HIGH PRECISION COMPUTATION OF A CONSTANT IN THE THEORY OF TRIGONOMETRIC SERIES

J. ARIAS DE REYNA AND J. VAN DE LUNE

Abstract

Using the bisection as well as the Newton-Raphson method, we compute to high precision the Littlewood-Salem-Izumi constant frequently occurring in the theory of trigonometric sums.

1. Introduction

In Zygmund [15, p. 192] we read that there exists a number $\alpha_{0} \in(0,1)$ such that for each $\alpha \geq \alpha_{0}$ the partial sums of the series $\sum_{n=1}^{\infty} n^{-\alpha} \cos (n x)$ are uniformly bounded below, whereas for $\alpha<\alpha_{0}$ they are not. It is also shown there that α_{0} is the unique solution of the equation

$$
\begin{equation*}
\int_{0}^{3 \pi / 2} u^{-\alpha} \cos u d u=0 \quad(0<\alpha<1) \tag{1.1}
\end{equation*}
$$

(The uniqueness of α_{0} will also follow from our analysis in Section (4))
In this journal (5], 8] and [14) we find three short papers dealing with the numerical computation of this critical constant. In the first-mentioned paper the method of computation was not revealed. The result $0.30483<\alpha_{0}<0.30484 \mathrm{ap}-$ pears to be incorrect in the third decimal (which was also observed in [8] and [14]). In the second paper, by conventional numerical quadrature, it was (correctly) found that $0.308443<\alpha_{0}<0.308444$. In the third paper, using differencing and making use of ordinary interpolation techniques, it was announced that (to 15 D) $\alpha_{0}=0.308443779561985$, which, as we will see, comes quite close to the true solution of (1.1).

The main object of this note is to present some simple elementary procedures for a high precision computation of α_{0}.

Although we will not tackle (1.1) by any integral approximating procedure, anyone persisting to do so might consider first removing the singularity of the integrand in (1.1) at $u=0$ by integrating by parts, yielding the equivalent equation

$$
\begin{equation*}
F(\alpha):=\int_{0}^{3 \pi / 2} u^{1-\alpha} \sin u d u=0 \quad(0<\alpha<1) \tag{1.2}
\end{equation*}
$$

We might solve (1.1) by directly substituting the power series for $\cos u$. However, instead, we will tackle (1.2) by directly substituting the power series for $\sin u$,

[^0]yielding the equivalent equation
$$
\int_{0}^{3 \pi / 2} u^{1-\alpha} \sum_{k=0}^{\infty}(-1)^{k} \frac{u^{2 k+1}}{(2 k+1)!} d u=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \int_{0}^{3 \pi / 2} u^{2 k+2-\alpha} d u=0
$$
(interchanging \sum and \int being permitted here by uniform convergence) or
\[

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \frac{\left(\frac{3 \pi}{2}\right)^{2 k+3-\alpha}}{2 k+3-\alpha}=0 \quad(0<\alpha<1) \tag{1.3}
\end{equation*}
$$

\]

which, in its turn, is clearly equivalent to

$$
\begin{equation*}
G(\alpha):=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \frac{\left(\frac{3 \pi}{2}\right)^{2 k}}{2 k+3-\alpha}=0 \quad(0<\alpha<1) \tag{1.4}
\end{equation*}
$$

Note that $F(\alpha)$ and $G(\alpha)$ differ only by a positive factor:

$$
\begin{equation*}
G(\alpha)=\left(\frac{3 \pi}{2}\right)^{\alpha-3} F(\alpha)=\frac{2}{3 \pi} \int_{0}^{1} v^{1-\alpha} \sin \left(\frac{3 \pi}{2} v\right) d v \tag{1.5}
\end{equation*}
$$

2. Error analysis for $G(\alpha)$ and $G^{\prime}(\alpha)$

In order to compute $G(\alpha)$ sufficiently accurately we make the following error analysis. We will make use of the following simple and well-known

Lemma 2.1. If $a_{M+1}>a_{M+2}>a_{M+3}>\cdots>0$ and $\lim _{k \rightarrow \infty} a_{k}=0$, then the alternating series $\sum_{k=M+1}^{\infty}(-1)^{k} a_{k}$ converges and its sum S satisfies $|S|<a_{M+1}$.

We can now easily show that when truncating (1.4) after M terms we commit an (absolute) error $<\frac{(3 \pi / 2)^{2 M+2}}{(2 M+4)!}$. Writing

$$
a_{k}=\frac{\left(\frac{3 \pi}{2}\right)^{2 k}}{(2 k+1)!(2 k+3-\alpha)}
$$

we clearly have $a_{k}>0, \lim _{k \rightarrow \infty} a_{k}=0$ and

$$
\frac{a_{k+1}}{a_{k}}=\frac{\left(\frac{3 \pi}{2}\right)^{2}}{(2 k+2)(2 k+3)} \frac{2 k+3-\alpha}{2 k+5-\alpha}<\frac{23}{42}<1 \quad \text { for } k \geq 2
$$

so that the lemma applies. Hence

$$
\left|\sum_{k=M+1}^{\infty}(-1)^{k} \frac{\left(\frac{3 \pi}{2}\right)^{2 k}}{(2 k+1)!(2 k+3-\alpha)}\right|<a_{M+1}<\frac{\left(\frac{3 \pi}{2}\right)^{2 M+2}}{(2 M+4)!} \quad \text { for } M \geq 1
$$

proving our claim. (Note that we used that $0<\alpha<1$.)
In a similar way it is easily seen that the same M yields an even smaller error when

$$
G^{\prime}(\alpha)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} \frac{\left(\frac{3 \pi}{2}\right)^{2 k}}{(2 k+3-\alpha)^{2}}
$$

is truncated after M terms.

