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COMPUTATION OF HIGHLY RAMIFIED COVERINGS

RAIMUNDAS VIDŪNAS AND ALEXANDER V. KITAEV

Abstract. An almost Belyi covering is an algebraic covering of the projective

line, such that all ramified points except one simple ramified point lie above a

set of 3 points of the projective line. In general, there are 1-dimensional families

of these coverings with a fixed ramification pattern. (That is, Hurwitz spaces

for these coverings are curves.) In this paper, three almost Belyi coverings of

degrees 11, 12, and 20 are explicitly constructed. We demonstrate how these

coverings can be used for computation of several algebraic solutions of the

sixth Painlevé equation.

1. Introduction

Recall that a Belyi function is a rational function on an algebraic curve with
at most 3 critical values. The corresponding covering of P1 by the algebraic curve
ramifies only above (at most) 3 points. By fractional-linear transformations, the
ramification locus can be chosen to be the set {0, 1,∞} ⊂ P1.

According to Belyi [4] and Grothendieck [12], there are deep relations between
Belyi functions and algebraic curves defined over Q, and dessins d’enfant.

More generally, one can consider the set of (isomorphism classes of) all coverings
of P1 with a prescribed number of ramified points and with prescribed ramification
orders above them. Such a topological configuration space is called a Hurwitz space.
If we fix a ramification pattern for Belyi functions, we typically have a finite set of
(isomorphism classes of) Belyi functions with the prescribed ramification pattern.
If we fix the hypermap [33] of 3 permutations for the monodromy group of the
covering, the Belyi map is unique.

In this article we consider coverings of P1 which ramify only above 4 points,
and such that there is only one simple ramified point in one of the 4 fibers. We
refer to these coverings as almost Belyi coverings. As is known, Hurwitz spaces for
coverings ramified only above 4 general points have dimension one [33, Proposition
3.1]. In fact, any algebraic curve can be obtained as some one-dimensional Hurwitz
space (with specified monodromy permutations) [9].

For an almost Belyi covering of degree n, let us denote its ramification pattern by
R4(P1|P2|P3), where P1, P2, P3 are the 3 partitions of n specifying the ramification
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orders above three points. The fourth partition is assumed to be 2+1+1+ · · ·+1.
The similar notation for a ramification pattern for Belyi maps is R3(P1|P2|P3), as
in [1], [19].

The main goal of this paper is to compute generic almost Belyi coverings P1 → P1

with the following ramification patterns:

R4(3 + 3 + 3 + 1 + 1 + 1 | 2 + 2 + 2 + 2 + 2 + 2 | 5 + 5 + 2),(1.1)

R4(3 + 3 + 3 + 1 + 1 | 2 + 2 + 2 + 2 + 2 + 1 | 5 + 5 + 1),(1.2)

R4(5+5+5+5 | 2+2+2+2+2+2+2+2+2+2 | 3+3+3+3+3+2+1+1+1).(1.3)

Their degrees are 12, 11 and 20, respectively.
We consider coverings with these ramification patterns because of their applica-

tion to the theory of algebraic Painlevé VI functions. With certain almost Belyi
coverings, one can pull back a hypergeometric differential equation to a parametric
isomonodromic Fuchsian equation with 4 regular singular points plus one apparent
singularity. Equivalently, one can obtain isomonodromic 2×2 matrix Fuchsian sys-
tems with 4 regular singular points. The corresponding Painlevé VI solutions are
algebraic. Knowing suitable almost Belyi maps, one can construct explicit exam-
ples of algebraic Painlevé VI solutions ([18], [2], [10]), and solve the corresponding
isomonodromic Fuchsian equations explicitly in terms of hypergeometric functions.
More generally, explicit knowledge of any Hurwitz space can be similarly used to
solve explicitly many types of Fuchsian systems, such as Garnier systems [17].

We construct three almost Belyi coverings, one for each ramification type in
(1.1)–(1.3), and note that additionally there are two reducible coverings for the
ramification pattern (1.3). With respect to the three interesting almost Belyi cov-
erings, we pull back hypergeometric equations with the icosahedral monodromy
group to isomonodromic 2× 2 Fuchsian systems with 4 regular singular points and
the same monodromy group. In total, we compute five corresponding algebraic
Painlevé VI solutions in Section 6. They have types 37, 38, 41, 42, 43 in Boalch’s
classification of icosahedral Painlevé VI solutions. Three algebraic Painlevé VI so-
lutions (of types 38, 42, 41) can be constructed immediately1 from the three almost
Belyi coverings. To obtain the other two algebraic Painlevé VI solutions, we com-
pute properly pull-backed corresponding Fuchsian systems explicitly. The type 41
solution is related to the Great Dodecahedron Solution of Dubrovin and Mazzocco
[11] via an Okamoto transformation.

Efficient computations of highly ramified coverings or Hurwitz spaces are impor-
tant problems in other fields as well. Therefore these problems attract the attention
of researchers. In [8], a method is presented to compute one-dimensional Hurwitz
spaces (for almost Belyi maps, for example) based on the degenerations when 4
ramification loci coalesce into 3 ramified points. In [22], a computer algebra pack-
age is presented for computing genera and monodromy groups of Hurwitz spaces
or coverings.

1Our original motivation for this work was to compute a few missing examples in early versions

of [5] of icosahedral Painlevé VI functions. We did our computations for type 38, 41 solutions

unaware of the sixth electronic version of [5]. Before the next version of [5] in which type 42, 43

examples appeared, we had the degree 11 covering and the corresponding type 42 solution as well.

Complementary to [5], computations of type 44–45 and 47–52 examples were done independently

in [7] and [26].
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The paper is organized as follows. In the next section, we present our compu-
tational method. It is basically the same method as described in [30, Section 3].
Compared with the most straightforward method with undetermined coefficients,
we derive equations of smaller degree in undetermined coefficients by using proper-
ties of the derivatives of Belyi or almost Belyi maps. We found out that very much
the same computational method was used in [15], for deriving several rather simple
Belyi coverings by hand. In Sections 3 through 5 we present our computations of
the coverings with ramification patterns (1.1)–(1.3). Section 6 demonstrates the
mentioned application of our coverings to the computation of algebraic Painlevé VI
solutions. The coverings are R-parts of RS-pullback transformations of hypergeo-
metric differential equations to isomonodromic 2× 2 Fuchsian systems. Computa-
tion of RS-pullback transformations of isomonodromic 2 × 2 Fuchsian systems is
discussed thoroughly in [27].

2. The computational method

Here we briefly recall the straightforward method for computation of almost Belyi
coverings from P1 to P1 and present an improved method that uses differentiation.
To distinguish the two projective curves, we write the coverings as P1

x → P1
z, where

x and z denote the rational parameters of the projective lines above and below, re-
spectively. We assume that the three ramification loci indicated in the R4-notation
are z = 0, z = 1, z = ∞, in this order. We refer to the simple ramification point in
the fourth ramified fiber as the extra ramification point.

Let n denote the degree of the covering. By the Hurwitz genus formula [14,
Corollary IV.2.4], the number of distinct points above {0, 1,∞} ⊂ P1

z must be n+3
for an almost Belyi covering (and n+ 2 for a Belyi map); see [18, Proposition 2.1]
or [29, Lemma 2.5].

The straightforward method to compute an almost Belyi covering z(x) = ϕ(x)
with a given ramification pattern is to write an ansatz of the form

ϕ(x) =
F

H
, ϕ(x)− 1 =

P

H
,(2.1)

where F , H, P are general polynomials in x of the factorized form determined by the
respective partition of n. Specifically, the polynomials have the form C0

∏n
j=1Q

j
j ,

where C0 is a constant (yet undetermined), and each Qj is a monic general polyno-
mial of degree equal to the number of parts j in the respective partition. Of course,
polynomials of degree zero can be skipped. In the resulting coverings, all poly-
nomials Qj must have mutually distinct and simple roots. To avoid redundancy,
we assume that H is a monic polynomial, and pick 3 of the x-points2 as x = ∞,
x = 0 and x = 1. Expression (2.1) leads to the polynomial identity F = P +H; by
expanding the polynomials and comparing the terms to the powers of x one gets a
set of polynomial equations.

This straightforward method was extensively used in [18], [19] to compute Belyi
maps and almost Belyi coverings of degree up to 12. Those coverings were applied

2Strictly speaking, the x-points for almost Belyi coverings are curves, or one-dimensional

branches of a generic family, parametrized by an isomonodromy parameter t or other parame-

ter, since the Hurwitz spaces for almost Belyi maps are one-dimensional. For simplicity, we ignore

the dimensions introduced by such parameters and consider a one-dimensional Hurwitz space as

a generic point.
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to compute algebraic transformations of Gauss hypergeometric functions, or to
compute algebraic Painlevé VI functions. However, the amount of computations
with the straightforward method grows quickly for larger n. In particular, the
number of variables and the algebraic degree of the initial equations grow linearly
with n. The polynomial system may have many degenerate (or parasitic [20])
solutions, when the rational expression in (2.1) can be simplified to a rational
function of lower degree. The computation of higher degree coverings with the
straightforward method is hardly possible even with modern computers. Our three
coverings were too hard to compute in reasonable time with available PCs.

