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FOURIER EXPANSIONS AND INTEGRAL REPRESENTATIONS

FOR THE APOSTOL-BERNOULLI AND

APOSTOL-EULER POLYNOMIALS

QIU-MING LUO

Abstract. We investigate Fourier expansions for the Apostol-Bernoulli and
Apostol-Euler polynomials using the Lipschitz summation formula and obtain
their integral representations. We give some explicit formulas at rational ar-
guments for these polynomials in terms of the Hurwitz zeta function. We
also derive the integral representations for the classical Bernoulli and Euler
polynomials and related known results.

1. Introduction

The classical Bernoulli polynomials and Euler polynomials are defined by means
of the following generating functions (see [1, pp. 804-806] or [18, pp. 25-32])

(1.1)
zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
(|z| < 2π)

and

(1.2)
2exz

ez + 1
=

∞∑
n=0

En(x)
zn

n!
(|z| < π),

respectively. Obviously, Bn := Bn(0), En := 2nEn

(
1
2

)
are the Bernoulli numbers

and Euler numbers respectively.
Some interesting analogues of the classical Bernoulli polynomials and numbers

were first investigated by Apostol [2, p. 165, Eq. (3.1)] and (more recently) by
Srivastava [20, pp. 83-84]. We begin by recalling here Apostol’s definitions as
follows:
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Definition 1.1 (Apostol [2]; see also Srivastava [20]). The Apostol-Bernoulli poly-
nomials Bn(x;λ) in x are defined by means of the generating function

zexz

λez − 1
=

∞∑
n=0

Bn(x;λ)
zn

n!
(1.3)

(|z| < 2π when λ = 1; |z| < |log λ| when λ �= 1)

with, of course,

Bn(x) = Bn(x; 1) and Bn (λ) := Bn (0;λ) ,

where Bn (λ) denotes the so-called Apostol-Bernoulli numbers (in fact, it is a func-
tion in λ).

Recently, Luo and Srivastava introduced the Apostol-Euler polynomials as fol-
lows:

Definition 1.2 (Luo [14]; see also Luo and Srivastava [13]). The Apostol-Euler
polynomials En (x;λ) in x are defined by means of the generating function

(1.4)
2exz

λez + 1
=

∞∑
n=0

En (x;λ)
zn

n!
(|z| < |log(−λ)|) ,

with, of course,

En(x) = En(x; 1) and En (λ) := 2nEn
(
1

2
;λ

)
,

where En (λ) denote the so-called Apostol-Euler numbers (in fact, it is a function
in λ).

Remark 1.3. In Definition 1.1 and Definition 1.2, the original constraints
|z + log λ| < 2π and |z + log λ| < π, respectively, should be replaced by the condi-
tions |z| < 2π when λ = 1; |z| < |log λ| when λ �= 1 and |z| < |log(−λ)| for the
referee’s clear and detailed argumentation. Hence, the corresponding constraints in
References [13], [14], [15] and [20] should also be such.

The Apostol-Bernoulli and Apostol-Euler polynomials have been investigated by
many people (see, e.g., [2], [4], [5], [9], [13]–[17], [20] and [22]).

D. H. Lehmer [11] gave a new approach to Bernoulli polynomials, starting from a
function equation (Rabbe’s multiplication theorem). H. Haruki and T. M. Rassias
[10] provided the new integral representations for the Bernoulli and Euler polynomi-
als as well as using a similar function equation. Recently, D. Cvijović [7] reproduced
the results of H. Haruki and T. M. Rassias in a different way and showed several
different integral representations for the Bernoulli and Euler polynomials.

In the present paper, we first investigate Fourier expansions for the Apostol-
Bernoulli and Apostol-Euler polynomials based on the Lipschitz summation for-
mula, and then provide their integral representations. We obtain some explicit
formulas for the Apostol-Bernoulli and Apostol-Euler polynomials at rational ar-
guments in terms of the Hurwitz zeta function. We also deduce the corresponding
uniform integral representations for the classical Bernoulli and Euler polynomials.
We will see that the results of Cvijović or H. Haruki and T. M. Rassias are the
corresponding direct consequences of our formulas.

The paper is organized as follows. In the first section we rewrite the definitions of
Apostol-Bernoulli and Apostol-Euler polynomials. In the second section we derive
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Fourier expansions for the Apostol-Bernoulli and Apostol-Euler polynomials. In the
third section we show their integral representations. In the fourth section we obtain
their explicit formulas at rational arguments in terms of the Hurwitz zeta function.
In the fifth section we deduce the corresponding uniform integral representations
for the classical Bernoulli and Euler polynomials and related results of Cvijović
or H. Haruki and T. M. Rassias. In the sixth section we give some applications

and remarks; for example, the classical Euler formula ζ(2n) = (−1)n−1(2π)2n

2(2n)! B2n is

obtained according to our method.

