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A PIECEWISE LINEAR FINITE ELEMENT METHOD

FOR THE BUCKLING AND THE VIBRATION PROBLEMS

OF THIN PLATES

DAVID MORA AND RODOLFO RODRÍGUEZ

Abstract. The aim of this paper is to analyze a piecewise linear finite element
method to approximate the buckling and the vibration problems of a thin plate.
The method is based on a conforming discretization of a bending moment
formulation for the Kirchhoff-Love model. The analysis restricts to simply
connected polygonal clamped plates, not necessarily convex. The method is
proved to converge with optimal order for both spectral problems, including
an improved order for the eigenvalues. Numerical experiments are reported to
assess its performance and to compare it with other low-order finite element
methods.

1. Introduction

The analysis of finite element methods to solve plate eigenvalue problems has a
long history. Let us mention among the oldest references the papers by Canuto [6],
Ishihara [13, 14], Rannacher [18], and Mercier et al. [17, Section 7(b,d)]. While
[18] deals with non-conforming methods for the biharmonic equation, all the other
papers are based on different mixed formulations of the Kirchhoff model. These
formulations turn out to be equivalent to the biharmonic equation when the solution
is smooth enough (typically H3). Therefore, in order to allow for such regularity
to hold (see [12]), the plate is assumed to be convex in these references.

One of the most well-known mixed methods to deal with the biharmonic equation
is the method introduced by Ciarlet and Raviart [8]. This was thoroughly studied
by many authors (see, for instance, [5], [20], [9, Section 3(a)], [4, Section 4(a)], [11,
Section III.3], [10], [2]). The method was applied to the plate vibration problem
in [6] and [17, Section 7(b)], where it was proved to converge for finite elements
of degree k ≥ 2. A formulation of the eigenvalue problem for the Stokes equation,
which turns out to be equivalent to a plate buckling problem, is also analyzed
in [17, Section 7(d)], where it is proved to converge for degree k ≥ 2, as well.
Although there is numerical evidence of optimal order convergence for piecewise
linear elements applied to the vibration an the buckling plate problems (see in
particular Section 5 below), to the best of our knowledge this has not been proved.
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Another classical mixed method to deal with Kirchhoff plates was introduced
by Miyoshi in [16] for load problems. This method is based on piecewise linear
elements and was extended by Ishihara to the vibration problem in [13] and to the
buckling problem in [14]. The method was proved to converge with a suboptimal
order O(h1/2), but only for meshes uniform in the interior of the domain. This
hypothesis cannot be avoided. In fact, we report in Section 5 numerical experiments
which show that this method converges to wrong results when used on particular
regular non-uniform meshes.

Another low-order method was introduced much more recently by Amara et al.
in [1] to deal with the load problem for a Kirchhoff-Love plate subject to arbitrary
boundary conditions. This method is based on a standard discretization by low-
order conforming elements of a bending moment formulation. In the present paper
we adapt this approach to the buckling and the vibration problems. We restrict our
analysis to simply connected polygonal clamped plates, not necessarily convex. In
this case, all the equations are discretized by piecewise linear elements. We prove
that the method leads to optimal orders of convergence for both the vibration and
the buckling problems. Since the analysis of the former is very straightforward, we
describe in detail only the latter and summarize the results for the former.

The outline of the paper is as follows: We introduce in Section 2 both eigenvalue
problems. We recall the mixed formulation in terms of bending moments and a
third equivalent formulation considered in [1], which allows using standard finite
elements for its discretization. In Section 3 we develop the numerical analysis of the
buckling problem. With this aim, we introduce a linear operator whose spectrum
is related to the solution of the buckling problem. A spectral characterization is
given and additional regularity results are proved. Then, the finite element method
is introduced, and it is proved that it leads to optimal order approximation of
the eigenfunctions. We end this section by proving that an improved order of
convergence holds for the approximation of the eigenvalues. The same steps are
briefly presented in Section 4 for the vibration problem, emphasizing the differences
between both analyses. In Section 5 we report some numerical tests which confirm
the theoretical results. We also include in this section numerical experiments with
lowest-order Ciarlet-Raviart and Ishihara methods. These experiments show that
the Ciarlet-Raviart method seems to converge with optimal order. The reported
experiments also show that the Ishihara method fails when used on regular non-
uniform meshes. We summarize some conclusions in Section 6. Finally, we give the
matrix form of the discrete buckling problem in the Appendix, which allows us to
prove a spectral characterization of this generalized eigenvalue problem.

2. Problem statement

Let Ω ⊂ R
2 be a polygonal bounded simply connected domain occupied by the

mean surface of a plate, clamped on its whole boundary Γ. The plate is assumed to
be homogeneous, isotropic, linearly elastic, and sufficiently thin as to be modeled
by Kirchhoff-Love equations. We denote by u the transverse displacement of the
mean surface of the plate.

The plate vibration problem reads as follows:
Find (λ, u) ∈ R×H2(Ω), u �= 0, such that

(2.1)

{
∆2u = λu in Ω,
u = ∂nu = 0 on Γ,
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where λ = ω2, with ω > 0 being the vibration frequency, and ∂n denotes the
normal derivative. To simplify the notation we have taken the Young modulus and
the density of the plate, both equal to 1.

On the other hand, when the plate is subjected to a plane stress tensor field
η : Ω → R

2×2, the corresponding linear buckling problem reads as follows:
Find (λ, u) ∈ R×H2(Ω), u �= 0, such that

(2.2)

{
∆2u = −λ

(
η : D2u

)
in Ω,

u = ∂nu = 0 on Γ,

where in this case λ is the critical load andD2u := (∂iju)1≤i,j≤2 denotes the Hessian

matrix of u. The applied stress tensor field is assumed to satisfy the equilibrium
equations:

ηT = η in Ω,(2.3)

div η = 0 in Ω.(2.4)

Moreover, η is assumed to be essentially bounded, namely,

(2.5) η ∈ L∞(Ω)
2×2

.

However, we do not need to assume η to be positive definite. Let us remark that,
in practice, η is the stress distribution on the plate subjected to in-plane loads,
which does not need to be positive definite (see, for instance, Test 3 in Section 5.3
below).

Here and thereafter we use the following notation for any 2 × 2 tensor field τ ,
any 2D vector field v, and any scalar field v:

div v := ∂1v1 + ∂2v2, curlv := ∂1v2 − ∂2v1, curl v :=

(
∂2v
−∂1v

)
,

div τ :=

(
∂1τ11 + ∂2τ12
∂1τ21 + ∂2τ22

)
, Curlv :=

(
∂2v1 −∂1v1
∂2v2 −∂1v2

)
.

Moreover, we denote

I :=

(
1 0
0 1

)
, J :=

(
0 1

−1 0

)
.

To obtain a weak formulation of each of the two spectral problems above, we
multiply the corresponding equation by v ∈ H2

0 (Ω) and integrate twice by parts in
Ω. Thus, for the vibration problem (2.1) we obtain:

Find (λ, u) ∈ R×H2
0 (Ω), u �= 0, such that

(2.6)

∫
Ω

∆u∆v = λ

∫
Ω

uv ∀v ∈ H2
0 (Ω).

For the linear buckling problem we do the same and use the following lemma,
which is easily proved by integrating by parts.

Lemma 2.1. For all u ∈ H2(Ω), v ∈ H1
0 (Ω), and η satisfying (2.3)-(2.5),∫

Ω

(
η : D2u

)
v = −

∫
Ω

(η∇u) · ∇v.

Thus, we obtain the following symmetric weak formulation of the buckling prob-
lem (2.2):
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Find (λ, u) ∈ R×H2
0 (Ω), u �= 0, such that

(2.7)

∫
Ω

∆u∆v = λ

∫
Ω

(η∇u) · ∇v ∀v ∈ H2
0 (Ω).

It is well known that the eigenvalues of problem (2.6) are real and positive.
Whenever η is positive definite, it is immediate to prove that those of problem (2.7)
are real and positive, too. In any case these eigenvalues are real (see Lemma 3.1
below).

2.1. Formulation of the spectral problems in terms of bending moments.
We follow an approach introduced and analyzed in [1] to deal with the load problem
for Kirchhoff plates, adapted to the spectral problems of the previous section. Since
the adaptation to the buckling problem presents several additional difficulties which
must be tackled, we will describe this case in more detail and only summarize the
analogous results for the vibration problem.

Let us denote

V := H1
0 (Ω) and X :=

{
τ ∈ L2(Ω)

2×2
: div(div τ ) ∈ L2(Ω)

}
.

It was proved in [1] that X endowed with the norm

‖τ‖X :=
[
‖τ‖20,Ω + ‖div(div τ )‖20,Ω

]1/2
is a Hilbert space and that D(Ω̄)2×2 is a dense subspace of X . Moreover,

(2.8)

∫
Ω

div(div τ )v =

∫
Ω

τ : D2v ∀τ ∈ X , ∀v ∈ H2
0 (Ω).