Equations of smaller degree for the undetermined coefficients can be obtained by
considering derivatives of ϕ(x). According to Couveignes [8], Fricke was probably
the first to use differentiation to investigate highly ramified maps. More recently,
differentiation was used for the investigation of dessins d’enfant in [24], [25], [32]
and other works. Specifically for computational purposes, differentiation was used
in [15] and [30] in similar ways.

A systematic procedure for the computation of Belyi maps with differentiation is
formulated in [30, Section 3]. The main trick is to consider logarithmic derivatives
of ϕ and ϕ − 1 from (2.1). For instance, the denominator of ϕ ′/ϕ is the product
of all factors of F and H, to the power 1. The numerator is the product of all
factors of P , with the powers diminished by 1. This gives equations of smaller
degree, and easy possibilities for elimination. Typically, the degree of the equations
is diminished by the number of distinct points in a corresponding ramified fiber.
Compared with the computation of Belyi maps, the only adaptation for almost
Belyi coverings is that numerators of the logarithmic derivatives have an additional
degree 1 factor coming from the extra ramified point.

In this paper, we apply the method in [30, Section 3] for the computation of
almost Belyi coverings with the ramification types (1.1)–(1.3). In the following
section, we present the computational steps specifically for ramification pattern
(1.1) quite in detail. Having demonstrated that example, we present computations
for the other two ramification patterns in lesser detail in the routine steps, while
concentrating rather on additional heuristic means of solving the obtained systems
of equations. In particular, Section 5 uses modular methods for finding coverings
with ramification pattern (1.3). Our examples show that computational complexity
depends not only on the degree of the covering, but also on the geometric complexity
of the solutions (apparently, the geometry is more complicated when the degree is
prime), or the number of irreducible components of the solutions. Accordingly,
different heuristic tricks can be useful for different coverings.

Here we make a few comments on the fields of definition and dimension of Hur-
witz spaces. Whether we use the straightforward method or logarithmic derivatives,
the algebraic equations for the coverings (or Hurwitz spaces) are defined over Q. For
Belyi functions, the solutions (up to fractional-linear transformations) are isolated
points, generally defined over an algebraic extension of Q. The field extension may
depend on the fractional-linear normalization of fixing the points x = ∞, x = 0,
x = 1. To be certain of a minimal Q-extension, one may choose to fix the points
of P1

x where the ramification order is different from other ramification orders in
the same fiber. The central question in the theory of dessins d’enfant is how the
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Galois group of Q/Q acts on Belyi coverings (with necessarily the same ramification
pattern) or dessins d’enfant.

General almost Belyi coverings are parameterized by algebraic curves [33], [18].
If so preferred, one may consider them as one-dimensional families of almost Belyi
coverings. The genus of parameterizing curves may depend on the normalization.
To get a modelling curve of minimal genus, one strives to fix the points with “iso-
lated” ramification orders as x = ∞, x = 0, x = 1, like in the zero-dimensional
case. But the equation system can be simpler if we adopt the strategy of choosing
the points with the highest ramification orders as x = ∞, x = 0, x = 1. This
situation is demonstrated in Section 4.

3. The degree 12 covering

Here we compute the generic pull-back covering with the ramification type

(3.1) R4

(
3 + 3 + 3 + 1 + 1 + 1 | 2 + 2 + 2 + 2 + 2 + 2 | 5 + 5 + 2

)
.

Relatively speaking, this is a warm-up example.
By our conventions, the three partitions of 12 specify the ramification orders

above z = 0, z = 1 and z = ∞, respectively. We choose the simple ramified point
above z = ∞ as x = ∞, and the simple ramified point above the fourth z-point
as x = 0. We do not fix x = 1, so there will be the torus action x �→ λx on the
defining equations. The equations are expected to be weighted-homogeneous, and
the Hurwitz space (if irreducible) should be a curve in a weighted-projective space
of minimal possible genus.

We write the ansatz

(3.2) ϕ12(x) = C0
F 3G

H5
, ϕ12(x)− 1 = C0

P 2

H5
,

where

F = x3 + a1x
2 + a2x+ a3,

G = x3 + b1x
2 + b2x+ b3,

H = x2 + c1x+ c2,

P = x6 + p1x
5 + p2x

4 + p3x
3 + p4x

2 + p5x+ p6

are polynomials whose roots are the other x-points above z ∈ {0, 1,∞}. In particu-
lar, the roots of F , H, P are the remaining ramified points. The roots of F , G, H,
P must be mutually distinct and simple. Besides, C0 = limx→∞ ϕ12(x)/x

2 is a yet
undetermined constant. The straightforward method would utilize the following
consequence of (3.2):

(3.3) F 3G = P 2 + 1
C0

H5.

Following [30, Section 3], we obtain simpler equations in the coefficients of F ,
G, H, P by considering the logarithmic derivatives of ϕ12(x) and ϕ12(x)− 1. It is
not hard to figure out the zeroes and poles of the logarithmic derivatives:

(3.4)
ϕ′
12

ϕ12
= C1

xP

F GH
,

(ϕ12 − 1)′

ϕ12 − 1
= C2

xF 2

H P
.

Here C1 = C2 = 2 by local considerations at x = ∞. One may generally notice
that if x = ∞ is chosen above z = ∞ in a setting such as (3.2), the constants in the
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logarithmic derivative expressions like in (3.4) are equal to the ramification order
at x = ∞.

Comparison of the numerators in (3.4) gives the following identities:

(3.5) 2xP = 3F ′GH + FG′H − 5FGH ′, 2xF 2 = 2P ′H − 5PH ′.

The same type of expressions is obtained in computations in [15]. After expanding
the polynomial expressions and collecting the terms to the powers of x in (3.5), the
first identity gives the following equations:

2p1 = 7c1 + b1 − a1,

2p2 = 12c2 + 6b1c1 + 4a1c1 − 2a1b1 − 4a2,

· · · · · · · · ·(3.6)

2p6 = 6a1b3c2 + 4a2b2c2 − 2a2b3c1 + 2a3b1c2 − 4a3b2c1 − 10a3b3,

0 = 3a2b3c2 + a3b2c2 − 5a3b3c1.

The second identity gives the equations

4a1 = 7c1,

4a2 + 2a21 = 12c2 + 5c1p1 − 2p2,

· · · · · · · · ·(3.7)

2a23 = 4c2p4 − 3c1p5 − 10p6,

0 = 2c2p5 − 5c1p6.

The new equations are sufficient, since they are derived from necessary conditions.
They have smaller algebraic degree and have less degenerate solutions. They can be
solved even by brute force with Maple’s routine solve. More systematically, one may
use elimination or Gröbner basis techniques. The system is overdetermined, but
superfluous equations only help the Gröbner basis computations. As mentioned,
the equations are weighted homogeneous; specifically,

(3.8) deg aj = deg bj = deg cj = deg pj = j.

The variables pi can be directly eliminated using the first set of equations. This
can be done similarly for any covering problem with a fiber of only simple ramified
points (with the ramification order 2) plus possibly one non-ramified point. Notice
also that the second set of equations does not contain the bi’s. There is a dependence
between the first two equations in (3.6) and the first two equations in (3.7).

A straightforward way to get the result is the following. Using the first equa-
tion in (3.7), we eliminate a1. Then all equations are (still) linear in the bi’s
and pi’s. We actually get 12 linearly independent equations in these 9 variables.
These variables can be eliminated using determinants3 or syzygies4. We get

3A brute way to eliminate the 9 variables is to pick 9 (out of the 12) equations, solve them in the

9 variables, and substitute into the remaining equations. This is equivalent to the computation of

10× 10 determinants, with polynomial entries in c1, c2, a2, a3. In the particular case, this method

typically gives equations of degree 4 or 5 in a3 alone.
4Here we mean syzygies between the 12 vectors in the rank 9 free module over Q[c1, c2, a2, a3],

with the vector components equal to the corresponding coefficients of the 9 variables. When the

syzygies are applied to the 12 equations, the 9 variables will be eliminated. In the particular case,

we can get one equation of weighted degree 11 in c1, c2, a2, a3 in this way, and 3 independent

equations of degree 12.
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weighted homogeneous equations in c1, c2, a2, a3. We just have to eliminate one
more variable5 to get an equation for the Hurwitz curve. A single such equation
in 3 weighted-homogeneous variables is likely to have large degree and superflu-
ous factors. To avoid investigating all factors, we suggest computing two or more
such equations, and consider only their common factors. It turns out that only the
following factor gives a non-degenerate solution6:

160a22c
2
1 + 6912a2c22 − 2256a2c21c2 − 188a2c41 + 103680c32 − 81936c21c

2
2 + 20328c41c2 − 1421c61.

This weighted-homogeneous polynomial defines a curve of genus 0. We can nor-
malize c1 = 1, and parameterize as follows:

(3.9) c2 =
(2t+ 1)(5t+ 16)

48 t
, a2 = − (2t+ 5)(15t2 + 25t+ 16)

16 t
.

Going back, we consequently find parametric expressions for a3 (and immediately
for a1), and then for the 9 variables bi and pi. To find the constant C0, one can use
(3.3) evaluated at any x ∈ Q.

