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DISCONTINUOUS GALERKIN METHOD

FOR AN EVOLUTION EQUATION

WITH A MEMORY TERM OF POSITIVE TYPE

KASSEM MUSTAPHA AND WILLIAM MCLEAN

Abstract. We consider an initial value problem for a class of evolution equa-
tions incorporating a memory term with a weakly singular kernel bounded
by C(t − s)α−1, where 0 < α < 1. For the time discretization we apply
the discontinuous Galerkin method using piecewise polynomials of degree at
most q − 1, for q = 1 or 2. For the space discretization we use continuous
piecewise-linear finite elements. The discrete solution satisfies an error bound
of order kq + h2�(k), where k and h are the mesh sizes in time and space,
respectively, and �(k) = max(1, log k−1). In the case q = 2, we prove a higher
convergence rate of order k3+h2�(k) at the nodes of the time mesh. Typically,
the partial derivatives of the exact solution are singular at t = 0, necessitating
the use of non-uniform time steps. We compare our theoretical error bounds
with the results of numerical computations.

1. Introduction

We study the discretization in time and space of an initial value problem [1, 3,
9, 11, 12, 18, 16]

(1.1)
∂u

∂t
+ BAu = f(t) for 0 < t < T , with u(0) = u0,

where B denotes a Volterra integral operator

Bv(t) =
∫ t

0

β(t, s)v(s) ds

and where A is a selfadjoint linear operator with domain D(A) in a real Hilbert
space H. We assume that A has a complete eigensystem {λm, φm}∞m=1 such that
0 ≤ λ1 ≤ λ2 ≤ · · · and λm → ∞ as m → ∞. Thus, A is positive semidefinite.
The solution u and source term f take values in H, and the initial data u0 is an
element of H. We let 〈u, v〉 denote the inner product of u and v in H, and define
the bilinear form

A(u, v) = 〈Au, v〉 =
∞∑

m=1

λm〈u, φm〉〈φm, v〉 for u, v ∈ D(A1/2).
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Concretely, one may take H = L2(Ω) for a bounded, Lipschitz domain Ω ⊆ R
d

and A = −∇2 subject to homogeneous Dirichlet or Neumann boundary conditions.
In this case, u = u(x, t), f = f(x, t) and u0 = u0(x) for x ∈ Ω and t > 0, with
A(u, v) =

∫
Ω
∇u · ∇v dx.

Throughout the paper, we assume the kernel β to be real-valued and strictly
positive definite, that is,

(1.2)

∫ T

0

v(t)

∫ t

0

β(t, s)v(s) ds dt ≥ 0 for all v ∈ L∞([0, T ],R),

with equality if and only if v is zero almost everywhere on [0, T ]. In addition, β
may be at worst weakly singular, that is,

|β(t, s)| ≤ C(t− s)α−1 for 0 < s < t < ∞, with 0 < α ≤ 1,

and we assume for simplicity that β(t, s) is continuous for t 
= s. Of particular
interest is the choice

(1.3) β(t, s) =
(t− s)α−1

Γ (α)
,

which makes B the Riemann–Liouville fractional integration operator of order α
and means that the evolution equation in (1.1) is a fractional wave equation [18].

A standard approach [9, 12, 16] to the time discretization of (1.1) uses a com-
bination of finite differences and quadrature. If the kernel β(t, s) depends only on
the difference t−s, then convolution quadrature [3, 10] is a natural choice, allowing
the use of fast summation techniques [17]. Another approach [7, 8, 13, 14], again
suitable for a convolution kernel, achieves spectral accuracy via numerical inversion
of the Laplace transform of the solution. In the present work, we instead apply the
discontinuous Galerkin method using piecewise polynomials of degree at most q−1,
for q = 1 or 2.

Since their inception in the early 1970s, discontinuous Galerkin methods have
found numerous applications [2], including for the time discretization of parabolic
problems [5]. Their advantages include excellent stability properties even for highly
non-uniform meshes and suitability for adaptive refinement based on a posteriori
error estimates [4] to handle problems with low regularity. McLean, Thomée and
Wahlbin [15] proved a priori error estimates for a piecewise-constant (q = 1) dis-
continuous Galerkin method applied to (1.1), although they formulated the method
as a generalised backward-Euler scheme; see (1.7) below. Adolfsson, Enelund and
Larsson [1] subsequently proved a posteriori error estimates for the same piecewise-
constant discontinuous Galerkin method, leading to adaptive control of the step size.
They also incorporated the use of sparse quadrature to reduce the computational
cost of the algorithm. Neither [15] nor [1] considered the spatial discretization
of (1.1).

Here, we focus on the piecewise-linear case (q = 2) and consider only a priori
error bounds.

To set up the time discretization, we begin with a (possibly non-uniform) parti-
tion of the interval [0, T ],

(1.4) 0 = t0 < t1 < · · · < tN = T with In = (tn−1, tn].

We denote the nth step-size by kn = tn − tn−1 and the maximum step-size by
k = max1≤n≤N kn. For q ≥ 1, we let Pq denote the space of polynomials of degree

strictly less than q with coefficients in D(A1/2). For q = 1 or 2, our trial space Wq
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is the set of functions U : [0, T ] → D(A1/2) such that U |In ∈ Pq for 1 ≤ n ≤ N .
We follow the usual convention that a function U ∈ Wq is left-continuous at each
time level tn, writing

(1.5) Un = U(tn) = U(t−n ), Un
+ = U(t+n ), [U ]n = Un

+ − Un.

For any continuous test function v : [0, T ] → D(A1/2), the solution u of (1.1)
satisfies ∫ tn

tn−1

[
〈u′(t), v(t)〉+A

(
Bu(t), v(t)

)]
dt =

∫ tn

tn−1

〈f(t), v(t)〉 dt.

By comparison, given U(t) for 0 ≤ t ≤ tn−1, the discontinuous Galerkin method
determines U ∈ Wq on In by requiring that

(1.6) 〈Un−1
+ , Xn−1

+ 〉+
∫ tn

tn−1

[
〈U ′(t), X(t)〉+A

(
BU(t), X(t)

)]
dt

= 〈Un−1, Xn−1
+ 〉+

∫ tn

tn−1

〈f(t), X(t)〉 dt

for all X ∈ Pq(In). This time-stepping procedure starts from U0 ≈ u0, and after
N steps yields the numerical solution U(t) for 0 ≤ t ≤ tN .

For the piecewise-constant case q = 1, since U ′(t) = 0 and U(t) = Un = Un−1
+

for t ∈ In, the discontinuous Galerkin method (1.6) amounts to a generalized
backward-Euler scheme

(1.7)
Un − Un−1

kn
+ Bn(AU) = f̄n,

where

Bn(AU) =
1

kn

∫ tn

tn−1

∫ t

0

β(t, s)AU(s) ds dt =

n∑
j=1

ωnjAU jkj ,

f̄n =
1

kn

∫ tn

tn−1

f(t) dt, ωnj =
1

knkj

∫ tn

tn−1

∫ min(t,tj)

tj−1

β(t, s) ds dt.

Thus, at each time step we must solve an “elliptic” problem

Un + k2nωnnAUn = Un−1 + knf̄n − kn

n−1∑
j=1

ωnjAU jkj .

