
MATHEMATICS OF COMPUTATION
Volume 78, Number 268, October 2009, Pages 2187–2191
S 0025-5718(09)02222-4
Article electronically published on February 9, 2009

HIGH PRECISION COMPUTATION OF A CONSTANT

IN THE THEORY OF TRIGONOMETRIC SERIES

J. ARIAS DE REYNA AND J. VAN DE LUNE

Abstract. Using the bisection as well as the Newton-Raphson method, we
compute to high precision the Littlewood-Salem-Izumi constant frequently oc-
curring in the theory of trigonometric sums.

1. Introduction

In Zygmund [15, p. 192] we read that there exists a number α0 ∈ (0, 1) such
that for each α ≥ α0 the partial sums of the series

∑∞
n=1 n

−α cos(nx) are uniformly
bounded below, whereas for α < α0 they are not. It is also shown there that α0 is
the unique solution of the equation

(1.1)

∫ 3π/2

0

u−α cosu du = 0 (0 < α < 1).

(The uniqueness of α0 will also follow from our analysis in Section 4.)
In this journal ([5], [8] and [14]) we find three short papers dealing with the

numerical computation of this critical constant. In the first-mentioned paper the
method of computation was not revealed. The result 0.30483 < α0 < 0.30484 ap-
pears to be incorrect in the third decimal (which was also observed in [8] and [14]).
In the second paper, by conventional numerical quadrature, it was (correctly) found
that 0.308443 < α0 < 0.308444. In the third paper, using differencing and mak-
ing use of ordinary interpolation techniques, it was announced that (to 15 D)
α0 = 0.308443779561985, which, as we will see, comes quite close to the true
solution of (1.1).

The main object of this note is to present some simple elementary procedures
for a high precision computation of α0.

Although we will not tackle (1.1) by any integral approximating procedure, any-
one persisting to do so might consider first removing the singularity of the integrand
in (1.1) at u = 0 by integrating by parts, yielding the equivalent equation

(1.2) F (α) :=

∫ 3π/2

0

u1−α sinu du = 0 (0 < α < 1).

We might solve (1.1) by directly substituting the power series for cosu. However,
instead, we will tackle (1.2) by directly substituting the power series for sin u,
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yielding the equivalent equation

∫ 3π/2

0

u1−α
∞∑
k=0

(−1)k
u2k+1

(2k + 1)!
du =

∞∑
k=0

(−1)k

(2k + 1)!

∫ 3π/2

0

u2k+2−α du = 0

(interchanging
∑

and
∫
being permitted here by uniform convergence) or

(1.3)

∞∑
k=0

(−1)k

(2k + 1)!

(
3π
2

)2k+3−α

2k + 3− α
= 0 (0 < α < 1),

which, in its turn, is clearly equivalent to

(1.4) G(α) :=
∞∑
k=0

(−1)k

(2k + 1)!

(
3π
2

)2k
2k + 3− α

= 0 (0 < α < 1).

Note that F (α) and G(α) differ only by a positive factor:

(1.5) G(α) =
(3π

2

)α−3

F (α) =
2

3π

∫ 1

0

v1−α sin
(
3π
2 v) dv.

2. Error analysis for G(α) and G′(α)

In order to compute G(α) sufficiently accurately we make the following error
analysis. We will make use of the following simple and well-known

Lemma 2.1. If aM+1 > aM+2 > aM+3 > · · · > 0 and limk→∞ ak = 0, then the
alternating series

∑∞
k=M+1(−1)kak converges and its sum S satisfies |S| < aM+1.

We can now easily show that when truncating (1.4) after M terms we commit

an (absolute) error < (3π/2)2M+2

(2M+4)! . Writing

ak =

(
3π
2

)2k
(2k + 1)! (2k + 3− α)

we clearly have ak > 0, limk→∞ ak = 0 and

ak+1

ak
=

(
3π
2

)2
(2k + 2)(2k + 3)

2k + 3− α

2k + 5− α
<

23

42
< 1 for k ≥ 2

so that the lemma applies. Hence

∣∣∣
∞∑

k=M+1

(−1)k
(
3π
2

)2k
(2k + 1)! (2k + 3− α)

∣∣∣ < aM+1 <

(
3π
2

)2M+2

(2M + 4)!
for M ≥ 1,

proving our claim. (Note that we used that 0 < α < 1.)
In a similar way it is easily seen that the same M yields an even smaller error

when

G′(α) =
∞∑
k=0

(−1)k

(2k + 1)!

(
3π
2

)2k
(2k + 3− α)2

is truncated after M terms.
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3. The bisection program

We first present a program (for Mathematica Version 4.2) using bisection of the
α-interval [0, 1]. This very robust procedure needs no further justification. The
result is (accurate to 130 D):

α0 ≈ 0.30844 37795 61986 00303 41969 50985 95615 94093 74881 47222 19050 10818 91891

75633 33646 83898 81583 89154 74111 81428 85243 33044 87005 90567 92056 38627

4. Justification of the application of the

Newton-Raphson method

In order to solve the equation G(α) = 0 we will now apply the much faster
Newton-Raphson method. We will show that (1.4) can also be used for this purpose.

