
MATHEMATICS OF COMPUTATION
Volume 78, Number 268, October 2009, Pages 2427–2433
S 0025-5718(09)02238-8
Article electronically published on May 1, 2009

ALGEBRAIC SOLUTIONS OF JACOBI EQUATIONS

S. C. COUTINHO AND MARCOS DA SILVA FERREIRA

Abstract. We propose an algorithm to compute exactly the algebraic solu-
tions of Jacobi equations over the projective plane.

1. Introduction

From the perspective of present day mathematics, a Jacobi equation is the Pfaff
equation that corresponds to a vector field over the projective plane; see section
2 for a formal definition. These equations were named after Jacobi because he
was the first to study them systematically in a paper [9] in 1842. In an article
[5] in 1878, G. Darboux used Jacobi equations to illustrate his method of solving
first order differential equations. As part of that he introduced the problem of
computing the algebraic solutions of a Jacobi equation. In this guise, the equations
became a standard topic in textbooks of the late 19th and early 20th centuries, like
Jordan’s Cours d’Analyse de l’École Polytechnique [10, p. 38], and Ince’s Ordinary
Differential Equations [8, p. 22].

In the late 1970s, Jouanolou reworked and improved Darboux’s results using the
language of linear algebra and algebraic geometry, [11, pp. 1–19]. In Jouanolou’s
approach one associates a matrix B to a given Jacobi equation Ω. The linear
solutions of Ω can then be computed from the eigenvectors of Bt. Moreover, the
nonlinear solutions, when they exist, can also be computed from B.

In this paper we investigate Jouanolou’s approach to Jacobi equations from the
point of view of computer algebra. Our interest in this problem is twofold. On the
one hand, we want to use the Galois group techniques developed in [4] in order to
give an efficient algorithm that can be used to compute first integrals of polynomial
vector fields over the projective plane. On the other hand, as shown in [3], the
existence of an algebraic solution implies that any nonholonomic D-module defined
as a deformation of a vector field by a polynomial function always has a holonomic
quotient module. This, in turn, allows one to apply the algorithms of [12] to give
estimates for the dimension of some Ext-groups involving these modules.

Since the algorithms based in [11, pp. 1–19] require the computation of eigenval-
ues and eigenvectors, it looks as if we have to work over an algebraic extension of
the base field K. However, our main result is just that this is not really necessary.
Indeed, one can arrange all the algorithms so that both the output and all the
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computations are expressed directly in terms of K itself, without relying on field
extensions.

This note is divided into four sections: after recalling some basic definitions from
[11, pp. 1–8], we discuss algorithms to compute the linear solutions (section 3) and
the nonlinear solutions (section 4) of a Jacobi equation. All the algorithms intro-
duced here are implemented in the computer algebra system Singular, see [7] and
[6], and can be downloaded from http://www.dcc.ufrj.br/~collier/folia.html.

2. Preliminaries

A Jacobi form is a 1-form Ω = Pdx + Qdy + Rdz, where P , Q, and R are
homogeneous polynomials of degree two in C[x, y, z] that satisfy xP +yQ+zR = 0.
A Jacobi form is saturated if gcd(P,Q,R) = 1. A homogeneous polynomial F of
degree k > 0 is an algebraic solution of Ω if Ω ∧ dF = ηF, for some homogeneous
linear 2-form η.

It follows from the exactness of the Koszul complex [11, p. 2] that there exist
linear homogeneous polynomials L, M , and N such that

P = zM − yN, Q = xN − zL, and R = yL− xM.

Of course, the triple (L,M,N) is not unique. Indeed, two such triples differ by a
constant multiple of (x, y, z). Following Jouanolou we say that a triple is canonical
if

∂L

∂x
+

∂M

∂y
+

∂N

∂z
= 0.

Since L, M , and N are linear, we may write (L,M,N)t = B(x, y, z)t for some
complex 3× 3 matrix B. Moreover, it is easy to show that the triple (L,M,N) is
canonical if and only if B has zero trace, [11, p. 9]. Thus, we have an isomorphism
between the vector space of all Jacobi forms and the Lie algebra sl3(C), of 3 × 3
matrices of trace zero. It follows from [11, Lemme 2.2, p. 9] that if u : C3 → C3

is the linear transformation induced by a matrix U ∈ SL3(C), then U−1BU is
the matrix associated to the 1-form u∗(Ω), where B is the canonical matrix of
Ω. In particular, whenever convenient, we may take the canonical matrix B of a
given Jacobi form Ω to be in its Jordan canonical form. We assume, throughout
this note, that Ω has coefficients in an effective field K; which means that the
arithmetic operations of addition, subtraction, multiplication, division, and the
basic comparison required to determine equality between two elements of K can be
done by algorithms; see [2]. In particular, B ∈ sl3(K).

