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SOLVING PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL

EQUATIONS VIA AVERAGING OVER CHARACTERISTICS

G. N. MILSTEIN AND M. V. TRETYAKOV

Abstract. The method of characteristics (the averaging over the character-
istic formula) and the weak-sense numerical integration of ordinary stochastic
differential equations together with the Monte Carlo technique are used to
propose numerical methods for linear stochastic partial differential equations
(SPDEs). Their orders of convergence in the mean-square sense and in the
sense of almost sure convergence are obtained. A variance reduction technique
for the Monte Carlo procedures is considered. Layer methods for linear and
semilinear SPDEs are constructed and the corresponding convergence theorems
are proved. The approach developed is supported by numerical experiments.

1. Introduction

A lot of attention has recently been paid to numerical methods for stochastic par-
tial differential equations (SPDEs). Various numerical approaches for linear SPDEs
are considered, e.g., in [31, 1, 19, 17, 34, 10, 11, 3, 7, 25, 5] (see also the references
therein). The interest in linear SPDEs of parabolic type is mainly due to their well-
known relation with the nonlinear filtering problem [18, 16, 28, 32, 31] although
they have other applications as well (see, e.g., [32] and the references therein). At
the same time, very little has been done in studying applications of the Monte Carlo
technique to solving SPDEs while such a technique is the well-established tool for
solving problems of mathematical physics associated with multi-dimensional (de-
terministic) partial differential equations (see, e.g., [23] and the references therein).
The aim of this paper is to exploit the method of characteristics (the averaging
over the characteristic formula, the generalization of the Feynman-Kac formula)
and numerical integration of (ordinary) stochastic differential equations (SDEs) to-
gether with the Monte Carlo technique to propose numerical methods for linear
SPDEs of parabolic type. The Monte Carlo methods are efficient for solving high-
dimensional SPDEs when functionals or individual values of the solution have to be
found. We note that the method of characteristics was exploited in [3] to propose
a particle method for the Kushner-Stratonovich equation, and it was used in [25]
for constructing Monte Carlo methods for a less general class of SPDEs than the
one considered here.
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The probabilistic approach based on the method of characteristics is also ex-
ploited to construct new layer methods for SPDEs (see this idea in the case of
deterministic PDEs in [21, 23]). The layer methods are competitive with finite dif-
ference schemes (see [10, 34] and the references therein); they can be used when one
needs to find the SPDE solution everywhere in the space-time domain [t0, T ]×Rd.
It was shown in the deterministic case [21, 23] that layer methods have some advan-
tages in comparison with conventional PDE solvers. We expect that they possess
remarkable properties in the SPDE case as well. We construct layer methods both
for linear and semilinear SPDEs. Semilinear SPDEs are used for modelling in
physics, biology and chemistry (see [4, 13] and the references therein). For other
numerical approaches to semilinear SPDEs, see, e.g., in [8, 12, 2] (see also the
references therein).

In Section 2 we recall probabilistic representations (the method of characteristics)
for SPDEs of parabolic type from [15, 16, 28, 32]. In Section 3 we propose a
number of approximation methods for the SPDEs and study their mean-square
and almost sure (a.s.) convergence. The methods are based on approximate solving
of the characteristic SDEs, for which we exploit both the mean-square and weak-
sense numerical integration. Section 4 deals with variance reduction methods that
are important for any Monte Carlo procedures. We propose layer methods for
linear SPDEs in Section 5 and for semilinear SPDEs in Section 6. Some results
of numerical experiments are presented in Section 7. We solve numerically the
Ornstein-Uhlenbeck SPDE and, in particular, demonstrate the effectiveness of the
proposed variance reduction technique.

2. Conditional probabilistic representations of solutions

to linear SPDEs

Let (Ω,F , P ) be a probability space, Ft, T0 ≤ t ≤ T, be a nondecreasing family
of σ-subalgebras of F , (w(t),Ft) = ((w1(t), . . . , wq(t))

�,Ft) be a q-dimensional
standard Wiener process. Consider the Cauchy problem for the backward SPDE

−dv = [Lv + f(t, x)] dt+

q∑
r=1

[Mrv + γr(t, x)] ∗ dwr(t), (t, x) ∈ [T0, T )×Rd,

(2.1)

v(T, x) = ϕ(x), x ∈ Rd,(2.2)

where

Lv(t, x) := 1

2

d∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
v(t, x) +

d∑
i=1

bi(t, x)
∂

∂xi
v(t, x) + c(t, x)v(t, x),

(2.3)

Mrv(t, x) :=

d∑
i=1

αi
r(t, x)

∂

∂xi
v(t, x) + βr(t, x)v(t, x), r = 1, . . . , q.