For the piecewise-linear case q = 2, we define

ψ1
n(t) =

tn − t

kn
and ψ2

n(t) =
t− tn−1

kn

and use the representation

U(t) = Un−1
+ ψ1

n(t) + Unψ2
n(t) for t ∈ In.



1978 KASSEM MUSTAPHA AND WILLIAM MCLEAN

By choosing X(t) = ψp
n(t)V in (1.6) for p ∈ {1, 2} and a vector V ∈ H (independent

of t), we arrive at the 2× 2 system
(1.8)

( 12 + ω11
nnA)Un−1

+ + ( 12 + ω12
nnA)Un = Un−1 + fn1 −

n−1∑
j=1

(
ω11
njAU j−1

+ + ω12
njAU j

)
,

(− 1
2 + ω21

nnA)Un−1
+ + ( 12 + ω22

nnA)Un = fn2 −
n−1∑
j=1

(
ω21
njU

j−1
+ + ω22

njU
j
)
,

where

ωpr
nj =

∫ tn

tn−1

ψp
n(t)

∫ min(t,tj)

tj−1

β(t, s)ψr
j (s) ds dt and fnp =

∫ tn

tn−1

f(t)ψp
n(t) dt.

For a general q, we would have to solve a q × q system.
The regularity results in [3, 11, 12] show, for the specific weakly singular ker-

nel (1.3) and under reasonable assumptions on the data u0 and f(t), that there
exist constants σ and M , with 0 < σ ≤ 1, such that the exact solution of (1.1)
satisfies

(1.9) t‖Au′(t)‖+ t2‖Au′′(t)‖ ≤ Mtσ−1 for 0 < t ≤ T

and

(1.10) ‖u′(t)‖+ t‖u′′(t)‖ ≤ Mtσ−1 for 0 < t ≤ T .

This singular behaviour as t → 0+ may lead to suboptimal convergence rates if we
work with quasi-uniform time meshes. We therefore assume that, for a fixed γ ≥ 1,

(1.11) kn ≤ Ckt1−1/γ
n and tn ≤ Ctn−1 for 2 ≤ n ≤ N ,

with

(1.12) ckγ ≤ k1 ≤ Ckγ .

For instance, we may choose

(1.13) tn = (n/N)γT for 0 ≤ n ≤ N .

We show in Theorem 3.2 that the error ‖U(t) − u(t)‖ is of order kq, uniformly
for 0 ≤ t ≤ T , provided γ > q/σ and the initial data satisfy ‖U0 − u0‖ = O(kq).
However, for a quasi-uniform mesh our bound yields a poorer convergence rate of
order kσ.

In the piecewise-linear case q = 2, faster convergence thanO(k2) is possible at the
nodal points tn. The nodal error ‖Un −u(tn)‖ is O(k3) if β and u are smooth, and
the same result holds for the weakly-singular kernel (1.3) and for u satisfying (1.9),
provided the mesh grading parameter γ > 3/(σ + α); see Corollary 4.2. Compare
these results with those of Eriksson, Johnson and Thomée [5] for the classical par-
abolic problem that arises if one takes Bv = v in (1.1): the error is then O(kq)
everywhere on [0, T ] and is O(k2q−1) at the nodes, for a general q ≥ 1. In related
work, Larsson, Thomée and Wahlbin [6] proved the same convergence rates for a
parabolic integrodifferential equation of the form ∂u/∂t+Au+memory term = f(t),
using discontinuous Galerkin methods with q = 1 or 2.
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In the concrete setting where H = L2(Ω) and A = −∇2, we discretize in space
using standard, continuous, piecewise-linear finite elements on a quasi-uniform par-
tition of the domain Ω to obtain a numerical solution Uh. Under the additional
regularity assumptions

(1.14) ‖u0‖2 ≤ M and ‖u(t)‖2 + t‖u′(t)‖2 ≤ M for 0 < t ≤ T ,

where ‖v‖2 = ‖v‖H2(Ω), we show in Theorem 5.2 that, with

(1.15) �(k) = max(1, log k−1),

the error ‖Uh(t)− u(t)‖ is of order kq + h2�(k), uniformly for 0 ≤ t ≤ T , provided
γ > q/σ. Our final result, Corollary 5.4, establishes an improved error bound of
order k3 + h2�(k) for Uh at the nodes t = tn, when q = 2 and β is as in (1.3).

The concluding section of the paper presents the results of some numerical com-
putations that confirm our theoretical error bounds.

2. Stability

An energy argument based on the positive-semidefiniteness of B and A implies
the existence and uniqueness of a mild solution u ∈ C([0, T ];H) to the continuous
problem (1.1), and yields a stability estimate [12],

‖u(t)‖ ≤ ‖u0‖+ 2

∫ t

0

‖f(s)‖ ds.

To state an analogous result for the discrete problem (1.6), we introduce the nota-
tion

‖U‖J = sup
t∈J

‖U(t)‖

for any subinterval J ⊆ [0, T ], and put Jn = (0, tn] =
⋃n

j=1 Ij . Note that the proof

makes no assumptions on the mesh (1.4).

Theorem 2.1. Let q ∈ {1, 2}. Given U0 ∈ H and f ∈ L1

(
(0, T );H

)
, there exists

a unique U ∈ Wq satisfying (1.6) for n = 1, 2, . . . , N . Furthermore, U(t) ∈ D(A)
for t > 0 and, with C1 = 2 and C2 = 8,

‖U‖Jn
≤ Cq

(
‖U0‖+

∫ tn

0

‖f(t)‖ dt
)

for n ≥ 1.

Proof. Recall the notation (1.5) and assume for the moment that U exists. By
choosing X = U in (1.6) and using 〈U ′(t), U(t)〉 = (d/dt)‖U(t)‖2/2, we obtain

1
2

(
‖U j‖2 + ‖U j−1

+ ‖2
)
+

∫ tj

tj−1

A
(
BU(t), U(t)

)
dt

= 〈U j−1, U j−1
+ 〉+

∫ tj

tj−1

〈f(t), U(t)〉 dt.

Since (1.2) implies

n∑
j=1

∫ tj

tj−1

A
(
BU(t), U(t)

)
dt =

∫ tn

0

∫ t

0

β(t, s)A
(
U(s), U(t)

)
ds dt

=

∞∑
m=1

λm

∫ tn

0

∫ t

0

β(t, s)〈U(s), φm〉 ds 〈φm, U(t)〉 dt ≥ 0,
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we see that
n∑

j=1

(
‖U j‖2 + ‖U j−1

+ ‖2
)
≤ 2

n∑
j=1

〈U j−1, U j−1
+ 〉+ 2

∫ tn

0

〈f(t), U(t)〉 dt,

so

‖Un‖2 + ‖U0
+‖2 +

n−1∑
j=1

(
‖U j‖2 − 2〈U j , U j

+〉+ ‖U j
+‖2

)

≤ 2〈U0, U0
+〉+ 2

∫ tn

0

〈f(t), U(t)〉 dt

and hence

(2.1) ‖Un‖2 + ‖U0
+‖2 +

n−1∑
j=1

‖[U ]j‖2 ≤ 2

(
‖U0‖‖U0

+‖+
∫ tn

0

‖f(t)‖‖U(t)‖ dt
)
.