2. Fourier expansions for the Apostol-Bernoulli

and Apostol-Euler polynomials

In this section we investigate Fourier expansions for the Apostol-Bernoulli and
Apostol-Euler polynomials by applying the Lipschitz summation formula.

First we recall the Lipschitz summation formula (see [12] or [19]) as follows:

(2.1)
∑

n+µ>0

e2πi(n+µ)τ

(n+ µ)1−α
=

Γ(α)

(−2πi)α

∑
k∈Z

e−2πikµ

(τ + k)α
,

where µ ∈ Z and �(α) > 1 or µ ∈ R\Z and �(α) > 0; τ ∈ H is the complex upper
half plane and Γ denotes the Gamma function.

Theorem 2.1. For n = 1, 0 < x < 1 and n > 1, 0 ≤ x ≤ 1, λ ∈ C \ {0}, we have

Bn(x;λ) = −δn(x;λ)−
n!

λx

∑′ e2πikx

(2πik − log λ)n
(2.2)

= −δn(x;λ)−
n!in

λx

[ ∞∑
k=1

exp
[(
−2πkx+ nπ

2

)
i
]

(2πik + log λ)n
(2.3)

+

∞∑
k=1

exp
[(
2πkx− nπ

2

)
i
]

(2πik − log λ)n

]
,

where the symbol
∑′

denotes the standard convention of a sum over the integers

that omits 0; δn(x;λ) = 0 or (−1)nn!
λx logn λ according as λ = 1 or λ �= 1, respectively.

Proof. For 0 ≤ x ≤ 1, by (1.3) and the generalized binomial theorem, we have
∞∑
k=0

Bk(x;λ)
(2πiτ )k−1

k!
=

e2πiτx

λe2πiτ − 1
= −

∞∑
k=0

λke2πi(k+x)τ(2.4) (
|τ | < 1 when λ = 1; |τ | < |log λ|

2π
when λ �= 1; �τ >

log |λ|
2π

)
.

We differentiate both sides of (2.4) with respect to the variable τ , by n − 1 times
and noting that B0(x;λ) = δ1,λ (see [13, p. 301]). Then we get

(2.5)
∞∑

k=n

Bk(x;λ)
(2πi)k−1τk−n

k(k − n)!
+

(−1)n−1(n− 1)!

2πiτn
δ1,λ

= −(2πi)n−1
∞∑
k=0

λk(k + x)n−1e2πi(k+x)τ ,

where δ1,λ is the Kronecker symbol.
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On the other hand, letting α = n, µ �→ x, τ �→ τ + log λ
2πi in (2.1), we find that

(2.6) (−1)n(n− 1)!
∑
k∈Z

e−2πikx

[2πi(τ + k) + log λ]
n =

∞∑
k=0

λk+x(k + x)n−1e2πi(k+x)τ .

Combining (2.5) and (2.6), we obtain

λx
∞∑

k=n

Bk(x;λ)
(2πi)k−1τk−n

k(k − n)!
+ λx (−1)n−1(n− 1)!

2πiτn
δ1,λ

= (−1)n−1(n− 1)!(2πi)n−1
∑
k∈Z

e−2πikx

[2πi(τ + k) + log λ]n
.

Separating this k = 0 term in the above sum on the right side yields that

(2.7) λx
∞∑

k=n

Bk(x;λ)
(2πi)k−1τk−n

k(k − n)!
= (−1)n−1(n− 1)!(2πi)n−1

×
∑′ e−2πikx

[2πi(τ + k) + log λ]n
+

(−1)n−1(n− 1)!(2πi)n−1

(2πiτ + log λ)n
(1− δ1,λ).

Letting τ → 0 in (2.7) we are led at once to the assertion (2.2) of Theorem 2.1.

Noting that in = e
nπi
2 , (−1)n = e−nπi and via a simple calculation, then the

assertion (2.3) of Theorem 2.1 is a direct consequence of (2.2). This completes our
proof. �

In the same manner, we may prove the following.

Theorem 2.2. For n = 0, 0 < x < 1 and n > 0, 0 ≤ x ≤ 1, λ ∈ C \ {0,−1}, we
have

En(x;λ) =
2 · n!
λx

∑
k∈Z

e(2k−1)πix

[(2k − 1)πi− log λ]n+1(2.8)

=
2 · n!in+1

λx

[ ∞∑
k=0

exp
[(

n+1
2 π − (2k + 1)πx

)
i
]

[(2k + 1)πi+ log λ]n+1(2.9)

+
∞∑
k=0

exp
[(
−n+1

2 π + (2k + 1)πx
)
i
]

[(2k + 1)πi− log λ]
n+1

]
.