To write the generic solution more compactly, we renormalize x �→ x/4 and
multiply the polynomials F , G, H by some expressions in t. Here is the covering:

ϕ12(x) = C12
F 3
12 G12

H5
12

,(3.10)

where

C12 = − t2(10t2 + 25t+ 16)

16(3t+ 4)7
,

F12 = 2tx3 + 14tx2 − 2(2t+5)(15t2+25t+16)x− (2t+5)(5t+16)(t2+10t+6),

G12 = 50t(10t2 + 25t+ 16)x3 − 30t(14t3 − 18t2 − 105t− 80)x2

− 6(5t+ 16)(2t+ 1)(20t3 + 35t2 + 3t− 16)x

− (2t+ 1)2(5t+ 16)2(5t2 + 10t+ 6),

H12 = 3tx2 + 12tx+ (2t+ 1)(5t+ 16).

We have

(3.11) 1− ϕ12(x) =
1

16(3t+ 4)7
P 2
12

H5
12

,

5Here resultants can be used. In our computations, even if we took two equations of degree

4–5 in a3, Maple 9.5 computed a resultant with respect to a3 in 15–30 seconds.
6Degenerate solutions are those for which the polynomials F , G, H have multiple or common

roots, or have the root x = 0. Consequently, the factors such as a3, b3, c2 or c21 − 4c2 can be

ignored. It might even be useful to search actively for polynomials divisible by the degeneracy

factors, so that after dividing them out we possibly get polynomials of low degree. In Section 5,

we systematically search for polynomials divisible by two resultants that define degeneracy for the

ramification pattern (1.3).
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where

P12 = 20t3(10t2 + 25t+ 16)x6 − 12t3(7t3 − 184t2 − 490t− 320)x5

+ 60t2(4068t3 + 4048t+ 1024 + 200t5 + 5885t2 + 1386t4)x4

+ 20t2(37627t4 + 100300t3 + 137092t2 + 6415t5 + 250t6 + 92992t+ 24576)x3

− 60t(5t+ 16)(200t7 + 1260t6 + 3052t5 + 3248t4 + 1126t3 − 137t2 + 256t+ 256)x2

− 30t(5t+ 16)2(100t7 + 740t6 + 2289t5 + 3780t4 + 3600t3 + 2040t2 + 700t+ 128)x

− (2t+ 1)(5t+ 16)3(100t7 + 740t6 + 2289t5 + 3780t4 + 3600t3 + 2040t2 + 700t+ 128).

4. The degree 11 covering

Here we compute the generic pull-back covering with the ramification type

(4.1) R4

(
3 + 3 + 3 + 1 + 1 | 2 + 2 + 2 + 2 + 2 + 1 | 5 + 5 + 1

)
.

To get a Hurwitz curve of minimal genus, we choose the non-ramified point above
z = ∞ as x = ∞, the non-ramified point above z = 1 as x = 0, and the simple
ramified point above the fourth z-point as x = 1. Accordingly, we write the ansatz

(4.2) ϕ11(x) = C0
F 3 G

H5
, ϕ11(x)− 1 = C0

xP 2

H5
,

where F , G, H, P are polynomials of degrees 3, 2, 2 and 5, respectively. Zeroes
and poles of the logarithmic derivatives of ϕ11(x) and ϕ11(x)− 1 are easy to figure
out, as in (3.4). The method gives the following identities:

2(x− 1)P = 3F ′GH + FG′H − 5FGH ′,(4.3)

2(x− 1)F 2 = 2xP ′H − 5xPH ′ + PH.(4.4)

However, the resulting equations in the coefficients of F , G, H, P are still too
complicated to solve by direct elimination or Gröbner basis techniques.

Equations of smaller algebraic degree are obtained if we adopt the strategy to
normalize the points with highest ramification orders as x = ∞, x = 0, etc. (But
then the Hurwitz space can have non-minimal genus.) In particular, we choose the
two points of ramification order 5 (above z = ∞) as x = 0 and x = ∞. We choose
the extra ramified point above the fourth locus as x = 1, as just above. Then the
non-ramified points above z = ∞ and z = 1 are undetermined. We denote their
location as x = c1 and x = c2, respectively. That gives the following ansatz:

(4.5) ϕ̃11(x) = C̃0
F 3 G

x5 (x− c1)
, ϕ̃11(x)− 1 = C̃0

P 2 (x− c2)

x5 (x− c1)
,

where

F = x3 + a1x
2 + a2x+ a3,

G = x2 + b1x+ b2,

P = x5 + p1x
4 + p2x

3 + p3x
2 + p4x+ p5,

and C0 = limx→∞ ϕ̃11(x)/x
5 is an undetermined constant. The fractional-linear

transformation on P1
x from (4.5) to (4.2) is

(4.6) x �→ c1(c2 − 1) x+ c2(1− c1)

(c2 − 1) x+ 1− c1
.
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Consideration of logarithmic derivatives of ϕ̃11(x) and ϕ̃11(x)− 1 gives the fol-
lowing equations:

5(x− 1)P = 3x(x− c1)F
′G+ x(x− c1)FG′ − (6x− 5c1)FG,(4.7)

5(x− 1)F 2 = 2x(x− c1)(x− c2)P
′ − (5x2 − 4c1x− 6c2x+ 5c1c2)P.(4.8)

As in the previous example, collecting terms in like powers of x gives a system of
equations in the ai’s, bi’s, ci’s and pi’s. First we pick up the following 8 equations:
the terms to the powers 5, 4, 2, 1, 0 of x in (4.7), and the terms to the powers 6, 1,
0 in (4.8). Using these equations, we eliminate the ai’s and pi’s. Formally, there are
2 solution components, but the one with a3 = 0 has to be discarded as degenerate.7

We obtain several non-homogeneous equations in the 4 variables b1, b2, c1, c2. To
get equations for the Hurwitz curve in two variables, we eliminate b1, b2 by picking
up equations of minimal degree in them and using resultants. As in the previous
section, we can compute several resultant polynomials (in c1, c2 only) and consider
their common divisors as candidate models for the Hurwitz curve. It turns out that
there is possibly only one component of non-degenerate solutions. It is described
by a polynomial factor of degree 15 in c1, c2.

Let Q denote the degree 15 factor. It apparently defines the Hurwitz space for the
desired almost Belyi map with chosen normalization. The degree of Q in c1 alone
is 12; the degree in c2 is just 6. According to Maple’s package algcurves, Q defines
a curve of genus 3. Luckily, the curve is hyperelliptic. Improvised computations
produced the following Weierstrass model:

(4.9) w2 = (3t2 + 3t+ 2)(27t6 + 71t5 + 130t4 + 140t3 + 120t2 + 64t+ 32).

The variables c1 and c2 can be parameterized as

c1 = 27t6+67t5+116t4+118t3+94t2+46t+20+w (3t2+2t+2)
2(t+2)(t2+1)(2t2+3t+3) ,

c2 = 1107t12+7641t11+26055t10+L1−w (9t3+19t2+13t+7)(3t5+15t4+15t3+45t2+40t+26)
2(t+2)(3t+1)3(t2+1)(2t2+3t+3)2(5t2+4t+3) ,

where

L1 = 59035t9+99475t8+130463t7+138619t6+121015t5+87870t4+51600t3+23798t2+7574t+1460.

Using these expressions and the equations in b1, b2, c1, c2, we parameterize b1 and
b2:

b1 =
(27t5 − 45t4 − 190t3 − 360t2 − 360t− 216)

(
L2 + w (t+ 7)(6t2 + 3t+ 2)

)
32(3t+ 1)3(t2 + 1)(2t2 + 3t+ 3)2(5t2 + 4t+ 3)

,

b2 = −2916t14 + 11124t13 + 191673t12 + L3 + w (t+ 7)(6t2 + 3t+ 2)L2

32(3t+ 1)3(t2 + 1)2(2t2 + 3t+ 3)(5t2 + 4t+ 3)2
,

7Here is a stepwise course of elimination. The zeroth powers of x in (4.7)–(4.8), or substitution

x = 0, give the equations 5p5 + 5c1b2a3 = 0 and 5a23 = 5c1c2p5. It is easy to eliminate a3, p5.

We must ignore solutions with a3 = 0, so we are left with a3 = −c21c2b2. Next we consider the

coefficients of the first powers in x in (4.7)–(4.8), and eliminate a2, p4. We get, in particular,

a2 =
c1

11
(5c1b2 + 12c2b2 − 3c1c2b1 − 10c1c2b2) .

Similarly, we consider the coefficients of the highest degrees (5 and 6, respectively) of x in (4.7)–

(4.8), and eliminate a1, p1. We get, in particular, a1 = (3b1 − 12c1 − 5c2 + 10) /11. Having

expressed the ai’s and p1, p4, p5 just in terms of bi’s and ci’s, the remaining equations are linear

in p2, p3. These two pi’s can be eliminated using discriminants or syzygies, as in the previous

section.
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where L2 = 54t7 − 297t6 − 682t5 − 1145t4 − 970t3 − 712t2 − 304t− 104, and

L3 = 764136t11 + 1953326t10 + 3445832t9 + 4698345t8 + 5040404t7 + 4425220t6

+ 3147872t5 + 1833840t4 + 840864t3 + 301376t2 + 74176t+ 11680.

