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ON THE ASYMPTOTICS OF THE TRAPEZOIDAL RULE
FOR THE PANTOGRAPH EQUATION

J. CERMAK AND J. JANSKY

ABSTRACT. The paper deals with the trapezoidal rule discretization of a class
of linear delay differential equations, with a special emphasis on equations with
a proportional delay. Our purpose is to analyse the asymptotic properties of
the numerical solutions and formulate their upper bounds. We also survey the
known results and show that our formulae improve and generalize these results.
In particular, we set up conditions under which the numerical solution of the
scalar pantograph equation has the same decay rate as the exact solution.

1. INTRODUCTION

In recent years, many papers have been focused on the analysis of the exact
and numerical solution of differential equations involving proportional delays. The
prototype of such equations is the pantograph equation

(1.1) y'(t) = ay(t) + by(At), t>0,

where a, b # 0 are (generally complex) scalars and 0 < A < 1 is a real scalar. The
equation ([IJ) and its modifications (involving especially the vector case and the
neutral case) have appeared as a mathematical idealization of many problems in
various areas comprising number theory, astrophysics or electrodynamics (see, e.g.,
[I7] and the references cited therein).

Nevertheless, the broad applicability of these equations is not the only (nor prob-
ably the main) reason why their investigation has attracted the attention of numer-
ous mathematicians. The typical features of the qualitative as well as numerical
analysis of these equations are namely very specific and sometimes also surpris-
ing properties of their solutions. The crucial results concerning the stability and
asymptotics of the exact solutions are involved in papers [111 13} 14 [17], 18] 22]. The
different techniques ranging from the approach of Dirichlet series to the variation-
of-constants method have been successfully employed in these papers to analyse the
correct behavior of the exact solutions on the unbounded interval.

Since the last decade, a very intensive investigation of numerical methods for
various families of pantograph equations has been started. The frequent topics of
this analysis are numerical methods based on the Taylor polynomials as well as
the discussions on the stability of special classes of Runge-Kutta methods (see,
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e.g., [9, 15, 2T], 23]). In particular, special attention was paid to the trapezoidal
rule representing the favourite starting point to the analysis of standard numerical
methods. The discussions on this type of discretization resulted in a series of papers
[3, 10, 02, [20] describing its stability and asymptotic properties as well as some
problems on the compact domain. A general reference for the numerical analysis
of the pantograph equation and other delay equations is the book [I].

The purpose of this paper is to study the asymptotic behavior of the trapezoidal
rule applied to the nonautonomous pantograph equation

(1.2) y'(t) = a(t)y(t) + b(t)y(At), t=0,

where 0 < A < 1 is a real scalar and a,b are nonzero continuous complex-valued
functions on [0,00). In Section 2, we briefly survey essentials on the trapezoidal
rule for (II)) and ([[2)) including the references to some relevant results. Section
3 presents the description of the asymptotic properties of this discretization. The
main result of this section formulates the upper bound for the numerical solution
of (L2)) in terms of a solution of an auxiliary difference inequality. This asymptotic
result is applied to the numerical discretization of (LI) and compared with the
known upper bounds for the numerical and exact solution of (IT)). This comparison
shows that the trapezoidal rule discretization of (I.I]) with real scalars a, b retains
the same algebraic bounds as possessed by the exact solution. Some numerical
examples illustrating these results are given as well. In the final Section 4, some
possible extensions to the equation ([2)) involving a general (not specified) delayed
argument are discussed. The procedure employed in this generalization significantly
utilizes the Schroder equation. This functional equation and its solution appear also
in the main asymptotic result of this section generalizing the upper bound for the
numerical solution of the pantograph equation to the case of a related class of
equations with a general delay. To illustrate our asymptotic result we present some
numerical investigations of the differential equation with a power delayed argument.

2. SOME PRELIMINARIES

We consider the discretization of the equation (2] by use of the trapezoidal
rule in the form

(2.1) Yn+1 = Rpyn + Snh (ﬁnypmj + anypmj—t-l) , n=0,1,...,
where y,, = y(nh), h is the stepsize,

2.2 R = S =

( ) " 2— han+1 ’ " 2 — han+1

with a,, := a(nh), b, := b(nh) and

o = (An— [An] + bz“ An+XA—[An]))/2, Bpi=(0+ b’g” )/2 = o .

n n
The scheme () is proposed via the integration of (L.2) and the subsequent numeri-
cal discretization of both integral terms. While the replacement of the first integral
is quite standard, the utilization of a trapezoidal rule approximation of the second
integral requires some calculations, particularly a piecewise-linear interpolation of
the delayed term y(At) on the given grid. A more detailed description of this
procedure can be found in [3].
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Similarly we can discretize the equation (L2]) involving a general delayed argu-
ment, i.e. the equation

(2.3) y'(t) = a(t)y(t) + b(t)y(0(t), t=to,

where 6 is a differentiable function which is strictly monotonically increasing and
satisfies 0(tg) = to, O(t) < t for all t > to. If we set ¥(t) := 071(¢t), 0,, := O(to +nh),
0 := (0,, — to)/h, an := a(to +nh) and b, := b(ty + nh), where h is the stepsize,
then the above sketched procedure yields the recurrence relation

(24) Ynt1 = Rpyn + Snh (/BnyLénJ + anyLénj-Fl) )

where y,, =~ y(to + nh), Ry, S, are given by ([Z2]) and

o = %(enﬂ —0,) (w’(en) (0n — 16n]) + bg—jwenm (Brns1 = LM)) )

B = (0,11~ 6,) (wwn) T b"—“w’<9n+1>) ~ o

~on by

The asymptotic investigation of equations (2.3) and ([24) is less developed than
the study of their particular cases (L2 and (21)). Among those papers related to
our discussions on (Z3]) we refer to the papers [8, 22| [5], where some asymptotic
estimations for the equation (Z3)) with infinite time lag (i.e. such that lim sup(t —
0(t)) = oo as t — o0) have been performed. The derivation of the corresponding
trapezoidal rule discretization ([2.4) as well as discussions on the stability analysis
of ([2.4) belong to the topics of the papers [3] [10].