By Theorem 2.1 and Theorem 2.2, we can deduce respectively the Fourier ex-
pansions for the classical Bernoulli and Euler polynomials as follows:

Corollary 2.3. For n = 1, 0 < x < 1 and n > 1, 0 ≤ x ≤ 1, we have

Bn(x) = − n!

(2πi)n

∑′ e2πikx

kn
(2.10)

= − 2 · n!
(2π)n

∞∑
k=1

cos
(
2πkx− nπ

2

)
kn

.(2.11)
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Corollary 2.4. For n = 0, 0 < x < 1 and n > 0, 0 ≤ x ≤ 1, we have

En(x) =
2 · n!

(πi)n+1

∑
k∈Z

e(2k−1)πix

(2k − 1)n+1
(2.12)

=
4 · n!
πn+1

∞∑
k=0

sin
[
(2k + 1)πx− nπ

2

]
(2k + 1)n+1

.(2.13)

Remark 2.5. Replacing τ by τ + log λ
2πi + 1

2 in (2.1) and applying E0(x;λ) = 2
λ+1 (see,

for details, [13]–[15]) when we prove the assertion (2.8) of Theorem 2.2.

Remark 2.6. We define the n-th Apostol-Bernoulli function as

(2.14) B̂n(x;λ) := Bn(x;λ) (0 ≤ x < 1), B̂n(x+ 1;λ) = λ−1B̂n(x;λ),

which is also called the quasi-periodicity Apostol-Bernoulli polynomials. For any
x ∈ R, r ∈ Z, we have

(2.15) B̂n(x;λ) = λ−[x]Bn({x};λ), B̂n(x+ r;λ) = λ−rB̂n(x;λ).

Here the notation {x} denotes the fractional part of x, and the notation [x] denotes
the greatest integer not exceeding x.

Clearly, the Apostol-Bernoulli polynomials Bn(x;λ) (0 ≤ x < 1) are the quasi-
periodicity functions in x with period 1. One of the special cases of the quasi-
periodicity Apostol-Bernoulli polynomials is just Carlitz’s periodic Bernoulli func-
tion [3, p. 661] for λ = 1.

Remark 2.7. We define the n-th Apostol-Euler function as

(2.16) Ên(x;λ) := En(x;λ) (0 ≤ x < 1), Ên(x+ 1;λ) = −λ−1Ên(x;λ),

which is called the quasi-periodicity Apostol-Euler polynomials. For any x ∈ R, r ∈
Z, we have

(2.17) Ên(x;λ) = (−1)[x]λ−[x]En({x};λ), Ên(x+ r;λ) = (−1)rλ−rÊn(x;λ).

Obviously, the Apostol-Euler polynomials En(x;λ) (0 ≤ x < 1) are the quasi-
periodicity functions in x with period 1. One of the special cases of the quasi-
periodicity Apostol-Euler polynomials is just Carlitz’s periodic Euler function
[3, p. 661] for λ = 1.
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Remark 2.8. We employ a useful relationship [15, p. 636, Eq. (38)]

(2.18) En(x;λ) =
2

n+ 1

[
Bn+1(x;λ)− 2n+1Bn+1

(x
2
;λ2

)]
to (2.2) and (2.3), respectively; we can also arrive at the corresponding (2.8) and
(2.9).

Remark 2.9. Throughout this paper, we take the principal value of the logarithm
log λ, i.e., log λ = log |λ|+i arg λ (−π < arg λ ≤ π) when λ �= 1; We choose log 1 = 0
when λ = 1.

3. Integral representations for the Apostol-Bernoulli and

Apostol-Euler polynomials

In this section we give the integral representations for the Apostol-Bernoulli and
Apostol-Euler polynomials with their Fourier expansions. For convenience, we take
λ = e2πiξ (ξ ∈ R, |ξ| < 1) in this section.

Theorem 3.1. For n = 1, 2, . . . , 0 ≤ �(x) ≤ 1, |ξ| < 1, ξ ∈ R, we have

(3.1) Bn(x; e
2πiξ) = −∆n(x; ξ)

− ne−2πixξ

∫ ∞

0

U(n;x, t) cosh(2πξt) + i V (n;x, t) sinh(2πξt)

cosh 2πt− cos 2πx
tn−1 dt,

where ∆n(x; ξ) = 0 or
(−1)nn!

e2πixξ(2πiξ)n
according as ξ = 0 or ξ �= 0, respectively, and

U(n;x, t) =
[
cos

(
2πx− nπ

2

)
− cos

(nπ
2

)
e−2πt

]
,

V (n;x, t) =
[
sin

(
2πx− nπ

2

)
+ sin

(nπ
2

)
e−2πt

]
.

Proof. Returning to (2.2) and setting λ = e2πiξ, k �→ −k yields

Bn(x; e
2πiξ) = −∆n(x; ξ)−

n!e−2πixξ

(−2πi)n

∑′ e−2πikx

(k + ξ)n
.