Here we stop computations on the hyperelliptic curve. Using the fractional-linear
transformation (4.6), we express the polynomials H and G in (4.2) as follows:

H = x2 − (c1 − 1)(c1 + c2)

c1(c2 − 1)
x+

c2(c1 − 1)2

c1(c2 − 1)2
,(4.10)

G = x2 − (c1−1)(2c1c2+ c1b1+ c2b1+ 2b2)

(c2 − 1)(c21 + c1b1 + b2)
x+

(c1−1)2(c22+ c2b1+ b2)

(c2− 1)2(c21+ b1c1+ b2)
.(4.11)

When we write these coefficients in terms of t, w, the square root w conveniently
disappears. Hence all coefficients are just rational functions in t. We checked that
the algebraic relations between the coefficients of H define an irreducible curve
of degree 13 (and genus 0, as parameterized by t). The projective degree of the
parameterization by t is 13 as well, so the parameterization is minimal.

We go back to the equations induced by (4.3)–(4.4), but now knowing parametric
expressions for 4 variables. It is then straightforward to find parametric expressions
for the remaining coefficients of F in (4.2). The final expression for ϕ11 can be
simplified by the renormalization

(4.12) x �→ 3t5 + 15t4 + 15t3 + 45t2 + 40t+ 26

(3t2 + 2t+ 2)(5t2 + 4t+ 3)
x.

In this normalization, the extra ramified point is not fixed as x = 1. The final
expression can be written as:

ϕ11(x) = C11
F 3
11 G11

H5
11

,(4.13)

where

C11 = − (2t2 + 3t+ 3)(3t+ 1)2

108
,

F11 = x3 − 4941t6+13122t5+19905t4+17820t3+10795t2+3962t+879
(3t+1)2(2t2+3t+3) x2

+ (3t+1)(432t5+570t4+330t3−265t2−340t−151)
2t2+3t+3 x+ 3(2t2 + 3t+ 3)(3t+ 1)4,

G11 = (3t2 + 2t+ 2)2 x2

+ 27t10+270t9+945t8+2160t7+2745t6+1926t5−5t4−1340t3−1440t2−720t−216
(2t2+3t+3)(3t+1)2 x

− 4(3t+ 1)(2t2 + 3t+ 3),

H11 = (5t2 + 4t+ 3) x2 + 135t6+396t5+715t4+790t3+610t2+280t+82
2t2+3t+3 x

+ (2t2 + 3t+ 3)(3t+ 1)3.

Let P11 denote the degree 5 polynomial such that

(4.14) 1− ϕ11(x) =
1

108(2t2 + 3t+ 3)

xP 2
11

H5
11

.

We have P11 = (3t2 + 2t+ 2)(2t2 + 3t+ 3)(3t+ 1)x5 + . . ..
As we see, the degree 11 covering is more complicated than the degree 12 covering

of Section 3. Apparently the geometry of prime degree coverings is more complex.
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5. The degree 20 coverings

Here we compute generic pull-back coverings with the ramification type

(5.1) R4

(
5+5+5+5 | 2+2+2+2+2+2+2+2+2+2 | 3+3+3+3+3+2+1+1+1

)
.

By fractional-linear transformations, we fix the simple ramified point above z = ∞
as x = ∞, and we choose the extra ramified point as x = 0.

The ansatz is

(5.2) ϕ20(x) = C0
F 5

G3H
, ϕ20(x)− 1 = C0

P 2

G3H
,

where

F = x4 + a1x
3 + a2x

2 + a3x+ a4,

G = x5 + b1x
4 + b2x

3 + b3x
2 + b4x+ b5,

H = x3 + c1x
2 + c2x+ c3,(5.3)

P = x10 + p1x
9 + p2x

8 + · · ·+ p9x+ p10,

and C0 = limx→∞ ϕ(x)/x2 is an undetermined constant. Consideration of the
logarithmic derivatives of ϕ20(x) and ϕ20(x)− 1 gives the following identities:

(5.4) 2xP = 5F ′GH − 3FG′H − FGH ′, 2xF 4 = 2P ′GH − 3PG′H − PGH ′.

After expanding and collecting terms in like powers of x, we get a system of equa-
tions in the coefficients of F , G, H, P . Since we do not fix x = 1, the equations
are weighted homogeneous, with the same grading as formulated in (3.8).

There are many possibilities for eliminating variables from the equation system.
For example, one may use the first 10 equations of the first identity to eliminate
all the pi’s. Then we can use the first equation from the second group to eliminate
b1; the subsequent equation turns out to be void. The next 3 equations allow us
to eliminate b3, b4 and b5. But still, there are too many variables left to solve the
system by force.

Our strategy is the following. We solve the equations modulo several large
primes, isolate non-degenerate solutions, and try to lift them to the characteristic
0. The principle aim is to derive modular polynomial equations which character-
ize only non-degenerate solutions. When lifted to Q, those equations are expected
to have low degree and rather small coefficients, because they would contain in-
formation only about relevant solutions. Eventually, it turns out that there are
a few connected components of non-degenerate solutions; we are able to separate
them on the modular level, so that each lifted equation system describes only one
connected component. We effectively avoid intermediate computations with huge
Q-coefficients, and consider over Q only those equation systems which describe
isolated components of the generic solution. We are able to get just a few new
polynomial equations over Q of low degree, but that is just enough for a break-
through simplification of the original system.

We use the computer algebra package Singular [13], well suited for ring-theoretic
manipulation modulo large primes. For a prime number p, let Fp denote the finite
field with p elements. We did computations modulo these primes:

(5.5) p ∈ {32003, 31991, 31981, 31973, 31963}.
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The solutions were found after considering the first 4 primes, while computations
modulo 31963 were done for checking purposes only.

We use the weighted grading as formulated in (3.8). To be able to discard
degenerate solutions, let Q denote the resultant of F and G with respect to x, and
let Z denote the resultant of F and H. Their weighted degrees are 20 and 12,
respectively. A solution of the original equation system is degenerate if and only if
Q = 0 or Z = 0.

For each prime number p from (5.5), we do computations in two rings:

R1 = Fp[a1, a2, a3, a4, b2, c1, c2, c3, Z],

R2 = Fp[a1, a2, a3, a4, b2, c1, c2, c3, Z,Q].

We assume that b1, b3, b4, b5 and the pi’s are eliminated from the original system.
Let J0 denote the graded ideal in R2 generated by the original polynomial equations
(after the elimination) and by definitions of Z and Q. We wish to find polynomials
in J0 divisible by Z or Q, so that we could get equations of lower degree for non-
degenerate solutions by dividing such polynomials by the factor Z or Q.

Let J1 denote the restriction of J0 onto R1. For the beginning, we compute a
Gröbner basis for J1 in R1 with respect to the total degree reverse lexicographic
ordering with

(5.6) a4 � c3 � a3 � c2 � b2 � a2 � c1 � a1 � Z.

With this ordering, a (weighted) homogeneous polynomial is divisible by Z if and
only if the leading term is divisible by Z. Let G1 denote the Gröbner basis for J1.
We actually computed G1 up to bounded degree 25. The computations were done
on a Dell laptop computer with Pentium M, 1700 MHz processor on the Windows
XP platform.

The first element of G1 divisible by Z occurs in degree 24. (Computations
up to this degree took 430 seconds.) Non-degenerate solutions should satisfy the
other degree 12 factor. We have two options: either use the new degree 12 equation
immediately and recompute the Gröbner basis through degrees 12 to 24, or continue
computations in degree 25 in the hope of finding more elements of G1 divisible by Z.
The second option appears to be more acceptable since its next step takes less time
(510 versus 650 seconds). Besides, the more greedy strategy of using lowest degree
new polynomials immediately leads to more frequent and lengthier recomputations
of Gröbner bases. In general, one may try different tactical choices when making
computations modulo the first few different primes, and then use the best options
when computing modulo other primes.

Our computations are summarized in Table 1. Recall that the Hilbert series
of a graded ring R is the series

∑∞
j=0 hjt

j , where hj is the dimension (over the

ground field) of the jth graded part of R. We refer to the numbers hj as Hilbert
dimensions.