Problem (2.7) can be rewritten as follows:
Find (λ,σ, u) ∈ R×X ×H2

0 (Ω), u �= 0, such that

(2.9)

{
σ = C(D2u) in Ω,
div(divσ) = −λη : D2u in Ω.

In the expression above, σ = (σij)1≤i,j≤2 is the so-called stress tensor and C is
the linear operator arising from Hooke’s law:

C(τ ) := (1− ν) τ + ν (tr τ ) I, τ ∈ R
2×2,

with ν ∈ (0, 12 ) being the Poisson coefficient. Let us remark that σ is a symmetric

tensor as a consequence of the symmetry of D2u.
The equivalence between problems (2.7) and (2.9) is a straightforward conse-

quence of (2.8) and the identity∫
Ω
C(D

2u) : D2v =

∫
Ω

∆u∆v ∀u, v ∈ H2
0 (Ω),

which in its turn follows from the density of D(Ω) in H2
0 (Ω) and integration by

parts.
To obtain a weak formulation of problem (2.9) we proceed as in [1]. First note

that the operator C is invertible, its inverse being given by

C
−1(τ ) =

1

1− ν
τ − ν

1− ν2
(tr τ ) I, τ ∈ R

2×2.

Next, consider the following closed subspace of X :

X 0 := {τ ∈ X : div(div τ ) = 0} .
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The first equation of problem (2.9) can be equivalently written C−1(σ) = D2u. By
testing this equation with τ ∈ X 0 and using (2.8), we obtain

(2.10)

∫
Ω
C
−1(σ) : τ =

∫
Ω

D2u : τ =

∫
Ω

div(div τ )u = 0 ∀τ ∈ X 0.

On the other hand, taking traces in the first equation of (2.9), it follows that u is
the unique solution of the problem

(2.11)

{
∆u− 1

1 + ν
trσ = 0 in Ω,

u = 0 on Γ.

Moreover, let φ be the solution of the problem

(2.12)

{
∆φ = −λη : D2u in Ω,
φ = 0 on Γ,

and let
σ0 := σ − φI.

Since div(divφI) = ∆φ, from the second equation in (2.9) and the first one in
(2.12), we have that div(divσ0) = 0 and, hence, σ0 ∈ X 0.

Therefore, by testing problems (2.11) and (2.12) with functions in V , substituting
σ = σ0 + φI in (2.10) and (2.11), and using Lemma 2.1, we arrive at the following
weak formulation of problem (2.9):

Find (λ, φ,σ0, u) ∈ R× V ×X 0 × V , u �= 0, such that

(2.13)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∇φ · ∇v = −λ

∫
Ω

(η∇u) · ∇v ∀v ∈ V ,∫
Ω
C
−1(σ0 + φI) : τ = 0 ∀τ ∈ X 0,∫

Ω

∇u · ∇γ +
1

1 + ν

∫
Ω

(
trσ0 + 2φ

)
γ = 0 ∀γ ∈ V .

The following lemma will be used to prove that this problem is actually equivalent
to problem (2.7).

Lemma 2.2. Given χ ∈ L2(Ω)
2×2

, there holds
∫
Ω
χ : τ = 0 for all τ ∈ X 0 if and

only if there exists v ∈ H2
0 (Ω) such that χ = D2v.

Proof. Let χ ∈ L2(Ω)
2×2

be such that
∫
Ω
χ : τ = 0 for all τ ∈ X 0. Let v ∈ H2

0 (Ω)
be the solution of the following problem:∫

Ω

D2v : D2w =

∫
Ω

χ : D2w ∀w ∈ H2
0 (Ω).

Hence, χ−D2v ∈ X 0 and, consequently,∫
Ω

χ :
(
χ−D2v

)
= 0.

On the other hand, testing the problem above with w = v, we have that∫
Ω

(
χ−D2v

)
: D2v = 0.

Subtracting this equation from the previous one, we obtain∫
Ω

(
χ−D2v

)
:
(
χ−D2v

)
= 0
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and, hence, χ = D2v. Since the converse is a direct consequence of the definition
of X 0, we conclude the proof. �

Now we are in a position to prove that problems (2.13) and (2.7) are equivalent.

Proposition 2.3. (λ, φ,σ0, u) is a solution of problem (2.13) if and only if (λ, u)
is a solution of problem (2.7) and σ := σ0 + φI = C(D2u).

Proof. It has already been shown that problems (2.7) and (2.9) are equivalent. So,
it is enough to prove the equivalence between problems (2.13) and (2.9).

Let (λ, φ,σ0, u) be a solution of problem (2.13). The first equation of this
problem and Lemma 2.1 imply that φ satisfies (2.12). Therefore, since σ0 ∈ X 0,
σ := σ0 + φI satisfies the second equation of (2.9).

On the other hand, the second equation of (2.13) and Lemma 2.2 imply that there
exists v ∈ H2

0 (Ω) such that C−1(σ0+φI) = D2v or, equivalently, σ0+φI = C(D2v).
By taking traces in this expression, we observe that v is the unique solution of the
following problem: {

∆v =
1

1 + ν

(
trσ0 + 2φ

)
in Ω,

v = 0 on Γ,

whose weak form coincides with the third equation of problem (2.13). Consequently,
v = u. Therefore, u ∈ H2

0 (Ω) and σ = σ0 + φI = C(D2u), which allows us to
conclude that (λ,σ, u) is a solution of problem (2.9).

The converse has already been proved when deducing (2.9), so we conclude the
proof. �

Remark 2.4. Although no symmetry constraint is explicitly imposed in problem
(2.13) on σ0 (and hence on σ = σ0 + φI), according to the theorem above σ =

C(D2u). Consequently, σ and a fortiori the term σ0 in the solution of prob-
lem (2.13) turn out to be symmetric, anyway.

Analogously, the vibration problem (2.1) can be rewritten as follows:
Find (λ,σ, u) ∈ R×X ×H2

0 (Ω), u �= 0, such that{
σ = C(D2u) in Ω,
div(divσ) = λu in Ω.

The same arguments used for the buckling problem lead to the following weak
formulation of this problem:

Find (λ, φ,σ0, u) ∈ R× V ×X 0 × V , u �= 0, such that

(2.14)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∇φ · ∇v = −λ

∫
Ω

uv ∀v ∈ V ,∫
Ω
C
−1(σ0 + φI) : τ = 0 ∀τ ∈ X 0,∫

Ω

∇u · ∇γ +
1

1 + ν

∫
Ω

(
trσ0 + 2φ

)
γ = 0 ∀γ ∈ V .

Finally, the following equivalence result holds true:

Proposition 2.5. (λ, φ,σ0, u) is a solution of problem (2.14) if and only if
(λ, u) is a solution of problem (2.6) and σ := σ0 + φI = C(D2u).
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2.2. Equivalent variational formulations. Our next step is to introduce new
variational formulations of the buckling and the vibration spectral problems, which
allow using standard finite elements for their discretization. With this purpose, we
follow once more the arguments proposed in [1] to obtain a convenient decomposi-
tion of the space X 0.

Consider the following space:

H :=

{
ξ ∈ H1(Ω)

2
:

∫
Ω

ξ1 = 0,

∫
Ω

ξ2 = 0 and

∫
Ω

div ξ = 0

}
,

endowed with the norm

‖ξ‖H :=
(
‖∂2ξ1‖20,Ω + 1

2 ‖∂2ξ2 − ∂1ξ1‖20,Ω + ‖∂1ξ2‖20,Ω
)1/2

.

It is shown in [1] that ‖·‖H and ‖·‖1,Ω are equivalent norms in H, as a consequence
of Korn’s inequality.

In the same reference, it is also shown that, for each symmetric τ ∈ X 0, there
exists a unique ξ ∈ H such that

(2.15) τ = Curl ξ + 1
2 (div ξ)J.

Since by virtue of Remark 2.4 the term σ0 in the solution of problem (2.13) turns
out to be symmetric, then it can be accordingly written

σ0 = Curlψ + 1
2 (divψ)J,

for a unique ψ ∈ H.

Remark 2.6. The simple-connectedness assumption on Ω is necessary for the rep-
resentation (2.15) to hold true for all symmetric τ ∈ X 0. This is tacitly assumed
in the proofs of [1, Section 4.1].

We introduce the following continuous bilinear form in H:

A(ψ, ξ) : =

∫
Ω
C
−1
(
Curlψ + 1

2 (divψ)J
)
:
(
Curl ξ + 1

2 (div ξ)J
)(2.16)

=
1

1− ν

∫
Ω

[
∂2ψ1∂2ξ1 + ∂1ψ2∂1ξ2 +

1
2 (∂2ψ2 − ∂1ψ1) (∂2ξ2 − ∂1ξ1)

]
− ν

1− ν2

∫
Ω

curlψ curl ξ.

Straightforward calculus leads to

A(ξ, ξ) =
1

1 + ν
‖ξ‖2H +

ν

1− ν2

∫
Ω

[
(∂2ξ1 + ∂1ξ2)

2 + (∂2ξ2 − ∂1ξ1)
2
]
,

which shows that A(ξ, ξ) ≥ 1
1+ν ‖ξ‖2H and, consequently, A(·, ·) is H-elliptic.