3. Linear solutions

We begin by recalling the method used in [11, §2.4, p. 11] to determine the linear
solutions of a Jacobi form. If F = ax+ by + cz is such a solution, then

Ω ∧ dF = aL+ bM + cN.

Thus, F is an algebraic linear solution of Ω if and only if aL+ bM + cN = λF , for
some λ ∈ C. This equation may be rewritten in matrix form as Btvt = λvt, where
v = (a, b, c). Therefore, the linear solutions of Ω correspond to the eigenvectors of
Bt.

Since we are assuming that B has coefficients in K, it follows that the charac-
teristic polynomial χ = χΩ of B belongs to K[t]. There are two cases, depending
on whether χ has repeated roots or not. First, if χ has repeated roots, then they
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must all belong to K. Indeed, if B has fewer than three distinct eigenvalues, then
gcd(χ, χ′) is a nonconstant polynomial with coefficients in K, where χ′ is the deriv-
ative of χ with respect to t. Moreover, gcd(χ, χ′) will have degree one or two. In
the former case it is clear that this root must be in K. However, this is also true
in the latter case, since the repeated root must appear with multiplicity two in the
greatest common divisor. Therefore, if χ has repeated roots, then they all belong
to the base field, and the eigenvectors can be found by solving a linear system over
K.

This leaves us with the case in which χ has three distinct roots. If these roots
are in K, they may be handled as above; otherwise, we proceed as follows. Let q be
the nonlinear irreducible factor of p. Since deg(χ) = 3, it follows that q has degree
2 or 3.

Let I be the ideal of K[t, u1, u2, u3] generated by q ∈ K[t], and the three linear
equations corresponding to the system (Bt− tI)u = 0, where u = (u1, u2, u3). Now
compute the reduced Gröbner basis G of I with respect to the lexicographical order
which has u1 > u2 > u3 > t; see [1, sections 1.7 and 1.8]. It is easy to see that G
contains q together with two elements of the form giui − gjuj and hiui − hkuk, for
1 ≤ i, j, k ≤ 3, where the g’s and h’s are polynomials in K[t].

Recall that we are assuming that all the eigenvalues of B are distinct, which
implies that each eigenspace has dimension exactly one. In particular, gi = gj = 0,
hi = hj = 0, and gj = hk = 0 cannot occur because, in all three cases, the resulting
eigenspaces would have dimension two. We analyse the remaining cases. First, if
gjhk �= 0, then uj = giui/gj and uk = hiui/hk. Taking ui = 1 we find that the
eigenvector is given by uj = gi/gj and uk = hi/hk. Note that it may happen that
uk = 0 or uj = 0. On the other hand, if gj �= 0 and hk = 0, we have that hi �= 0,
so that ui = 0 and uj = giui/gj = 0. The case hk �= 0 and gj = 0 is entirely
analogous. Finally, if v is an eigenvector of Bt, then the desired linear solution is
given by the inner product v · (x, y, z)t.

This reasoning can be immediately turned into an algorithm that returns the
linear solutions as a function of t, where t is one of the roots of the characteristic
polynomial χ. As an inevitable consequence of this we have that the linear solutions
may not have coefficients in K. However, we can still package them as a polynomial
in K. This is a consequence of the following proposition.

Proposition 3.1. Let Ω be a Jacobi equation with coefficients in K, and let χ = χΩ

be irreducible over K. If �1, �2, and �3 are the linear solutions of Ω, then �1�2�3 is
an irreducible polynomial in K[x, y, z].

Proof. First of all, it follows from the algorithm discussed above that each �j can
be written in the form �j(λ, x, y, z) = ajx + bjy + cjz, where aj , bj , cj ∈ K[λ], for
some root λ of χ. Now if σ is an automorphism in the Galois group G of χ over
K, then σ(�j(λ, x, y, z)) = �j(σ(λ), x, y, z), which is also a linear solution of Ω since
this form is invariant under the pullback by σ. Set F = �1(λ)�2(λ)�3(λ).

Since χ is irreducible over K, the Galois group G is isomorphic either to the cyclic
group C3, or to the symmetric group S3. In both cases G contains an element ρ of
order 3. Since ρ permutes the three roots of χ, it follows that

F = �1(λ)(�1(λ))
ρ(�1(λ))

ρ2

= �1(λ)(�1(ρ(λ)))(�1(ρ
2(λ)))

is invariant under the subgroup generated by ρ. If the Galois group of χ is isomor-
phic to C3, then this is enough to show that F has coefficients in K.
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Suppose now that G ∼= S3. Let τ be a transposition in this group. Then,

F τ = �τ1(λ)(�1(λ))
τρ(�1(λ))

τρ2

. However, τρ = ρ2τ , so that

F τ = �τ1(λ)(�1(λ))
ρ2τ (�1(λ))

ρτ = �1(τ (λ))(�1(τ (λ)))
ρ2

(�1(τ (λ)))
ρ.

