
MATHEMATICS OF COMPUTATION
Volume 78, Number 268, October 2009, Pages 2259–2267
S 0025-5718(09)02237-6
Article electronically published on March 26, 2009

AN ALGORITHM FOR FINDING

A NEARLY MINIMAL BALANCED SET IN Fp

ZHIVKO NEDEV

Abstract. For a prime p, we call a non-empty subset S of the group Fp

balanced if every element of S is the midterm of a three-term arithmetic pro-
gression, contained in S. A result of Browkin, Divǐs and Schinzel implies that
the size of a balanced subset of Fp is at least log2 p+1. In this paper we present
an efficient algorithm which yields a balanced set of size (1 + o(1)) log2 p as p
grows.

1. Introduction

Let p be an odd prime. In this paper, we are interested in small subsets S of
Fp = {0, 1, . . . , p − 1}, where each element of S is a midpoint between two other
elements from S.

Definition. If for S ⊆ Fp, x ∈ Fp, {y, z} ⊆ S \ {x}, we have that 2x = y + z
(mod p), then we say that x is balanced with respect to S. If x ∈ S, we also say
that x is balanced in S. We call {y, z} a balancing pair for x with respect to S.

Definition. We say that a set S of residues modulo p is balanced if all of its
elements are balanced with respect to the set. Unbalanced sets have at least one
element without a balancing pair.

It is easy to construct large balanced sets, but constructing balanced sets of
small size is much more challenging. Small balanced sets are required in strategies
for the family of combinatorial games analyzed in [6, 3, 4, 5].

Problem 1. Let α(p) denote the minimum cardinality of a balanced set modulo
p. For a given prime p, what is the value of α(p) and how can we construct
algorithmically a balanced set of small size?

From the definition of α(p) it is clear that every subset of Fp of size less than
α(p) has at least one unbalanced element. In [1], Browkin, Divǐs, and Schinzel
prove that for any subset S ⊂ Fp of size |S| < log2 p + 1, there exists a v ∈ Fp

represented uniquely as w + x, w, x ∈ S. Since Browkin et al. work with ordered
representations, unique sums must be of the form x+ x, x ∈ S. If S (and thus x)
were balanced, we would have 2x = y+z, {y, z} ⊆ S\{x}, contradicting uniqueness.
Thus, they prove that every S with |S| < log2 p+ 1 is unbalanced. It follows that
α(p) ≥ log2 p+ 1.

In [7], Straus considers sets of residues modulo p with unique differences. Al-
though his paper does not deal with balanced sets, a simple construction from

Received by the editor April 25, 2008 and, in revised form, October 29, 2008.
2000 Mathematics Subject Classification. Primary 11Y16.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

2259

2260 ZHIVKO NEDEV

his paper gives a balanced set of size 2 �log2 p� + 1. A second more complicated
construction in the same paper provides a balanced set of size (2 + o(1)) log3 p.

In [6], Z. Nedev and A. Quas gave a proof of the lower bound that is more
specific (for the field Fp) and shorter than in [1], and presented an alternative
simple construction of a balanced set with size 2 �log2 p�+1. Furthermore, a better
lower bound was discovered in [3].

In this paper, we present a polynomial algorithm for finding a balanced subset of
Fp of a size slightly larger than the lower bound. Our algorithm has the following
input and output:

Input: A prime number p and a real number ε > 0.
Output: A balanced subset S of Fp of size (1 + ε) log2 p+ constant.
By algorithmic construction we will then prove an upper bound: For every

ε > 0 there exists a positive integer nε such that for every prime p > nε, α(p) <
(1 + ε) log2 p.

2. Algorithmic construction of small balanced sets,

and an upper bound

We will demonstrate an algorithm for constructing small balanced sets, and thus
prove the following theorem.

Theorem 1. We have α(p) = (1 + o(1)) log2 p as p → ∞.

The following lemma is an obvious restatement of Theorem 1.

Lemma 2. For every ε > 0, there exists a constant positive integer m such that
for every prime number p, there exists a balanced subset of Fp with size less than
(1 + ε) log2 p+m.

Throughout the algorithm we work in Fp except where otherwise specified. We
first give a special case of the input p where the algorithm simplifies and the main
idea is clearly seen. We then give the general algorithm and prove Lemma 2.