If we consider the autonomous case ([[l), then the corresponding discretization
1) can be simplified as

(25) Yn+1 = Ryn + Sh (ﬂny\_)\nj + any\_)\nj-i-l) )
where
2+ ha 2b A
2. = — = — = — — =1—-a,.
(2.6) R 5 g’ S 5’ a, =An— [An] + 5 > 0, Bn Qp

The formula (2X) has been exhaustively analysed on the compact as well as un-
bounded domain. In particular, a very curious property of (2.5]) has been reported
in [20]. Assuming that a,b are real scalars, |a| +b < 0and 0 < 1 — X < 1 it is
observed in [20] that the numerical solution based on the discretization (23] seems
to be rapidly tending to zero for large n although the corresponding exact solution
is not stable. The analysis of this phenomenon leads to the existence of a critical
index n* inversely proportional to 1 — X such that the solution y,, of 23] displays
a tendency to converge to zero before n = n*, but it is blowing up after n = n*.
In other words, numerical calculations have to be accomplished for indices n suf-
ficiently exceeding n* in order to mimic correctly the asymptotic behavior of the
exact solution.

Some related essential problems such as the formulation of upper bounds of the
solutions of the equation (23] as n — oo or discussions on its stability have been
the subject matter of the papers [3,[I0]. In particular, it follows from the performed
analysis that if |R| + hn(N)|S| < 1, where

n(A) = sup (an + |1 — anl),
nezt+
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then any solution y,, of (23] is bounded and, moreover, the asymptotic estimate
(2.7) Yn = O(n=1087) as n — 0o, v = |R| + hn(N)|S|

is guaranteed. To make this result effective it is necessary to specify n(\). This
specification turned out to be a nontrivial task requiring special procedures with
respect to rationality or irrationality of A. By [3, Theorem 6] the explicit values of
7n(A), 0 < A < 1 are given by the formula

1, A=1/1, 1€{2,3,...},
(2.8) n(A) =< 14+A— %, A=k/l, k,l€{2,3,...} and relatively prime,
1+ A, A irrational.

Let us emphasize that previous results have been derived in a more general case
when the equation (II) and its discretization (Z8]) involve the neutral term.

The important theoretical question about these numerical approximations is the
problem whether the numerical and exact solutions admit a related asymptotic
behavior on the unbounded domain. Recall that the qualitative behavior of the
solutions of the exact equation (L)) is well known (see, e.g., [I1l 13, [14]). In
particular, if Re a < 0, then the estimate

(2.9) y(t) = O~ leealb/aly a5t 5 00

holds for any solution y of (1)) and, moreover, if y(t) = o(t~'°8x I/el) as t — oo,
then y is the zero solution (in other words, the constant —log, |b/a| cannot be
improved). Comparing the estimates ([2.7) and (29)) of the numerical and exact
solutions, respectively, we can find a gap between these upper bounds. Indeed,
even if n(A) =1 (e.g. when A is a reciprocal of an integer), the value v becomes

|2 + ha| + 2h|b|
|2 — hal
and it requires only a routine calculation to check that v > |b/a| for any h > 0
provided —|a| + |b] < 0.
The aim of this paper is, among others, to fill in this gap and present (at least

partial) correspondence between the asymptotic behavior of the exact solution and
the numerical solution based on the discretization via the trapezoidal rule.

7= R|+ his| =

3. THE ASYMPTOTIC BEHAVIOR OF THE TRAPEZOIDAL RULE

This section presents the main result formulating the upper bound of the solu-
tions y,, of (21)). To describe this asymptotic estimate we introduce the inequality

which plays a key role in our investigations. To simplify the analysis we further

assume that

(3.2) S:= sup (ISn]) < o0, 71:= sup (|Bn| + |an]) < oo, R:= sup (|R:]) < 1.
nezZt nezZt nezZt
If we set
B hiiS
3.3 — s
(3-3) V=1 F

then we can present the explicit form of a solution of ([B.J).
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Proposition 3.1. Consider the inequality B1)) and assume that [B2]) holds. Then
the sequence

1 —logy ¥ _
(n - ﬂ) for ¥ > 1,

(34) On = —log, ¥
(n+ﬁ> for0<y<1

defines the positive solution of B) for allm € Z*, n > 1/(1 = \).
Proof. First let 4 > 1. Then (g,) is the nondecreasing sequence and we can write

1Sul b (18] 0(an) + lanlopan)+1) < Shilo[an+1 -

Substituting the corresponding form of g,, one gets

B 1 —logy ¥ _ A —logy 4
Shn <L/\nJ +1-— —) < Sh# ()\n— —)

1—A 1—-A
gh'f] 1 —logy ¥ ~ 1 —logy ¥
= — _ = ]_ — -
5 (” 1—A> (=R (=75
by use of (33]). The case 0 < 4 < 1 can be dealt with quite similarly. O

Now we can state the main assertion formulating the asymptotic estimate of all
solutions y,, of [21)).