Let q = 2. Since ‖U‖In = max(‖Un‖, ‖Un−1
+ ‖) we have

‖U‖2I1 ≤ ‖U1‖2 + ‖U0
+‖2 ≤ 2

(
‖U0‖‖U0

+‖+
∫ t1

0

‖f(t)‖‖U(t)‖ dt
)
,

and, for n ≥ 2,

‖U‖2In = max
(
‖Un‖2, ‖Un−1

+ ‖2
)
= max

(
‖Un‖2, ‖Un−1 + [U ]n‖2

)
≤ max

(
‖Un‖2, 2‖Un−1‖2 + 2‖[U ]n−1‖2

)
≤ 8

(
‖U0‖‖U0

+‖+
∫ tn

0

‖f(t)‖‖U(t)‖ dt
)
.

Thus, putting jn = argmax1≤j≤n ‖U‖Ij , the desired bound follows at once from

‖U‖2Jn
= ‖U‖2Ijn ≤ 8‖U‖Jn

(
‖U0‖+

∫ tjn

0

‖f(t)‖ dt
)
,

and we see that U is unique.
When H is finite dimensional, the existence of U follows from uniqueness be-

cause the square linear system (1.8) must be uniquely solvable. When H is infinite
dimensional, we can construct U by expanding in the eigenfunctions of A, because
the 2× 2 matrix

(2.2)

[
( 12 + ω11

nnλ) ( 12 + ω12
nnλ)

(− 1
2 + ω21

nnλ) ( 12 + ω22
nnλ)

]

is non-singular for all λ ≥ 0. Moreover, defining V (t) = 0 for t /∈ In, we see that
the quadratic form

[
V n−1
+ V n

] [ω11
nn ω12

nn

ω21
nn ω22

nn

] [
V n−1
+

V n

]
=

∫ T

0

V (t)BV (t) dt

is strictly positive-definite, and so the determinant of (2.2) is bounded below by cλ2

for λ sufficiently large. Thus, Cramer’s rule shows that the norm of the inverse
matrix is O(λ−1) as λ → ∞, and a simple inductive argument gives Un−1

+ , Un ∈
D(A) for 1 ≤ n ≤ N , implying that U(t) ∈ D(A) for 0 < t ≤ T .

For q = 1, we have ‖U‖In = ‖Un‖, so the stability bound with C1 = 2 follows
at once from (2.1), and Un ∈ D(A) follows from (1 + ωnnλ)

−1 = O(λ−1). �
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The proof above also yields a bound for the jumps in the numerical solution.

Corollary 2.2. With C1 = 4 and C2 = 16,

n−1∑
j=1

‖[U ]j‖2 ≤ Cq

(
‖U0‖+

∫ tn

0

‖f(t)‖ dt
)2

.

Proof. Apply (2.1). �

3. Error from the time discretization

For our error analysis, we reformulate the discontinuous Galerkin method in
terms of a global bilinear form

(3.1) GN (U,X) = 〈U0
+, X

0
+〉+

N−1∑
n=1

〈[U ]n, Xn
+〉

+

N∑
n=1

∫ tn

tn−1

[
〈U ′(t), X(t)〉+A

(
BU(t), X(t)

)]
dt.

Summing the equations (1.6) gives

(3.2) GN (U,X) = 〈U0, X0
+〉+

∫ tN

0

〈f(t), X(t)〉 dt for all X ∈ Wq,

and conversely, by choosing X to be identically zero outside In, we see that if U ∈
Wq satisfies (3.2), then (1.6) holds for each n. Since the exact solution u has no
jumps,

GN (u,X) = 〈u0, X
0
+〉+

∫ tN

0

〈f(t), X(t)〉 dt

and thus

(3.3) GN (U − u,X) = 〈U0 − u0, X
0
+〉 for all X ∈ Wq.

Integration by parts yields an alternative expression for the bilinear form (3.1),

(3.4) GN (U,X) = 〈UN , XN 〉 −
N−1∑
n=1

〈Un, [X]n〉

+

N∑
n=1

∫ tn

tn−1

[
−〈U(t), X ′(t)〉+A

(
BU(t), X(t)

)]
dt.

For any continuous function u : [0, T ] → H we define a piecewise-constant inter-
polant Πu : [0, T ] → W1 by putting

Πu(t) = u(tn) for t ∈ In, with Πu(0) = u(0),

and observe that if u′ is integrable, then the interpolation error has the represen-
tation

(3.5) Πu(t)− u(t) =

∫ tn

t

u′(s) ds for t ∈ In.

In the piecewise-linear case, we define Πu : [0, T ] → W2 by requiring that

(3.6) Πu(tn) = u(tn) and

∫ tn

tn−1

[u(t)−Πu(t)] dt = 0,
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with Πu(0) = u(0). Explicitly, we find that

(3.7) Πu(t) = u(tn) +
u(tn)− ūn

kn/2
(t− tn) for t ∈ In,

where ūn = k−1
n

∫ tn
tn−1

u(t) dt, and elementary calculations then show that for t ∈ In,

(3.8)

Πu(t)− u(t) =

∫ tn

t

u′(s) ds− 2
tn − t

k2n

∫ tn

tn−1

(s− tn−1)u
′(s) ds

=

∫ tn

t

(tn − s)u′′(s) ds+
tn − t

k2n

∫ tn

tn−1

(s− tn−1)
2u′′(s) ds.

Using Π, we decompose the error into two terms,

(3.9) U − u = (U −Πu) + (Πu− u)

and estimate each term separately. The representations (3.5) and (3.8) immediately
yield bounds for the second term,

(3.10) ‖Πu− u‖In ≤ Ckr−1
n

∫ tn

tn−1

‖u(r)(t)‖ dt for 1 ≤ r ≤ q ≤ 2,

and we handle the first term as follows.

Theorem 3.1. Let q ∈ {1, 2}. If u is the solution of the initial value problem (1.1)
and if U is the approximate solution obtained by the discontinuous Galerkin method
(1.6), then

‖U −Πu‖Jn
≤ C‖U0 − u0‖+ Ctαn

∫ t1

0

t‖Au′(t)‖ dt

+ Ctαn

n∑
j=2

kqj

∫ tn

tn−1

‖Au(q)(t)‖ dt.

Proof. For brevity, we put

θ = U −Πu and η = Πu− u.

The Galerkin orthogonality relation (3.3) implies that

GN (θ,X) = 〈U0 − u0, X
0
+〉 −GN (η,X) for all X ∈ Wq,

and by the construction of the interpolant we have ηn = 0 for all n ≥ 1. Hence,
using the alternative expression (3.4) for GN ,

GN (η,X) =

N∑
n=1

∫ tn

tn−1

[
−〈η(t), X ′(t)〉+ A

(
Bη(t), X(t)

)]
dt.

Moreover,
∫ tn
tn−1

〈η(t), X ′(t)〉 dt = 0 if q = 1, because X ′(t) is identically zero on In.

The same conclusion holds if q = 2, because X ′(t) is constant on In and hence is
orthogonal to the interpolation error. Therefore, θ ∈ Wq satisfies

(3.11) GN (θ,X) = 〈U0 − u0, X
0
+〉 −

∫ T

0

〈BAη(t), X(t)〉 dt for all X ∈ Wq,
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which has the same form as the equation (3.2) satisfied by U , so we may apply the
stability result of Theorem 2.1 and conclude that

‖θ‖Jn
≤ C

(
‖U0 − u0‖+

∫ tn

0

‖BAη(t)‖ dt
)

for 1 ≤ n ≤ N .