2.1. The simplified algorithm.

2.1.1. The case when the input p is a “lucky” prime. Let n = �log2 p�. We say that
a prime p > 2 is a lucky input for our algorithm if either

⌈
3
4p

⌉
or

⌊
3
4p

⌋
equals 2n.

To construct a balanced set, we start with the set S = {0,
⌊
p
2

⌋
,
⌈
p
2

⌉
, 2n}. Notice

that 0 is balanced by the pair {
⌊
p
2

⌋
,
⌈
p
2

⌉
}. Since p is an odd prime, we have two

cases: If p = 4 · i + 1, i ∈ N, then n = log2(3i + 1), 2n =
⌈
3
4p

⌉
, and 2n is balanced

by {0,
⌈
p
2

⌉
}. If p = 4 · i− 1, i ∈ N, then n = log2(3i), 2

n =
⌊
3
4p

⌋
, and 2n is balanced

by {0,
⌊
p
2

⌋
}. Thus, in our initial S, the only unbalanced elements are

⌊
p
2

⌋
and

⌈
p
2

⌉
,

which we call the core, C
def
= {

⌊
p
2

⌋
,
⌈
p
2

⌉
}. Our goal is to balance the core.

Example. p = 43 is a lucky prime because
⌊
3
4 · 43

⌋
= 25 = 32. S = {0, 21, 22, 32},

C = {21, 22}, and 2n = 32 is balanced by {0,
⌊
p
2

⌋
} = {0, 21}.

At the beginning of the algorithm we let L = 0 and R = 2n. We consider only
the integers in the interval [L,R]. Letting M = L+ 1

2 (L+R), we divide the interval
into two subintervals, [L,M] and [M,R]. We then continue with two steps:

1) Add the midpoint M to S.
2) Update L and R to be the endpoints of the subinterval that contains the core C.

AN ALGORITHM FOR FINDING A NEARLY MINIMAL BALANCED SET IN Fp 2261

Figure 1. The initial S

Example (Continued). L = 0 and R = 32, so M = 16. The subinterval [16, 32]
contains the core {21, 22}, so L ← 16, R ← 32 and S ← {0, 21, 22, 32} ∪ {16}.

Figure 2. The interval [L,R] before updating

Notice that in step 1, M is balanced by the pair {L,R}, which are themselves
balanced. Thus in step 2, both the new L and R are balanced.

We repeat the above subdivision process until R − L = 1. At that point, we
have L =

⌊
p
2

⌋
and R =

⌈
p
2

⌉
. Since L and R begin balanced and remain so as we

subdivide, we have balanced the core and constructed a balanced set S.

Example (Continued). For p = 43, we add to S (in the order produced by the
algorithm): 16, 24, 20, 22, and 21. (Note that 21 and 22 were already in S.) The
final balanced set S = {0, 16, 20, 21, 22, 24, 32}.

2.1.2. What is the size of S? Initially, we count the two elements L and R. We
have that R−L = 2n, so we execute n steps, adding one point to S each time. The
core elements become midpoints, so they are counted among these n elements.

Therefore

|S| = n+ 2 = �log2 p�+ 2.

Thus, when p is a lucky prime, we obtain a stronger result than Lemma 2: m does
not depend on ε but m = 2. Furthermore, it follows from the main theorem in [3]
that log2 p+ 3− log2 3 ≤ |S|. Thus we have

log2 p+ 1.41503749 ≤ log2 p+ 3− log2 3 ≤ |S| = �log2 p�+ 2 ≤ log2 p+ 2

and since |S| must be an integer, there is only one possible value for |S|. We have
therefore constructed a balanced set of minimum size.

2.2. The algorithm for an arbitrary prime p. Our objective is to prove Lemma 2
by means of algorithmic construction.

2262 ZHIVKO NEDEV

Proof of Lemma 2. Let ε > 0.
We first consider the case when p = 2. Then S = {0, 1} is the only balanced

set, and |S| = log2 p+ 1. Thus, in this case, Lemma 2 is satisfied so long as we let
m ≥ 1.

We now consider the general case when p is prime and p > 2. �

2.2.1. Initial setup for the algorithm. Let t be the smallest positive integer such
that 1

t+1 ≤ ε. Thus t =
⌊
1
ε

⌋
.