The notation “∗dwr” in (2.1) means the backward Ito integral. We recall [32] that
to define this integral one introduces the “backward” Wiener processes

(2.4) w̃r(t) := wr(T )− wr(T − (t− T0)), r = 1, . . . , q, T0 ≤ t ≤ T,

and a decreasing family of σ-subalgebras F t
T , T0 ≤ t ≤ T, induced by the increments

wr(T )−wr(t
′), r = 1, . . . , q, t′ ≥ t. A σ-algebra induced by w̃r(t

′), t′ ≤ t, coincides



SOLVING PARABOLIC STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 2077

with FT−(t−T0)
T . Then the backward Ito integral is defined as the Ito integral with

respect to w̃(s):∫ t′

t

ψ(t′′) ∗ dwr(t
′′) :=

∫ T−(t−T0)

T−(t′−T0)

ψ(T − (t′′ − T0))dw̃r(t
′′), T0 ≤ t ≤ t′ ≤ T,

where ψ(T − (t− T0)), t ≤ T, is an FT−(t−T0)
T -adapted square-integrable function.

The process v(t, x) is F t
T -adapted; it depends on w(s) − w(t), t ≤ s ≤ T. We pay

attention that the more precise notation for the solution of (2.1)-(2.2) is v(t, x;ω),
ω ∈ Ω, but we use, as a rule, the shorter one, v(t, x).

Assumption 2.1. We assume that the coefficients in (2.1) are sufficiently smooth
and that their derivatives up to some order are bounded (in particular, it follows
from here that the coefficients are globally Lipschitz). Furthermore, it is supposed
that c, βr, f, and γr are bounded themselves.

Assumption 2.2. We assume that the function ϕ(x) is also sufficiently smooth
and that ϕ(x) and its derivatives up to some order belong to the class functions
satisfying an inequality of the form

(2.5) |ϕ(x)| ≤ K(1 + |x|κ), x ∈ Rd,

where K and κ are positive constants.

Assumption 2.3. We assume that a = {aij} is symmetric and that the matrix
a− αα� is nonnegative definite (the coercivity condition).

Assumptions 2.1-2.3 ensure the existence of a unique classical solution v(t, x)
of (2.1)-(2.2) which has derivatives in xi, i = 1, . . . , d, up to a sufficiently high
order satisfying an inequality of the form (2.5) a.s. with a positive random variable
K = K(ω) for which the moments of a sufficiently high order are bounded (see
[14, 32]). They are sufficient for all the statements in Sections 3 and 4 (some
additional assumptions are needed in Section 5). At the same time, they are not
necessary and the methods constructed can be used under broader conditions. We
note that an attempt to weaken the conditions would inevitably lead to difficulties
of a technical nature and, as a result, to a less clear exposition together with an
unnecessary increase of the paper’s length.

Let a d× p matrix σ(t, x) be obtained from the equation

σ(t, x)σ�(t, x) = a(t, x)− α(t, x)α�(t, x).

The solution of the problem (2.1)-(2.2) has the following conditional probabilistic
representation (the conditional Feynman-Kac formula) [15, 16, 28, 32]:

(2.6) v(t, x) = Ew [ϕ(Xt,x(T ))Yt,x,1(T ) + Zt,x,1,0(T )] , T0 ≤ t ≤ T,

where Xt,x(s), Yt,x,y(s), Zt,x,y,z(s), t ≤ s ≤ T, is the solution of the SDEs

dX =

[
b(s,X)−

q∑
r=1

αr(s,X)βr(s,X)

]
ds

+

p∑
r=1

σr(s,X)dWr(s) +

q∑
r=1

αr(s,X)dwr(s),

(2.7)

X(t) = x,
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dY = c(s,X)Y ds+

q∑
r=1

βr(s,X)Y dwr(s), Y (t) = y,

dZ = f(s,X)Y ds+

q∑
r=1

γr(s,X)Y dwr(s), Z(t) = z,

and W (s) = (W1(s), . . . ,Wp(s))
� is a p-dimensional standard Wiener process in-

dependent of w(s), and the expectation Ew in (2.6) is taken over the realizations
of W (s), t ≤ s ≤ T, for a fixed w(s), t ≤ s ≤ T ; in other words, Ew (·) means the
conditional expectation E (·|w(s)− w(t), t ≤ s ≤ T ) .