Theorem 3.2. Let y, be a solution of ([Z1]), where we assume the validity of the
hypothesis B2) and let 7 be given by B3). Then

(3.5) Yn =0 (n~ logk:y) asn — 00.

Proof. We introduce the substitution z, = y,/0, in 21, where g, is given by

B4). Then

(3.6) On412n+1 = Rnonzn + Snh (0(xn) 2 1an) B + 0 an] 412 An ) +10n) -
We aim at showing that every solution z,, of (3.6]) is bounded as n — co. Choose
1+X 2-2A
. —_— ——— VAl
(3.7) 00 > max (1_)\, (1_)\))\>, oo €
and define points o,41 = [Z5=L], where m = 0,1, The condition ([B.7)
guarantees that o1 > og and g, > 0 for n = |Aog], [Aoo| + 1,.... Moreover, it
follows that
. 1+ A .
(3.8) A (oo—ﬁ)gomg)\ Om—1, m=12....
Further, we introduce intervals Iy := [[Aog],00] NZT, Lyy1 := [Om,Omy1] NZT
and denote
(3.9 By, :=sup(|zx|, k € UIj), m=0,1,2....
j=0

Let n* € Ly41, n* > 0., be arbitrary. Using the inequality |[A(n*—1)]+1 < oy
following from the definition of o,,+1 we wish to express and estimate z,+ in terms
of zx, where k € U}n:O I;. On this account it is necessary to distinguish the following
three cases:
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(i) Let Ry+—1 = 0. Then

1
Zne = oSt h(@Uane —)12A e -1)) B =1 F QL ~) 41 Z A -1 410 —1)
n*

Taking absolute values we get
1
|2n+| < Bm;‘sn*—lh(gt)\(n*—l)j Brnr—1 + Q[ A(n*—1) | +10n*—1)|-

Then using [(B.I) we can estimate |z,+| as

On*—1

|Zn*‘ <
On*

By,.

If ¥ > 1, then (g,) is a nondecreasing sequence; hence |z,+| < B,,. f 0 < 7 < 1,
then we can use [B.4]), (B8) and the binomial formula to derive the relation

(3.10) |2n+| < B (1 4+ K1 A™),

where K is a positive real constant.
(i) Let R, # 0 for any n € [om,n* — 1] N ZT. Multiplying equation ([B3.6) by
[T, # we obtain

n—1 n
1 1
A (ann H Rz) = Suh (013n] 2 an) Bn + O an| 412 An]+10) H R

l=0om l=0m
where we put H;:kl R% = 1 for any k € Z*. Summing this relation from o, to

n* — 1 we arrive at

n*—1 n*—1

onzns [ R%—@amzam = b Y Sy (epwzw B
l=0pm —Om
p ) 1
+ 0w 1 2an119p) ] 7
l=0om
i.e.
) - ——
ar = 2 [ B+t — D Sy 0wz B
On* l=0m On+ P=0m
n*—1
+opg nzpliiep) [ R
I=p+1
Then
n*—1 1 n*—1 n*—1
(B11) el < B [ 2 [T R+ — 3 - R [ 1R
Onx 2, Onr 25, l=p+1

by use of (81]). Now we consider the obvious identity

n*—1 n*—1
(=R, I] IRI=AT] IR
l l=p

=p+1
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Substituting this into (BII]) and summing by parts one gets

n*—1 n*—1
|zns| < Bm H |Rl\+— P H | Ry
l=om P=0m
0 n*—1 0 n*—1 n*—1
B |2 11 1Rl 1= Hle eI ||
=0, l=0m p=0m l=p+1
n*—1 n*—1
B, H |Rl|
P=0m l=p+1
1 n*—1 Ag n*—1
B 1—— —=F A R
m Qn*zl_m‘ H|l‘
P=0m P l=p

If 4 > 1, then p, is nondecreasing; hence Ag, > 0 and |z,+| < B,,. If 0 < 4 < 1,

then Ap, is negative and nondecreasing; hence

|2 |

A
sy
3
|
T
Egz
|M*
—
E

Qdm+1(1 - R)

Substituting the corresponding form of g,, we can derive

L_y-1 logy 7
Aoy, om T )R- 04 ) )
Oomss (1= R) (1= B)(0mp1 + 5) 087

Considering (3.8) and using the binomial formula we arrive at

—Aos,, < log, ¥

— < = < Ko™
o (1= R) — A(1 = R)on,
where
log, 4
(3.12) Ky = o R)i:ﬁ vy >0.
Consequently,
(3.13) |2n | < B (1 4+ K2 A™).

(iii) Let Rp«—1 # 0 and Ry = 0 for some k € [o,,,n* — 2] N Z". The proof
technique applied in this case is a combination of the procedures utilized in cases

()-(ii), and therefore we present only the main idea.
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First we denote o* := sup(k, k € [0y, n* — 2] NZT and Ry = 0). Then we
multiply equation ([B.6]) by Hlnza*+1 R% and sum from o* + 1 to n* — 1 to obtain

n*—1 n*—1

0o 41 h
e = 2 T R+t == 3 Splopmiziam B
On> I=o*+1 " p=or 41
n*—1
+oppir1zppnan) [ R
l=p+1

The definition of ¢* implies R,+ = 0; hence by case (i) we can use the estimate
‘ZU*+1| S Bm(l + K1>\m) .
Then the application of ([B1]) yields

n*—1 n*—1 n*—1
m QO‘* ].
e | < B+ KA (222 T IR+ — 3 (1= IRDey [T I1RI):
L S| Onr l=p+1