Our general algorithm for producing a small size balanced set begins almost
identically as when p is lucky. We take L = 0 and let R =

⌈
3
4p

⌉
if p = 4 · i+1, i ∈ N,

or R =
⌊
3
4p

⌋
if p = 4 · i− 1, i ∈ N. For now, we take the core C ′ = {

⌊
p
2

⌋
,
⌈
p
2

⌉
}, and

let S = {L,R,
⌊
p
2

⌋
,
⌈
p
2

⌉
}. As before, L and R are balanced from the beginning.

We also compute a real number Q
def
= 2

3R, dividing [L,R] in a ratio of 2 : 1. Q

remains fixed throughout the algorithm. Notice that
⌊
p
2

⌋
< Q <

⌈
p
2

⌉
.

The lengths of the intervals [L,R] will generally not be powers of 2 (and in fact
may be odd numbers), so we will not be able to subdivide as before. However, at
the cost of a small increase in the size of S, we can find intervals whose lengths are
powers of 2 times a number.

Definition. An interval [l, r] with l, r ∈ N is t-even, where t is a positive integer,
if r − l = 2tc, where c ∈ N.

The algorithm’s main part consists of the repetition of two main steps. In step
A, we find a t-even interval at most half the size of the current interval, with the
cost of adding two elements to S. Then during step B, we proceed as in the lucky
case, subdividing the t-even interval t times and adding t elements to S. Because
we want to repeat steps A and B, the ratio in which Q divides the interval found
in each step A ideally should remain 2 : 1. This is not always possible, but we will
see that it is enough if the interval found in each step A is divided by Q in ratios
of approximately either 2 : 1 or 1 : 2.

To achieve step A we will expand the core to 8k elements, where k is the smallest
integer such that 2k−1 > 2t (thus k =

⌈
2t−1 + 1/2

⌉
= 2t−1+1), and add these new

elements to S. These extra elements allow us to find t-even intervals. We denote
these elements as follows:

C−4k =
⌊p
2

⌋
− 4k + 1, C−4k+1 =

⌊p
2

⌋
− 4k + 2, . . . , C−1 =

⌊p
2

⌋
,

C1 =
⌈p
2

⌉
, C2 =

⌈p
2

⌉
+ 1, . . . , C4k =

⌈p
2

⌉
+ 4k − 1

and let C = {C−4k, C−4k+1, . . . , C−1, C1, . . . , C4k−1, C4k} be the new core. Notice
that C has 4k elements on the left and right of Q.

When the new core does not fit within [L,R], we take S = {L,L+ 1, . . . , R} as
our balanced set. A simple calculation shows that |S| ≤ R− L+ 1 ≤ 12k + 4, and
Lemma 2 is satisfied with m = 12k + 4.

Otherwise, let S = {L,R}∪C. Since the elements in C are consecutive integers,
only C−4k and C4k are unbalanced. As in the lucky case, our goal is to balance
these two unbalanced elements. We now proceed to step A.

AN ALGORITHM FOR FINDING A NEARLY MINIMAL BALANCED SET IN Fp 2263

2.2.2. Step A of the algorithm.

Definition. Let [l, r] be an interval, let a, b ∈ N \ {0}, and let Q̂ = l + a
a+b (r − l)

so that Q̂ divides [l, r] in a ratio of a : b. We say that a real number Q divides [l, r]

in a ratio of approximately a : b if
⌊
Q̂
⌋
= �Q� and

⌈
Q̂
⌉
= �Q.

Note. Initially, Q divides [L,R] exactly in a ratio of 2 : 1. After the first execution
of step A, Q will divide the new interval [L,R] in a ratio of approximately 2 : 1,
rather than exactly.

Moreover, after step B, Q will divide each new interval [L,R] in a ratio of ap-
proximately either 1 : 2 or 2 : 1. The below procedure is for the ratio of 2 : 1, but
it is easily adapted when the ratio is 1 : 2; all references to 2 : 1 should be read as
1 : 2, and Q̂ should be redefined accordingly.

Our goal is to find a t-even interval no more than half the size of [L,R] where Q
divides the t-even interval in a ratio of approximately 2 : 1.

For convenience we introduce two temporary markers: Ql
def
= L+ 1

2 (Q− L) and

Qr
def
= Q+ 1

2 (R−Q).

Figure 3. Ql and Qr

Notice that:

1) Qr −Ql =
1
2 (R− L).