Since τ (λ) is also a root of χ, it follows that F τ = F . But ρ and τ generate G,
so F must be invariant under all the elements of the Galois group. Therefore,
F ∈ K[x, y, z]. �

A similar result holds for the product of two linear solutions if χ has an irreducible
factor of degree 2 over K. This suggests an algorithm which returns

(1) �1, �2, and �3 if the three roots of χ belong to K;
(2) �1�2 (mod q) and �3 if χ has only one root in K, and q is its irreducible

factor of degree 2;
(3) �1�2�3 (mod χ) if χ is irreducible over K.

Note that in (2), the linear solutions �1 and �2 correspond to the roots of the
irreducible factor q of χ.

One way to compute these polynomials is to find the linear factors, multiply
them, and reduce the result modulo the irreducible factor of χ of degree 2 or 3, as
the case may be. However, the Gröbner machine of Singular can actually compute
the resulting polynomial for a 3 × 3 matrix B of trace zero with undetermined
coefficients. If we consider the solution as a polynomial in the (eight) coefficients
of B, together with x, y, and z, we find that it has degree 6 and 68 terms. For
this reason, this is not a very practicable formula. A program that computes this
polynomial can be found at the web page mentioned in section 1.

4. Nonlinear solutions

Let B be the matrix canonically associated to a Jacobi form Ω. Denote by J the
Jordan canonical form of B and by φ the linear change of coordinates that turns
J into B. As in the previous section, we have to analyse several cases, which will
depend on the shape of J .

Suppose first that J has three distinct eigenvalues. Applying φ∗ to Ω we get

Ω̂ = φ∗(Ω) = (λ1 − λ2)yzdx+ (λ2 − λ0)xzdy + (λ0 − λ1)xydz,

where J = diag(λ0, λ1, λ2). Since Ω̂ is saturated, its linear solutions, in the above
coordinates, are x, y and z. Thus, it follows from [11, Proposition 3.7.8, p. 120]
that Ω has a finite number of algebraic solutions if and only if one of the ratios,

(4.1) ρ1 =
λ0 − λ1

λ2 − λ0
or ρ2 =

λ0 − λ1

λ1 − λ2
,

is an irrational number. Moreover, if one of these ratios is indeed irrational, then
by [11, Théorème 3.3, p. 102] Ω has at most three solutions, namely the linear ones,
already computed in section 3. The next theorem sums up all that we need to know
to turn the previous statement into an algorithm.

Theorem 4.1. If ρ1 and ρ2 are rational numbers, then either

(1) χ = χΩ is completely reducible over K, or
(2) χ = t(t2 − α), where α is not a perfect square in K.

Moreover, in the second case, ρ1 = ρ2 = −2.



JACOBI EQUATIONS 2431

Proof. Since we are assuming that both ρ1 and ρ2 are rational numbers, we may
write

λ0 − λ1 = rθ, λ1 − λ2 = pθ, and λ2 − λ0 = qθ,

where p, q, r ∈ Z and θ ∈ K, the algebraic closure of K.
Suppose, first, that none of the roots of χ is in K. Since χ has degree 3, it follows

that it is irreducible over K. Thus, its Galois group G over K is isomorphic to S3 or
to C3. In either case, there exists an automorphism σ ∈ G such that σ(λi) = λi+1,
where the sum of subscripts is computed modulo 3. In particular,

rσ(θ) = σ(λ0 − λ1) = λ1 − λ2 = pθ.

Therefore, σ(θ) = pθ/r, which implies that σ3(θ) = p3θ/r3. However, σ has order
3 in G, so that σ3(θ) = θ. Moreover, we may assume that θ �= 0 for, otherwise, χ
would have repeated roots. Thus, p3 = r3. Since p and r are integers, we conclude
that p = r. But, this implies that λ0 − λ1 = λ1 − λ2. Moreover, since λ0, λ1 and
λ2 are eigenvalues of a trace zero matrix, it follows that the λ0 + λ1 + λ2 = 0.
Putting these two facts together, we conclude that λ1 = 0, which contradicts the
irreducibility of χ over K. Thus, we may assume, without loss of generality, that
λ2 ∈ K. It then follows from (4.1) that

(4.2) λ0 − λ2 = −λ0 − λ1

ρ1
and λ1 − λ2 =

λ0 − λ1

ρ2
.

Hence,

(4.3) (λ0 − λ1)(
1

ρ2
− 1

ρ1
) = λ0 + λ1 − 2λ2.