In the first column of Table 1, we list the weighted degrees from 11 to 25.
The numbers in small font are the Hilbert dimensions for R1 (i.e., the number
of monomials of the weighted degrees in R1). In the second column, we give the
number of elements of G1 up to each degree, and (in the small font) the Hilbert
dimensions for the ring R1/J1. As mentioned, there is one Z-multiple in degree 24
and two independent Z-multiples in degree 25; this is indicated in the next-to-last
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Table 1. Statistics of modular computations

Degree Gröbner basis (re)computations

(Hilbert dim) 1st 2nd 3rd 4th 5th 6th 7th

11
704

9
613

9
613

9
613

9
613

110
508

113
496

24
108

12
1020

12
848

13
847

15
845

98
762

158
587

143
571

120
99

13
1432

16
1128

19
1124

21
1120

104
954

165
660

144
643

138
105

14
1998

23
1479

27
1469

30
1457

268
959

169
738

149
718

139
113

15
2724

32
1877

40
1853

47
1829

328
1022

178
811

154
790

141
119

16
3689

45
2347

59
2298

70
2248

365
1088

185
889

159
865

147
127

17
4906

63
2851

88
2759

106
2671

374
1185

199
962

169
937

154
133

18
6486

85
3414

123
3255

157
3099

418
1251

209
1040

180
1012

159
141

19
8448

123
3980

178
3720

229
3470

433
1348

229
1113

197
1084

160
148

20
10943

166
4575

237
4174

327
3776

480
1414

250
1191

221
1160

21
14004

236
5129

346
4543

484
3950

506
1511

286
1264

256
1233

22
17827

305
5672

456
4854

668
3983

591
1577

353
1342

317
1312

23
22464

427
6126

610
5042

1021
3828

688
1674

363
1415

329
1390

24
28173

535
6539

852
5177

1456
3645

346
1478

25
35024

695
6837

New 1+2 2 83 4+97 9+3 1+2 7+5+1

Time (s) 941 918 1367 520 142 93 2

row, and by the boldface numbers in the table. Therefore we have 3 new suitable
equations of degree 12 or 13. Let J2 denote the ideal generated by J1 and the 3
new equations.

Subsequently, we compute the Gröbner basis for J2 up to degree 24. Column
3 of Table 1 gives the same size statistics for J2. This second run gives 2 new
equations of degree 12. We iterate the procedure of adjoining new equations and
recomputing the Gröbner basis until we don’t see Gröbner basis elements with the
leading monomial divisible by Z. As indicated by Table 1, the subsequent two runs
give bonanzas of 83 and 101 new equations of degrees 10 to 12. The same quantity
and degree of new equations occurs modulo each chosen prime, which is a good
indication. The statistics of Table 1 indicate the complexity of the computations
in each run. In particular, the Hilbert dimensions indicate the size of the Gröbner
basis elements in each degree.
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After the 6th run, we don’t get Gröbner basis elements divisible by Z. Then we
redo this run in the ring R2; we use the same ordering as in (5.6) with additionally
Z � Q. With this ordering, a homogeneous polynomial is divisible by Q if and
only if the leading term is divisible by Q. If the degree of the polynomial is less
than degQ = 20, we still have the same criterion for divisibility by Z. We do
the computation in R2 up to degree 24, and we get one Gröbner basis element
of degree 23 and two elements of degree 24 divisible by Q. After dropping the
factor Q, we get an equation of degree 3 and two equations of degree 4 for non-
degenerate solutions! We feed these equations into the current Gröbner basis in
R2; the following run gives a few equations divisible by Z of degree up to 19. After
adding the new equations (of degree up to 19 − 12 = 7), we get a stable Gröbner
basis: 17 equations of degree up to 7, plus expressions for Z and Q. This looks like
the desired system of polynomial equations for non-degenerate solutions.

The computations with Singular were semiautomatic. For the first two primes,
we tried a couple of strategies when to recompute a Gröbner basis. For computa-
tions modulo other primes we used empirically the most effective degree bounds.
Those computations were automatic in principle; in particular, the 6th run was
done directly in R2. As mentioned, the new equations in the corresponding re-
computations have the same degree (and leading monomials) modulo each chosen
prime. Computations for one prime took about an hour.

Now we wish to lift the simplest new equations to characteristic 0. Modular
lifting of Gröbner bases is considered by several authors; see, for example, [3] and
further references. Strictly speaking, we do not know good bounds for the size of the
Q-coefficients. To be sure bounds must be huge, due to the suspected complexity
of intermediate computations purely in Q. Our whole idea is to escape the interme-
diate computations by considering over Q exclusively equations for non-degenerate
solutions only. Eventually, we obtained correct solutions after using just the few
primes and a few new lifted equations. At the end of this section we indicate a way
to check for certain that there are no other solutions.

A straightforward way to lift equations to characteristic 0 is to lift the coeffi-
cients to rational numbers with smallest numerators and denominators. Modular
reconstruction of rational numbers is a well-known problem; the basic algorithm
is proved in [31]. A good indication that a lift of a polynomial is correct is that
the denominators of the coefficients have the same factors. If the straightforward
method did not work, we tried the LLL reduction algorithm [21] for the lattice
generated by: the vector whose entries are the integer coefficients modulo the com-
posite modulus, plus one extra zero component; and the vectors with two non-zero
entries — the entry 1 at the extra component, and the composite modulus at some
(and each) other component. In successful cases, the shortest LLL basis vector is
shorter by several orders of magnitude than the other vectors, which is a convinc-
ing indication. We used the extra vector component because Maple’s LLL routine
requires linearly independent input.

As mentioned, each 6th run of modular computations gives one equation of
(weighted) degree 3 and two equations of degree 4. The degree 3 polynomials can
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be lifted quite easily. Up to a scalar factor, the result is convincingly

625
3 c3 − 875

4 a3 + 11c2c1 + 22b2c1 − 643
4 a2c1 − 99

10c
3
1 − 179

4 a1c2(5.7)

+ 44
3 a1b2 +

369
2 a2a1 +

143
10 a1c

2
1 +

3811
60 a21c1 − 895

12 a31.

The two polynomials of degree 4 can be reliably lifted from the obtained modular
data as well. With the lifted polynomials, we can immediately eliminate c3 and a4.
But further brute force computations seem to be too cumbersome still.

The final Gröbner basis for non-degenerate solutions appeared to have new equa-
tions of degree 5 or higher, but the modular data was not sufficient to lift them.
We proceeded then to eliminate variables modulo the primes, so as to get modular
equations in the minimal number of variables, which is 3 (weighted-homogeneous)
variables to define the Hurwitz curves. These equations indicated that there are
a few irreducible components of non-degenerate solutions. We suspected that fac-
torized equations in 3 variables can be lifted easily; even if they have high degree,
their coefficients can be expected to be rather simple.

Specifically, we used modular Gröbner basis computations with respect to an
elimination ordering, still in Singular. After elimination, the equation in (only) a1,
c1, a2 has degree 14 modulo each prime in (5.5). It factors as follows: two factors of
degrees 8 and 6 modulo 31991 and 31963; or three factors of degrees 8, 3, 3 modulo
the other primes. This suggests that there are three families of non-degenerate
solutions; one family corresponds to the degree 8 factors; the other two families
should be conjugate over a quadratic extension of Q. We succeeded in lifting the
degree 8 and degree 6 = 3 + 3 factors to Q using the LLL algorithm.

It turns out that the degree 6 polynomial factors over Q(
√
−15) into two factors

of degree 3, as expected. One may check that the factors define genus 0 curves. The
curves can be parameterized, and the other variables can be uniquely parameterized
as well using the original equations and the three lifted equations of degree 3 or 4.
But we noticed a shortcut: ramification type (5.1) can be realized by a composition
of two coverings of the types:

(5.8) R3(3 + 1̂ + 1̂ | 5 | 2 + 2 + 1̂ ) and R4(3 + 1 | 2 + 1 + 1 | 2 + 2).

The hats in the first expression indicate the ramification locus of the subsequent
degree 4 covering. The coverings of these two types are known due to their applica-
tion to Gauss hypergeometric functions and algebraic Painlevé VI functions, as we
recall in Section 6 below. The (normalized generic) coverings for these ramification
types are:

ϕ5(x) =
(5−3

√
−15) (128x+ 7 + 33

√
−15)5

8000x (1024x−781−171
√
−15)3

,(5.9)

ϕ4(z) =
(t− 3)3(3t− 1)3(z + 1)(z + t)

(t−1)2 ((t−1)2z + t(t+1)) (4z + 3(t+1))
3 .(5.10)

Note the appearance of
√
−15 in the first covering. The second covering has the

parameter t as it is an almost Belyi function. The composition ϕ4 ◦ ϕ5(x) can be
written in the form (5.2). We checked that the coefficients a1, c1, a2 in this form
parameterize the degree 6 polynomial factor. It follows that the two coverings
implied by the degree 6 factor are ϕ4 ◦ ϕ5 and the conjugated version.
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The degree 8 factor in a1, c1, a2 defines a genus 0 curve as well. Its parameteri-
zation gives rise (by the original equations and the three lifted equations of degree
3 or 4) to the following impressive solution of the covering problem:

(5.11)

a1 = 4(3t4 + 9t3 + 43t2 + 40t+ 12),

a2 = 6(182t6 + 728t5 + 2373t4 + 3584t3 + 2632t2 + 960t+ 144),

a3 = 4(t+ 1)(8t2 + 7t+ 2)(1029t5 + 3246t4 + 9608t3 + 10224t2 + 4752t+ 864),

a4 = (5t+ 6)(8t2 + 7t+ 2)2(1029t5 + 3246t4 + 9608t3 + 10224t2 + 4752t+ 864),

b1 = − 1
5 (4t

4 + 12t3 − 869t2 − 892t− 276),

b2 = − 1
5 (448t

6 + 1756t5 − 59175t4 − 123710t3 − 101900t2 − 39144t− 6048),

b3 = − 1
5 (8t

2 + 7t+ 2)

×(2352t6 + 9399t5 − 256240t4 − 577360t3 − 506160t2 − 204336t− 32832),

b4 = − 2
5 (8t

2 + 7t+ 2)2(56t2 + 79t+ 34)(49t4 + 132t3 − 5184t2 − 4752t− 1296),

b5 = − 2
5 (8t

2 + 7t+ 2)3(49t2 + 76t+ 36)(49t4 + 132t3 − 5184t2 − 4752t− 1296),

c1 = 1
3 (100t

4 + 300t3 + 507t2 + 388t+ 108),

c2 = 1
3 (5t+ 6)(8t2 + 7t+ 2)(140t3 + 307t2 + 308t+ 108),

c3 = 1
3 (5t+ 6)2(8t2 + 7t+ 2)2(49t2 + 76t+ 36).