Using the known integral formula

∫ ∞

0

tne−at dt =
n!

an+1
(n = 0, 1, . . . ; �(a) > 0),(3.2)

and noting that
(
− 1

i

)n
= e

nπi
2 and (−1)n = e−nπi, then we have
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Bn(x; e
2πiξ) =−∆n(x; ξ)−

ne−2πixξ

(−2πi)n

{ ∞∑
k=1

e−2πikx

∫ ∞

0

tn−1e−(k+ξ)t dt

+ (−1)n
∞∑
k=1

e2πikx
∫ ∞

0

tn−1e−(k−ξ)t dt

}

=−∆n(x; ξ)−
ne−2πixξ

(−2πi)n

{∫ ∞

0

e−ξttn−1
∞∑
k=1

e−(2πix+t)k dt

+ (−1)n
∫ ∞

0

eξttn−1
∞∑
k=1

e(2πix−t)k dt

}

=−∆n(x; ξ)−
ne−2πixξ

(−2πi)n

{∫ ∞

0

e−2πix

et − e−2πix
e−ξttn−1 dt

+ (−1)n
∫ ∞

0

e2πix

et − e2πix
eξttn−1 dt

}

=−∆n(x; ξ)−
ne−2πixξ

2(2π)n

{∫ ∞

0

e
nπi
2 (e−2πix − e−t)

cosh t− cos 2πx
e−ξttn−1 dt

+

∫ ∞

0

e−
nπi
2 (e2πix − e−t)

cosh t− cos 2πx
eξttn−1 dt

}
.

It follows that we make the transformation t = 2πu, and after simplification we
obtain the desired (3.1) immediately. This completes the proof. �

We can obtain the following integral representations for the Apostol-Euler poly-
nomials by a similar method.

Theorem 3.2. For n = 1, 2, . . . , 0 ≤ �(x) ≤ 1, |ξ| < 1
2 , ξ ∈ R, we have

(3.3) En(x; e2πiξ) = 2e−2πixξ

×
∫ ∞

0

X(n;x, t) cosh(2πξt) + i Y (n;x, t) sinh(2πξt)

cosh 2πt− cos 2πx
tn dt,

where

X(n;x, t) =
[
e−πt sin

(
πx+

nπ

2

)
+ eπt sin

(
πx− nπ

2

)]
,

Y (n;x, t) =
[
e−πt cos

(
πx+

nπ

2

)
− eπt cos

(
πx− nπ

2

)]
.

On the other hand, we can also arrive at the following different integral repre-
sentations for the Apostol-Bernoulli and Apostol-Euler polynomials.

Theorem 3.3. For n = 1, 2, . . . , 0 ≤ �(x) ≤ 1, |ξ| < 1, ξ ∈ R, we have

(3.4) Bn(x; e
2πiξ) = −∆n(x; ξ) +

2ne−2πixξ

(−2π)n

×
∫ 1

0

U ′(n;x, t) cosh(ξ log t)− i V ′(n;x, t) sinh(ξ log t)

t2 − 2t cos 2πx+ 1
(log t)n−1 dt,
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where ∆n(x; ξ) = 0 or
(−1)nn!

e2πixξ(2πiξ)n
according as ξ = 0 or ξ �= 0, respectively, and

U ′(n;x, t) =
[
cos

(
2πx− nπ

2

)
− t cos

(nπ
2

)]
,

V ′(n;x, t) =
[
sin

(
2πx− nπ

2

)
+ t sin

(nπ
2

)]
.

Proof. First we substitute cosh 2πt = e2πt+e−2πt

2 into (3.1). Then we see that

(3.5) Bn(x; e
2πiξ) = −∆n(x; ξ)− 2ne−2πixξ

×
∫ ∞

0

U(n;x, t) cosh(2πξt) + i V (n;x, t) sinh(2πξt)

e2πt + e−2πt − 2 cos 2πx
tn−1 dt.

Then making the transformation u = e−2πt in (3.5), we easily obtain formula (3.4).
This completes the proof. �

Similarly, we obtain

Theorem 3.4. For n = 1, 2, . . . , 0 ≤ �(x) ≤ 1, |ξ| < 1
2 , ξ ∈ R, we have

(3.6) En(x; e2πiξ) = (−1)n
4e−2πixξ

πn+1

×
∫ 1

0

X ′(n;x, t) cosh(2ξ log t)− i Y ′(n;x, t) sinh(2ξ log t)

t4 − 2t2 cos 2πx+ 1
(log t)n dt,

where

X ′(n;x, t) =
[
t2 sin

(
πx+

nπ

2

)
+ sin

(
πx− nπ

2

)]
,

Y ′(n;x, t) =
[
t2 cos

(
πx+

nπ

2

)
− cos

(
πx− nπ

2

)]
.