The right-hand side of this inequality is a modification of the corresponding term
involved in (BII)) with o, replaced by ¢* + 1. Using the same line of arguments
as given in case (ii) we arrive at

(3.14) 2n+] < B (1 4+ K{A™) (14 KoA™) < B (1 4 KsA™),

where K3 is a positive real constant.
Summarizing cases (i)-(iii), the estimates (B.10), (B13) and B.I4]) imply that
|2n+| < Bn(14+ KX™) as m — 0o

for arbitrary n* € I,,41, n* > o, and a suitable K > 0. Consequently,

1 . K
(3.15) Bry1 < By (14 KA™) SBOH(l-l-K)\j) SBOexp{m}
§=0

and the sequence (B,;,) is uniformly bounded. The estimate ([B.3]) is proved. O

Remark 3.3. The significance of the hypothesis [B:2)) consists in the fact that it
provides an explicit form of a solution g,, of the inequality (B]) and thus enables
us to formulate the effective asymptotic criterion for the trapezoidal rule [21]). Let
us emphasize that Theorem can be extended to particular cases of (ZI]) not
satisfying some of the assumptions involved in (32]).

To outline this possible extension we first assume that |S,| is a nondecreasing
and unbounded sequence, i.e. S = oo (the validity of other assumptions of (&2 re-
mains preserved). Then the inequality (1)) always admits a positive and increasing
solution g,. Indeed, e.g., the sequence

on = (] Sul/(1 = R))"

satisfies (BI) for all n large enough. Now it is easy to verify that the technique
applied in the proof of Theorem is utilizable also provided such a solution g, is
considered instead of ([B.4]). In particular, Ap, > 0 for all n large enough and we
can omit the parts of the proof discussing the asymptotically stable case. Then the
asymptotic bound (B3] presented in Theorem can be slightly modified as

(3.16) Yn = O(0n) as n — 0o.
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Of course, this asymptotic estimate (with the above specified g, ) may be too rough
in particular cases. Then, considering a concrete equation, we can try to find a
more suitable (positive and increasing) solution g,, of (B.I)) representing the stronger
upper bound sequence for the estimate ([BI6]). The illustration of this procedure is
given in Example 3.4.

Similarly we can discuss the case 7 = co as well as the case S = ij = co. The
possible omission of the last condition of (8:2)), namely R < 1, is the most interesting
point. First note that if |R,| > 1 for all n sufficiently large, then the inequality
(BI) does not admit any positive solution g,,. In particular, if a,, = a is a constant,
then the assumption R < 1 (which is satisfied if and only if Re a < 0) cannot be
omitted. If a, is not a constant, then we can consider the case where |R,| < 1 for
all n sufficiently large and nh_}rr;o |R,| =1, i.e. R=1. Under some particular choices

of b, the inequality (B]) can admit a positive and nondecreasing solution g, ; hence
the estimate (B10) remains valid. In particular, if we substitute g, = const into
(B, then we obtain the inequality

[Snlh (1Bn] + lan]) <1 =Ry, n=0,1,...,

which is the condition guaranteeing (without assuming ([3.2])) the stability of the dis-
cretization (2.1). The case where p,, decreases is much more complicated. Besides
the determination of the form of g,, we have to verify some additional nontrivial re-
quirements on g, and a,, following from calculations performed in the corresponding
part of the proof of Theorem

To summarize, in particular cases the omission of some assumptions involved in
the hypothesis ([B.2)) is possible, but searching for a suitable solution g, of (3.1)
without assuming ([32)) is, in general, a difficult task (especially in the asymptoti-
cally stable case).

The following example illustrates the extension of Theorem [3.2]to the case where
the assumption S < oo is not satisfied.

Example 3.4. We consider the differential equation
y'(t) =ay(t) +bty(t/2), t=0,

where a < 0 and b # 0 are real scalars. The discretization of this equation based
on the trapezoidal rule ([21)) yields the recurrence relation

(317) Ynt1 = Ryn + th(ﬁnyLn/Qj + anyLn/QJ—i-l)
with
n_ 2+ ha _ 2bnh
- 2—had’ " 2—ha
and
o = i—l—ﬁ, n is even, 5, = %—I—ﬁ, n is even,
" 3+ L, nisodd, " 1 n is odd,

ie a,+06, =1+ % foralln = 1,2,.... Although the assumption S < oo involved
in the hypothesis ([B.2]) is not satisfied, we outline the applicability of Theorem
regardless of the invalidity of [3.2]). It is enough to find an appropriate solution of
the inequality

(3.18) |Sn|h(Bro|ns2) + anons2)+1) < (1 —|R[)on



2116 J. CERMAK AND J. JANSKY
resulting from (3. On this account we consider the auxiliary functional equation

t
ptw(§) = qp(t), t>0,

where p, ¢ > 0 are real scalars, which turns out to be of key importance in this
investigation. To our knowledge, one of the first papers discussing this equation
was that of [6]. Utilizing the Mellin transform method, the searched solution ¢ was
derived in the form

(p(t) _ tlog2 %—&-%(logz t+1) )

This relation (with p = 2|b|h?/|2 — ha| and ¢ = 1 — |2 + ha|/|2 — hal|) can be only
slightly modified to obtain the form

9
n—s p1
1 n = 2 (p — 2)l082 §+3(logz(n=2)+1)
(3.19) 0 =""2n-2)

defining the required solution of (B8] for n > 5. Indeed, since g,, is eventually
increasing and o, + 3, = 1 + 5 we can simplify the inequality (18] as

1
|Sn| h(]- + %)QLn/2J+1 < (1 - |R|)Qn

Then substituting ([B.19) into this relation and using some straightforward calcula-
tions one can check the validity of this inequality.
Then Theorem with respect to Remark [3.3] implies that

2|b|h2 1
yn = O <n1°g2 2=hal-[2+ha T2 (1082 "+1)> as n — oo

for any solution y,, of (BI7).