Let us denote by ϕ20(x) the covering defined by (5.2), (5.3) and (5.11). We refer
to the other two solutions as compositions of the degree 4 and 5 coverings.

To summarize, we looked for the degree 20 coverings by modular methods, de-
liberately ignoring the size of the intermediate would be computations over Q.
It is theoretically possible that some generic solutions are missing, since they co-
incide with the derived solutions modulo each of the considered primes, or the
original equation system is insufficient modulo those primes. This possibility has
extremely low probability. Very likely, the set of “bad” primes consists of just a
few small prime numbers. Regarding the application to Painlevé VI functions of
the next section, we already know that there are exactly two algebraic solutions
of PVI(0, 0, 0,−2/3; t) from the work of Dubrovin and Mazzocco [11]: the Cube
solution and the Great Dodecahedron solution. After an Okamoto transformation
we have exactly two solutions of PVI(1/3, 1/3, 1/3, 1/3; t); they are obtainable from
the composition ϕ4 ◦ ϕ5(x) and the irreducible covering ϕ20(x), as we will see.

The canonical method for checking that there are certainly no other coverings
with the ramification pattern (5.1) is combinatorial. Each branch of the Hur-
witz space corresponds to a 4-tuple of permuations of 20 elements, of cycle types
5 + 5 + 5 + 5, 3 + 3 + 3 + 3 + 3 + 2 + 1 + 1 + 1, etc. The braid group on 4 braids
acts on the branches of the same connected component. There must be only three
orbits of the braid group, giving three connected components of the Hurwitz space,
corresponding to the composition ϕ4 ◦ ϕ5(x), its complex conjugate, and ϕ20(x).
This method is strict [8], [22], but it requires the computation of all permutations
and combinations with the given cycle type and the identity product. More ge-
ometrically, one may introduce deformations of dessins d’enfant [18], [19], cacti
[23] or similar geometric objects [6, pg. 105] that represent almost Belyi coverings
in the same way as the usual dessins d’enfant correspond to Belyi maps, observe
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homotopic action of the braid group, and count possible “deformation” drawings
with the given branching type.

6. Application to algebraic Painlevé VI functions

As noticed in [29], [30] and [18], [1], certain Belyi coverings occur with algebraic
transformations of Gauss hypergeometric solutions. These transformations are in-
duced by pull-back transformations of a hypergeometric differential equation to a
hypergeometric equation again. In particular, the Belyi covering (5.9) transforms
between standard hypergeometric equations with the icosahedral and tetrahedral
monodromy groups. Here is an induced hypergeometric identity:

(6.1) 2F1

(
1/4,−1/12

2/3

∣∣∣ x)
=

(
1+ 7−33

√
−15

128 x
)−1/12

2F1

(
11/60,−1/60

2/3

∣∣∣ 1
ϕ5(x)

)
.

This is the same transformation as formula (50) in [29], but with a different defini-
tion of ϕ5(x). This formula can be checked by comparing the Taylor expansions of
both sides around x = 0.

Similarly [18], [10], almost Belyi coverings with certain ramification patterns can
be used to pull back hypergeometric differential equations to 2× 2 isomonodromic
Fuchsian systems with four singularities. Correspondingly, one may derive algebraic
solutions y(T ) of the sixth Painlevé equation:

d2y

dT 2
=

1

2

(
1

y
+

1

y − 1
+

1

y − T

)(
dy

dT

)2

−
(
1

T
+

1

T − 1
+

1

y − T

)
dy

dT
(6.2)

+
y(y − 1)(y − T )

T 2(T − 1)2

(
α+ β

T

y2
+ γ

T − 1

(y − 1)2
+ δ

T (T − 1)

(y − T )2

)
,

where α, β, γ, δ ∈ C are parameters. The standard correspondence between solu-
tions of the sixth Painlevé equation and the mentioned isomonodromic Fuchsian
systems is due to Jimbo and Miwa [16]. If the singular points of the Fuchsian sys-
tem are x = 0, x = 1, x = T , x = ∞, and the local monodromy differences at them
are, respectively, θ0, θ1, θT , θ∞, then the corresponding Painlevé equation has the
parameters

(6.3) α =
(θ∞ − 1)2

2
, β = −θ20

2
, γ =

θ21
2
, δ =

1− θ2T
2

.

We denote the corresponding Painlevé VI equation by PVI(θ0, θ1, θT , θ∞;T ).
General pull-back transformations of 2 × 2 Fuchsian systems dΨ(z)/dz =

M(z)Ψ(z) have the following form:

(6.4) z �→ R(x), Ψ(z) �→ S(x)Ψ(R(x)),

where R(x) is a rational function of x, and S(x) is a Schlesinger transformation, usu-
ally designed to remove apparent singularities. For transformations to parametric
isomonodromic equations, R(x) and S(x) may depend algebraically on parame-
ter(s) as well. In [17], [18], [27], these pull-back transformations are called RS-
pullback transformations, meaning that they are compositions of a rational change
of the independent variable z �→ R(x) and the Schlesinger transformation S(x).
The Schlesinger transformation S(x) is analogous here to the projective equivalence
transformations y(x) → θ(x)y(x) of ordinary differential equations. If S(x) is the
identity transformation, we have a direct pullback of a Fuchsian equation.
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If z = R(x) is an almost Belyi covering with a suitable ramification pattern,
one can pick up hypergeometric equations (in a correspondingly normalized matrix
2 × 2 form) and choose appropriate Schlesinger transformations S(x) so that the
pull-backed Fuchsian equation would be isomonodromic and have four singular
points, and there would be a corresponding algebraic solution of the sixth Painlevé
equation. These RS-transformations are defined in [18], [19]; their algorithmic
construction is considered thoroughly in [27]. The notation for suitable classes of
these RS-pullback transformations is

(6.5) RS2
4

(
e0
P0

∣∣∣∣ e1
P1

∣∣∣∣ e∞
P∞

)
.

Here the subscripts 2 and 4 indicate a second-order Fuchsian system with 4 sin-
gular points after the RS-pullback; P0, P1, P∞ define the ramification pattern
R4(P0 |P1 |P∞) of the almost Belyi covering R(x); and e0, e1, e∞ are the local
exponent differences of the hypergeometric equation.

With the almost Belyi coverings ϕ12(x), ϕ11(x), ϕ20(x) of this paper, we can
construct RS-transformations of the types

RS2
4

(
1/3

3+3+3+1+1+1

∣∣∣ 1/2
2+2+2+2+2+2

∣∣∣ 1/5
5+5+2

)
, RS2

4

(
1/3

3+3+3+1+1+1

∣∣∣ 1/2
2+2+2+2+2+2

∣∣∣ 2/5
5+5+2

)
,

RS2
4

(
1/3

3+3+3+1+1

∣∣∣ 1/2
2+2+2+2+2+1

∣∣∣ 1/5
5+5+1

)
, RS2

4

(
1/3

3+3+3+1+1

∣∣∣ 1/2
2+2+2+2+2+1

∣∣∣ 2/5
5+5+1

)
,

RS2
4

(
1/5

5+5+5+5

∣∣∣ 1/2
2+2+2+2+2+2+2+2+2+2

∣∣∣ 1/3
3+3+3+3+3+2+1+1+1

)
,

and derive algebraic solutions of, respectively,

PVI(1/3, 1/3, 1/3, 3/5;T ), PVI(1/3, 1/3, 1/3, 1/5;T ),(6.6)

PVI(1/3, 1/3, 1/2, 4/5;T ), PVI(1/3, 1/3, 1/2, 2/5;T ),(6.7)

PVI(1/3, 1/3, 1/3, 1/3;T ).(6.8)

All of the RS-pullbacks transform hypergeometric equations with the icosahedral
monodromy group to isomonodromic Fuchsian systems with four singular points
and the same monodromy group. The Painlevé VI solutions are called icosahedral
[5]; there are 52 types of them up to branching representation of the icosahedral
monodromy group, or Okamoto transformations. The solutions of (6.6)–(6.8) have
the following Boalch types, respectively: 38, 37, 42, 43, 41. As mentioned in a
footnote to the introductory section, our computations of these solutions by the
method of RS-transformations are independent from [5].

Direct results relating RS-pullback transformations to algebraic Painlevé VI so-
lutions are presented in [27]. The most convenient results are reproduced here.

Theorem 6.1. Let k0, k1, k∞ denote three integers, all ≥ 2. Let ϕ : P1
x → P1

z denote
an almost Belyi map, dependent on a parameter T . Suppose that the following
conditions are satisfied:

(i) The covering z = ϕ(x) is ramified above the points z = 0, z = 1, z = ∞;
there is one simply ramified point x = y above P1

z \ {0, 1,∞}; and there are
no other ramified points.