Remark 3.5. For any integers �, we see easily that Bn(x; e
2πi(�+ξ)) = Bn(x; e

2πiξ),
En(x; e2πi(�+ξ)) = En(x; e2πiξ). Therefore, the Apostol-Bernoulli polynomials
Bn(x; e

2πiξ) and the Apostol-Euler polynomials En(x; e2πiξ) are the periodicity func-
tions in ξ with period 2π. In view of this observation we say that ξ may take any
real numbers in Theorem 3.1–Theorem 3.4.

Remark 3.6. We can also prove Theorem 2.1 and Theorem 2.2 by Theorem 3.1 and
Theorem 3.2, respectively, in an inverse process.

4. Explicit formulas for the Apostol-Bernoulli and Apostol-Euler

polynomials at rational arguments

In this section we obtain some explicit formulas for the Apostol-Bernoulli and
Apostol-Euler polynomials at rational arguments. We can see that some known
formulas of Cvijović and Klinowski are the corresponding special cases of our for-
mulas.

The Hurwitz-Lerch zeta function Φ(z, s, a) defined by (cf., e.g., [21, p. 121,
et seq.])

Φ(z, s, a) :=
∞∑

n=0

zn

(n+ a)s
(4.1) (

a ∈ C \ Z−
0 ; s ∈ C when |z| < 1; R(s) > 1 when |z| = 1

)
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contains, as its special cases, not only the Riemann and Hurwitz zeta functions

(4.2) ζ(s) := Φ(1, s, 1) = ζ (s, 1) =
1

2s − 1
ζ

(
s,

1

2

)
=

∞∑
n=1

1

ns

and

(4.3) ζ(s, a) := Φ(1, s, a) =

∞∑
n=0

1

(n+ a)
s

(
R (s) > 1; a /∈ Z

−
0

)
and the Lerch zeta function (or periodic zeta function)

ls(ξ) :=
∞∑

n=1

e2nπiξ

ns
= e2πiξ Φ

(
e2πiξ, s, 1

)
(4.4)

(ξ ∈ R; R(s) > 1) ,

but also such other functions as the polylogarithmic function

Lis(z) :=

∞∑
n=1

zn

ns
= z Φ(z, s, 1)(4.5) (

s ∈ C when |z| < 1; R(s) > 1 when |z| = 1
)

and the Lipschitz-Lerch zeta function (cf. [21, p. 122, Eq. 2.5 (11)])

φ(ξ, a, s) :=

∞∑
n=0

e2nπiξ

(n+ a)s
= Φ

(
e2πiξ, s, a

)
=: L (ξ, s, a)(4.6) (

a ∈ C \ Z−
0 ; R(s) > 0 when ξ ∈ R \Z; R(s) > 1 when ξ ∈ Z

)
,

which was first studied by Rudolf Lipschitz (1832-1903) and Matyáš Lerch (1860-
1922) in connection with Dirichlet’s famous theorem on primes in arithmetic pro-
gressions.

Recently, H. M. Srivastava made use of Apostol’s formula (see [2, p. 164])

(4.7) φ(ξ, a, 1− n) = Φ(e2πiξ, 1− n, a) = −
Bn

(
a; e2πiξ

)
n

(n ∈ N)

and Lerch’s functional equation (see [2, p. 161, (1.4)])

φ(ξ, a, 1− s) =
Γ(s)

(2π)s

{
exp

[(
1

2
s− 2aξ

)
πi

]
φ (−a, ξ, s)

(4.8)

+ exp

[(
−1

2
s+ 2a(1− ξ)

)
πi

]
φ(a, 1− ξ, s)

}
(s ∈ C; 0 < ξ < 1)
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to derive the following formula of Apostol-Bernoulli polynomials at rational argu-
ments (see [20, p. 84, Eq. (4.6)]):

Bn

(
p

q
; e2πiξ

)
=− n!

(2qπ)n

{
q∑

j=1

ζ

(
n,

ξ + j − 1

q

)
exp

[(
n

2
− 2(ξ + j − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
n,

j − ξ

q

)
exp

[(
−n

2
+

2(j − ξ)p

q

)
πi

]}
(4.9)

(n ∈ N \ {1} ; q ∈ N; p ∈ Z; ξ ∈ R).(4.10)

Below we obtain similar formulas by using Fourier expansions for the Apostol-
Bernoulli polynomials and Apostol-Euler polynomials, respectively.

Theorem 4.1. For n ∈ N \ {1} , q ∈ N, p ∈ Z, ξ ∈ R, |ξ| < 1, the following
formula of Apostol-Bernoulli polynomials at rational arguments

Bn

(
p

q
; e2πiξ

)
=−∆n

(
p

q
; ξ

)
− n!