On the other hand, explicit computations lead to

(2.17)

∫
Ω
C
−1(φI) :

(
Curl ξ + 1

2 (div ξ)J
)
= − 1

1 + ν

∫
Ω

φ curl ξ

and

(2.18) trσ0 = tr
(
Curlψ + 1

2 (divψ)J
)
= − curlψ.

Using all this in problem (2.13), we obtain the following new formulation of the
buckling problem:
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Find (λ, φ,ψ, u) ∈ R× V ×H× V , u �= 0, such that

(2.19)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∇φ · ∇v = −λ

∫
Ω

(η∇u) · ∇v ∀v ∈ V ,

A(ψ, ξ)− 1

1 + ν

∫
Ω

φ curl ξ = 0 ∀ξ ∈ H,∫
Ω

∇u · ∇γ +
1

1 + ν

∫
Ω

(− curlψ + 2φ) γ = 0 ∀γ ∈ V .

In what follows we show that problems (2.13) and (2.19) are equivalent.

Proposition 2.7. (λ, φ,ψ, u) is a solution of problem (2.19) if and only if
(λ, φ,σ0, u) is a solution of problem (2.13), with σ0 = Curlψ + 1

2 (divψ)J.

Proof. Let (λ, φ,σ0, u) be a solution of problem (2.13). Let ψ ∈ H be such that
σ0 = Curlψ + 1

2 (divψ)J. Given ξ ∈ H, let τ := Curl ξ + 1
2 (div ξ)J ∈ X 0. Then,

the last two equations in (2.19) follow from the corresponding ones in (2.13) by
using (2.16)–(2.18).

Conversely, let (λ, φ,ψ, u) be a solution of problem (2.19) and σ0 := Curlψ +
1
2 (divψ)J ∈ X 0. The third equation in (2.19) and (2.18) yield the third equation
in (2.13). On the other hand, the second equation in (2.19), (2.16), and (2.17)
yield the second equation in (2.13), but only for symmetric test functions τ =
Curl ξ+ 1

2 (div ξ)J ∈ X 0. To end the proof we will show that this equation also holds

true for skew-symmetric test functions. In fact, since σ0 is symmetric, C−1(σ0) is
symmetric too, and so is C−1(φI) as well. Hence, for any skew-symmetric τ ∈ X 0,
there holds

∫
Ω C−1(σ0 + φI) : τ = 0, and we conclude the proof. �

Analogously, the vibration problem (2.14) can be written as follows:
Find (λ, φ,ψ, u) ∈ R× V ×H× V , u �= 0, such that

(2.20)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Ω

∇φ · ∇v = −λ

∫
Ω

uv ∀v ∈ V ,

A(ψ, ξ)− 1

1 + ν

∫
Ω

φ curl ξ = 0 ∀ξ ∈ H,∫
Ω

∇u · ∇γ +
1

1 + ν

∫
Ω

(− curlψ + 2φ) γ = 0 ∀γ ∈ V .

The following equivalence result also holds true:

Proposition 2.8. (λ, φ,ψ, u) is a solution of problem (2.20) if and only if
(λ, φ,σ0, u) is a solution of problem (2.14), with σ0 = Curlψ + 1

2 (divψ)J.

Remark 2.9. In both problems, (2.19) and (2.20), the eigenvalues cannot vanish.
In fact, in both cases, if λ = 0, then the first equation yields φ = 0, the second one
and the H-ellipticity of A lead to ψ = 0, and, from the third one, u = 0. Moreover,∫
Ω
(η∇u) · ∇u �= 0 in problem (2.19), despite the fact that η is not necessarily

positive definite. This is a consequence of the equivalence between problems (2.19)
and (2.7) (cf. Propositions 2.7 and 2.3). Indeed, in problem (2.7),

∫
Ω
(η∇u)·∇u = 0

implies ∆u = 0 and, hence, u = 0.

Finally, to end this section, we introduce a more compact notation for the spec-
tral problems (2.19) and (2.20). Let A : (V ×H× V) × (V ×H× V) → R,
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B : L2(Ω) × L2(Ω) → R, and C : H1(Ω) × H1(Ω) → R be the continuous and
symmetric bilinear forms respectively defined by

A ((φ,ψ, u), (γ, ξ, v)) := A(ψ, ξ) +

∫
Ω

∇φ · ∇v +

∫
Ω

∇u · ∇γ

− 1

1 + ν

[∫
Ω

φ curl ξ +

∫
Ω

γ curlψ

]
+

2

1 + ν

∫
Ω

φγ,

B(u, v) :=

∫
Ω

uv,

C (u, v) :=

∫
Ω

(η∇u) · ∇v.

Using this notation, problems (2.19) and (2.20) can be respectively written as fol-
lows:

Find (λ, φ,ψ, u) ∈ R× V ×H× V , u �= 0, such that

(2.21) A ((φ,ψ, u), (γ, ξ, v)) = −λC (u, v) ∀(γ, ξ, v) ∈ V ×H× V .
Find (λ, φ,ψ, u) ∈ R× V ×H× V , u �= 0, such that

(2.22) A ((φ,ψ, u), (γ, ξ, v)) = −λB(u, v) ∀(γ, ξ, v) ∈ V ×H× V .

3. Numerical analysis of the buckling problem

Before introducing the numerical method, we define the linear operator corre-
sponding to the source problem associated with the buckling spectral problem (2.21)
and prove some properties that will be used for the subsequent convergence analysis.
Consider the following source problem:

Given f ∈ V , find (φ,ψ, u) ∈ V ×H× V such that

(3.1) A ((φ,ψ, u), (γ, ξ, v)) = −C (f, v) ∀(γ, ξ, v) ∈ V ×H× V .
This problem is well posed. In fact, it can be decomposed into the following

sequence of three well posed problems:

(1) Find φ ∈ V such that

(3.2)

∫
Ω

∇φ · ∇v = −
∫
Ω

(η∇f) · ∇v ∀v ∈ V .

(2) Find ψ ∈ H such that

(3.3) A(ψ, ξ) = Gφ(ξ) :=
1

1 + ν

∫
Ω

φ curl ξ ∀ξ ∈ H.

(3) Find u ∈ V such that

(3.4)

∫
Ω

∇u · ∇γ = Rφ,ψ(γ) :=
1

1 + ν

∫
Ω

(curlψ − 2φ) γ ∀γ ∈ V .

Let T be the bounded linear operator defined by

T : V → V ,
f 	→ u,

with (φ,ψ, u) ∈ V ×H× V being the solution of (3.1). Clearly λ is an eigenvalue
of problem (2.21) if and only if µ := 1

λ is a non-zero eigenvalue of T , with the same
multiplicity and corresponding eigenfunctions u (recall λ �= 0; cf. Remark 2.9).
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The arguments used in the previous sections applied now to problem (3.1) allow
us to show its equivalence with the following one:

Given f ∈ V , find u ∈ H2
0 (Ω) such that

(3.5)

∫
Ω

∆u∆v =

∫
Ω

(η∇f) · ∇v ∀v ∈ H2
0 (Ω).

More precisely, u coincides in both problems and

σ := C(D
2u) = Curlψ + 1

2 (divψ)J+ φI.

As a consequence, we can prove the following spectral characterization:

Lemma 3.1. The spectrum of T satisfies sp(T ) = {0} ∪ {µn : n ∈ N}, where
{µn}n∈N

is a sequence of real eigenvalues which converges to 0. The multiplicity of
each non-zero eigenvalue is finite and its ascent is 1.

Proof. By virtue of the equivalence between problems (3.1) and (3.5), T is also a
bounded linear operator from V into H2

0 (Ω). Hence, because of the compact inclu-
sion H2

0 (Ω) ↪→ V and the spectral characterization of compact operators, we have
that sp(T ) = {0} ∪ {µn : n ∈ N}, with {µn}n∈N

a sequence of finite-multiplicity
eigenvalues which converges to 0.

Moreover, it is simple to prove by using (2.3) that T |H2
0 (Ω) : H

2
0 (Ω) → H2

0 (Ω) is

self-adjoint with respect to the inner product (u, v) 	→
∫
Ω
∆u∆v. Therefore, since

sp(T ) = {0} ∪ sp(T |H2
0 (Ω)), we conclude that the non-zero eigenvalues of T are real

and have ascent 1. Thus we end the proof. �

Another conclusion of the equivalence between problems (3.1) and (3.5) is the
following additional regularity result.

Lemma 3.2. There exist s ∈ ( 12 , 1] and C > 0 such that, for all f ∈ V, the solution

(φ,ψ, u) of problem (3.1) satisfies u ∈ H2+s(Ω), ψ ∈ H1+s(Ω)
2
, and

‖φ‖1,Ω + ‖u‖2+s,Ω + ‖ψ‖1+s,Ω ≤ C ‖f‖1,Ω .

Proof. The estimate for φ (which does not involve any additional regularity) follows
directly from (3.2) and (2.5). The estimate for u follows from the equivalence be-
tween problems (3.1) and (3.5) and the classical regularity result for the biharmonic
problem with its right-hand side in H−1(Ω) (cf. [12]).