2) Q divides [Ql, Qr] in a 2 : 1 ratio.

We consider the 8k intervals [L,C−4k], [L,C−4k+1], . . . , [L,C4k] listed in order of
increasing length. Half of these have even lengths, and therefore their midpoints
are integers. We denote these 4k integer midpoints by l1, l2, . . . , l4k, and note that
each li+1 = li+1. There are 2k of these midpoints on the left and right of Ql. Note
also that, since L ∈ S,C ⊆ S, all of these midpoints are balanced with respect to
S.

Similarly, we consider the 8k intervals [C−4k, R], [C−4k+1, R], . . . , [C4k, R] listed
in order of decreasing length. We obtain 4k midpoints r1, r2, . . . , r4k with the
property that each rj+1 = rj + 1. There are 2k of these midpoints on the left and
right of Qr, and they are balanced with respect to S.

Figure 4. Midpoints and core

We want to update L and R such that L ∈ {l2k+1, l2k+2, . . . , l4k} and R ∈
{r1, rk+2, . . . , r2k}, to achieve a reduction of the current interval by at least half.

2264 ZHIVKO NEDEV

We consider the set of intervals obtained by choosing a left endpoint l ∈ {l2k+1,
l2k+2, . . . , l3k} and a right endpoint r ∈ {rk+1, rk+2, . . . , r2k}. (We restrict ourselves
to l ≤ l3k and r ≥ rk+1 as we will later translate the interval [l, r], and want freedom
to translate while maintaining l ∈ {l1, l2, . . . , l4k} and r ∈ {r1, r2, . . . , r4k}.) Among
this set of intervals there are 2k− 1 distinct consecutive lengths. Since 2k− 1 > 2t,
at least one of these lengths will be a multiple of 2t. Thus, we may choose a t-even
interval [l, r].

Figure 5. Possible endpoints for [l, r]

In order for Q to divide [l, r] by a ratio of approximately 2 : 1, we will translate

the interval. Let Q̂ = l + 2
3 (r − l) so that Q̂ divides [l, r] in a ratio of 2 : 1.

We can translate l, r, and Q̂ in parallel in integer increments, maintaining l ∈
{l1, l2, . . . , l4k} and r ∈ {r1, r2, . . . , r4k}.

Translating to the extreme right (l = l4k), we have that Ql < l < Q < Qr < r.

Since Q divides [Ql, Qr] in a 2 : 1 ratio and Q̂ divides [l, r] in a 2 : 1 ratio, we

have that Q̂ > Q. Similarly, translating to the extreme left (r = r1), we have that

Q̂ < Q.

Figure 6. Extreme right and left translations

Thus, we can translate l, r, and Q̂ such that Q̂ and Q are in the same interval
of length one with integer endpoints, i.e. �Q̂� = �Q� and �Q̂ = �Q. We achieve
this by the translation:

δ = �Q̂� − �Q� ,
l ← l − δ; r ← r − δ; Q̂ ← Q̂− δ.

Therefore, we have obtained l and r such that:

1) (r − l) ≤ 1
2 (R− L).

2) (r − l) is t-even.

3) Q̂ divides [l, r] in a ratio of 2 : 1.

4) Q divides [l, r] in a ratio of approximately 2 : 1, so �Q̂� = �Q� =
⌊
p
2

⌋
and

�Q̂ = �Q =
⌈
p
2

⌉
.

AN ALGORITHM FOR FINDING A NEARLY MINIMAL BALANCED SET IN Fp 2265

If at this point l ∈ C or r ∈ C we do not perform step A, and instead proceed
to section 2.2.4 to finish the construction of S. Otherwise, note that C ⊂ [l, r].

Finally, we update S ← S∪{l, r} ; L ← l ; R ← r to obtain a new interval [L,R]
that is at most half the size of the original interval.

2.2.3. Step B of our algorithm. Since [L,R] is t-even, we may perform at least t
subdivision steps as in the lucky case. However, as it simplifies the proof of our
lemma, we will only subdivide t times. If at any time during the subdivision process
we have the midpoint M ∈ C, we immediately cease subdividing and proceed to
section 2.2.4 to finish the construction of S. Otherwise, we obtain a new interval
[L,R] that is 1

2t times smaller than the original. We then repeat step A.
Depending on the total number of subdivisions performed since the start of the

algorithm, Q̂ is always one of L+ 1
3 (R−L) (ratio 1 : 2) or L+ 2

3 (R−L) (ratio 2 : 1).