3. The bisection program

We first present a program (for Mathematica Version 4.2) using bisection of the α-interval $[0,1]$. This very robust procedure needs no further justification. The result is (accurate to 130 D):

```
\alpha
    75633336468389881583891547411181428855433304487005905679205638627
```


4. Justification of the application of the NeWton-Raphson method

In order to solve the equation $G(\alpha)=0$ we will now apply the much faster Newton-Raphson method. We will show that (1.4) can also be used for this purpose.

Our justification for applying this method here is based on the following three observations:
Observation 1. $G(0)<0<G(1)$.
Proof. From (1.5) it easily follows that

$$
G(0)=-\left(\frac{2}{3 \pi}\right)^{3} \quad \text { and } \quad G(1)=\left(\frac{2}{3 \pi}\right)^{2}
$$

Observation 2. $G^{\prime}(\alpha)>(2 / 3 \pi)^{3}$ for $0 \leq \alpha \leq 1$.
Proof. Since (with $\operatorname{Si}(x)=\int_{0}^{x} \sin t / t d t$)

$$
G^{\prime}(0)=-\frac{2}{3 \pi} \int_{0}^{1} v \log v \sin \left(\frac{3 \pi}{2} v\right) d v=\frac{8\left(1+\mathrm{Si}\left(\frac{3 \pi}{2}\right)\right)}{27 \pi^{3}}>\left(\frac{2}{3 \pi}\right)^{3}
$$

our claim is an easy consequence of the following
Observation 3. $G^{\prime \prime}(\alpha)>0$ for $0 \leq \alpha \leq 1$.
Proof. Writing $c=\frac{3 \pi}{2}$ and $a_{k}=\frac{2 c^{2 k}}{(2 k+1)!(2 k+3-\alpha)^{3}}(>0)$ it follows from (1.4) that

$$
G^{\prime \prime}(\alpha)=\sum_{k=0}^{\infty}(-1)^{k} a_{k}=\left(a_{0}-a_{1}\right)+\sum_{k=1}^{\infty}\left(a_{2 k}-a_{2 k+1}\right)
$$

Since

$$
\frac{a_{2 k+1}}{a_{2 k}}=\frac{c^{2}}{(4 k+2)(4 k+3)}\left(\frac{4 k+3-\alpha}{4 k+5-\alpha}\right)^{3}<\frac{23}{42} \cdot 1<1 \quad \text { for } \quad k \geq 1
$$

we already find that $G^{\prime \prime}(\alpha)>a_{0}-a_{1}$.
So, it suffices to show that $a_{0} \geq a_{1}$, or, equivalently, that

$$
\frac{a_{1}}{a_{0}}=\frac{c^{2}}{3!}\left(\frac{3-\alpha}{5-\alpha}\right)^{3} \leq 1
$$

Since $(0<) \frac{3-\alpha}{5-\alpha}=1-\frac{2}{5-\alpha}$ is decreasing (for $0 \leq \alpha \leq 1$) we need only check whether $\frac{c^{2}}{6}\left(\frac{3}{5}\right)^{3} \leq 1$. Since $c^{2}<23$ it suffices to observe that $\frac{23}{6} \frac{27}{125}=\frac{207}{250}<1$, and the proof is complete.

From the previous proof it is clear that $\sum_{k=0}^{\infty}(-1)^{k} a_{k}$ is an alternating series in the sense of Lemma 2.1. Hence, we might use a similar error estimate as given before for $G(\alpha)$ and $G^{\prime}(\alpha)$.

The upshot of all this is that (for $0 \leq \alpha \leq 1$)
(a) $G(\alpha)$ changes sign, (b) $G(\alpha)$ is strictly increasing, (c) $G(\alpha)$ is strictly convex.

It is well known that these conditions are sufficient for a rigorous application of the Newton-Raphson method to solve our equation $G(\alpha)=0$.

Starting on the large side with $\alpha=\frac{31}{100}$, the program in Section 5 yields the solution α_{0} presented there (accurate to 1120 D).

5. The Newton-Raphson program

Considerably more efficient than the bisection procedure is the Newton-Raphson method. The theoretical justification was given in the previous section.