Remark 2.1. Introduce the new time variable s := T − (t− T0) and introduce the

functions u(s, x) := v(T + T0 − s, x), ãij(s, x) := aij(T + T0 − s, x), b̃i(s, x) :=

bi(T + T0 − s, x), and analogously c̃(s, x), f̃(s, x), α̃i
r(s, x), β̃r(s, x), γ̃r(s, x). Then

one can show that u(s, x) is the solution of the Cauchy problem for the forward
SPDE (see [32, p. 173]):

du =

⎡
⎣1

2

d∑
i,j=1

ãij(s, x)
∂2

∂xi∂xj
u+

d∑
i=1

b̃i(s, x)
∂

∂xi
u+ f̃(s, x)

⎤
⎦ ds(2.8)

+

q∑
r=1

[
d∑

i=1

α̃i
r(s, x)

∂

∂xi
u+ β̃r(s, x)u+ γ̃r(s, x)

]
dw̃r(s), (s, x) ∈ (T0, T ]×Rd,

u(T0, x) = ϕ(x), x ∈ Rd,(2.9)

where w̃r(s) are defined in (2.4). The process u(s, x) is FT+T0−t
T -adapted; it de-

pends on w̃r(s
′), r = 1, . . . , q, T0 ≤ s′ ≤ s. Analogously, for a given forward SPDE

one can write down the corresponding backward SPDE. Thus, the methods for
backward SPDEs considered in this paper can be used for solving forward SPDEs
as well.

Remark 2.2. Consider an infinite-dimensional Wiener process B(t) taking values
in some Hilbert space H and with covariance operator Q (which is assumed to be
a nuclear operator). Let er be unit eigenvectors of Q with nonzero eigenvalues
λr = (Qer, er). Then (see, e.g. [4, 14, 32]) wr(t) := (er, B(t))/

√
λr are inde-

pendent standard Wiener processes, and the infinite-dimensional Wiener process is
represented as

(2.10) B(t) =
∞∑
r=1

√
λrwr(t)er.

Furthermore, for any H-valued process ψ(s) for which the integral
∫ t

0
ψ(s)dB(s) is

defined, one has [14, 32]

(2.11)

∫ t

0

ψ(s)dB(s) =
∞∑
r=1

∫ t

0

ψr(s)dwr(t)

with ψr(s) = (ψ(s), er)
√
λr. The Wiener process B(t) and the integral

∫ t

0
ψ(s)dB(s)

can be approximated by truncating the expansions in (2.10) and (2.11) (see, e.g.,
[4]). Then it is possible to view the SPDEs (2.1) and (2.8) as approximations
of SPDEs driven by the infinite-dimensional Wiener process. Consequently, the
methods proposed in this paper for (2.1) can, in principle, be used for approximating
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SPDEs with infinite-dimensional Wiener process, but we do not consider this aspect
any further here.

3. Numerical methods based on the conditional

Feynman-Kac formula (2.6)-(2.7)

Our purpose is to simulate approximately the random variable v(t, x, ω) under
any fixed (t, x) using the probabilistic representation (2.6)-(2.7). In this section
we construct mean-square approximations v̄(t, x, ω) (see Section 3.1) and ṽ(t, x, ω)
(see Section 3.2) for v(t, x, ω); i.e., we construct v̄(t, x, ω) (or ṽ(t, x, ω)) to be close
to v(t, x, ω) in the mean-square sense. For a realization of the probabilistic rep-
resentation (2.6), one can use numerical integration of SDEs (2.7) with respect to
the Wiener process W (s) both in the mean-square sense (Section 3.1; the approxi-
mation v̄(t, x)) and in the weak sense (Section 3.2; the approximation ṽ(t, x)). We
prove a.s. convergence of the proposed methods.

3.1. Mean-square simulation of the representation (2.6)-(2.7). Consider
the one-step approximation for (2.7):

X̄t,x(t+ h) = x+ h

[
b(t, x)−

q∑
r=1

αr(t, x)βr(t, x)

]

+

q∑
r=1

αr(t, x)∆twr +

p∑
r=1

σr(t, x)∆tWr,

(3.1)

Ȳt,x,y(t+ h) = y + hc(t, x)y +

q∑
r=1

βr(t, x)y∆twr,

Z̄t,x,y,z(t+ h) = z + hf(t, x)y +

q∑
r=1

γr(t, x)y∆twr,

where ∆twr := wr(t+ h)− wr(t), ∆tWr := Wr(t+ h)−Wr(t).
The approximation (3.1) generates the strong Euler method in the usual way.

We introduce a partition of the time interval [t, T ], for simplicity the equidistant
one: t = t0 < · · · < tN = T, with step size h = (T − t)/N. An approximation of
(Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk)) is denoted by (X̄k, Ȳk, Z̄k).