If we have performed an even number of subdivisions, Q̂ will divide the resultant
interval in a 2 : 1 ratio, and Q will divide it in approximately a 2 : 1 ratio. If we
have performed an odd number of subdivisions, the ratios will be 1 : 2.

2.2.4. Finishing the construction. We say that we reach the core when the new
element to be added to S is in C, and therefore already in S. This can happen in
two cases; we will show that in both cases we have R − L ≤ 36k + 9. We suppose
that Q̂ divides [L,R] in a 2 : 1 ratio; the results are analogous when the ratio is
1 : 2.

Case 1) During step A we found the desired interval [l, r], but l ∈ C or r ∈ C.
Suppose that r ∈ C; the result is analogous when l ∈ C. We must have

r ∈ {C1, . . . , C4k} ∩ {r1, . . . , r2k} �= ∅, so Qr −Q ≤ 6k + 1.

Figure 7. Case 1

Since Q divides [L,R] in a ratio of approximately 2 : 1, we have

1

3
(R− L) = R − Q̂ ≤ R−Q+ 1 = 2(Qr −Q) + 1 ≤ 12k + 3.

Thus R− L ≤ 36k + 9.
Case 2) During step B, M ∈ C.

We have C−1 < Q < C1, so C−1 ≤ Q̂ ≤ C1. Moreover, C−4k ≤ M ≤
C4k, so |Q̂−M | ≤ 4k + 1. Therefore

1

6
(R− L) =

2

3
(R− L)− 1

2
(R− L) = |Q̂−M | ≤ 4k + 1.

Thus R− L ≤ 36k + 9.

We can finish the construction by independently balancing C−4k on the left and
C4k on the right. To balance C−4k, we note that one of [L,C−4k] and [L,C−4k+1]
will always have even length. Thus we may repeatedly subdivide: Let M be the
midpoint of the even interval, and update S ← S ∪ {M} ; L ← M . We repeat
until C−4k − L = 1. Similarly, C4k can be balanced using [C4k−1, R] and [C4k, R].

2266 ZHIVKO NEDEV

Since R − L ≤ 36k + 9, these two subdivision processes add no more than 36k + 9
elements to S (and in fact add at most O(log2 k) elements).

2.2.5. What is the size of S? We count as follows:

1) The two initial elements, L = 0 and R ≈ 3
4p.

2) The core, |C| = 8k.
3) The points added during steps A and B, calculated below.
4) At most 36k + 9 elements from the final construction after reaching the

core.

In order to calculate the required number of repetitions of step A followed by
step B, we assume that we cease repetition when R−L ≤ 36k+ 9, even if we have
not yet reached the core.

Initially, R−L ≈ 3
4p. Step A reduces R−L by a factor of at least 1

2 and step B by

exactly 1
2t . Let d be the smallest positive integer such that (34p)(

1
2t+1)

d ≤ 36k + 9.
Then

log2 p− log2(48k + 12)

t+ 1
≤ d

and therefore

d =

⌈
log2 p− log2(48k + 12)

t+ 1

⌉
≤ log2 p

t+ 1
+ 1.

The number of repetitions of step A followed by step B will be less than or equal
to d. We add 2 points to S in step A, and t points in step B. Therefore we add at
most d(t+2) points during the repetitions of steps A and B. Note that we may have
overcounted: if the subdivision midpoint reaches the core, the algorithm terminates
before performing t subdivisions in the last step B.

Summing the above counts, we obtain the following bound:

|S| ≤ d(t+ 1) + d+ 2 + 8k + (36k + 9)

≤
(
log2 p

t+ 1
+ 1

)
(t+ 1) +

(
log2 p

t+ 1
+ 1

)
+ 44k + 11

<

(
log2 p

t+ 1
+ 1

)
(t+ 1) + (ε · log2 p+ 1) + 44k + 11

= (1 + ε) log2 p+m, m = t+ 44k + 13.

We now return to the two conditions on m that we mentioned earlier. When
p = 2, we required that m ≥ 1, and when L ∈ C or R ∈ C at the beginning of
the algorithm, we required that m ≥ 12k + 4. Since our choice of m satisfies these
conditions, the lemma is satisfied in these cases.