To prove the estimate for ψ, we use the explicit expression (2.16) for A to write

(3.6) A(ψ, ξ) =
1

1− ν

∫
Ω

ε(ψ̃) : ε(ξ̃)− ν

1− ν2

∫
Ω

div ψ̃ div ξ̃,

with ψ̃ = (ψ2,−ψ1), ξ̃ = (ξ2,−ξ1), and ε = (εij)1≤i,j≤2 being the standard strain

tensor defined by εij(v) :=
1
2 (∂ivj + ∂jvi), 1 ≤ i, j ≤ 2. By substituting (3.6) into

(3.3) and integrating by parts the right-hand side, we find that ψ̃ is the solution

of an elasticity-like problem with Lamé coefficients µ̃ := 1
2(1−ν) and λ̃ := − ν

1−ν2 ,

source term − 1
1+ν∇φ ∈ L2(Ω)

2
, and traction free boundary conditions. Notice that

µ̃ > 0 and λ̃+ µ̃ = 1
2(1+ν) > 0, too. Moreover, since the source term is orthogonal

to the set of rigid motions, because of the constraints in the definition of H, the
elasticity-like problem is well posed. Hence, from a classical regularity result for
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the elasticity equations (see, for instance, [19, Theorem 5.2]), there exists s ∈ ( 12 , 1]

such that ψ̃ and a fortiori ψ satisfy

‖ψ‖1+s,Ω ≤ C ‖∇φ‖0,Ω ≤ C ‖f‖1,Ω .

Thus we conclude the proof. �

Remark 3.3. The constant s in the lemma above is the Sobolev regularity for the
biharmonic equation with the right-hand side inH−1(Ω) and homogeneous Dirichlet
boundary conditions. In fact, for the linear elasticity equations with the right-hand

side in L2(Ω)
2
and purely homogeneous Neumann conditions, the Sobolev regularity

s is the same one. This constant only depends on the domain Ω. If Ω is convex,
then s = 1. Otherwise, the lemma holds for all s < s0, where s0 ∈ ( 12 , 1) depends
on the largest reentrant angle of Ω (see [12] for the precise equation determining
s0).

Remark 3.4. The lemma above does not fix any further regularity for φ. Indeed,
no additional regularity can be expected for arbitrary f ∈ V . For instance, from
(3.2), if η = I, then φ ≡ f .

3.1. Finite element approximation. For the numerical approximation, we con-
sider a regular family {Th}h>0 of triangular meshes in Ω̄ and the standard piecewise
linear continuous finite element space

Lh :=
{
vh ∈ C(Ω̄) : vh|T ∈ P1(T ) ∀T ∈ Th

}
.

Let Vh and Hh be the finite-dimensional subspaces of V and H, respectively defined
by

Vh := Lh ∩ V = {vh ∈ Lh : vh = 0 on Γ} ,

Hh := L2
h ∩H =

{
ξh ∈ L2

h :

∫
Ω

ξh1 = 0,

∫
Ω

ξh2 = 0 and

∫
Ω

div ξh = 0

}
.

The discrete version of problem (2.21) reads as follows:
Find (λh, φh,ψh, uh) ∈ R× Vh ×Hh × Vh, uh �= 0, such that

(3.7)
A ((φh,ψh, uh), (γh, ξh, vh)) = −λhC (uh, vh) ∀(γh, ξh, vh) ∈ Vh ×Hh × Vh.

Let Th be the bounded linear operator defined by

Th : V → V ,
f 	→ uh,

with (φh,ψh, uh) ∈ Vh × Hh × Vh being the solution of the discrete analog of
problem (3.1):

(3.8) A ((φh,ψh, uh), (γh, ξh, vh)) = −C (f, vh) ∀(γh, ξh, vh) ∈ Vh ×Hh × Vh.

As in the continuous case, this problem decomposes into a sequence of three well-
posed problems, which are the respective discretizations of (3.2)–(3.4):

φh ∈ Vh :

∫
Ω

∇φh · ∇vh = −
∫
Ω

(η∇f) · ∇vh ∀vh ∈ Vh,(3.9)

ψh ∈ Hh : A(ψh, ξh) = Gφh(ξh) ∀ξh ∈ Hh,(3.10)

uh ∈ Vh :

∫
Ω

∇uh · ∇γh = Rφh,ψh(γh) ∀γh ∈ Vh.(3.11)
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Also, as in the continuous case, λh is an eigenvalue of problem (3.7) if and
only if µh := 1

λh
is a non-zero eigenvalue of Th with the same multiplicity and

corresponding eigenfunctions uh.

Remark 3.5. The same arguments leading to Remark 2.9 allow us to show that
any solution of problem (3.7) satisfies λh �= 0. Moreover,

∫
Ω
(η∇uh) · ∇uh �= 0 also

holds true, but the proof of this fact is postponed to the Appendix (cf. Remark 6.3,
below).

In what follows we will prove that Th → T in norm as h → 0. As a consequence,
for all non-zero µ ∈ sp(T ) and h small enough, there exists µh ∈ sp(Th) such
that µh → µ. In particular, this implies that the discrete spectral problem (3.7)
has solutions, at least for h sufficiently small, as long as sp(T ) �= {0}. A thorough
spectral characterization is postponed to the Appendix (cf. Proposition 6.2, below),
where the matrix form of problem (3.7) is introduced.

The following lemma yields the uniform convergence of Th to T as h → 0.

Lemma 3.6. There exist C > 0 and r ∈ ( 12 , 1] such that, for all f ∈ V,
‖(T − Th) f‖1,Ω ≤ Chr ‖f‖1,Ω .

Proof. Given f ∈ V , let (φ,ψ, u) and (φh,ψh, uh) be the solutions of problems (3.1)
and (3.8), respectively, so that u = Tf and uh = Thf . From (3.4), (3.11), and the
first Strang Lemma (cf. [7]), we have

(3.12) ‖u− uh‖1,Ω ≤ C

[
inf

γh∈Vh

‖u− γh‖1,Ω + sup
γh∈Vh

Rφh,ψh(γh)−Rφ,ψ(γh)

‖γh‖1,Ω

]
.

To estimate the first term on the right-hand side above, we use standard approxi-
mation results and the regularity of u proved in Lemma 3.2:

(3.13) inf
γh∈Vh

‖u− γh‖1,Ω ≤ Ch ‖u‖2,Ω ≤ Ch ‖f‖1,Ω .

For the second term, we use the definition of R (cf. (3.4)) and integration by parts
to obtain

(3.14) sup
γh∈Vh

Rφh,ψh(γh)−Rφ,ψ(γh)

‖γh‖1,Ω
≤ C

(
‖ψ −ψh‖0,Ω + ‖φ− φh‖0,Ω

)
.

Now, we resort to a duality argument to estimate ‖φ−φh‖0,Ω, since no additional
regularity holds for φ (cf. Remark 3.4). Let

(3.15) χ ∈ H1(Ω) :

∫
Ω

∇χ · ∇γ =

∫
Ω

(φ− φh) γ ∀γ ∈ H1
0 (Ω).

By virtue of standard regularity results for the Laplace equation (see [12]), there
exists r ∈ ( 12 , 1] such that χ ∈ H1+r(Ω) and

‖χ‖1+r,Ω ≤ C ‖φ− φh‖0,Ω .

Let χI ∈ Vh be the Lagrange interpolant of χ. Taking γ = φ − φh in (3.15) and
using (3.2), (3.9), and standard approximation results, we have

‖φ− φh‖20,Ω =

∫
Ω

∇χ · ∇(φ− φh) =

∫
Ω

∇(χ− χI) · ∇(φ− φh)

≤ Chr ‖χ‖1+r,Ω ‖∇(φ− φh)‖0,Ω
≤ Chr ‖φ− φh‖0,Ω ‖∇(φ− φh)‖0,Ω .
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Therefore, from (3.2) and (3.9), again, and (2.5),

(3.16) ‖φ− φh‖0,Ω ≤ Chr
(
‖∇φ‖0,Ω + ‖∇φh‖0,Ω

)
≤ Chr ‖f‖1,Ω .

The next step is to estimate ‖ψ − ψh‖0,Ω. With this aim, we first consider
‖ψ − ψh‖1,Ω. From (3.3), (3.10), the ellipticity of A, and the first Strang Lemma
again, we have

‖ψ −ψh‖1,Ω ≤ C

[
inf

ξh∈Hh

‖ψ − ξh‖1,Ω + sup
ξh∈Hh

Gφh(ξh)−Gφ(ξh)

‖ξh‖1,Ω

]
.

We use standard approximation results and Lemma 3.2 once more to obtain

inf
ξh∈Hh

‖ψ − ξh‖1,Ω ≤ Chs ‖ψ‖1+s,Ω ≤ Chs ‖f‖1,Ω ,

with s ∈ ( 12 , 1], whereas from the definition of G (cf. (3.3)),

sup
ξh∈Hh

Gφh(ξh)−Gφ(ξh)

‖ξh‖1,Ω
≤ C ‖φ− φh‖0,Ω ≤ Chr ‖f‖1,Ω .