Our justification for applying this method here is based on the following three
observations:
Observation 1. G(0) < 0 < G(1).

Proof. From (1.5) it easily follows that

G(0) = −
( 2

3π

)3

and G(1) =
( 2

3π

)2

. �

Observation 2. G′(α) > (2/3π)3 for 0 ≤ α ≤ 1.

Proof. Since (with Si(x) =
∫ x

0
sin t/t dt)

G′(0) = − 2

3π

∫ 1

0

v log v sin
(
3π
2 v) dv =

8
(
1 + Si

(
3π
2

))
27π3

>
( 2

3π

)3

,

our claim is an easy consequence of the following �

Observation 3. G′′(α) > 0 for 0 ≤ α ≤ 1.

Proof. Writing c = 3π
2 and ak = 2 c2k

(2k+1)! (2k+3−α)3 (> 0) it follows from (1.4) that

G′′(α) =
∞∑
k=0

(−1)kak = (a0 − a1) +

∞∑
k=1

(a2k − a2k+1).

Since

a2k+1

a2k
=

c2

(4k + 2)(4k + 3)

(4k + 3− α

4k + 5− α

)3

<
23

42
· 1 < 1 for k ≥ 1,

we already find that G′′(α) > a0 − a1.
So, it suffices to show that a0 ≥ a1, or, equivalently, that

a1
a0

=
c2

3!

(3− α

5− α

)3

≤ 1.

Since (0 <) 3−α
5−α = 1 − 2

5−α is decreasing (for 0 ≤ α ≤ 1) we need only check

whether c2

6

(
3
5

)3 ≤ 1. Since c2 < 23 it suffices to observe that 23
6

27
125 = 207

250 < 1, and
the proof is complete. �
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From the previous proof it is clear that
∑∞

k=0(−1)kak is an alternating series
in the sense of Lemma 2.1. Hence, we might use a similar error estimate as given
before for G(α) and G′(α).

The upshot of all this is that (for 0 ≤ α ≤ 1)
(a) G(α) changes sign, (b) G(α) is strictly increasing, (c) G(α) is strictly convex.
It is well known that these conditions are sufficient for a rigorous application of

the Newton-Raphson method to solve our equation G(α) = 0.
Starting on the large side with α = 31

100 , the program in Section 5 yields the
solution α0 presented there (accurate to 1120 D).

5. The Newton-Raphson program

Considerably more efficient than the bisection procedure is the Newton-Raphson
method. The theoretical justification was given in the previous section.

Starting with α = 31
100 we find after 10 iterations that

α0 ≈ 0.30844 37795 61986 00303 41969 50985 95615 94093 74881 47222 19050 10818 91891 75633

33646 83898 81583 89154 74111 81428 85243 33044 87005 90567 92056 38627 42762 94638

64125 05998 23831 85455 61091 48448 43732 92955 91210 06167 94033 89040 23200 75937

35551 96458 18912 23711 85977 40758 47712 23681 52071 27309 30648 54142 11222 21328

67475 18367 96776 32777 82178 57135 03785 59451 85855 37153 73748 62329 34834 93383

10271 03316 23977 99085 75171 17825 15277 15233 91368 31623 10073 85968 71360 45377

29958 88150 04792 46476 18905 99174 27695 38591 86825 04300 04568 91962 61785 51160

73434 48711 02464 44624 46899 43950 49454 94157 36865 88771 28074 35765 04551 57356

60342 47934 73045 97313 77001 84093 75724 64014 49041 17091 09020 62994 10947 38484

57301 91655 68731 08265 96219 74870 97674 02739 49480 30079 45799 29657 72476 57829

65635 42318 57887 31812 19547 50611 89593 78195 94367 39765 43677 52291 77108 50149

82852 32724 82004 44482 96275 62690 66209 63438 91019 91785 43433 58580 60118 22865

76976 69697 93848 92079 44235 48266 73922 11031 64893 05399 22498 60586 15316 41872

84522 28247 13023 41908 83558 50673 14676 06111 89516 31984 20955 54304 27710 93862

29062 11870 49536 74477 31495 59765 32238 45223 68791 92455 15013 42105 66452 23369

44558 91848 15109 15528 59670 62037 73042 74959 95260 50539 70933 62562 21140 36998

(α0 accurate to 1120 D, obtained within 18 seconds)

Without any economization of our Newton-Raphson program, the computation of
α0 to 5000 D (requiring 12 iterations) took less than 20 minutes on a Toshiba laptop
- 2 GB RAM - 3.2 MHz.
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defining α0 is due to S. Izumi. This justifies calling it the Littlewood-Salem-Izumi
constant.

However, the earliest paper where we detected this constant is [10].
For additional information on α0 we recommend [2] and [9]. α0 also plays a

role in some theorems about positive trigonometric series with general coefficients:
[4], [6] and [7], and in theorems about the positivity of some sums of orthogonal
polynomials: [12].

Our method can be extended to apply to similar constants. For example, some
open problems are mentioned in [1], [3] and [13].
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