Finally, we note that by our choice of t and k, t =
⌊
1
ε

⌋
and k = 2t−1 + 1 =

2

(⌊
1
ε

⌋
− 1

)
+ 1. Thus m = 11× 2t+1 + t+ 57 = 11× 2

⌈
1
ε

⌉
+
⌈
1
ε

⌉
+ 56. �

2.3. Construction of a small balanced set for a given prime. For a given
prime p, we can iterate the algorithm to experimentally determine and construct
the smallest possible balanced set obtainable by the algorithm. We perform the
algorithm several times with t = 1, 2, 3, For each value of t we will obtain a
different balanced set. As t increases, the sizes of these sets will initially decrease.
However, because the constant m (and the “core”) grows exponentially with t, the
sizes will eventually increase. Therefore, we can quickly find the optimal value of t
for the given p.

AN ALGORITHM FOR FINDING A NEARLY MINIMAL BALANCED SET IN Fp 2267

3. Questions for further research

1) Experimental data suggests that for every prime p > 2, α(p) ≤ log2 p + c, and
that c is slightly less than 3. Can this be proved?

2) Is there a polynomial algorithm for finding a balanced set of minimum size plus
a constant, where the constant is independent of the input prime p?

3) Is there a polynomial algorithm for finding a balanced set of minimum size for
any p, thus computing α(p)? Conversely, is this problem provably NP-complete?

4) Can we find α(p) without constructing a minimum size balanced set?
5) By exhaustive search, we found minimum size balanced sets for small primes.

The results consistently showed that α(p) is always either �log2 p + 2
or �log2 p + 1. Is it true that for each prime p there exists a balanced set
S with size at most �log2 p+ 2?

6) Is a minimal (a smallest) balanced set S with m elements unique up to transla-
tion and scaling (aS + b mod p, with a, b ∈ Fp, a �= 0)?

Acknowledgments

We are grateful to the following people and institutions for their advice, dis-
cussion, and support during the development of this paper: Jeffrey O. Shallit,
Noam Sturmwind for editing assistance, Valerie King, Uriel Feige, S. Muthu
Muthukrishnan, Mario Szegedy, School of Computer Science at the University of
Waterloo, and the DIMACS Center.

References

[1] Browkin, J., Divǐs, B., and Schinzel, A., Addition of sequences in general fields, Monatshefte
für Mathematik 82, pp. 261-268, 1976. MR0432581 (55:5568)

[2] Johnson, Charles R. and Newman, Morris, A surprising determinantal inequality for real
matrices, Math. Ann. 247, pp. 179-186, 1980. MR568207 (83h:15005)

[3] Nedev, Zhivko, Lower bound for balanced sets, preprint.
[4] Nedev, Zhivko, Universal sets and the vector game, INTEGERS: The Electronic Journal of

Combinatorial Number Theory, 8 (2008), #A45.
[5] Nedev, Zhivko and and Muthukrishnan, S., The Magnus-Derek Game, Theoretical Computer

Science, Volume 393, Issues 1-3, 20 March 2008, pp. 124-132. MR2397246

[6] Nedev, Zhivko and Quas, Anthony, Balanced sets and the vector game, International Journal
of Number Theory, 4 (2008), pp. 339-347. MR2424326

[7] Straus, E. G., Differences of residues (mod p), Journal of Number Theory 8, pp. 40-42,
1976. MR0392876 (52:13689)

Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060,

STN CSC, Victoria, B.C., Canada V8W 3R4

E-mail address: znedev@gmail.com

http://www.ams.org/mathscinet-getitem?mr=0432581
http://www.ams.org/mathscinet-getitem?mr=0432581
http://www.ams.org/mathscinet-getitem?mr=568207
http://www.ams.org/mathscinet-getitem?mr=568207
http://www.ams.org/mathscinet-getitem?mr=2397246
http://www.ams.org/mathscinet-getitem?mr=2424326
http://www.ams.org/mathscinet-getitem?mr=0392876
http://www.ams.org/mathscinet-getitem?mr=0392876

	1. Introduction
	2. Algorithmic construction of small balanced sets, and an upper bound
	2.1. The simplified algorithm
	2.2. The algorithm for an arbitrary prime p
	2.3. Construction of a small balanced set for a given prime

	3. Questions for further research
	Acknowledgments
	References