Thus, defining t := min{s, r} ∈ ( 12 , 1], we obtain that

‖ψ −ψh‖1,Ω ≤ Cht ‖f‖1,Ω .

Next, we use another duality argument to estimate ‖ψ −ψh‖0,Ω. Let

(3.17) ρ ∈ H : A(ρ, ξ) =

∫
Ω

(ψ −ψh) · ξ ∀ξ ∈ H.

The same arguments used in the proof of Lemma 3.2 allow us to show that

‖ρ‖1+s,Ω ≤ C ‖ψ −ψh‖0,Ω .

Hence, again using standard approximation results, we know that there exists ρh ∈
Hh such that

‖ρ− ρh‖1,Ω ≤ Chs ‖ρ‖1+s,Ω ≤ Chs ‖ψ −ψh‖0,Ω .

Thus, taking ξ = ψ −ψh in (3.17) and using (3.3) and (3.10), we obtain

‖ψ −ψh‖
2
0,Ω = A(ρ,ψ −ψh) = A(ρ− ρh,ψ −ψh) +A(ρh,ψ −ψh)

≤ C ‖ρ− ρh‖1,Ω ‖ψ − ψh‖1,Ω +
1

1 + ν

∣∣∣∣
∫
Ω

(φ− φh) curlρh

∣∣∣∣
≤ Chs+t ‖ψ −ψh‖0,Ω ‖f‖1,Ω + Chr ‖f‖1,Ω ‖ψ −ψh‖0,Ω .

Therefore, since s+ t > 1,

(3.18) ‖ψ −ψh‖0,Ω ≤ Chr ‖f‖1,Ω .

Thus, the lemma follows from (3.12), (3.13), (3.14), (3.16), and (3.18). �

Remark 3.7. The order of convergence r depends on the maximum Sobolev regu-
larity of the domain for the Laplace equations with the right-hand side in L2(Ω)
and with homogeneous Dirichlet boundary conditions. In particular, if Ω is convex,
then r = 1. Otherwise, the lemma holds for all r < r0 := π

θ , with θ being the
largest re-entrant angle of Ω (cf. [12]).

The following lemma shows that the error estimate for ‖(T − Th)f‖1,Ω can be
improved when f is smoother.



1904 DAVID MORA AND RODOLFO RODRÍGUEZ

Lemma 3.8. There exists C > 0 such that, for all f ∈ V ∩H2(Ω),

‖(T − Th) f‖1,Ω ≤ Ch ‖f‖2,Ω .

Proof. We follow exactly the same steps as in the proof of Lemma 3.6. However,
now φ ∈ H1+r(Ω), with r > 1

2 as in Remark 3.7, and ‖φ‖1+r ≤ C‖f‖2,Ω. In fact,
φ is the solution of (3.2), which by virtue of Lemma 2.1 is a weak form of{

−∆φ = η : D2f ∈ L2(Ω),
φ = 0 on Γ.

Hence, the estimate for ‖φ− φh‖0,Ω can be improved by using the fact that

‖∇(φ− φh)‖0,Ω ≤ Chr ‖φ‖1+r,Ω ≤ Chr ‖f‖2,Ω .

Consequently, instead of (3.16) we obtain

(3.19) ‖φ− φh‖0,Ω ≤ Ch2r ‖f‖2,Ω .

This last inequality can be used to improve (3.18) as follows:

(3.20) ‖ψ −ψh‖0,Ω ≤ Chs+t ‖f‖1,Ω + Ch2r ‖f‖2,Ω .

Therefore, since s + t > 1 and 2r > 1, too, the lemma follows from (3.12), (3.13),
(3.14), (3.19), and (3.20). �

3.2. Spectral convergence and error estimates. As a direct consequence of
Lemma 3.6, Th converges in norm to T as h goes to zero. Hence, standard results
of spectral approximation (see, for instance, [15]) show that isolated parts of sp(T )
are approximated by isolated parts of sp(Th). More precisely, let µ �= 0 be an
eigenvalue of T with multiplicity m and let E be its associated eigenspace. There

exist m eigenvalues µ
(1)
h , . . . , µ

(m)
h of Th (repeated according to their respective

multiplicities) which converge to µ. Let Eh be the direct sum of their corresponding
associated eigenspaces.

We recall the definition of the gap δ̂ between two closed subspaces M and N of
H1

0 (Ω):

δ̂(M,N ) := max {δ(M,N ), δ(N ,M)} ,
where

δ(M,N ) := sup
x∈M

‖x‖1,Ω=1

(
inf
y∈N

‖x− y‖1,Ω
)
.

The following theorem implies spectral convergence with an optimal order for
the approximation of the eigenfunctions.

Theorem 3.9. There exists a strictly positive constant C such that

δ̂(E , Eh) ≤ Ch,∣∣∣µ− µ
(i)
h

∣∣∣ ≤ Ch, i = 1, . . . ,m.

Proof. As a consequence of Lemma 3.6, Th converges in norm to T as h goes to zero.
Then, the proof follows as a direct consequence of Lemma 3.8 and Theorems 7.1
and 7.3 from [3] and the fact that, for f ∈ E , ‖f‖2,Ω ≤ C‖f‖1,Ω, because of
Lemma 3.2. �
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The error estimates for the eigenvalues µ �= 0 of T yield analogous estimates
for the eigenvalues λ = 1

µ of problem (2.21). However, the order of convergence in

Theorem 3.9 is not optimal for µ. Our next goal is to improve this order.

With this purpose, let us denote λh := 1/µ
(i)
h , with µ

(i)
h being any particular

eigenvalue of Th converging to µ. Let uh, φh, and ψh be such that (λh, φh,ψh, uh)
is a solution of problem (3.7) with ‖uh‖1,Ω = 1. According to Theorem 3.9, there

exists a solution (λ, φ,ψ, u) of problem (2.21) with ‖u‖1,Ω = 1 such that

(3.21) ‖u− uh‖1,Ω ≤ Ch.

The following lemma, which will be used to prove an improved order of convergence
for the corresponding eigenvalues, shows estimates for φ− φh and ψ −ψh.

Lemma 3.10. There exists C > 0 such that

‖φ− φh‖1,Ω + ‖ψ −ψh‖1,Ω ≤ C

(
h+ inf

vh∈Vh

‖φ− vh‖1,Ω + inf
ξh∈Hh

‖ψ − ξh‖1,Ω
)

≤ Cht,

where t := min{s, r} ∈ ( 12 , 1], with s and r as in Lemmas 3.2 and 3.6, respectively.

Proof. First note that (φ,ψ, u) is the solution of problem (3.1) with f = λu. Hence,
from Lemma 3.2, u ∈ H2(Ω) with ‖u‖2,Ω ≤ Cλ‖u‖1,Ω. Hence, the same arguments
used in the proof of Lemma 3.8 allow us to show that

‖φ‖1+r,Ω ≤ C ‖u‖2,Ω ≤ Cλ ‖u‖1,Ω .

On the other hand, (φh,ψh, uh) is the solution of problem (3.8) with f = λhuh.
Thus, from the equivalence between this problem and (3.9)–(3.11), φh is the solution
of (3.9) with f = λhuh. Hence, from the first Strang Lemma again,

‖φ− φh‖1,Ω ≤ C

⎡
⎢⎢⎣ inf
vh∈Vh

‖φ− vh‖1,Ω + sup
vh∈Vh

∫
Ω

[η (λ∇u− λh∇uh)] · ∇vh

‖vh‖1,Ω

⎤
⎥⎥⎦ .

To estimate the first term on the right-hand side above, we use standard approxi-
mation results:

inf
vh∈Vh

‖φ− vh‖1,Ω ≤ Chr ‖φ‖1+r,Ω ≤ Chr ‖u‖1,Ω .

For the second term, we use the Cauchy-Schwarz inequality, (2.5), (3.21), and
Theorem 3.9:

sup
vh∈Vh

∫
Ω

[η (λ∇u− λh∇uh)] · ∇vh

‖vh‖1,Ω
≤ C ‖λ∇u− λh∇uh‖0,Ω

≤ C |λ| ‖u− uh‖1,Ω + |λ− λh| ‖uh‖1,Ω
≤ Ch.

On the other hand, to estimate the term ‖ψ−ψh‖1,Ω, we repeat the arguments
in the proof of Lemma 3.6 (with f = λu) to obtain

‖ψ −ψh‖1,Ω ≤ C

(
inf

ξh∈Hh

‖ψ − ξh‖1,Ω + ‖φ− φh‖0,Ω
)

≤ Chsλ ‖u‖1,Ω + C ‖φ− φh‖0,Ω .
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Next, repeating the arguments in the proof of Lemma 3.8, we have from (3.19) that

‖φ− φh‖0,Ω ≤ Ch2rλ ‖u‖1,Ω .

Thus, we conclude the proof. �

Now we are in a position to prove an improved order of convergence for the
eigenvalues.