The Euler scheme takes the form

X̄0 = x, X̄k+1 = X̄k + h

[
b(tk, X̄k)−

q∑
r=1

αr(tk, X̄k)βr(tk, X̄k)

](3.2)

+

q∑
r=1

αr(tk, X̄k)∆kwr +

p∑
r=1

σr(tk, X̄k)∆kWr ,

Ȳ0 = 1, Ȳk+1 = Ȳk + hc(tk, X̄k)Ȳk +

q∑
r=1

βr(tk, X̄k)Ȳk∆kwr ,

Z̄0 = 0, Z̄k+1 = Z̄k + hf(tk, X̄k)Ȳk +

q∑
r=1

γr(tk, X̄k)Ȳk∆kwr, k = 0, . . . , N − 1,

where ∆kwr := wr(tk+1)− wr(tk), ∆kWr := Wr(tk+1)−Wr(tk).
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Let

(3.3) v̄(t, x) := Ew
[
ϕ(X̄N)ȲN + Z̄N

]
,

where X̄N , ȲN , Z̄N are from (3.2).
Below we use the same letter C = C(x) or C = C(x, ω) for various expressions

of the form K(1 + |x|κ) (see (2.5)) with K being a positive constant or K = K(ω)
being a positive random variable, respectively.

Theorem 3.1. Let Assumptions 2.1-2.3 hold. The method (3.2)-(3.3) satisfies the
inequality for p ≥ 1 :

(3.4)
(
E |v̄(t, x)− v(t, x)|2p

)1/(2p)

≤ C(x)h1/2,

where C does not depend on the discretization step h, i.e., in particular, (3.2)-(3.3)
is of mean-square order 1/2.

For almost every trajectory w(·) and any ε > 0 there exists C(x, ω) > 0 such
that

(3.5) |v̄(t, x)− v(t, x)| ≤ C(x, ω)h1/2−ε,

where C does not depend on the discretization step h, i.e., the method (3.2)-(3.3)
converges with order 1/2− ε a.s.

Proof. Introduce x = (x, y, z), X(s) := (X(s), Y (s), Z(s))�, X̄k := (X̄k, Ȳk, Z̄k)
�,

and ψ(x) := ϕ(x)y + z.
It is known that X(s) (see [6]) and X̄k (see [23]) have bounded moments of any

order and also that (see [9]) for p ≥ 1,

(3.6)
(
E
∣∣X̄k −X(tk)

∣∣2p)1/(2p)

≤ C(x)h1/2,

where C does not depend on h.
By the conditional version of Jensen’s inequality, we get

E |v̄(t, x)− v(t, x)|2p = E
∣∣Ewψ(X̄N )− Ewψ(X(tN ))

∣∣2p
≤ E

[
Ew

∣∣ψ(X̄N )− ψ(X(tN ))
∣∣]2p

≤ E
[
Ew

∣∣ψ(X̄N )− ψ(X(tN ))
∣∣2p]

= E
∣∣ψ(X̄N )− ψ(X(tN ))

∣∣2p .
Using the smoothness of ψ and the assumption that derivatives of ψ satisfy an
inequality of the form (2.5), we obtain∣∣ψ(X̄N )− ψ(X(tN ))

∣∣ ≤ K(1 + |X(tN )|κ + |X̄N |κ)
∣∣X̄N −X(tN )

∣∣ ,
where K is a positive constant. Then due to the boundedness of the moments, the
Cauchy-Bunyakovskii inequality, and (3.6), we get

E |v̄(t, x)− v(t, x)|2p ≤ KE(1 + |X(tN )|κ + |X̄N |κ)2p
∣∣X̄N −X(tN )

∣∣2p
≤ K

√
E(1 + |X(tN )|κ + |X̄N |κ)4p

√
E
∣∣X̄N −X(tN )

∣∣4p ≤ C(x)hp,

whence (3.4) follows.
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Now denote R := |v̄(t, x)− v(t, x)| . The Markov inequality together with (3.4)
implies

P (R > hγ) ≤ ER2p

h2pγ
≤ C(x)hp(1−2γ).

Then for any γ = 1/2 − ε there is a sufficiently large p ≥ 1 such that (recall that
h = T/N)

∞∑
N=1

P

(
R >

T γ

Nγ

)
≤ C(x)T p(1−2γ)

∞∑
N=1

1

Np(1−2γ)
< ∞.