Reversing the order of integration, we find that∫ tn

0

‖BAη(t)‖ dt ≤
∫ tn

0

∫ t

0

|β(t, s)|‖Aη(s)‖ ds dt

≤ C

∫ tn

0

∫ tn

s

(t− s)α−1 dt ‖Aη(s)‖ ds

= Cα

∫ tn

0

(tn − s)α‖Aη(s)‖ ds ≤ Cαt
α
n

∫ tn

0

‖Aη(s)‖ ds,

so

‖U −Πu‖Jn
≤ Cα

(
‖U0 − u0‖+ tαn

∫ tn

0

‖Aη(t)‖ dt
)

for 1 ≤ n ≤ N .

When q = 2, the desired bound follows by using the formula (3.8):∫ t1

0

‖Aη(t)‖ dt ≤
∫ t1

0

(∫ t1

t

‖Au′(s)‖ ds+ 2
t1 − t

k21

∫ t1

0

s‖Au′(s)‖ ds
)
dt

= 2

∫ t1

0

s‖Au′(s)‖ ds

and ∫ tn

t1

‖Aη(t)‖ dt ≤
n∑

j=2

kj‖Au−ΠAu‖Ij ≤ C
n∑

j=2

k2j

∫ tj

tj−1

‖Au′′(t)‖ dt.

Similar, but simpler, estimates lead to the result for q = 1. �

The next theorem shows that we can obtain O(kq) accuracy for all t ∈ [0, T ]
provided the mesh grading, as determined by the parameter γ ≥ 1, is sufficiently
strong.

Theorem 3.2. Let q ∈ {1, 2} and assume that the step sizes are such that (1.11)
and (1.12) hold. If the exact solution u satisfies the regularity estimates (1.9) and
(1.10), then

‖U − u‖Jn
≤ C‖U0 − u0‖+ CM ×

⎧⎪⎨
⎪⎩
kγσ, 1 ≤ γ < q/σ,

kq log(tn/t1), γ = q/σ,

t
σ−q/γ
n kq, γ > q/σ.

Proof. From (3.10), the assumptions (1.10) and (1.12) give

(3.12) ‖Πu− u‖I1 ≤ C

∫ t1

0

‖u′(t)‖ dt ≤ CM

∫ t1

0

tσ−1 dt ≤ CMtσ1 ≤ CMkγσ

and, using (1.11) for n ≥ 2,

(3.13) ‖Πu− u‖In ≤ Ckq−1
n

∫ tn

tn−1

‖u(q)(t)‖ dt ≤ CMkq−1
n

∫ tn

tn−1

tσ−q dt

≤ CMkqnt
σ−q
n ≤ CMkqtσ−q/γ

n ,



1984 KASSEM MUSTAPHA AND WILLIAM MCLEAN

so we may bound the interpolation error as follows:

‖Πu− u‖Jn
= max

1≤j≤n
‖Πu− u‖In ≤ CM ×

{
kγσ, 1 ≤ γ ≤ q/σ,

t
σ−q/γ
n kq, γ ≥ q/σ.

Next, by (1.9) and (1.12),∫ t1

0

t‖Au′(t)‖ dt ≤ CM

∫ t1

0

tσ−1 dt ≤ CMkγσ,

and, using (1.11),
n∑

j=2

kqj

∫ tj

tj−1

‖Au(q)(t)‖ dt ≤ CM

n∑
j=2

kqj

∫ tj

tj−1

tσ−1−q dt

≤ CMkq
n∑

j=2

t
(1−1/γ)q
j

∫ tj

tj−1

tσ−1−q dt ≤ CMkq
∫ tn

t1

tσ−q/γ−1 dt,

and the result follows from (3.9) and Theorem 3.1, after noting that

∫ tn

t1

tσ−q/γ−1 dt ≤

⎧⎪⎨
⎪⎩
Ct

−(q/γ−σ)
1 ≤ Ck−(q−γσ), 1 ≤ γ < q/σ,

C log(tn/t1), γ = q/σ,

Ct
σ−q/γ
n , γ > q/σ.

�

4. Superconvergence at the nodes

We now show that for q = 2 the numerical solution achieves a faster convergence
rate at t = tn, depending on the quantities

(4.1) εnj = max
t∈Ij

(∫ tj

t

|β(s, t)| ds+
∫ tn

tj

∣∣β(s, t)−β(s, tj)
∣∣ ds) for 1 ≤ j ≤ n ≤ N .

Theorem 4.1. If u is the solution of the initial value problem (1.1) and if U is
the approximate solution obtained by the piecewise-linear (q = 2) discontinuous
Galerkin method (1.6), then

‖Un−u(tn)‖ ≤ C

(
‖U0−u0‖+ εn1

∫ t1

0

t‖Au′(t)‖ dt+
n∑

j=2

εnjk
2
j

∫ tj

tj−1

‖Au′′(t)‖ dt
)
.

Proof. Let z be the solution of the dual problem

(4.2) −z′ + B∗Az = 0 for 0 ≤ t ≤ T , with z(T ) = zT ,

where B∗v(t) =
∫ T

t
β(s, t)v(s) ds. Since z has no jumps and since∫ T

0

[
〈−v(t), z′(t)〉+A

(
Bv(t), z(t)

)]
dt =

∫ T

0

〈v(t),−z′(t) + B∗Az(t)〉 dt = 0,

the formula (3.4) yields the identity

GN (v, z) = 〈v(T ), zT 〉
for all piecewise-continuous v(t). Let Z ∈ W2 denote the approximate solution
of (4.2) given by the discontinuous Galerkin method

GN (V, Z) = 〈V N , zT 〉 for all V ∈ W2,
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and let θ = U − Πu and η = Πu − u, as before, so that U − u = θ + η. Since
u(tN ) = Πu(tN ), by taking V = θ we see from (3.3) that

(4.3) 〈UN − u(tN ), zT 〉 = 〈θN , zT 〉 = GN (θ, Z) = 〈U0 − u0, Z
0
+〉 −GN (η, Z).

Moreover, ηn = 0 and
∫ tn
tn−1

〈η(t), Z ′(t)〉 dt = 0 for all n, so the formula (3.4) shows

that

GN (η, Z) =
N∑

n=1

δn, where δn =

∫ tn

tn−1

〈Aη(t),B∗Z(t)〉 dt.

The orthogonality property of Π implies that

δn =

∫ tn

tn−1

〈Aη(t),B∗Z(t)− B∗Z(tn)〉 dt,

and for t ∈ In,

‖B∗Z(t)− B∗Z(tn)‖ =

∥∥∥∥
∫ T

t

β(s, t)Z(s) ds−
∫ T

tn

β(s, tn)Z(s) ds

∥∥∥∥
=

∥∥∥∥
∫ tn

t

β(s, t)Z(s) ds+

∫ T

tn

[
β(s, t)− β(s, tn)

]
Z(s) ds

∥∥∥∥ ≤ εNn‖Z‖JN
,

so

‖δn‖ ≤ εNn‖Z‖JN

∫ tn

tn−1

‖Aη(t)‖ dt.