Theorem 3.11. There exists a strictly positive constant C such that

|λ− λh| ≤ C

(
h2 + inf

vh∈Vh

‖φ− vh‖21,Ω + inf
ξh∈Hh

‖ψ − ξh‖
2
1,Ω

)
≤ Ch2t,

with t ∈ ( 12 , 1] as in Lemma 3.10.

Proof. We adapt to our case a standard argument (cf. [3, Lemma 9.1]). Let U :=
(φ,ψ, u) and Uh := (φh,ψh, uh) be as in the proof of Lemma 3.10. Because of
(2.21) and (3.7),

A (U − Uh, U − Uh) = A (U,U)− 2A (U,Uh) + A (Uh, Uh)

= −λC (u, u) + 2λC (u, uh)− λhC (uh, uh),

whereas

λC (u− uh, u− uh) = λC (u, u)− 2λC (u, uh) + λC (uh, uh).

Therefore, since C (uh, uh) �= 0 (cf. Remark 3.5),

λ− λh =
A (U − Uh, U − Uh) + λC (u− uh, u− uh)

C (uh, uh)
.

Moreover, from (3.21), C (uh, uh)
h→ C (u, u) �= 0 (cf. Remark 2.9). Hence,

|λ− λh| ≤ C (|A (U − Uh, U − Uh)|+ |λ| |C (u− uh, u− uh)|)

≤ C
(
‖U − Uh‖2V×H×V + ‖u− uh‖21,Ω

)
≤ C

(
h2 + inf

vh∈Vh

‖φ− vh‖21,Ω + inf
ξh∈Hh

‖ψ − ξh‖
2
1,Ω

)
≤ Ch2t,

the last two inequalities because of (3.21) and Lemma 3.10. Thus, we conclude the
proof. �

Remark 3.12. The order of convergence for the eigenvalues does not depend on
the regularity of the eigenfunction u, which always belongs to H2(Ω), but on the
regularity of the auxiliary quantities φ and ψ. In fact, the O(ht) error estimate in
Lemma 3.10 could be improved, provided φ and ψ were more regular.

4. Numerical analysis of the vibration problem

In this section we summarize the results for the vibration problem. We do not
include most of the proofs since they are either similar to the corresponding ones
for the buckling problem or simpler. We only emphasize those aspects that differ
from the buckling problem.

Consider the well-posed source problem associated with the vibration prob-
lem (2.22):



LOW-ORDER FEM FOR BUCKLING AND VIBRATION OF THIN PLATES 1907

Given f ∈ L2(Ω), find (φ,ψ, u) ∈ V ×H× V such that

(4.1) A ((φ,ψ, u), (γ, ξ, v)) = −B(f, v) ∀(γ, ξ, v) ∈ V ×H× V .
Let T be the bounded linear operator defined by

T : L2(Ω) → L2(Ω),

f 	→ u,

with (φ,ψ, u) ∈ V ×H× V being the solution of (4.1). Clearly λ is an eigenvalue
of problem (2.22) if and only if µ := 1

λ is a non-zero eigenvalue of T , with the same
multiplicity and corresponding eigenfunctions u (recall λ �= 0; cf. Remark 2.9).

For the vibration problem, the operator T is self-adjoint with respect to the
L2(Ω) inner product. Moreover T is compact, because of the compact inclusion
V ↪→ L2(Ω), and the following spectral characterization holds:

Lemma 4.1. The spectrum of T satisfies sp(T ) = {0} ∪ {µn : n ∈ N}, where
{µn}n∈N

is a sequence of real positive eigenvalues which converges to 0. The mul-
tiplicity of each eigenvalue is finite, and its ascent is 1.

The following additional regularity result holds true in this case:

Lemma 4.2. There exist r, s ∈ ( 12 , 1] and C > 0 such that, for all f ∈ L2(Ω),

the solution (φ,ψ, u) of problem (4.1) satisfies φ ∈ H1+r(Ω), u ∈ H2+s(Ω), ψ ∈
H1+s(Ω)

2
, and

‖φ‖1+r,Ω + ‖u‖2+s,Ω + ‖ψ‖1+s,Ω ≤ C ‖f‖0,Ω .

Constants r and s above are the same as those in the proof of Lemmas 3.2 and
3.6. By comparing this result with Lemma 3.2, we observe that φ is smoother in
this case than for the buckling problem. This is the key point which makes the
analysis of the vibration problem a bit simpler.

4.1. Finite element approximation. The discrete version of problem (2.22)
reads as follows:

Find (λh, φh,ψh, uh) ∈ R× Vh ×Hh × Vh, uh �= 0, such that
(4.2)
A ((φh,ψh, uh), (γh, ξh, vh)) = −λhB(uh, vh) ∀(γh, ξh, vh) ∈ Vh ×Hh × Vh.

Let Th be the bounded linear operator defined by

Th : L2(Ω) → L2(Ω),

f 	→ uh,

with (φh,ψh, uh) ∈ Vh ×Hh × Vh being the solution of

(4.3) A ((φh,ψh, uh), (γh, ξh, vh)) = −B(f, vh) ∀(γh, ξh, vh) ∈ Vh ×Hh ×Vh.

Once more, λh is an eigenvalue of problem (4.2) if and only if µh := 1
λh

is a non-
zero eigenvalue of Th, with the same multiplicity and corresponding eigenfunctions
uh. Also, as in the continuous case, λh �= 0.

In this case, Th is self-adjoint with respect to the L2(Ω) inner product. Because
of this, it is easy to prove the following spectral characterization:

Lemma 4.3. Problem (4.2) has exactly dimVh eigenvalues, repeated accordingly
to their respective multiplicities. All of them are real and positive.
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The following lemma yields the uniform convergence of Th to T as h → 0.
Its proof follows the lines of the proof of Lemma 3.8 by taking advantage of the
additional regularity of φ (cf. Lemma 4.2).

Lemma 4.4. There exists C > 0 such that, for all f ∈ L2(Ω),

‖(T − Th) f‖1,Ω ≤ Ch ‖f‖0,Ω .

4.2. Spectral convergence and error estimates. As a direct consequence of
Lemma 4.4, Th converges in H1(Ω) norm to T as h goes to zero (as well as in L2(Ω)
norm). Hence, isolated parts of sp(T ) are approximated by isolated parts of sp(Th).
Let µ �= 0 be an eigenvalue of T with multiplicity m and let E be its associated

eigenspace. There exist m eigenvalues µ
(1)
h , . . . , µ

(m)
h of Th (repeated according to

their respective multiplicities) which converge to µ. Let Eh be the direct sum of
their corresponding associated eigenspaces. The following error estimate is again a
direct consequence of standard spectral approximation results (cf. [3]):

Theorem 4.5. There exists a strictly positive constant C such that

δ̂(E , Eh) ≤ Ch.

Finally an improved order of convergence also holds for the eigenvalues. To prove
this, we do not need to resort to the analog of Lemma 3.10. We include in this case
the simpler proof of the following theorem, where, for each f ∈ E , we denote by
Uf := (φf ,ψf , uf ) the solution of problem (4.1). (Notice that uf = Tf = µf .)

Theorem 4.6. There exists a strictly positive constant C such that

∣∣∣µ− µ
(i)
h

∣∣∣ ≤ C

[
h+ sup

f∈E

(
infvh∈Vh

∥∥φf − vh
∥∥
1,Ω

+ infξh∈Hh
‖ψf − ξh‖1,Ω

‖f‖0,Ω

)]2

≤ Ch2t, i = 1, . . . ,m,

where t = min{s, r}, with r, s ∈ ( 12 , 1] as in Lemma 4.2.

Proof. By applying Theorem 7.3 from [3] and taking into account that T and Th

are self-adjoint with respect to the L2(Ω) inner product, we have∣∣∣µ− µ
(i)
h

∣∣∣ ≤ C

[
sup
f,g∈E

∫
Ω
(Tf − Thf) g

‖f‖0,Ω ‖g‖0,Ω
+ sup

f∈E

‖(T − Th) f‖20,Ω
‖f‖20,Ω

]
, i = 1, . . . ,m.

The second term on the right-hand side above is directly bounded by means
of Lemma 4.4, so there only remains to estimate the first one. With this aim,

let f, g ∈ E . Let Uf and Ug be defined as above. Let Uf
h := (φf

h,ψ
f
h, u

f
h) and

Ug
h := (φg

h,ψ
g
h, u

g
h) be the solutions of problem (4.3) with data f and g, respectively.

There holds∫
Ω

(Tf − Thf) g = B(uf − uf
h, g) = −A (Uf − Uf

h , U
g) = −A (Uf − Uf

h , U
g − Ug

h)

≤ C ‖Uf − Uf
h ‖V×H×V ‖Ug − Ug

h‖V×H×V ,

because of the standard Galerkin orthogonality and the continuity of A . Now,

‖Uf − Uf
h ‖V×H×V ≤ ‖φf − φf

h‖1,Ω + ‖ψf −ψf
h‖H + ‖uf − uf

h‖1,Ω
≤ inf

vh∈Vh

‖φf − vh‖1,Ω + inf
ξh∈Hh

‖ψf − ξh‖1,Ω + Ch ‖f‖0,Ω

≤ Cht ‖f‖0,Ω ,
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where we have used results from [1, Section 5] to estimate the terms ‖φf − φf
h‖1,Ω

and ‖ψf −ψf
h‖H and from Lemma 4.4 for ‖uf − uf

h‖1,Ω. Since the same holds for
‖Ug − Ug

h‖V×H×V , we conclude the proof. �

The error estimate from the previous lemma yields a similar one for the eigen-
values λ = 1

µ of problem (2.22). Moreover, a remark analogous to Remark 3.12 also

holds in this case.