(2πq)n

{
q∑

j=1

ζ

(
n,

j + ξ

q

)
exp

[(
n

2
− 2(j + ξ)p

q

)
πi

]

+

q∑
j=1

ζ

(
n,

j − ξ

q

)
exp

[(
−n

2
+

2(j − ξ)p

q

)
πi

]}
(4.11)

holds true in terms of the Hurwitz zeta function, where ∆n(x; ξ)=0 or
(−1)nn!

e2πixξ(2πiξ)n

according as ξ = 0 or ξ �= 0, respectively.

Proof. We employ formula (2.3),

Bn(x;λ) = −δn(x;λ)−
n!in

λx

[ ∞∑
k=1

exp
[(
−2πkx+ nπ

2

)
i
]

(2πik + log λ)n
+

∞∑
k=1

exp
[(
2πkx− nπ

2

)
i
]

(2πik − log λ)n

]
,

so that, in view of the definition (4.1) and the elementary series identity

(4.12)
∞∑
k=1

f (k) =
�∑

j=1

∞∑
k=0

f (�k + j) (� ∈ N) ,

we find the formula:

Bn(x;λ) =− δn(x;λ)−
n!inλ−x

(2πi�)n

×

⎡⎣ �∑
j=1

Φ

(
e2πi�x, n,

2πij − log λ

2πi�

)
exp

[(
2πjx− nπ

2

)
i
]

+

�∑
j=1

Φ

(
e−2πi�x, n,

2πij + log λ

2πi�

)
exp

[
−
(
2πjx+

nπ

2

)
i
]⎤⎦ .

(4.13)

Setting λ = exp(2πiξ), x = p
q , � = q in (4.13), we then obtain the assertion of

Theorem 4.1. This completes the proof. �
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If we make use of the equivalent of (2.9) as

En(x;λ) =
2 · n!in+1

λx

[ ∞∑
k=1

exp
[(

n+1
2 π − (2k − 1)πx

)
i
]

[(2k − 1)πi+ log λ]
n+1

+

∞∑
k=1

exp
[(
−n+1

2 π + (2k − 1)πx
)
i
]

[(2k − 1)πi− log λ]
n+1

](4.14)

and the elementary series identity (4.12), by an analogous method, we provide that

Theorem 4.2. For n, q ∈ N, p ∈ Z, ξ ∈ R, |ξ| < 1, the following formula of
Apostol-Euler polynomials at rational arguments

En
(
p

q
; e2πiξ

)
=

2 · n!
(2qπ)n+1

×
{

q∑
j=1

ζ

(
n+ 1,

2j + 2ξ − 1

2q

)
exp

[(
n+ 1

2
− (2j + 2ξ − 1)p

q

)
πi

]

+

q∑
j=1

ζ

(
n+ 1,

2j − 2ξ − 1

2q

)
exp

[(
−n+ 1

2
+

(2j − 2ξ − 1)p

q

)
πi

]}(4.15)

holds true in terms of the Hurwitz zeta function.

Upon the special cases of (4.11) and (4.15), for ξ = 0, are respectively the
following known results given earlier by Cvijović and Klinowski.

Corollary 4.3 ([6, p. 1529, Theorem A]). For n ∈ N \ {1} , q ∈ N, p ∈ Z, the
following formula for the classical Bernoulli polynomials

Bn

(
p

q

)
= − 2 · n!

(2qπ)n

q∑
j=1

ζ

(
n,

j

q

)
cos

(
2jpπ

q
− nπ

2

)
holds true.

Corollary 4.4 ([6, p. 1529, Theorem B]). For n, q ∈ N, p ∈ Z, the following
formula for the classical Euler polynomials

En

(
p

q

)
=

4 · n!
(2qπ)n+1

q∑
j=1

ζ

(
n+ 1,

2j − 1

2q

)
sin

(
(2j − 1)pπ

q
− nπ

2

)
holds true.

Remark 4.5. We may also prove formula (4.15) by applying the relationship (2.18)
and Theorem 4.1.

Remark 4.6. In view of Remark 3.5, we say that ξ is any real number in Theorem 4.1
and Theorem 4.2.

Remark 4.7. Obviously, Srivastava’s formula (4.9) is an equivalent with our formula
(4.11).
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5. Integral representations for the Bernoulli and Euler polynomials

In this section we will see that Theorem 5.1 and Theorem 5.2 below involve the
results of Cvijović or H. Haruki and T. M. Rassias.

By (3.1) and (3.3) for ξ = 0, it follows that we give the uniform integral repre-
sentations for the classical Bernoulli and Euler polynomials, respectively.