However, λ0 and λ1 are the two roots of a quadratic equation with coefficients
in K. Thus, λ0 + λ1 ∈ K. But, λ2 ∈ K by the hypotheses. Therefore, if ρ2 �= ρ1,
then it follows from (4.3) that λ0 − λ1 ∈ K. This implies that λ0 and λ1 belong to
K, so χ is completely reducible over K, in this case.

Assume now that ρ1 = ρ2 = ρ ∈ K. By (4.3), λ0 + λ1 = 2λ2, so that

0 = λ0 + λ1 + λ2 = 3λ2.

Thus, λ2 = 0, which implies that λ1 = −λ0. Hence, ρ2 = ρ1 = −2, and the proof
is complete. �

Let us recall how the nonlinear solutions are obtained when ρ1 and ρ2 are both
rational. Set ρ1 = q2/q1 and ρ2 = q2/q0, where q0, q1 and q2 are pairwise co-prime
integers. As in section 3, �i denotes the linear solution that corresponds to the
eigenvalue λi.

From the definition of the ρ’s we have that two among them must have the same
sign, whilst the third has the opposite sign. Moreover, we may assume, without loss
of generality, that two among them are positive. Thus, if qi, qj ≥ 1, then qk < 0
and by [11, p. 13] the nonlinear solutions of Ω have the form

c1�
qi
i �

qj
j + c2�

−qk
k , where c1, c2 ∈ K and {i, j, k} = {1, 2, 3}.

Assume now that χ is not completely reducible over K. By Theorem 4.1, one of
the eigenvalues of B, say λk, must be zero. In this case, we may choose qi = qj = 1
and qk = −2. Therefore, the nonlinear solutions take the form

c1�i�j + c2�
2
k, where c1, c2 ∈ K.
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However, we are assuming that χ has an irreducible factor of degree two, whose
roots are λi and λj . Thus, as pointed out after Proposition 3.1, �i�j and �k have
coefficients in K. This leads to the following algorithm.

Algorithm. Given a Jacobi form Ω with coefficients in K, whose canonical matrix
has three distinct eigenvalues, the algorithm returns the nonlinear solutions of Ω,
if it has any.

Step 1: If χ is irreducible over K, return all solutions are linear and
stop.

Step 2: If χ is completely reducible over K, compute its roots λ0, λ1 and λ2;
otherwise go to Step 5.

Step 3: Compute the reduced fractions ρ1 = q3/q1 and ρ2 = q3/q2, defined in
(4.1).

Step 4: Find the linear solutions �j, 1 ≤ j ≤ 3, of Ω using the algorithm of
the previous section, and go to Step 7.

Step 5: If χ is not completely reducible over K and λk = 0, let qi = qj = 1
and qk = −2.

Step 6: Compute �i�j and �k using the algorithm of the previous section.

Step 7: If qi, qj ≥ 1 and qk < 0, return c1�
qi
i �

qj
j + c2�

−qk
k , where c1 and c2 are

parameters, and stop.

From the computational point of view, this is the only interesting case: all the
other cases are straightforward. We sum them up below. For more details, see [11,
pp. 14–17].

First of all, if B = λI, where I is the 3×3 identity matrix, then Ω = 0. There are
two cases for which the corresponding Jacobi form is not saturated; namely, when
B = diag(λ0, λ0, λ2), and when B has one eigenvalue and one 2× 2 Jordan block.
In both these cases the corresponding saturated equation has only linear solutions,
albeit infinitely many of them. The two remaining cases correspond to saturated
forms whose matrices have Jordan canonical forms of one of the following types:⎡

⎣λ0 0 0
1 λ0 0
0 0 λ2

⎤
⎦ and

⎡
⎣λ1 0 0
1 λ1 0
0 1 λ1

⎤
⎦ ,

where λ0 �= λ2. The form corresponding to the first matrix above has only two
linear solutions, one for each eigenvector. The second matrix is more interesting.
Writing Ω in the coordinates for which its canonical matrix is given above, we get

(4.4) Ω = (2zx− y2)dx− 1

2
xd(2zx− y2),

which has the line x = 0 and the conics y2 − 2zx = cx2 for algebraic solutions,
where c ∈ C. Note that, since in this last case χΩ has only one eigenvalue, the
change of variables that turns the canonical matrix of Ω into its Jordan canonical
form can be computed over K. Thus, the coordinates x, y, and z that appear in
(4.4) can be easily found.
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[4] S. C. Coutinho and L. Menasché Schechter, Algebraic solutions of holomorphic foliations: An
algorithmic approach, J. Symbolic Comput. 41 (2006), 603–618. MR2209167 (2007b:32050)
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