(ii) The points x = 0, x = 1, x = ∞, x = T lie above the set {0, 1,∞} ⊂ P1
z.
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(iii) The points in ϕ−1(0) \ {0, 1, T,∞} are all ramified with the order k0. The
points in ϕ−1(1)\{0, 1, T,∞} are all ramified with the order k1. The points
in ϕ−1(∞) \ {0, 1, T,∞} are all ramified with the order k∞.

Let a0, a1, aT , a∞ denote the ramification orders at x = 0, 1, T,∞, respectively.
Then the point x = y, as a function of x = T , is an algebraic solution of

(6.9) PVI

(
a0

kϕ(0)
,

a1
kϕ(1)

,
aT

kϕ(T )
, 1− a∞

kϕ(∞)
;T

)
.

Proof. This is Theorem 3.1 in [27]. �

Theorem 6.2. Let z = ϕ(x) denote a rational covering, and let F (x), G(x), H(x)
denote polynomials in x. Let k denote the order of the pole of ϕ(x) at x = ∞.
Suppose that the direct pullback of E(e0, e1, 0, e∞;T ; z) with respect to ϕ(x) is a
Fuchsian equation with the following singularities:

• Four singularities are x = 0, x = 1, x = ∞ and x = T , with the local
monodromy differences d0, d1, dT , d∞, respectively. The point x = ∞ lies
above z = ∞.

• All other singularities in P1
x \ {0, 1, T,∞} are apparent singularities. The

apparent singularities above z = 0 (respectively, above z = 1, z = ∞) are
the roots of F (x) = 0 (respectively, of G(x) = 0, H(x) = 0). Their local
monodromy differences are equal to the multiplicities of those roots.

Let us denote ∆ = degF + degG + degH, and let δ ≤ max(2, k) denote a non-
negative integer such that ∆ + δ is even. Suppose that (U2, V2,W2) is a syzygy
between the three polynomials F , G, H, satisfying, if δ = 0,

(6.10) degU2 = ∆
2 − degF, deg V2 = ∆

2 − degG, degW2 < ∆
2 − degH,

or, if δ > 0,

(6.11) degU2 < ∆+δ
2 − degF, deg V2 < ∆+δ

2 − degG, degW2 = ∆−δ
2 − degH.

Then the numerator of the (simplified) rational function

U2W2

G

(
(e0 − e1 + e∞)

2

ϕ′

ϕ
− (FU2)

′

FU2
+

(HW2)
′

HW2

)
(6.12)

+
(e0 − e1 − e∞)

2

V2W2

F

ϕ′

ϕ− 1
+

(e0 + e1 − e∞)

2

U2V2

H

ϕ′

ϕ (ϕ− 1)

has degree 1 in x, and the x-root of the numerator is an algebraic solution of
PVI(d0, d1, dt, d∞ + δ;T ).

Proof. This is Theorem 5.1 in [28]. �

The first theorem here is actually a special case of the second one, when the
syzygy (U2, V2,W2) has one of the components equal to zero. The Painlevé VI solu-
tions obtained in this case can be seen as inverse functions of particular projections
[8, Figure 5] of the respective Hurwitz spaces to P1

t . The implied RS-transformation

is RS2
4

(
1/k0

P0

∣∣∣ 1/k1

P1

∣∣∣ 1/k∞
P∞

)
, where P0, P1, P∞ define the ramification pattern of

ϕ(x). The Painlevé VI solutions can be derived without computing the Schlesinger
part S(x) of the RS-transformation. It is these solutions that are implied or com-
puted in [10] and [18].
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The more general Theorem 6.2 means that the same almost Belyi covering can be
used to pull back several hypergeometric equations, and hence derive several alge-
braic Painlevé VI equations. For each implied RS-transformation, the Schlesinger
transformations depend actually on two syzygies for the same polynomial triple
(F,G,H), but a single Painlevé solution depends on one syzygy, as stated in the
theorem. The other syzygy determines an algebraic solution of the other (contigu-
ous) Painlevé VI equation. When d > max(2, k), formula (6.12) still holds for a
suitable syzygy (U2, V2,W2), but the syzygy is not determined by degree bounds
alone; knowledge of initial terms of local solutions at z = ∞ of the hypergeometric
equation is needed.

Both theorems have to be applied to fractional-linear normalizations of the cov-
erings ϕ12(x), ϕ11(x), ϕ20(x), where three (of the four) singular points of the trans-
formed Fuchsian equation are chosen to be x = 0, x = 1, x = ∞. Theorem 6.1
eventually gives solutions of PVI(1/3, 1/3, 1/3, 3/5;T ), PVI(1/3, 1/3, 1/2, 4/5;T ),
PVI(1/3, 1/3, 1/3, 1/3;T ). These are icosahedral solutions of Boalch types 38, 42,
41, respectively.

In particular, an RS-pullback RS2
4

(
1/3

3+3+3+1+1+1

∣∣∣ 1/2
2+2+2+2+2+2

∣∣∣ 1/5
5+5+2

)
with re-

spect to z = ϕ12(x) is a Fuchsian system with singularities at x = ∞ and the roots
of G12(x) = 0. The local monodromy differences are, respectively, 3/5, 1/3, 1/3, 1/3.
A suitable normalizing fractional-linear transformation may leave x = ∞ invariant,
but it must move two roots of G12(x) to the locations x = 0 and x = 1. Finding
one root of G12 is equivalent to considering G12(x, t) = 0 as an equation for an
algebraic curve. The curve has genus 0; it can be parameterized as follows:

(6.13) t = − 3(2s+ 1)

2(s3 + 3s+ 1)
, x = − (8s2 − 2s+ 17)(2s2 + 2s+ 3)(s+ 1)2

10(s3 + 3s+ 1)(2s2 + s+ 2)
.

After the reparameterization of t by s, the other two roots of G12(x) are equal to

x = (s−2)(4s+1)(32s6−8s5+164s4−94s3+91s2+2s+18)
20(s3+3s+1)(4s2−s+1)2 ± (s−2)2(4s+1)2(8s3+6s−1)w

20(2s+1)(s3+3s+1)(4s2−s+1)2 ,

where w =
√
(s− 2)(2s+ 1)(2s2 + s+ 2). It appears that the polynomial G12(x)

splits over the function field of a genus 1 curve. Let us denote the x-root in (6.13)
by c0, and the latter 2 roots by c+, c−. A normalizing projective coordinate for P1

x

is:

(6.14) λ12(x) =
x− c+
c− − c+

.

Equivalently, the normalizing fractional-linear substitution to the new coordinate
is given by λ−1

12 (x): x �→ c+(1− x) + c−x. By Theorem 6.1 applied to ϕ12(λ
−1
12 (x)),

an algebraic solution y38(T38) of PVI(1/3, 1/3, 1/3, 3/5;T38) is given by

(6.15) T38 = λ12(c0), y38 = λ12(0).

Explicitly, we have

T38 =
1

2
+

3(2s+ 1)(32s7 + 32s6 + 138s5 + 25s4 + 130s3 + 30s2 + 20s− 10)

2(s− 2)2(4s+ 1)2(2s2 + s+ 2)
√
(s− 2)(2s+ 1)(2s2 + s+ 2)

,

y38 =
1

2
+

(2s+ 1)(32s6 − 8s5 + 164s4 − 94s3 + 91s2 + 2s+ 18)

2(s− 2)(4s+ 1)(8s3 + 6s− 1)
√
(s− 2)(2s+ 1)(2s2 + s+ 2)

.
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To get the parameterization obtained in [5], one has to change s → −(s + 1)/2s
and the branch of the square root.

Similarly, to apply Theorem 6.1 to the degree 11 covering ϕ11(x), we have to
compose it with a fractional-linear transformation of P1

x which leaves x = ∞ invari-
ant and moves the roots of G11(x) from (3.10) to the locations x = 0 and x = 1.
The roots of G11(x) are:

x = − 27t10+270t9+945t8+2160t7+2745t6+1926t5−5t4−1340t3−1440t2−720t−216
2(3t+1)2(3t2+2t+2)2(2t2+3t+3)

± 3(t+2)2(t2+1)2(3t2+2t+2)
√

3(t+2)(t+7)(3t2+3t+2)

2(3t+1)2(3t2+2t+2)2(2t2+3t+3) .

Let us denote these two roots by c+ and c−. Then we can use the same expression
(6.14) for the normalizing fractional-linear transformation. To distinguish, we de-
note this fractional-linear transformation by λ11(x). Now, let y0 denote the extra
ramification point of ϕ11, outside the fiber of {0, 1,∞} ⊂ P1

z. We have:

y0 =
3t5 + 15t4 + 15t3 + 45t2 + 40t+ 26

(3t2 + 2t+ 2)(5t2 + 4t+ 3)
.

By Theorem 6.1 applied to ϕ11(λ
−1
11 (x)), an algebraic solution y42(T42) of

PVI(1/3, 1/3, 1/2, 4/5;T42) is given by

T42 = λ11(0), y42 = λ11(y0).