Our next aim is to reformulate Theorem in the most important particular
case, namely when a,, = a and b,, = b are complex constants. Hence we take into
our considerations the autonomous pantograph equation (II]) and its discretization
@3). Applying Theorem it is easy to specify the meaning of the symbols S, 7
and R occurring in the hypothesis [32). Obviously S = |S|, R = |R| and 7 = n()\),
where the explicit values of (\) are given by ([2.8). Moreover, the condition |R| < 1
holds if and only if Re a < 0. We note that this inequality together with the relation
la| > |b] represents the asymptotic stability condition for the exact equation (I.I))
(see [111, [14]).

Since the remaining assumptions stated in ([3.2)) become trivial, we arrive at the
following

Corollary 3.5. Lety, be a solution sequence of the discretization ([2.3)-28), where
Rea<0,b#0and 0 < A< 1. Then

hn(MS|

(3.20) Yn =0 (n~ logx :7) as n — 0o, v = TR

Remark 3.6. We can easily compare the relation [3.20) with the asymptotic estimate
7)) derived in [3] under the assumption v < 1. Considering this inequality we get
hn(N)|S|

= h )\ =
gl 1_‘R|7|R\+ n(NIS| =1,
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where the equality sign between 74 and v occurs if and only if v = 1. In other words,
substituting the values R and S from (28] into the inequality ¥ < 1 we can easily
check that the solution sequence of (2.5)) is bounded if

4Re a
<0,
|2+ ha| + |2 — ha| ~

which is the same stability condition as the one derived in [3] and [10] by use of
the inequality v < 1. However, considering the asymptotically stable case (v < 1),
the formula ([B20) provides a stronger asymptotic estimate than the formula (27
yields. More precisely, both formulae affirm the algebraic decay of y,, but the
asymptotic property ([B.20) guarantees the stronger decay rate.

Then the natural question arises, namely what is the relation between the upper
bound (29) derived in [I1] 13| [14] for the exact solution of (II) and our upper
bound (320) derived for its numerical solution. The discussions of this type are
very frequent in numerical investigations of the pantograph equation and can be
found in many of the above cited papers. In particular, closely related to our
question is the paper [19] discussing (among others) qualitative properties of the
f-method for the pantograph equation. As is observed in this paper, we need to
choose an appropriate numerical method so that the numerical solution can retain
as many of these (asymptotic) properties (of the exact solution) as possible. Note
that one of these asymptotic properties discussed in [19] is just the asymptotic
formula (29); assuming Re a < 0 and |a| > |b] it is reported that the numerical
solution of ([II]) by the backward Euler method has asymptotically the same decay
rate as the exact solution.

Answering our question we first consider the case where a is a real constant (b
can be complex). Then we can observe that 4 occurring in ([B.20) becomes

- [ 1b/aln(N) for hla| < 2,
1 AlbIn(N)/2  for hla| > 2.

Re a <0, n(A\)|b] +

Hence the value |b/a| known from the asymptotic description of the exact scalar
pantograph becomes |b/a|n(A) under the discretization (Z3) with the modest re-
striction on the stepsize h. In particular, if A is a reciprocal of an integer, then both
the exact solution and the numerical solution by the trapezoidal rule have exactly
the same decay rate.

Now we consider the case where both parameters a, b are complex. If Im a # 0,
then the previous relation for ¥ is no longer valid and it turns out that 7 is always
greater than |b/a|n(A\) and h|b|n(A\)/2 provided hla| < 2 and hla| > 2, respectively.

Example 3.7. We consider the initial value problem

(3.21) y'(t) =ay(t) +by(t/2),  y(0) =1,
where a < 0 and b # 0 are real scalars. The trapezoidal rule (2.5]) applied to ([B.21])
becomes

322 yoir = {

Yo =1 )
where the symbols R and S have been introduced in ([2.6). The formula ([3:22) has

been thoroughly discussed in [I0] especially with respect to related stability proper-
ties of (8:22)) and the corresponding exact equation ([B.2I). Applying Corollary

Ry, + %hS(y"T_l + BynTH), n is positive and odd,
Ry, + %hS(?)y% + y%H), n is nonnegative and even,
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we can extend the performed analysis of ([3.22]) and formulate the upper bound
Yn = O (nlog? |b/“|> as n — 00,

which is valid for the solution y, of [3:22) provided 2 4+ ha > 0. We emphasize
that this estimate coincides with the asymptotics of the exact pantograph equation

BZ1) described, e.g., in [13].

In the next two examples we specify the parameters a, b in (B2I) and discuss
the upper bound for the trapezoidal rule [8:22)) with the stepsize h = 0.05.