Using (3.10) we see that∫ tn

tn−1

‖Aη(t)‖ dt ≤ Ck2n

∫ tn

tn−1

‖Au′′(t)‖ dt for n ≥ 2,

and using (3.8) we find∫ t1

0

‖Aη(t)‖ dt ≤ C

∫ t1

0

t‖Au′(t)‖ dt.

Stability of the discontinuous Galerkin method for the dual problem means that
‖Z0

+‖ ≤ ‖Z‖JN
≤ C‖zT ‖. Thus,

|〈UN − u(tN ), zT 〉| ≤ C

(
‖U0 − u0‖+ εN1

∫ t1

0

t‖Au′(t)‖ dt

+
N∑

n=2

εNnk
2
n

∫ tn

tn−1

‖Au′′(t)‖ dt
)
‖zT ‖,

and since zT ∈ H is arbitrary we obtain the desired bound for ‖UN − u(tN )‖. �

If β(t, s) and u(t) are smooth, then εnj = O(k) and so ‖Un−u(tn)‖ = O(k3). For
the specific non-smooth kernel (1.3), we have the same convergence rate provided
the mesh grading is sufficiently strong.

Corollary 4.2. Let q = 2 and β(t, s) = (t − s)α−1/Γ (α), with 0 < α < 1. If u
satisfies the regularity assumption (1.9), and if the time mesh satisfies the conditions
(1.11) and (1.12), then, with γ∗ = 3/(σ + α),

‖Un − u(tn)‖ ≤ C‖U0 − u0‖+ CM ×
{
kγ(σ+α), 1 ≤ γ < γ∗,

k3, γ ≥ γ∗.
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Proof. Noting that β(s, t) ≥ β(s, tj) for t ≤ tj ≤ s, we have∫ tj

t

|β(s, t)| ds+
∫ tn

tj

∣∣β(s, t)− β(s, tj)
∣∣ ds

=

∫ tj

t

β(s, t) ds+

∫ tn

tj

(
β(s, t)− β(s, tj)

)
ds

=

∫ tn

t

(s− t)α−1

Γ (α)
ds−

∫ tn

tj

(s− tj)
α−1

Γ (α)
ds =

(tn − t)α − (tn − tj)
α

Γ (α+ 1)
,

and so εnj =
[
(tn − tj−1)

α − (tn − tj)
α
]
/Γ (α + 1). Since Xα − Y α ≤ (X − Y )α

for any X ≥ Y ≥ 0, we see that εnj ≤ kαj /Γ (α + 1), with equality when j = n.
However, for j < n we obtain a sharper bound by applying the mean value theorem:
εnj ≤ (tn − tj)

α−1kj/Γ (α). Thus, using (1.9), (1.11) and (1.12), we have

εn1

∫ t1

0

t‖Au′(t)‖ dt ≤ CMkα1

∫ t1

0

tσ−1 dt ≤ CMkα+σ
1 ≤ CMkγ(α+σ)

and, for 2 ≤ j ≤ n− 1,

εnjk
2
j

∫ tj

tj−1

‖Au′′(t)‖ dt ≤ CMk3j (tn − tj)
α−1

∫ tj

tj−1

tσ−3 dt

≤ CMk3(tj)
3(1−1/γ)(tn− tj)

α−1

∫ tj

tj−1

tσ−3 dt ≤ CMk3
∫ tj

tj−1

(tn− t)α−1tσ−3/γ dt,

with

εnnk
2
n

∫ tn

tn−1

‖Au′′(t)‖ dt ≤ CMk2+α
n

∫ tn

tn−1

tσ−3 dt ≤ CMk3+α
n tσ−3

n

≤ CMk3
(
kn/tn

)α
tα+σ−3/γ
n ≤ CMtα+σ−3/γ

n k3.

Using the substitution t = tnz, we find that

n−1∑
j=2

εnjk
2
j

∫ tj

tj−1

‖Au′′(t)‖ dt ≤ CMk3
∫ tn−1

t1

(tn − t)α−1tσ−3/γ dt

= CMk3tα+σ−3/γ
n

∫ tn−1/tn

t1/tn

(1− z)α−1zσ−3/γ dz,

and an elementary calculation yields

∫ tn−1/tn

t1/tn

(1− z)α−1zσ−3/γ dz ≤ C ×

⎧⎪⎨
⎪⎩
(t1/tn)

1+σ−3/γ , σ − 3/γ < −1,

log(tn/t1), σ − 3/γ = −1,

1, σ − 3/γ > −1.

Theorem 4.1 now shows that the nodal error ‖Un−u(tn)‖ is bounded by C‖U0−u0‖
plus

CMkγ(α+σ) + CM ×

⎧⎪⎨
⎪⎩
tα−1
n kγ(1+σ), 1 ≤ γ < 3/(1 + σ),

tα−1
n k3 log(tn/t1), γ = 3/(1 + σ),

t
α+σ−3/γ
n k3, γ > 3/(1 + σ),

which is O(k3) for γ ≥ γ∗ = 3/(α+ σ) > 3/(1 + σ). If 1 ≤ γ < 3/(1 + σ), then

tα−1
n kγ(1+σ) = kγ(α+σ)(kγ/tn)

1−α ≤ Ckγ(α+σ)(t1/tn)
1−α ≤ Ckγ(α+σ).
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Likewise, if γ = 3/(1 + σ), then

tα−1
n k3 log(tn/t1) = kγ(α+σ)(kγ/tn)

1−α log(tn/t1)

≤ Ckγ(α+σ)(t1/tn)
1−α log(tn/t1) ≤ Ckγ(α+σ),

and in the remaining case, 3/(1 + σ) < γ < γ∗ = 3/(α+ σ), we have

tα+σ−3/γ
n k3 = kγ(α+σ)(kγ/tn)

3/γ−(α+σ) ≤ Ckγ(α+σ)(t1/tn)
3/γ−(α+σ) ≤ Ckγ(α+σ).

�

5. Space discretization

We assume now thatH = L2(Ω) for a bounded, convex polyhedral domain Ω, and
that A is a strongly-elliptic, second-order, selfadjoint partial differential operator.
In the case of homogeneous Dirichlet boundary conditions, we have

D(Ar/2) = { v ∈ Hr(Ω) : v = 0 on ∂Ω } for 1/2 < r ≤ 2,

whereas for homogeneous Neumann boundary conditions, D(Ar/2) = Hr(Ω).
Construct a continuous, piecewise-linear finite element space Sh ⊆ D(A1/2) on a

quasi-uniform partition of the domain Ω, with h denoting the maximum diameter
of the elements. We then have the approximation property

min
χ∈Sh

(
‖v − χ‖+ h‖∇(v − χ)‖

)
≤ Ch2‖v‖2 for v ∈ D(A),

where we use the abbreviation ‖v‖r = ‖v‖Hr(Ω).
Based on the weak formulation of the initial value problem (1.1), we define a

spatially-discrete, approximate solution uh : [0, T ] → Sh by requiring

〈u′
h(t), χ〉+

∫ t

0

β(t, s)A
(
uh(s), χ

)
ds = 〈f(t), χ〉 for 0 ≤ t ≤ T and all χ ∈ Sh,

with uh(0) = u0h ≈ u0 for a suitable u0h ∈ Sh. This semi-discrete solution satisfies
the error bound [12, Theorem 2.1]

‖uh(t)− u(t)‖ ≤ ‖u0h − u0‖+ Ch2

∫ t

0

‖u′(s)‖2 ds for 0 ≤ t ≤ T .