We arrive at the following Painlevé VI solution:

T42 = 1
2 + 27t10+270t9+945t8+2160t7+2745t6+1926t5−5t4−1340t3−1440t2−720t−216

6(t+2)2(t2+1)2(3t2+3t+2)
√

3(t+2)(t+7)(3t2+3t+2)
,

y42 = 1
2 + (t+7)(45t6+144t5+258t4+228t3+121t2+24t−12)

6(5t2+4t+3)(t2+1)(t+2)
√

3(t+2)(t+7)(3t2+3t+2)
.

The solution has genus 1 as well. To get the parameterization of the same solution
obtained in [5], one may substitute t �→ −(2s− 1)/(s+ 2).

To get a solution of PVI(1/3, 1/3, 1/3, 1/3;T ) by Theorem 6.1, the covering
ϕ20(x) can be composed with a fractional-linear transformation of P1

x which leaves
x = ∞ invariant and moves two roots of H20(x) to the locations x = 0 and x = 1.
As in the case with ϕ12(x), one root of H20(x) can be made explicit by parameter-
izing the curve H20(x, t) = 0:
(6.16)

t = −2(2s3 + 4s2 − 4s+ 3)

5(2s− 1)2
, x = −16(s− 2)2(2s2 + s+ 2)2(s2 − 2s+ 6)

75(2s− 1)4
.

After the reparameterization of t by s, the other two roots of H20(x) are equal to

x = −16s(8s2 − 11s+ 8)(56s7 − 166s6 + 318s5 − 269s4 + 31s3 + 75s2 − 28s+ 8)

25(2s− 1)8

± 144s(s− 1)(8s2 − 11s+ 8)(2s3 + 4s2 − 4s+ 3)
√

s(8s2 − 11s+ 8)

25(2s− 1)8
.

Let us denote the x-root in (6.16) by c0, and the latter 2 roots by c+, c−. Then a
suitable projective parameter λ20(x) is given by the same expression as on the right-
hand side of (6.14). An algebraic solution y41(T41) of PVI(1/3, 1/3, 1/3, 1/3;T41) is
given by

(6.17) T41 = λ20(c0), y41 = λ20(0).
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Explicitly, we have

T41 = 1
2 + (s+1)(32s8−320s7+1112s6−2420s5+3167s4−2420s3+1112s2−320s+32)

54s(s−1)
(√

s(8s2−11s+8)
)3 ,

y41 = 1
2 − 56s7−166s6+318s5−269s4+31s3+75s2−28s+8

18s(s−1)(2s3+4s2−4s+3)
√

s(8s2−11s+8)
.

To get the parameterization presented in [5, Theorem C], one has to change s → 1/s
and the branch of the square root. This solution is related via an Okamoto trans-
formation to the Great Dodecahedron Solution [11, pages 134–143]; the Dubrovin-
Mazzocco solution solves PVI(0, 0, 0,−2/3;T41).

The two composite coverings ϕ4 ◦ ϕ5 of degree 20, with the same ramification
pattern as ϕ20, generate the same algebraic Painlevé VI solution as the degree
4 covering ϕ4 defined in (5.10). That algebraic solution of the same equation
PVI(1/3, 1/3, 1/3, 1/3;T41) is parameterized in [18, Section 3.2], basically using The-
orem 6.1. Via the same Okamoto transformation, we get the Cube solution in [11]
of PVI(0, 0, 0,−2/3;T41) as well. Composition of an almost Belyi covering with a
Belyi covering never changes the algebraic Painlevé VI solution. Complementing
computations in [18, Sections 3.1, 3.4] up to Okamoto transformations, we have all
5 Dubrovin-Mazzocco solutions in [11] now derived via the method of RS-pullback
transformations.

Theorem 6.2 is needed to get solutions of the equations PVI (1/3, 1/3, 1/3, 1/5;T )
and PVI (1/3, 1/3, 1/2, 2/5;T ) of Boalch types 37 and 43, respectively. The implied

RS-transformations are, respectively, RS2
4

(
1/3

3+3+3+1+1+1

∣∣∣ 1/2
2+2+2+2+2+2

∣∣∣ 2/5
5+5+2

)
and

RS2
4

(
1/3

3+3+3+1+1

∣∣∣ 1/2
2+2+2+2+2+1

∣∣∣ 2/5
5+5+1

)
. At the end, the same normalized coverings

ϕ12(λ
−1
12 (x)) and ϕ11(λ

−1
11 (x)) can be used. But for intermediate computations of

syzygies and applications of formula (6.12), we may work with the simpler parame-
terized coverings ϕ12(x) and ϕ11(x). One convenient circumstance is that the point
x = ∞ does not have to be moved.

In particular, the direct pullback of a hypergeometric equation with the local
exponent differences 1/3, 1/2, 2/5 with respect to the covering z = ϕ12(x) is a
Fuchsian system with actual singularities at x = ∞ and the roots of G12(x), and
apparent singularities at the roots of F12, P12 and H12. The local monodromy
differences at the actual singularities are 4/5 or 1/3, while those differences at the
apparent singularities are equal to 1 or (at the roots of H12) to 2. To get rid of
apparent singularities after the (implied) Schlesinger transformation S(x), we have
to compute syzygies between the polynomials F12, P12, H

2
12. To compute just a

solution of PVI (1/3, 1/3, 1/3, 1/5;T ), we apply Theorem 6.2 with δ = 1, ∆ = 12.
The suitable syzygy is unique up to constant (in x) multiples:

(
t L4, 1, −4(3t+ 4)2

(
2tx2 − t(t− 8)x− (5t+ 16)(2t2 + 3t+ 2)

))
,(6.18)

where

L4 = 2t(112t2 + 307t+ 208)x3 − 2t(−1421t+ 60t3 − 392t2 − 1040)x2

− 2(5t+ 16)(90t4 + 251t3 + 183t2 + 27t+ 16)x

− (2t+ 1)(5t+ 16)2(10t3 + 29t2 + 22t+ 2).
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The x-root of expression (6.12) becomes

(6.19) x37 = − (2t+ 1)(5t+ 4)(5t+ 16)

2(11t2 − 4t− 16)
.

After normalization by λ−1
12 we conclude that a solution of PVI(1/3, 1/3, 1/3, 1/5;T37)

is parameterized by T37 = λ12(c0) and y37 = λ12(x37), like the solution in (6.14).
We have the solution y37(T37) with T37 = T38 and

y37 = 1
2 − (2s+1)(256s8−832s7−800s6−3232s5−1844s4−2950s3−1436s2−391s+64)

2(4s+1)(64s6+336s4+104s3+36s2−132s−59)
√

(s−2)(2s+1)(2s2+s+2)
.

To get the parameterization obtained in [5], one may substitute s → −(s+1)/(2s).
Similarly, the direct pullback of the same hypergeometric equation with respect

to the covering z = ϕ11(x) has apparent singularities at the roots of F11, P11

and H11. For a solution of PVI (1/3, 1/3, 1/2, 2/5;T ), we have to compute syzygies
between the polynomials F11, P11, H

2
11, assuming δ = 0, ∆ = 10. A suitable syzygy

is:
(6.20)(

L5, x− (3t+ 1)2,−30
3t2 + 3t+ 2

3t+ 1

(
(18t2 + 13t+ 9)x− (t− 1)(3t+ 1)3

))
,

where L5 can be computed easily knowing the other two components. The x-root
of expression (6.12) becomes

(6.21) x43 =
(3t+ 1)2(13t5 + 65t4 + 165t3 + 195t2 + 140t+ 46)

3(3t2 + 2t+ 2)(5t6 + 30t5 + 45t4 + 22t3 − 13t2 − 16t− 9)
.

After normalization by λ−1
11 we conclude that a solution of PVI(1/3, 1/3, 1/2, 2/5;

T43) is parameterized by T43 = λ11(0), y43 = λ11(x43). We have the solution
y43(T43) with T43 = T42 and

y43 = 1
2 + (t+7)(135t9+540t8+1530t7+2916t6+3714t5+3486t4+2278t3+1144t2+399t+114)

18(t2+1) (5t6+30t5+45t4+22t3−13t2−16t−9)
√

3(t+2)(t+7)(3t2+3t+2)
.

To get the parameterization obtained in [5], one may substitute t→−(2s−1)/(s+2).
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MR2332077 (2008c:34188)

http://www.ams.org/mathscinet-getitem?mr=2040984
http://www.ams.org/mathscinet-getitem?mr=2040984
http://www.ams.org/mathscinet-getitem?mr=1911252
http://www.ams.org/mathscinet-getitem?mr=1911252
http://www.ams.org/mathscinet-getitem?mr=1976575
http://www.ams.org/mathscinet-getitem?mr=1976575
http://www.ams.org/mathscinet-getitem?mr=534593
http://www.ams.org/mathscinet-getitem?mr=534593
http://www.ams.org/mathscinet-getitem?mr=2254812
http://www.ams.org/mathscinet-getitem?mr=2254812
http://www.ams.org/mathscinet-getitem?mr=2322328
http://www.ams.org/mathscinet-getitem?mr=2322328
http://www.ams.org/mathscinet-getitem?mr=2332077
http://www.ams.org/mathscinet-getitem?mr=2332077
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