Example 3.8. First we choose a = —1 and b = —0.5 in [32]]); i.e., we consider
the initial value problem

(3.23) y'(t) = —y(t) — 0.5y(t/2), y(0) =1, t>0.
Then

v =|R| + hy(N)|S| ~ 09756, 4 = 7h177(A|)]|5| — g — 0.5
and the asymptotic estimates ([27) and ([B20) become
(3.24) Yn = O (n™009%) as n — 0o
and
(3.25) Y =0 (n7) as n — 0o,

respectively. We emphasize that (3.25) presents the same decay rate for the nume-
rical solution as the corresponding exact solution admits. Our next intention is the
computational presentation of the estimate (3.:20]) and its graphic comparisons with
the estimate (3:24) as well as with the real behavior of the discretization ([3:22). To
make the estimate ([B:25) more applicable from the computational viewpoint it is
necessary to follow some steps performed in the proof of Theorem and specify
the O-term in ([B.23), i.e. determine a constant L; > 0 such that

[Yn| < Lin™* for all n large enough.

It follows from the proof of Theorem (part (ii) and the relation (B15]) with
respect to K = K>) that L1 = By exp{:£%}, where the constants By and K5 can
be calculated via (B9) and BI2) as

41
gp — 3 '

(o
By = sup(|yn(n+2)|, n € [Lé’J,ao} NZT),  Ky=

Now we choose o( representing the starting point for the asymptotic estimation
performed in the proof of Theorem By 37), it is enough to put o9 = 7.
However, to obtain a reasonable computational and especially graphic illustration of
B28), we suggest the choice of a larger value of og, say og = 150. Then Ks ~ 0.279
and for the specification of By it remains to determine (or at least estimate) the
values of y,, for n = 1,2,...,150. By [19] Theorem 2], these values are uniformly
bounded by |y(0)| = 1. However, to obtain a stronger majorant constant L, we
prefer their direct calculation via (3.22). Then By ~ 1.9369; hence L; ~ 3.3834
and we can make precise the upper bound ([B28]) for the solution sequence y, of

B22) in the form

lyn| < 3.3834n71 for all n large enough
(more precisely, for n = 150, 151,...).
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Now we consider the estimate (324]). Since y,, = y150 =~ 0.012, we can choose
the corresponding majorant constant Ly specifying the O-term in [B.24) as Lo =
0.012 x 150%-9356 ~ 0.0144 (in other words, to obtain a sharp majorant constant we
choose such an Lo that the values of y, and its estimate Lon 09356 coincide for
n = 150). This implies

Y| < 0.0144 1~ 0-0356 for all n large enough
(in the sequel we can see that this estimate holds for n = 150, 151,...).

Now the gap between both asymptotic results can be simply illustrated by Fig-
ure 1. We denote here by 3" (¢) the linear interpolation of (y,)?=g, i.e.

n=0 »
Dh—t  t—nh
yh(t):(n+h) Un + h” Unit, L€ [nh (n+1h],  n=01,2,...,

and consider ¢ € [7.5,400] (note that the left endpoint ¢ = 7.5 corresponds to the
starting index o9 = 150 of the asymptotic estimation via the relation ¢t = 150 h).
Figure [ plots the numerical solution y" of ([323) as well as its upper bounds
g(t) = 3.3834 ht =1 ~ 0.1692¢ 1 and f() = 0.0144 00356400356 (129 4~0-0356,

1
]
0.02 1 ¢(t)
\
]
0.015 1!
1
- L _________In
0.01 |1
\
\\
0.005 1| ™.
0 /\ \}“-&——;—:; _______ e S -
75| \—"100 200 300 400 ¢
~0.005 +
y"(t)
—0.01 4

FIGURE 1. The solution y” and its upper bounds

Example 3.9. Now we illustrate the unstable case of equation ([.2I]) by the choice

a = —0.5 and b = —2. Consequently, we investigate the initial value problem
(3.26) y'(t) = —0.5y(t) — 2y(t/2), y(0) =1, t>0.

Then v = %&‘{‘Sl = }§| =4 and we can rewrite ([3.20) as

(3.27) [yn| < Lan? for all n large enough,

where L3 > 0 is a suitable real constant. Following the same procedure as in the
previous case and noticing that 4 > 1 it follows that L; = By, where

By = sup(|yn(n —2)72|,n € H?J,O’()] nzt).
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To obtain a satisfactory graphic illustration of our estimate we can choose, e.g., the
same value of oy as in Example B.8 i.e. o9 = 150. Then By = 0.000055, and the
asymptotic estimate (3.27) becomes

Y| < 0.000055 n? for all n large enough .

For the sake of completeness we note that, considering the unstable case, we can-
not employ the upper bound (Z7) because its validity is restricted by the stability
condition v < 1 (see [3)]).

Now we consider the numerical solution y"(¢) of the equation ([B.26), where
t € [7.5,400] and its upper bound g(t) = 0.000055t%/h? ~ 0.022007 t2. Figure
plots (¢,1ogo(|y" (t)| + €)) and (t,log,o g(t)), where & = 2.23 x 107308,

FIGURE 2

4. SOME GENERALIZATIONS

In this section we discuss possible extensions of Theorem and a related proof
technique. Some of these extensions are quite straightforward (e.g., the involvement
of several proportional delays into our considerations), while others require some
additional operations. We focus especially on the asymptotic investigation of the
trapezoidal rule

(41) Ynt+1 = Rnyn + Sph (ﬁnyténj + anyténprl) )
which originates from the discretization of the differential equation
(4.2) Y (t) = alt)y(H) + BOYO(D), t>to,

involving a general delayed argument (see Section 2).
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To analyse the asymptotics of (Il), we have to appropriately modify the key
inequality (3I)). As might be expected, the relation

(43)  1Salh (18aleis, + lanleg, 1) < 1= 1Rl gy n=0,1,...

seems to be the natural replacement of (BJ]). To confirm this conjecture we start by
searching for a suitable solution of ([£3]). On this account we consider the auxiliary
functional equation