Let Pq(Sh) denote the space of polynomials of degree strictly less than q with co-
efficients in Sh, and define the corresponding trial space of piecewise-polynomials
Wq(Sh). Thus, a function X(x, t) in Wq(Sh) is continuous in x but may be discon-
tinuous at t = tn.

Applying the discontinuous Galerkin method in time, we arrive at a fully-discrete
numerical solution Uh : [0, T ] → Wq(Sh) defined by

(5.1)
GN (Uh, X) = 〈U0

h , X
0
+〉+

∫ tN

0

〈f(t), X(t)〉 dt for all X ∈ Wq(Sh),

Uh(0) = U0
h ,

for a suitable U0
h ∈ Sh with U0

h ≈ u0; cf. (3.2). In place of (3.9), we now decompose
the error as

(5.2) Uh − u = (Uh −ΠRhu) + (ΠRhu− u),
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where Rh : D(A1/2) → Sh is the Ritz projector for the (strictly) positive-definite
bilinear form A(u, v) + 〈u, v〉; thus,
(5.3) A(Rhv, χ) + 〈Rhv, χ〉 = A(v, χ) + 〈v, χ〉 for all χ ∈ Sh.

(The term 〈u, v〉 in the bilinear form is needed only if A has a zero eigenvalue.)

Theorem 5.1. Let q ∈ {1, 2}. If u is the solution of the initial value problem (1.1),
and if Uh ∈ Wq(Sh) is the approximate solution defined by (5.1), then

‖Uh −ΠRhu‖Jn
≤ CT

(
‖U0

h −Rhu0‖+ ‖u0 −Rhu0‖+
∫ tn

0

‖u′(t)−Rhu
′(t)‖ dt

+

∫ t1

0

t‖Au′(t)‖ dt+
n∑

j=2

kqj

∫ tj

tj−1

‖Au(q)(t)‖ dt
)

for 1 ≤ n ≤ N .

Proof. The Galerkin orthogonality property (3.3) now takes the form

(5.4) GN (Uh − u,X) = 〈U0
h − u0, X

0
+〉 for all X ∈ Wq(Sh),

and for brevity we let

W = ΠRhu and ξ = Rhu− u.

Adapting the proof of Theorem 3.1, we see from (5.4) that

(5.5) GN (Uh −W,X) = 〈U0
h − u0, X

0
+〉 −GN (W − u,X) for all X ∈ Wq(Sh),

and, because Wn = Rhu(tn), the formula (3.4) gives

GN (W − u,X) = 〈ξN , XN 〉 −
N−1∑
n=1

〈ξn, [X]n〉

+
N∑

n=1

∫ tn

tn−1

[
−〈W − u,X ′〉+A

(
B(W − u), X

)]
dt.

Since
∫ tn
tn−1

〈W − Rhu,X
′〉 dt =

∫ tn
tn−1

〈Π(Rhu) − (Rhu), X
′〉 dt = 0, an integration

by parts shows that∫ tn

tn−1

−〈W − u,X ′〉 dt =
∫ tn

tn−1

−〈Rhu− u,X ′〉 dt =
∫ tn

tn−1

−〈ξ,X ′〉 dt

= −〈ξn, Xn〉+ 〈ξn−1, Xn−1
+ 〉+

∫ tn

tn−1

〈ξ′, X〉 dt,

and, with η = Πu− u, the definition of the Ritz projector gives

A
(
(W − u)(s), X(t)

)
= A

(
RhΠu(s)− u(s), X(t)

)
= A

(
(Πu− u)(s), X(t)

)
+ 〈Π(u−Rhu)(s), X(t)〉

= 〈Aη(s)−Πξ(s), X(t)〉,
so

GN (W − u,X) = 〈ξ0, X0
+〉+

∫ tN

0

〈ξ′ + BAη − BΠξ,X〉 dt.

Thus, from (5.5),

GN (Uh −W,X) = 〈U0
h −Rhu0, X

0
+〉 −

∫ tN

0

〈ξ′ + BAη − BΠξ,X〉 dt
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for all X ∈ Wq(Sh); cf. (3.11). Stability of the discontinuous Galerkin method
(Theorem 2.1 with H = Sh) now yields the estimate

‖Uh −W‖Jn
≤ C

(
‖U0

h −Rhu0‖+
∫ tn

0

‖ξ′ + BAη − BΠξ‖ dt
)
.

We already estimated the term
∫ tn
0

‖BAη‖ dt in Theorem 3.1 and, for the remaining
terms in the integral, we apply the bound ‖Πv‖In ≤ C‖v‖In and arrive at∫ tn

0

‖ξ′(t)− BΠξ‖ dt ≤
∫ tn

0

‖ξ′‖ dt+ Ctα+1
n ‖ξ‖Jn

≤ CT

(
‖ξ(0)‖+

∫ tn

0

‖ξ′‖ dt
)
.

�
We can now show that the space discretisation leads to an additional error of

order h2�(k) compared with the error bound of Theorem 3.2; recall from (1.15) that
�(k) = max(1, log k−1).

Theorem 5.2. Let q ∈ {1, 2} and assume that the time mesh is such that (1.11)
and (1.12) hold. If the exact solution u satisfies the regularity estimates (1.9),
(1.10) and (1.14), then, for 1 ≤ n ≤ N and with C = CT ,

‖Uh − u‖Jn
≤ C‖U0

h − u0‖+ CMh2�(tn/t1) + CM ×

⎧⎪⎨
⎪⎩
kγσ, 1 ≤ γ < q/σ,

kq�(tn/t1), γ = q/σ,

kq, γ > q/σ.

Proof. Recall that
‖v −Rhv‖ ≤ Ch2‖v‖2.

To estimate the second term ΠRhu− u in the decomposition (5.2), we again write
ξ = Rhu− u and then use ‖Πv‖Jn

≤ C‖v‖Jn
to obtain

‖ΠRhu− u‖Jn
= ‖Πu− u+Πξ‖Jn

≤ ‖Πu− u‖Jn
+ C‖ξ(0)‖+ C

∫ tn

0

‖ξ′‖ dt.

In view of Theorems 3.2 and 5.1, and the fact that ‖U0
h − Rhu0‖ ≤ ‖U0

h − u0‖ +
‖u0 − Rhu0‖, it suffices to note that ‖ξ(0)‖ ≤ Ch2‖u0‖2 and, using (1.10), (1.11),
(1.12) and (1.14),∫ tn

0

‖ξ′(t)‖ dt ≤ C

∫ t1

0

‖u′(t)‖ dt+
∫ tn

t1

Ch2‖u′(t)‖2 dt

≤ CM

∫ t1

0

tσ−1 dt+ CMh2

∫ tn

t1

t−1 dt

≤ CMkγσ + CMh2�(tn/t1). �
Next, we prove a spatially-discrete version of Theorem 4.1, showing supercon-

vergence at t = tn.