Theorem 5.1. For n = 1, 2, . . . , 0 ≤ �(x) ≤ 1, we have

Bn(x) = −n

∫ ∞

0

cos
(
2πx− nπ

2

)
− e−2πt cos

(
nπ
2

)
cosh 2πt− cos 2πx

tn−1 dt.(5.1)

Theorem 5.2. For n = 1, 2, . . . , 0 ≤ �(x) ≤ 1, we have

En(x) = 2

∫ ∞

0

eπt sin
(
πx− nπ

2

)
+ e−πt sin

(
πx+ nπ

2

)
cosh 2πt− cos 2πx

tn dt.(5.2)

Remark 5.3. Theorem 5.1 and Theorem 5.2 above show the uniform integral rep-
resentations for the classical Bernoulli and Euler polynomials which were never
found in the classical literature, for example [1], [8] and [18], etc. So these uniform
formulas are interesting in this subject.

By (3.4) and (3.6) for ξ = 0, we easily find the following additional integral
representations for the classical Bernoulli and Euler polynomials, respectively.

Theorem 5.4. For n = 1, 2, . . . , 0 ≤ �(x) ≤ 1, we have

Bn(x) = (−1)n
2n

(2π)n

∫ 1

0

cos
(
2πx− nπ

2

)
− t cos

(
nπ
2

)
t2 − 2t cos 2πx+ 1

(log t)n−1 dt.(5.3)

Theorem 5.5. For n = 1, 2, . . . , 0 ≤ �(x) ≤ 1, we have

En(x) = (−1)n
4

πn+1

∫ 1

0

sin
(
πx− nπ

2

)
+ t2 sin

(
πx+ nπ

2

)
t4 − 2t2 cos 2πx+ 1

(log t)n dt.(5.4)

We see easily that Theorem 5.4 and Theorem 5.5 imply the main results of
Cvijović [7, p. 170, Theorem 1] or H. Haruki and T. M. Rassias [10, p. 82, Theorem
(ii)(iv)], i.e.,

B2n(x) = (−1)n
2(2n)

(2π)2n

∫ 1

0

cos 2πx− t

t2 − 2t cos 2πx+ 1
(log t)2n−1 dt,(5.5)

B2n−1(x) = (−1)n
2(2n− 1)

(2π)2n−1

∫ 1

0

sin 2πx

t2 − 2t cos 2πx+ 1
(log t)2n−2 dt,(5.6)

E2n(x) = (−1)n
4

π2n+1

∫ 1

0

(t2 + 1) sinπx

t4 − 2t2 cos 2πx+ 1
(log t)2n dt,(5.7)

E2n−1(x) = (−1)n
4

π2n

∫ 1

0

(t2 − 1) cosπx

t4 − 2t2 cos 2πx+ 1
(log t)2n−1 dt.(5.8)

On the other hand, Theorem 5.1 and Theorem 5.2 also imply the classical integral
representations for the Bernoulli polynomials and Euler polynomials, respectively
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(see [18, pp. 27, 31]):

B2n(x) = (−1)n+1(2n)

∫ ∞

0

cos 2πx− e−2πt

cosh 2πt− cos 2πx
t2n−1 dt,(5.9)

B2n−1(x) = (−1)n(2n− 1)

∫ ∞

0

sin 2πx

cosh 2πt− cos 2πx
t2n−2 dt,(5.10)

E2n(x) = 4(−1)n
∫ ∞

0

sinπx cosh πt

cosh 2πt− cos 2πx
t2n dt,(5.11)

E2n−1(x) = 4(−1)n
∫ ∞

0

cosπx sinh πt

cosh 2πt− cos 2πx
t2n−1 dt.(5.12)

Remark 5.6. If we make an appropriate transformation u = e−2πt in (5.9) and
(5.10), and make a suitable transformation u = e−πt in (5.11) and (5.12), respec-
tively, then we can directly obtain (5.5)–(5.8); i.e., the main results of Cvijović
or H. Haruki and T. M. Rassias are only a very simple transmogrification for the
corresponding classical cases (5.9)–(5.12). Therefore, in view of this reason, we
say that (5.5)–(5.8) are not new integral representations for the classical Bernoulli
polynomials and Euler polynomials.

6. Further observations and consequences

By formula (2.3) of Theorem 2.1 for x = 0, we obtain the relationship between
the Apostol-Bernoulli numbers and the Hurwitz zeta function as follows:

Bn(λ) =
(−1)n−1n!

(2πi)n

[
(−1)nζ

(
n, 1− log λ

2πi

)
+ ζ

(
n,

log λ

2πi

)]
.(6.1)

Letting λ = 1, n �→ 2n in (6.1), we at once produce the following famous Euler
formula (see, e.g, [1, p. 807, 23.2.16]):

(6.2) ζ(2n) =
(−1)n−1(2π)2n

2(2n)!
B2n.

On the other hand, we define zeta functions as

(6.3) β(n; ξ) =

∞∑
k=0

(−1)k

(2k + 2ξ + 1)n
, β(n) =

∞∑
k=0

(−1)k

(2k + 1)n
(ξ ∈ R).