(4.4) p(0(t) = kp(t),  rw=0'(to), t=to,

which is usually referred to as the Schréder equation. It is known (see, e.g., [16])
that if 6 € C?([tg,0)), O(to) = to, O(t) < t for all t > to, 0’ is positive on [tg, c0)
and 0'(tgp) < 1, then there exists a unique strictly increasing and continuously
differentiable solution ¢ of ([A]) satisfying ¢'(tp) = 1. This solution is given by the
formula

(4.5) o(t) = nli_}rg@fﬁ‘”(Q"(?ﬁ) —tp), t>t,

where 8™ means the n-th iterate of . In the sequel we mention a slightly modified
version of this result, where a further condition on 6 (namely 6’ nonincreasing) is
imposed to ensure some additional properties of ¢. We utilize these properties in
the proof of the main result of this section.

Proposition 4.1. Let § € C?([tg,00)) be such that 0(ty) = to, 0(t) < t for all
t > to, 0’ is positive and nonincreasing on [tg, 00) and 6'(tg) < 1. Then the function
¢ defined by @A) is the solution of @A) such that ¢’ is positive, continuous and
nonincreasing on [tg,00) and, furthermore, ¢'(t)/o(t) < 1/(t —to) for all t > tg.

Proof. Differentiating (£4) one can obtain
PO (t) = ke (t),  t=to,
which implies that ¢’ is positive and nonincreasing. Similarly,
) P ) 1

(P(t) Lp(t) — (p(to) - (pl(t)(t _ tO) = ‘_ tO’ t>1tg.

O

Throughout this section we shall assume that all the assumptions imposed on
6 in Proposition ] are satisfied and that ¢ is the function defined by (£H]) with
the properties guaranteed by Proposition ]l Then we consider the differential
equation (L2)), its trapezoidal discretization () and the inequality @3). To
formulate the upper bound of the solutions of ([1]), it is necessary to present the
exact form of the solutions of (£.3).

Proposition 4.2. Consider the inequality (L3) and assume that B.2)) holds. Fur-
ther, let t* > to be a (unique) real root of the equation t — O(t) = h and let
k* = |(t* —to)/h] + 1. Then

_ [ (plto+ (n—k*)h)) =087 for 5 > 1,
" (plto+ (n+k*)h)) 78T for0<F <1,

where 4 is given by B3)), defines the solution of [@3l). Moreover, if ¥ > 1, then
Ap,, is nonnegative and if 0 < 5 < 1, then A, is negative and nondecreasing.

(4.6)
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Proof. First let 4 > 1. Then g,, is nondecreasing and

|Sn| h (wn‘QLénj + |O‘n‘QL§,LJ+1> < Shijg|g, |11
< Shij(p(to + Onh + h — k*h)) ™18 7
= Shij (p(0n + h — k*h)) 187
< Shii(e(Onx-)) "% = (1= R)on

by use of (@4]).

The case 0 < 4 < 1 can be dealt with quite similarly. Moreover, the additional
properties of Ap,, follow from the corresponding properties of . O

Remark 4.3. The sequence (@) is defined for all n > k* provided 4 > 1. If
0 < ¥ < 1, then p,, defines the solution of ([@3]) for all n > 0.

Now we can formulate the following generalization of Theorem

Theorem 4.4. Let y, be a solution of ([&Il), where we assume the validity of the
hypothesis B.2), let 5 be given by B3) and let k = 0'(ty). Then

(4.7) Yn = O ((Lp(n))_logn 7) as n — 0o .

Proof. The method of proof is a modification of the procedure utilized in the proof
of Theorem First we introduce the substitution z, = y,/on, where g,, is given

by ([@6l). Then

On+17Zn+1 = Rnonzn + Snh (Q[énJZLénJﬁn + Q[énJJrlZLénJJrlan) :

-1 * —
Choose oy > max (117, M)’ oo € Z" and define Iy := [|0s, ], 00] NZT,
971 771_1 h)—
Om+1 == | (t°+(ah )h) tOJ, Imt1 = [0m,Oms1] NZT, By = sup(|zi], k €
U;.”:O I;), m =0,1,.... Now considering arbitrary n* € I, 41, n* > o, we distin-

guish the following cases:
(i) Let R,+«—1 = 0. Using the same line of arguments as given in the proof of
Theorem we arrive at the estimate

|Zn*| S On*—1 Bm )

n*

If ¥ > 1, then |z,+| < By,. If 0 < 4 < 1, then we utilize the mean value theorem,
the binomial formula and properties of ¢ guaranteed by Proposition 1] to rewrite
the term gp«_1/0n~ as

Ont—1  _ ( o(to + (n* + k*)h) >1ogm
On p(to + (n* — 1+ k*)h)
_ <1 i o(to+ (n* +k*)h) — p(to + (n* — 1+ k*)h)>10gh—,v
p(to + (n* — 1+ k*)h)
* * log,. ¥ log, 7
¢ (to + (n* — 1+ k*)h)\ 1\ o5 K,
1+h <(1+ 1 <14 K1
< * o(to + (n* — 1+ k*)h) = Jrgm = +0m,
where K is a positive real constant. Consequently,
K

m

IN
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(ii) Let R, # 0 for any n € [o,,,n* —1]NZ*. Applying the corresponding steps
performed in the proof of Theorem we can derive the estimate

1 n*—1 AQ n*—1
11— — ——P A R
o 2 ot LR

If ¥ > 1, then |z,«| < B,,. If 0 < 4 < 1, then, by Proposition £2, Ap, is negative
and nondecreasing; hence