Theorem 5.3. Let q = 2 and define εnj by (4.1). If u is the solution of (1.1) and
if Uh ∈ W2(Sh) is the approximate solution given by (5.1), then

‖Un
h − u(tn)‖ ≤ CT

(
‖U0

h − u0‖+ ‖u0 −Rhu0‖+
∫ tn

0

‖u′(t)−Rhu
′(t)‖ dt

+ εn1

∫ t1

0

t‖Au′(t)‖ dt+
n∑

j=2

εnjk
2
j

∫ tn

tn−1

‖Au′′(t)‖ dt
)

for 1 ≤ n ≤ N .
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Proof. We adapt the proof of Theorem 4.1, letting Z ∈ W2(Sh) denote the solution
of

GN (V, Z) = 〈V N , zT 〉 for all V ∈ W2(Sh),

and writing

W = ΠRhu, η = Πu− u, ξ = Rhu− u.

The Galerkin orthogonality (5.4) implies, cf. (4.3),

〈UN
h −Rhu(tN ), zT 〉 = 〈UN

h −WN , zT 〉 = GN (Uh −W,Z)

= GN (Uh − u, Z) +GN (u−W,Z)

= 〈U0
h − u0, Z

0
+〉 −GN (η, Z)−GN (Πξ, Z),

and by the triangle inequality,

‖UN
h − u(tN )‖ ≤ ‖UN

h −Rhu(tN )‖+ ‖ξ(0)‖+
∫ tN

0

‖ξ′(t)‖ dt,

so it suffices to prove that

(5.6) |GN (Πξ, Z)| ≤ CT ‖zT ‖
(
‖ξ(0)‖+

∫ tN

0

‖ξ′(t)‖ dt
)
.

From the definition (3.1) of GN ,

GN (Πξ, Z) = 〈Πξ0+, Z
0
+〉+

N−1∑
n=1

〈[Πξ]n, Zn
+〉

+

N∑
n=1

∫ tn

tn−1

[
〈(Πξ)′(t), Z(t)〉+A

(
BΠξ(t), Z(t)

)]
dt,

and from the definition (5.3) of Rh,

A
(
BΠξ(t), Z(t)

)
= −〈BΠξ(t), Z(t)〉.

Integrating by parts, applying the orthogonality and interpolation propertes of Π
and noting that ξn−1

+ = ξ(tn−1) = (Πξ)n−1, we have∫ tn

tn−1

〈(Πξ)′(t), Z(t)〉 dt = 〈(Πξ)n, Zn〉 − 〈(Πξ)n−1
+ , Zn−1

+ 〉 −
∫ tn

tn−1

〈Πξ(t), Z ′(t)〉 dt

= 〈ξn, Zn〉 − 〈(Πξ)n−1
+ , Zn−1

+ 〉 −
∫ tn

tn−1

〈ξ(t), Z ′(t)〉 dt

= 〈ξn−1
+ − (Πξ)n−1

+ , Zn−1
+ 〉+

∫ tn

tn−1

〈ξ′(t), Z(t)〉 dt

= −〈[Πξ]n−1, Zn−1
+ 〉+

∫ tn

tn−1

〈ξ′(t), Z(t)〉 dt.

Thus,

GN (Πξ, Z) = 〈ξ(0), Z0
+〉+

∫ tn

tn−1

〈ξ′(t)− BΠξ(t), Z(t)〉 dt,

and hence, noting that ‖Z‖JN
≤ C‖zT ‖ by stability of the dual problem,

|GN (Πξ, Z)| ≤ C‖zT ‖
(
‖ξ(0)‖+

∫ tN

0

[
‖ξ′(t)‖+ ‖BΠξ(t)‖

]
dt

)
.
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The representation (3.7) implies that ‖Πu‖In ≤ C‖u‖In . Thus,∫ tN

0

‖BΠξ(t)‖ dt ≤
∫ tN

0

∫ t

0

|β(t, s)|‖Πξ(s)‖ ds dt ≤ CT ‖ξ‖JN
,

so (5.6) follows using the bound ‖ξ‖JN
≤ ‖ξ(0)‖+

∫ tN
0

‖ξ′(t)‖ dt. �

Corollary 5.4. Let q = 2, assume β is the weakly singular kernel (1.3) and suppose
that the time mesh satisfies (1.11) and (1.12). If the regularity estimates (1.9),
(1.10) and (1.14) hold, then, with γ∗ = 3/(σ + α) and C = CT ,

‖Un
h − u(tn)‖ ≤ C‖U0

h − u0‖+ CMh2�(k) + CM ×
{
kγ(σ+α), 1 ≤ γ < γ∗,

k3, γ ≥ γ∗,

for 1 ≤ n ≤ N .

Proof. Use Theorem 5.3 and apply the estimates from the proofs of Theorem 5.2
and Corollary 4.2. �

6. Numerical experiments

We now apply the discontinuous Galerkin method (1.6) and its spatially-discrete
version (5.1) to some problems of the form (1.1). In each case the time interval is
[0, T ] = [0, 1] and we employ a time mesh of the form (1.13) for various choices of the
mesh grading parameter γ ≥ 1. We consider only the piecewise-linear case q = 2.

6.1. Scalar examples. To demonstrate the effect of the time discretization by
itself, with no additional errors arising from a spatial discretization, we first consider
a purely time-dependent problem

du

dt
+

∫ t

0

β(t− s)u(s) ds = f(t) for 0 < t < T with u(0) = u0,

with the weakly singular kernel β(t) = tα−1/Γ (α) for 0 < α < 1. Using the Mittag–
Leffler function Eµ(x) =

∑∞
p=0 x

p/Γ(1 + pµ), we may write the exact solution as

u(t) = Eα+1(−tα+1)u0 +

∫ t

0

Eα+1(−sα+1)f(t− s) ds;

see [11]. Choosing initial data u0 = 0 and a source term f(t) = (α+ 1)tα, we find
that

(6.1) u(t) = −Γ (α+ 2)

∞∑
p=1

(−t)(α+1)p

Γ (1 + (α+ 1)p)
= Γ (α+ 2)

(
1− Eα+1(−tα+1)

)
.

To tabulate our numerical results, we introduce a finer grid

(6.2) GN,m = { tj−1 + �kj/m : j = 1, 2, . . . , N and � = 0, 1, . . . , m }
and an associated norm ‖v‖N,m

∞ = maxt∈GN,m |v(t)|. Thus, ‖U − u‖N,1
∞ is the

maximum error at the nodes whereas, for larger values of m, the norm ‖U −u‖N,m
∞

approximates the uniform error ‖U − u‖L∞(0,T ).

Since the exact solution (6.1) behaves like tα+1 as t → 0+, we see that the first
regularity condition (1.9) holds for any σ ≤ α + 2 and the second condition (1.10)
holds for any σ ≤ α+1. Thus, from Theorem 3.2 we expect ‖U−u‖Jn

to be O(kγσ)
for 1 ≤ γ < 2/(α+ 1), and O(k2) for γ > 2/(α+ 1). Results for α = 0.4, shown in
Table 1, are consistent with these error bounds.
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Table 1. The error ‖U−u‖N,5
∞ with different mesh gradings, when

α = 0.4. We observe O(k(α+1)γ) convergence if 1 ≤ γ < 2/(α+1) ≈
1.4286, and O(k2) convergence if γ > 2/(α+ 1).