5. Numerical results

We report in this section some numerical experiments which confirm the the-
oretical results proved above. Moreover, we compare in the first two tests the
performance of the proposed method with those of the Ciarlet-Raviart [8, 6, 17]
and Ishihara [13, 14] methods.

The Ciarlet-Raviart method is based on a mixed form of the biharmonic equation,
which is equivalent to this equation for convex domains. This method was proved to
converge for the vibration and the buckling problems for finite elements of degree
k ≥ 2 (see [17, Section 7(b,d)]). Our experiments will give evidence of optimal
order convergence for piecewise linear finite elements, although, to the best of our
knowledge, this has not been proved.

Ishihara’s method is based on an alternative mixed formulation, also equivalent
to the biharmonic equation for convex domains. Its piecewise linear discretization
was analyzed in [13] for the vibration problem and in [14] for the buckling problem.
It was proved that it converges in both cases, with a suboptimal order O(h1/2),
only for meshes which are uniform in the interior of the domain. Our numerical
experiments will show that this constraint is not a technicality, since the method
converges to wrong results when used on particular regular non-uniform meshes.

Since there is no significant difference in our experiments between the vibration
and the buckling problems, we will only report the numerical results for the latter.
We have taken in all our experiments a Poisson ratio ν = 0.25.

5.1. Test 1: Uniformly compressed square plate; uniform meshes. We
have taken as an example of a convex domain the unit square Ω := (0, 1)× (0, 1).
We have used the stress distribution corresponding to a uniformly compressed plate:
η = I.

We have used uniform meshes as those shown in Figure 1. The refinement
parameter N used to label each mesh is the number of elements on each edge of
the plate.

N = 2 N = 4 N = 6

Figure 1. Square plate: uniform meshes.
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We report in Table 1 the lowest buckling coefficients (i.e., the lowest eigenval-
ues of the buckling problem) computed with the method analyzed in this paper,
with Ciarlet-Raviart’s method, and with Ishihara’s method. The table includes
computed orders of convergence and extrapolated more accurate values of each
eigenvalue obtained by means of a least-squares fitting.

Table 1. Lowest buckling coefficients of a uniformly compressed
clamped square plate computed on uniform meshes with the
method analyzed in this paper (A), Ciarlet-Raviart’s method (CR),
and Ishihara’s method (I).

Method N = 24 N = 36 N = 48 N = 60 Order Extrapolated

A 5.3051 5.3042 5.3039 5.3038 2.61 5.3037
λ1 CR 5.3830 5.3395 5.3239 5.3167 1.95 5.3033

I 5.3529 5.3254 5.3159 5.3114 2.02 5.3037

A 9.3578 9.3444 9.3398 9.3378 2.09 9.3343
λ2 = λ3 CR 9.5390 9.4261 9.3861 9.3675 1.97 9.3337

I 9.4650 9.3912 9.3659 9.3544 2.06 9.3347

A 13.0346 13.0091 13.0007 12.9969 2.14 12.9908
λ4 CR 13.3977 13.1710 13.0919 13.0553 2.01 12.9909

I 13.2128 13.0827 13.0407 13.0219 2.21 12.9930

It can be seen from Table 1 that the three methods converge in this case to the
same values with optimal quadratic order, although this has been proved only for
the method analyzed in this paper (cf. Remark 3.7). Notice that, for all the meth-
ods, the second computed eigenvalue is double, because the meshes preserve the
symmetry of the domain leading to an eigenvalue of multiplicity 2 in the continuous
problem.

Figure 2 shows the transverse displacements of the principal buckling mode (i.e.,
the eigenfunction corresponding to the lowest eigenvalue of the buckling problem)
computed with the method analyzed in this paper.

Figure 2. Uniformly compressed square plate; principal buckling mode.
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5.2. Test 2: Uniformly compressed square plate; non-uniform meshes.
We have tested the same three methods as above on non-uniform meshes, as well.
We have solved the same problem as in the previous example with tiled meshes as
those shown in Figure 3. The refinement parameter N used to label each mesh is
now the number of tiles on each edge of the plate. The reason for this choice is to
avoid asymptotically uniform meshes.

N = 1 N = 2 N = 3

Figure 3. Square plate: tiled meshes.

We report in Table 2 the lowest buckling coefficients computed on these meshes
with each of the three methods again. Notice that in this case, since the meshes
do not preserve the symmetry of the domain, the second eigenvalue, which has
multiplicity 2 in the continuous problem, will be in general approximated by two
simple eigenvalues.

Table 2. Lowest buckling coefficients of a uniformly compressed
clamped square plate computed on non-uniform meshes with the
method analyzed in this paper (A), Ciarlet-Raviart’s method (CR),
and Ishihara’s method (I).

Method N = 15 N = 25 N = 35 N = 45 Order Extrapolated

A 5.3030 5.3034 5.3035 5.3036 1.91 5.3036
λ1 CR 5.3134 5.3075 5.3058 5.3050 1.88 5.3038

I 5.4491 5.4384 5.4348 5.4328 1.42 5.4285

A 9.3323 9.3335 9.3338 9.3339 1.96 9.3342
λ2 CR 9.3622 9.3449 9.3399 9.3379 1.92 9.3345

I 9.5788 9.5520 9.5433 9.5388 1.56 9.5302

A 9.3336 9.3340 9.3340 9.3341 1.79 9.3342
λ3 CR 9.3641 9.3455 9.3402 9.3380 1.94 9.3345

I 9.6337 9.6106 9.6030 9.5991 1.54 9.5914

A 12.9830 12.9876 12.9890 12.9895 1.96 12.9904
λ4 CR 13.0437 13.0103 13.0010 12.9970 1.95 12.9908

I 13.3387 13.2949 13.2811 13.2743 1.64 13.2617

It can be seen from Table 2 that the method analyzed in this paper and Ciarlet-
Raviart’s method do not deteriorate on these meshes and converge to the same val-
ues with quadratic order again. Instead, this is not the case for Ishihara’s method,
which converges to wrong results.
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5.3. Test 3: Shear loaded square plate. For this test we have computed the
buckling coefficients of the same plate as in the previous example, subjected to a
uniform shear load. This corresponds to a plane stress field

η =

(
0 1
1 0

)
.

Note that η is not positive definite in this case.
We report in Table 3 the lowest buckling coefficients computed on the same

uniform meshes used in Test 1 (cf. Figure 1) with the method analyzed in this
paper.

Table 3. Lowest buckling coefficients of a shear loaded clamped
square plate computed on uniform meshes with the method ana-
lyzed in this paper.

N = 24 N = 36 N = 48 N = 60 Order Extrapolated

λ1 14.8218 14.7215 14.6867 14.6706 2.01 14.6420
λ2 17.3111 17.0922 17.0161 16.9810 2.02 16.9195
λ3 36.0905 34.5656 34.0304 33.7825 1.99 33.3376

Once more, the method converges with optimal quadratic order. Although we
do not report the results obtained with the other two methods, both converge on
uniform meshes to the same eigenvalues.

Figure 4 shows the transverse displacements of the principal buckling mode for
the shear loaded square plate computed with the method analyzed in this paper.

Figure 4. Shear loaded square plate; principal buckling mode.

5.4. Test 4: L-shaped plate. Finally, we have computed the buckling coefficients
of an L-shaped plate: Ω := (0, 1) × (0, 1) \ [0.5, 1) × [0.5, 1). We have used η =
I (uniform compression) and uniform meshes as those shown in Figure 5. The
meaning of the refinement parameter N is clear from this figure.
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N = 2 N = 4 N = 6

Figure 5. L-shaped plate: uniform meshes.

We report in Table 4 the lowest buckling coefficients computed with the method
analyzed in this paper.

Table 4. Lowest buckling coefficients of an L-shaped clamped
plate computed on uniform meshes with the method analyzed in
this paper.

N = 40 N = 60 N = 80 N = 100 Order Extrapolated

λ1 12.8379 12.9010 12.9328 12.9518 0.99 13.0290
λ2 14.9175 14.9586 14.9752 14.9838 1.60 15.0036
λ3 17.0083 16.9993 16.9968 16.9960 2.75 16.9949

In this case, for the first buckling coefficient, the method converges with order
close to 1.089, which is the expected one because of the singularity of the solution
(see [12]). Instead, the method converges with larger orders for the second and the
third buckling coefficients.

