhAJPA(n; 〈 3
√
m〉, 〈 3

√
m2〉, 〈 3

√
m3〉),

R(m1,m2) := max
m1≤m≤m2,

√
m/∈Q,0≤n<∞

rdhAJPA(n; 〈 3
√
m〉, 〈 3

√
m2〉, 〈 3

√
m3〉),

which are well defined by the periodicity.

Table C

range of m L(m1,m2) H(m1,m2) R(m1,m2)
m1 ≤ m ≤ m2

3 ≤ m ≤ 200 866 6 2
201 ≤ m ≤ 400 3312 7 7/3
401 ≤ m ≤ 600 5378 7 7/3
601 ≤ m ≤ 800 10578 9 9/4
801 ≤ m ≤ 1000 11808 8 2
1001 ≤ m ≤ 1200 19264 8 2
1201 ≤ m ≤ 1400 17254 8 2
1401 ≤ m ≤ 1600 25792 9 9/4
1601 ≤ m ≤ 1800 33562 10 5/2
1801 ≤ m ≤ 2000 36476 9 9/4
2001 ≤ m ≤ 2200 23274 9 9/4
2201 ≤ m ≤ 2400 38938 9 9/4
2401 ≤ m ≤ 2600 54046 10 5/2
2601 ≤ m ≤ 2800 57246 9 9/4
2801 ≤ m ≤ 3000 51964 9 9/4
3001 ≤ m ≤ 3200 57036 9 9/4
3201 ≤ m ≤ 3400 92332 9 9/4
3401 ≤ m ≤ 3600 55698 10 5/2
3601 ≤ m ≤ 3800 96972 9 9/4
3801 ≤ m ≤ 4000 86784 10 5/2
4001 ≤ m ≤ 4200 94188 10 5/2
4201 ≤ m ≤ 4400 116912 10 5/2
4401 ≤ m ≤ 4600 109288 10 5/2
4601 ≤ m ≤ 4800 113792 10 5/2
4801 ≤ m ≤ 5000 109426 10 5/2
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Table D

range of m L(m1,m2) H(m1,m2) R(m1,m2)
m1 ≤ m ≤ m2

2 ≤ m ≤ 200 4194 13 13/5
201 ≤ m ≤ 400 8994 12 2
401 ≤ m ≤ 600 9730 11 11/6
601 ≤ m ≤ 800 18894 13 13/7
801 ≤ m ≤ 1000 14172 13 13/7
1001 ≤ m ≤ 1200 27876 14 2
1201 ≤ m ≤ 1400 34308 13 12/7
1401 ≤ m ≤ 1600 16452 13 13/8
1601 ≤ m ≤ 1800 32870 14 7/4
1801 ≤ m ≤ 2000 44244 13 13/8
2001 ≤ m ≤ 2200 48732 13 13/8
2201 ≤ m ≤ 2400 58974 14 7/4
2401 ≤ m ≤ 2600 62706 13 13/8
2601 ≤ m ≤ 2800 41678 13 13/8
2801 ≤ m ≤ 3000 45066 14 7/4
3001 ≤ m ≤ 3200 41382 13 13/8
3201 ≤ m ≤ 3400 112670 15 15/8
3401 ≤ m ≤ 3600 121296 15 15/8
3601 ≤ m ≤ 3800 58782 15 5/3
3801 ≤ m ≤ 4000 60890 13 13/9
4001 ≤ m ≤ 4200 92190 14 14/9
4201 ≤ m ≤ 4400 43882 14 14/9
4401 ≤ m ≤ 4600 94542 16 16/9
4601 ≤ m ≤ 4800 79714 13 13/9
4801 ≤ m ≤ 5000 51786 15 5/3
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