N γ = 1 γ = 1.25 γ = 1.45 γ = 2

40 2.26e-04 6.25e-05 3.38e-05 4.27e-05

80 8.61e-05 1.39 1.86e-05 1.74 8.59e-06 1.97 1.09e-05 1.96

160 3.26e-05 1.39 5.53e-06 1.74 2.16e-06 1.98 2.77e-06 1.98

320 1.23e-05 1.39 1.64e-06 1.74 5.55e-07 1.99 6.96e-07 1.99

640 4.69e-06 1.39 4.89e-07 1.74 1.36e-07 1.99 1.74e-07 1.99

Table 2. The nodal error ‖U−u‖N,1
∞ with different mesh gradings,

when α = 0.2. We observe O(kγ(2α+2)) convergence for 1 ≤ γ <
γ∗ = 3/(2α+ 2) = 1.25, and O(k3) convergence for γ ≥ γ∗.

N γ = 1 γ = 1.25 γ = 1.5

40 2.73e-07 6.34e-08 9.51e-08

80 5.37e-08 1.34 9.06e-09 2.80 1.38e-08 2.78

160 1.03e-08 1.37 1.25e-09 2.85 1.94e-09 2.84

320 1.97e-09 2.39 1.69e-10 2.88 2.65e-10 2.87

640 3.74e-10 2.39 2.26e-11 2.90 3.57e-11 2.90

1280 7.11e-11 2.39 2.98e-12 2.93 4.73e-12 2.92

In Corollary 4.2 we may take σ = α + 2, leading to γ∗ = 3/(2α + 2) and an
expected nodal error of order k3 for any γ ≥ γ∗. This predicted behaviour is
consistent with the numerical results in Table 2, where α = 0.2.

We also consider an example with the smooth kernel β(t) = e−2t. The exact
solution has the form

u(t) = W (t)u0 +

∫ t

0

W (t− s)f(s) ds, where W (t) = (1 + t)e−t,

see [12, Section 6], so for the particular choices u0 = 1 and f(t) = tet we have

(6.3) u(t) = (1+t)e−t+

∫ t

0

(1+s)e−s(t−s)et−s ds =
3t

2
cosh t−sinh t+(1+t/2)e−t.

Table 3 shows that, for a uniform mesh, we obtain O(k2) convergence globally and
O(k3) convergence at the nodes, as expected from the error bounds in Theorems
3.1 and 4.1.

6.2. A problem in one space dimension. Let

β(t) =
tα−1

Γ (α)
, Ω = (0, 1), Au = −uxx,

and assume that u = u(x, t) satisfies the homogeneous Dirichlet boundary condi-
tions u(0, t) = 0 = u(1, t) for all t ∈ [0, T ] = [0, 1]. The solution operator for the
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Table 3. Global and nodal errors for a uniform mesh (γ = 1)
when β(t) = e−2t. We observe O(k2) and O(k3) convergence,
respectively.

N ‖U − u‖N,5
∞ ‖U − u‖N,1

∞
40 1.56e-04 2.55e-07

80 3.92e-05 1.991 3.20e-08 2.998

160 9.83e-06 1.995 4.00e-09 2.999

320 2.46e-06 1.997 5.00e-10 2.999

640 6.16e-07 1.998 6.25e-11 3.000

homogeneous problem (f ≡ 0) is given in terms of the Mittag–Leffler function and
the eigensystem of A by

E(t)v =
∞∑

m=1

〈v, φm〉Eα+1(−λmtα+1)φm, λm = (mπ)2, φm(x) =
√
2 sin(mπx),

and for the inhomogeneous problem a Duhamel principle yields an integral repre-
sentation

u(t) = E(t)u0 +

∫ t

0

E(t− s)f(s) ds;

see [11] or [12]. We choose u0(x) = φ1(x)/
√
2 = sin(πx) for the initial data and

f(t, x) = (α+ 1) tα sin(πx) for the inhomogeneous term, and we find that

(6.4) u(t) =

{
Eα+1(−π2tα+1)

(
1− Γ (α+ 2)

π2

)
+

Γ(α+ 2)

π2

}
sin(πx).

Thus, the first regularity condition (1.9) holds for σ ≤ α + 2, the second con-
dition (1.10) holds for σ ≤ α + 1, and the additional assumption (1.14) is also
satisfied.

We apply our fully discrete scheme (5.1) with a time mesh of the form (1.13) and
a uniform spatial mesh with Nx subintervals, each of length h = 1/Nx. We choose
U0
h to be the L2 projection of the initial data u0 onto the space of continuous,

piecewise-linear functions Sh. Taking σ = α + 1 in Theorem 5.2 we see that the
global error ‖Uh − u‖L∞(L2) is of order h2�(k) + kγ(α+1) for 1 ≤ γ < 2/(α + 1),

and of order h2�(k) + k2 for γ > 2/(α + 1). With α = 0.4 and defining the norm
‖v‖N,m

∞ = maxt∈GN,m ‖v‖L2(Ω), we obtain the results shown in Table 4, which are
consistent with our theoretical error bounds. Putting σ = α + 2 in Corollary 5.4
gives γ∗ = 3/(2α+2), so we expect the nodal error ‖Uh(tn)−u(tn)‖ to be of order
h2�(k) + kγ(2α+2)γ for 1 ≤ γ < γ∗ and of order h2�(k) + k3 for γ ≥ γ∗. We observe
this behaviour in Table 5 for the case α = 0.3.
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Table 4. The error ‖Uh − u‖N,5
∞ with different mesh gradings,

when α = 0.4. Taking Nx = N , we observe convergence of order
h2�(k) + k(α+1)γ for 1 ≤ γ ≤ 2/(α + 1) ≈ 1.4286, and of order
h2�(k) + k2 for γ > 2/(α+ 1).

N = Nx γ = 1 γ = 1.45 γ = 2

20 2.69e-03 1.26e-03 1.38e-03

40 1.07e-03 1.31 3.23e-04 1.96 3.54e-04 1.96

80 4.17e-04 1.36 8.15e-05 1.98 8.97e-05 1.98

160 1.59e-04 1.38 2.04e-05 1.99 2.25e-05 1.99

320 6.07e-05 1.39 5.12e-06 1.99 5.65e-06 1.99

Table 5. The nodal error ‖Uh −u‖N,1
∞ for various mesh gradings,

when α = 0.3. We observe convergence of order h2�(k) + kγ(2α+1)

for 1 ≤ γ < γ∗ = 3/(2α+2) ≈ 1.1538, and of order h2�(k)+ k3 for
γ ≥ γ∗.

Nx = N Nx = N3/2

N γ = 1 γ = 1 γ = 1.2 γ = 1.4

36 2.25e-04 1.67e-05 6.67e-06 6.14e-06

49 1.22e-04 1.98 8.03e-06 2.37 2.71e-06 2.91 2.40e-06 3.03

64 7.23e-05 1.98 4.18e-06 2.44 1.25e-06 2.90 1.07e-06 3.03

81 4.53e-05 1.96 2.33e-06 2.48 6.30e-07 2.91 5.25e-07 3.02

100 2.98e-05 2.00 1.37e-06 2.51 3.40e-07 2.91 2.77e-07 3.02

121 2.04e-05 1.99 8.34e-07 2.61 1.95e-07 2.92 1.56e-07 3.02
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