Notice that, according to Theorem 3.11, the order of convergence for the buckling
coefficients must double the worst among those of ‖φ − φh‖1,Ω, ‖ψ − ψh‖1,Ω, and
‖u−uh‖1,Ω. In the case of λ1 and λ2, the worst order should be that of ‖ψ−ψh‖1,Ω.
In fact, according to (3.21), the transverse displacement u satisfies ‖u − uh‖1,Ω =
O(h) for any polygonal domain Ω. Moreover, since in this case η = I, we have
φ = λu and φh = λhuh, so that ‖φ− φh‖1,Ω = O(h), too.

We include in Table 5 computed orders of convergence ‖uh − uex‖1,Ω, where we
have used as ‘exact’ transverse displacements uex the ones computed with a highly
refined mesh corresponding to N = 200.

Table 5. Errors of the transverse displacements ‖uh − uex‖1,Ω
for the lowest buckling coefficients of an L-shaped clamped plate
computed on uniform meshes with the method analyzed in this
paper.

N = 8 N = 16 N = 24 N = 32 Order

λ1 0.4514 0.2297 0.1477 0.1059 1.04
λ2 0.4424 0.2218 0.1411 0.1005 1.07
λ3 0.5028 0.2469 0.1570 0.1121 1.08

It can be seen from this table that the eigenfunctions uh actually converge with
order O(h) as Theorem 3.9 predicts, in spite of the non-convex angle of the domain.
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Finally, Figure 6 shows the transverse displacement of the principal buckling
mode.

Figure 6. Uniformly compressed L-shaped plate; principal buck-
ling mode.

6. Conclusions

We have introduced a finite element method for two eigenvalue problems: the
computation of buckling and vibration modes of a clamped Kirchhoff polygonal
plate. The method is based on discretizing a bending moment formulation by
means of standard piecewise linear finite elements. This approach was proposed
and analyzed by Amara et al. [1] to solve the corresponding load problem for a thin
plate subject to arbitrary boundary conditions.

We have proved that the method yields an O(h) approximation to the transverse
displacements of buckling and vibration modes. Moreover, it yields O(ht) approx-
imations to two auxiliary quantities, φ and ψ, which allow us to compute to the
same order of accuracy the bending moment σ = Curlψ + 1

2 (divψ)J + φI. The
order t depends on the Sobolev regularity of the domain for the biharmonic and
the Laplace equations. If Ω is convex, then t = 1; otherwise, t ∈ ( 12 , 1) depends on

the largest re-entrant angle of Ω. The method yields O(h2t) approximation to the
buckling coefficients or the vibration frequencies, too.

Furthermore, Lemma 4.4 shows that the method leads to an O(h) approximation
to the transverse displacement in the case of the source problem, too, even for non-
convex polygonal clamped plates. Let us remark that such an optimal order agrees
with the fact that the transverse displacement always belongs to H2(Ω). This
improves in this particular case the estimate given in [1, Theorem 5.3] for this
variable.

The numerical tests confirm the theoretical results, including the O(h) approx-
imation to the transverse displacements even for plates with re-entrant corners.
The performance of the method analyzed in this paper is comparable to that of
the lowest-order Ciarlet-Raviart method [8] (for which, to the best of the authors’
knowledge, there is no proof of convergence for either of the eigenvalue problems).
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We have also tested numerically other well-known method for Kirchhoff plates,
which was analyzed by Ishihara [13, 14] for both eigenvalue problems on meshes
uniform in the interior of the domain. The numerical tests show that the uniformity
constraint is not a technicality. In fact, it converges to wrong results when used on
particular regular non-uniform meshes.

Appendix

The matrix form of the discrete spectral problem (3.7) reads as follows:

(6.1)

⎛
⎝ A B C
BT D 0
C 0 0

⎞
⎠
⎛
⎝Φh

Ψh

Uh

⎞
⎠ = λh

⎛
⎝0 0 0
0 0 0
0 0 −E

⎞
⎠
⎛
⎝Φh

Ψh

Uh

⎞
⎠ ,

where Φh, Ψh, and Uh denote the vectors whose entries are the components of
φh, ψh, and uh, respectively, in given bases of the discrete spaces. Let us remark
that ψh ∈ Hh, whose definition involves three linear constraints. Actually, these
constraints are imposed by means of three scalar Lagrange multipliers, which leads
to an augmented spectral problem exactly equivalent with (6.1).

In this generalized eigenvalue problem, matrices A, C, D, and E are symmetric,
whereas A, C, and D are also positive definite. Let us define

F :=

(
A B
BT D

)
, G :=

(
C
0

)
, and Vh :=

(
Φh

Ψh

)
.

Matrix F is non-singular. In fact, the following result holds true:

Lemma 6.1. F is a positive definite matrix.

Proof. Let φh ∈ Vh and ψh = (ψh1, ψh2) ∈ Hh. Let Φh and Ψh be the vectors
whose entries are the components of φh and ψh, respectively, and Vh as defined
above. Straightforward computations lead to

VT
hFVh =

2

1 + ν

∫
Ω

φ2
h +

2

1 + ν

∫
Ω

(∂2ψh1 − ∂1ψh2)φh

+
1

1− ν

∫
Ω

[
(∂2ψh1)

2 + (∂1ψh2)
2 + 1

2 (∂2ψh2 − ∂1ψh1)
2
]

− ν

1− ν2

∫
Ω

(∂2ψh1 − ∂1ψh2)
2

=
2

1 + ν

∫
Ω

[
φh + 1

2 (∂2ψh1 − ∂1ψh2)
]2

+
1

2(1− ν)

∫
Ω

[
(∂2ψh1 + ∂1ψh2)

2 + (∂2ψh2 − ∂1ψh1)
2
]
≥ 0.

Hence F is non-negative definite. Moreover, the expression above vanishes if
and only if φh = − 1

2 (∂2ψh1 − ∂1ψh2), ∂2ψh1 + ∂1ψh2 = 0 and ∂2ψh2 − ∂1ψh1 = 0.
Now, φh ∈ Vh is piecewise linear and continuous, whereas for ψh ∈ Hh, ∂2ψh1 −
∂1ψh2 is piecewise constant. Hence, if the expression above vanishes, then φh =
− 1

2 (∂2ψh1 − ∂1ψh2) has to be constant, and, since it vanishes on Γ, it has to vanish
in the whole Ω.

In such a case, ∂2ψh1 − ∂1ψh2 = 0 and ∂2ψh1 + ∂1ψh2 = 0, too, which leads to
∂2ψh1 = ∂1ψh2 = 0. Since ∂2ψh2 − ∂1ψh1 = 0, as well, there holds ‖ψh‖H = 0 and
hence ψh = 0. Thus F is positive definite and we conclude the proof. �
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Now we are in a position to prove the following characterization of the discrete
spectral problem (3.7):

Proposition 6.2. Let Zh := {uh ∈ Vh : C (uh, vh) = 0 ∀vh ∈ Vh}. Then, prob-
lem (3.7) has exactly dimVh − dimZh eigenvalues, repeated according to their
respective multiplicities. All of them are real and non-zero.

Proof. Since according to the previous lemma F is positive definite and conse-
quently non-singular, Φh and Ψh can be eliminated in (6.1) as follows:

Vh = −F−1GUh =⇒ EUh = −µh

(
GTF−1G

)
Uh,

with µh := 1
λh

(recall λh �= 0; cf. Remark 3.5).
Now, since also C is non-singular, the columns of G are linearly independent.

Hence, GTF−1G is symmetric and positive definite and, E being symmetric too,
the generalized eigenvalue problem EUh = −µh(G

TF−1G)Uh is well posed and all
its eigenvalues are real. Therefore the number of eigenvalues of problem (6.1) (which
is the matrix form of problem (3.7)) equals the number of non-zero eigenvalues of
this problem, namely, dimVh − dim(Ker(E)). Thus, we conclude the lemma by
noting that EUh = 0 if and only if uh ∈ Zh. �

As an immediate consequence of the proof of this proposition, note that prob-
lem (3.7) always has real non-zero eigenvalues, as long as E �= 0.

Remark 6.3. For all the solutions (λh, φh,ψh, uh) of problem (3.7), there holds∫
Ω
(η∇uh) · ∇uh �= 0, despite the fact that η is not necessarily positive definite. In

fact, as shown in the proof of Proposition 6.2 that

(6.2)

∫
Ω

(η∇uh) · ∇uh = C (uh, uh) = UT
hEUh = − 1

λh
UT

h

(
GTF−1G

)
Uh �= 0.

Acknowledgment

The authors thank Ricardo Durán for helpful discussions.

References

1. M. Amara, D. Capatina-Papaghiuc, and A. Chatti, Bending moment mixed method for
the Kirchhoff-Love plate model, SIAM J. Numer. Anal., 40 (2002) 1632–1649. MR1950615
(2003k:74058)

2. M. Amara and F. Dabaghi, An optimal C0 finite element algorithm for the 2D bihar-
monic problem: Theoretical analysis and numerical results, Numer. Math., 90 (2001) 19–46.

MR1868761 (2002h:65172)
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Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Casilla 160-C,

Concepción, Chile

E-mail address: david@ing-mat.udec.cl
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