A
Q0m+1(1 _R)

To estimate the ratio term we use the mean value theorem and the monotonicity
of ¢’ to obtain

~Dos, = (ot (o + KR — (plt + (o + 1+ k*R)) 05T
< hlog, A(e(to + (om + k*)h) 78T (to + (om + k*)h) -
Similarly,
0041 (p(to + (omyr + £* )h))flOgN:Y
> (0 (to+ (o — 1)h) + k*h)) 1087
> (Cp(0~ (to + (om — 1)h))) " 108x 7T

Vv

(S) totto+ (om 1y

by use of (@), C' being a suitable positive real constant. Consequently,

—A05,  _ (C)lf’m hlog, 7 ¢ (to + (om +k*)h) _ K>
R) ~ \&

and

K

m

where K is a positive real constant.

(iii) Let Ry«—1 # 0 and Ry = 0 for some k € [0y, n* —2]NZ". This case is fully
covered by the corresponding part of the proof of Theorem

The cases (i)-(iii) imply that

1
|2n+| < B <1+O()> as m — 00,
Om

where n* € I,,,11 and n* > o, is arbitrary. Hence B,,11 < B,,,(1 + O(1/0,)) and
it remains to show that the product H;-n:l(l +1/0;) converges as m — oo. Using
the property dp(t + tg) > (ot + tg), t > 0, 6 > 1 following from the properties of
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¢ stated in Proposition £ we can write

1
Omt1 2 E(eil((am —Dh+tg) —to — h)
17 4,1
= - 2 o((0m — 1)+t ftfh)
(97 Collon = Dh+t0) o
1/ _ 1
> (¢ (el om = Dh+10) —to — h)
1 1
= —0op———1;
K
hence 0, > K7™ (09 — 12£) and the corresponding infinite product converges. Now
the validity of [{1) follows from the boundedness of B, as m — cc. O

We can verify that Theorem [£.4] actually represents the direct generalization of
Theorem 321 Indeed, if 6(t) = X, 0 < A < 1, ¢ > 0, then all the assumptions of
Proposition [4.1] are satisfied and the corresponding Schroder equation

p(At) = Ap(t), t=>0

admits the identity function as the required solution. Now obviously the asymptotic

property (&) becomes ([B3).

To illustrate the applicability of Theorem [£.4] also to other types of delays we
consider the differential equation ([.2]) with the power delayed argument in the form

(4.8) y'(t) = a(t)y(t) +b(t)y(t”), t=>1,

where 0 < w < 1is areal scalar and a, b are nonzero continuous functions on [1, co).
The trapezoidal formula (£ now yields the recurrence relation

(4.9) Un+1 = Rpyn + Sph (5ny|-(1+n};’)w—1j + anyL(1+n;};)w—1J+1> ,
where R,,, S, are given by (Z2) with a,, = a(1 + nh), b, = b(1 + nh) and
1 w w
1 h)“ —1 1 h)¥ —1
x[(1 —l—nh)l_w(( —|—nh) - L( —|—nh) 1)
b, _, (1 h+h)*—1 1 h)“ —1
NSNS e Dt SN Ch 0 Ml )Y
bn h h
1
B Qhw[( +nh+h) ( —|—nh)}

X [(14+nh)'= + bZH (1+nh+h)"] —a,.
n
To apply the conclusion of Theorem 4] it is easy to check that the assumptions
imposed on # in Proposition ] are satisfied. Then the asymptotic property (£7)
yields the effective result for the equation ([£9]) provided we are able to solve expli-
citly the corresponding Schréder equation (d4]). This task is not difficult because
considering 0(t) = t* the relation (£4) becomes the functional equation

p(t?) =we(t),  t=1

with the solution ¢(t) = logt. Hence, we can present the following consequence of
Theorem [4.4]
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Corollary 4.5. Let y, be a solution of ([E3), where we assume the validity of the
hypothesis B2) and let 7 be given by B3). Then

(4.10) yn =0 ((logn)*logwﬁ) as n — 00.

Discussing some particular cases of (A8 we can again observe close similarities
between the formula (@.I0) and the asymptotics of the exact equation ([A.8]) investi-
gated, e.g. in [0]. Indeed, it follows from Theorem 3.1 and Corollary 3.6 of [5] that
under some additional assumptions on the coefficients a and b, the upper bound for
the exact solution of (X)) can be expressed via the function (logt)~?, § = log,, Q,
where @ > 0 is a majorant constant of the ratio |b(¢)/a(t)| which is assumed to be
uniformly bounded on [1,00). For other results discussing this type of asymptotics
of the differential equations with a power deviating argument we refer to paper [22]
(the delayed case) and to [7] (the advanced case).

These considerations warrant our posing the conjecture that the asymptotic
property

Yn = O(0n) as n — oo,

where g, is a solution of (£3) with the properties mentioned in Proposition A1
might be the “best” upper bound of the solutions y,, of ([@Il). The discussion and
the precision of this conjecture will be the subject of future research.

The investigation of the common asymptotic properties of differential equations
and their numerical discretizations is closely related to discussions on the unification
of the differential and difference calculus. Recently, these discussions resulted in
the origin and development of the theory of time scales (see [2]), which, among
others, provide the flexible framework for the joint investigation of the qualitative
properties of differential equations and their discretizations. Some basic results
concerning delay equations are the subject of the paper [4], where the simplest
(Euler) discretization of these equations has been considered.
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