Setting λ = e2πiξ in (2.9) of Theorem 2.2, we have

En(x; e2πiξ) =
2 · n!

πn+1e2πiξx

[ ∞∑
k=0

exp
[(

n+1
2 π − (2k + 1)πx

)
i
]

(2k + 2ξ + 1)n+1

+

∞∑
k=0

exp
[(
−n+1

2 π + (2k + 1)πx
)
i
]

(2k − 2ξ + 1)n+1

]
.

(6.4)

Taking x = 1
2 in (6.4) and noting that En (λ) = 2nEn

(
1
2 ;λ

)
and (6.3), we readily

obtain the following relationship between the Apostol-Euler numbers En(e2πiξ) and
the zeta function β(n; ξ):

En(e2πiξ) =
2n+1in · n!
πn+1eπiξ

[β(n+ 1; ξ) + (−1)nβ(n+ 1;−ξ)](6.5)
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or

β(2n+ 1; ξ) + β(2n+ 1;−ξ) =
(−1)neπiξ

(2n)!

(π
2

)2n+1

E2n(e2πiξ).(6.6)

Further putting ξ = 0 in (6.6), we arrive directly at the following well-known
formula (see [1, p. 807, 23.2.22]):

β(2n+ 1) =
∞∑
k=0

(−1)k

(2k + 1)2n+1
=

(−1)n

2(2n)!

(π
2

)2n+1

E2n.(6.7)

We can also obtain the formulas (6.2) and (6.7) by (4.11) and (4.15), respectively.
By Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.4, respectively,

we easily find the following integral representations for the Apostol-Bernoulli and
Apostol-Euler numbers:

Bn(e
2πiξ) = −∆n(0; ξ)

(6.8)

− n

∫ ∞

0

cos
(
nπ
2

)
(1− e−2πt) cosh(2πξt) + i sin

(
nπ
2

)
(1 + e−2πt) sinh(2πξt)

cosh 2πt− 1
tn−1 dt,

Bn(e
2πiξ) = −∆n(0; ξ) +

2n

(−2π)n

(6.9)

×
∫ 1

0

cos
(
nπ
2

)
(1− t) cosh(ξ log t)− i sin

(
nπ
2

)
(1 + t) sinh(ξ log t)

t2 − 2t+ 1
(log t)n−1 dt,

En(e2πiξ) = 2n+2e−πiξ

(6.10)

×
∫ ∞

0

cos
(
nπ
2

)
coshπt cosh(2πξt) + i sin

(
nπ
2

)
coshπt sinh(2πξt)

cosh 2πt+ 1
tn dt,

En(e2πiξ) = (−1)n
2n+2e−πiξ

πn+1

(6.11)

×
∫ 1

0

cos
(
nπ
2

)
cosh(2ξ log t)− i sin

(
nπ
2

)
sinh(2ξ log t)

t2 + 1
(log t)n dt.

Further setting ξ = 0 in (6.8)–(6.11), respectively, we deduce the integral represen-
tations for the classical Bernoulli numbers and Euler numbers as follows (see, e.g.,
[18, pp. 28-32]):

Bn = −n cos
(nπ

2

)∫ ∞

0

tn−1e−πtcsch(πt) dt

= cos

(
3nπ

2

)
2n

(2π)n

∫ 1

0

(log t)n−1

1− t
dt,

En = 2n+1 cos
(nπ

2

)∫ ∞

0

tnsech(πt) dt

= cos

(
3nπ

2

)
2n+2

πn+1

∫ 1

0

(log t)n

1 + t2
dt.
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Recently, Garg et al. [9] gave an extension of Apostol’s formula (4.7) as

(6.12) Bn (a;λ) = −nΦ(λ, 1− n, a) (n ∈ N, λ ∈ C, |λ| ≤ 1, a ∈ C \ Z−
0 ).

By (1.4) and the binomial theorem, we have

∞∑
n=0

En(a;λ)
zn

n!
=

2eaz

λez + 1
= 2

∞∑
k=0

(−λ)ke(k+a)z

=

∞∑
n=0

[
2

∞∑
k=0

(−λ)k(k + a)n

]
zn

n!

=
∞∑

n=0

[
2

∞∑
k=0

(−λ)k

(k + a)−n

]
zn

n!
.

(6.13)

Hence, we also obtain the following interesting relationship between the Apostol-
Euler polynomials and the Hurwitz-Lerch zeta function:

(6.14) En (a;λ) = 2Φ(−λ,−n, a) (n ∈ N, λ ∈ C, |λ| ≤ 1, a ∈ C \ Z−
0 ).

We can prove Theorem 2.1 and Theorem 2.2, respectively, by applying the rela-
tionships (6.12) and (6.14) in conjunction with Lerch’s functional equation (4.8).
The same as with the elementary series (4.12), we may also prove Theorem 4.1 and
Theorem 4.2, respectively.
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