Starting with $\alpha=\frac{31}{100}$ we find after 10 iterations that

$$
\begin{array}{r}
\alpha_{0} \approx 0.3084437795619860030341969509859561594093748814722219050108189189175633 \\
\\
3364683898815838915474111814288524333044870059056792056386274276294638 \\
\\
6412505998238318545561091484484373292955912100616794033890402320075937 \\
\\
3555196458189122371185977407584771223681520712730930648541421122221328 \\
\\
6747518367967763277782178571350378559451858553715373748623293483493383 \\
\\
1027103316239779908575171178251527715233913683162310073859687136045377 \\
\\
2995888150047924647618905991742769538591868250430004568919626178551160 \\
\\
7343448711024644462446899439504945494157368658877128074357650455157356 \\
\\
6034247934730459731377001840937572464014490411709109020629941094738484 \\
\\
5730191655687310826596219748709767402739494803007945799296577247657829 \\
\\
6563542318578873181219547506118959378195943673976543677522917710850149 \\
\\
8285232724820044448296275626906620963438910199178543433585806011822865 \\
\\
7697669697938489207944235482667392211031648930539922498605861531641872 \\
\\
8452228247130234190883558506731467606111895163198420955543042771093862
\end{array}
$$

Without any economization of our Newton-Raphson program, the computation of α_{0} to 5000 D (requiring 12 iterations) took less than 20 minutes on a Toshiba laptop - 2 GB RAM - 3.2 MHz .

Acknowledgements

We want to thank the referee for his valuable suggestions to simplify our original derivations in Sections 2 and 4.

Our thanks are also due to Professors R. A. Askey, S. R. Finch and S. Koumandos for pointing out various closely related references to us.
Note. Zygmund [15, p. 379] writes that the origin of the defining property for α_{0} is to be found in an unpublished result of Littlewood and Salem, and that the equation
defining α_{0} is due to S . Izumi. This justifies calling it the Littlewood-Salem-Izumi constant.

However, the earliest paper where we detected this constant is 10 .
For additional information on α_{0} we recommend [2] and [9]. α_{0} also plays a role in some theorems about positive trigonometric series with general coefficients: [4], 6] and [7, and in theorems about the positivity of some sums of orthogonal polynomials: 12.

Our method can be extended to apply to similar constants. For example, some open problems are mentioned in [1, (3) and [13].

References

1. R. Askey, J. Steinig, Some positive trigonometric sums, Trans. Amer. Math. Soc. 187 (1974), 295-307. MR0338481 (49:3245)
2. R. Askey, Orthogonal Polynomials and Special Functions (CBMS-NSF Regional Conference Series in Applied Mathematics), Society for Industrial and Applied Mathematics, 1987. MR 0481145 (58:1288)
3. R. Askey, Problems which interest and/or annoy me, J. Comput. Appl. Math. 48 (1993), 3-15. MR1246848 (94j:33005)
4. A. S. Belov, Coefficients of trigonometric cosine series with nonnegative partial sums (in Russian), Translated in Proc. Steklov Inst. Math. (1992) 1, 1-18. Theory of functions (in Russian) (Amberd, 1987). Trudy Mat. Inst. Steklov 190 (1989), 3-21. MR1005335 (90m:42005)
5. R. P. Boas Jr. and C. Klema, A constant in the theory of trigonometric series, Math. Comp. 18 (1964), 674. MR 0176283 (31:558)
6. G. Brown, K. Wang, D. C. Wilson, Positivity of some basic cosine sums, Math. Proc. Cambridge Philos. Soc. 114 (1993), 383—391. MR 1235986 (94h:42013)
7. G. Brown, F. Dai, K. Wang, On positive cosine sums, Math. Proc. Camb. Phil. Soc. 142 (2007), 219-232. MR 2314596 (2008e:42014)
8. R. F. Church, On a constant in the theory of trigonometric series, Math. Comp. 19 (1965), 501.
9. S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, UK, 2003. MR2003519 (2004i:00001)
10. K. Grandjot, V. Jarnik, E. Landau, J. E. Littlewood, Bestimmung einer absoluten Konstanten aus der Theorie der trigonometrischen Reihen, Annali di Mat. (4) 6 (1929), 1-7. MR1553122
11. J. Keane, Estimating Brown-Wang B and Zygmund R constants, unpublished note (2000).
12. S. Koumandos, S. Ruscheweyh, Positive Gegenbauer polynomial sums and applications to starlike functions, Constr. Approx. 23 (2006), 197-210. MR2186305 (2007b:42001)
13. S. Koumandos, S. Ruscheweyh, On a conjecture for trigonometric sums and starlike functions, J. Approx. Theory 149 (2007), 42-58. MR2371613
14. Y. L. Luke, W. Fair, G. Coombs and R. Moran, On a constant in the theory of trigonometric series, Math. Comp. 19 (1965), 501-502.
15. A. Zygmund, Trigonometric Series, Cambridge University Press (1988) Vol I. MR 933759 (89c:42001)

Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain
E-mail address: arias@us.es
Langebuorren 49, 9074 CH Hallum, The Netherlands (formerly at CWI, Amsterdam)
E-mail address: j.vandelune@hccnet.nl

[^0]: Received by the editor July 28, 2008 and, in revised form, September 21, 2008.
 2000 Mathematics Subject Classification. Primary 42-04, 26D05; Secondary 11Y60.
 Key words and phrases. Trigonometric sums, Littlewood-Salem-Izumi constant, High precision computation.

 The first author was supported by MCI Grant MTM2006-05622.