Hence, due to the Borel-Cantelli lemma, the random variable ς := suph>0 h
−γR is

a.s. finite, which implies (3.5). �
3.2. Weak simulation of the representation (2.6)-(2.7). Now consider an-
other Euler-type scheme for (2.7):

X̃0 = x, X̃k+1 = X̃k + h

[
b(tk, X̃k)−

q∑
r=1

αr(tk, X̃k)βr(tk, X̃k)

](3.7)

+

q∑
r=1

αr(tk, X̃k)∆kwr + h1/2

p∑
r=1

σr(tk, X̃k)ξrk ,

Ỹ0 = 1, Ỹk+1 = Ỹk + hc(tk, X̃k)Ỹk +

q∑
r=1

βr(tk, X̃k)Ỹk∆kwr ,

Z̃0 = 0, Z̃k+1 = Z̃k + hf(tk, X̃k)Ỹk +

q∑
r=1

γr(tk, X̃k)Ỹk∆kwr, k = 0, . . . , N − 1,

where ∆kwr := wr(tk+1) − wr(tk) and ξrk are i.i.d. random variables with the
moments

(3.8) Eξ = 0, Eξ2 = 1, Eξ3 = 0, Eξm < ∞,

for a sufficiently large integer m ≥ 4. For instance, one can take ξ with the law

(3.9) P (ξ = ±1) = 1/2.

We note that here a part of the SDE system (2.7) (which involves the Wiener
process W (t)) is simulated weakly while the other part (which involves the Wiener
process w(t)) is simulated in the mean-square sense.

Let

(3.10) ṽ(t, x) := Ew
[
ϕ(X̃N)ỸN + Z̃N

]
,

where X̃N , ỸN , Z̃N are from (3.7).
The same theorem as Theorem 3.1 is valid for ṽ(t, x) as well, however, with

another proof.

Theorem 3.2. Let Assumptions 2.1-2.3 hold. The method (3.7), (3.10) satisfies
the inequality for p ≥ 1 :

(3.11)
(
E |ṽ(t, x)− v(t, x)|2p

)1/(2p)

≤ C(x)h1/2,

where C does not depend on the discretization step h; i.e., in particular, (3.7),
(3.10) is of mean-square order 1/2.
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For almost every trajectory w(·) and any ε > 0 there exists C(x, ω) > 0 such
that

(3.12) |ṽ(t, x)− v(t, x)| ≤ C(x, ω)h1/2−ε,

where C does not depend on the discretization step h; i.e., the method (3.7), (3.10)
converges with order 1/2− ε a.s.

Proof. We shall prove the inequality

(3.13)
(
E |ṽ(t, x)− v̄(t, x)|2p

)1/(2p)

≤ C(x)h.

Due to Theorem 3.1 (see (3.4)), the inequality (3.11) follows from here.
The function v̄(t, x) (see (3.3)) is introduced for the time layer t = t0. For any ti

let us introduce v̄(ti, x). To this aim we use the scheme (3.2) starting at the time
moment ti from X̄i = x, Ȳi = 1, Z̄i = 0. Denote this solution of the scheme by
X̄ti,x(tk), Ȳti,x,1(tk), Z̄ti,x,1,0(tk), k = i, . . . , N. For instance, X̄N in (3.3) in this
notation is equal to X̄N = X̄t0,x(tN ) = X̄t,x(tN ). We set
(3.14)

v̄(ti, x) = Ew[ϕ(X̄ti,x(tN )) Ȳti,x,1(tN ) + Z̄ti,x,1,0(tN )], i = 0, . . . , N, tN = T.

One can prove that the function v̄(ti, x) is sufficiently smooth in x and satisfies
(together with its derivatives) the same inequality as the function v(t, x) (see the
inequality (2.5)).

Using the standard technique (see [23, p. 100]), we can write the difference
DN := ṽ(t, x)− v̄(t, x) in the form

DN = Ew
[
ϕ(X̃N )ỸN + Z̃N

]
− Ew

[
ϕ(X̄t0,x(tN )) Ȳt0,x,1(tN ) + Z̄t0,x,1,0(tN )

]
(3.15)

= Ew
N−1∑
i=0

ρi(X̃i, Ỹi, Z̃i),

where

ρi(X̃i, Ỹi, Z̃i) = Ew,X̃i,Ỹi,Z̃i [v̄(ti+1, X̃i+1)Ỹi+1 + Z̃i+1(3.16)

−v̄(ti+1, X̄ti,X̃i
(ti+1))Ȳti,X̃i,Ỹi

(ti+1)− Z̄ti,X̃i,Ỹi,Z̃i
(ti+1)],

and Ew,X̃i,Ỹi,Z̃i [·] means the conditional expectation E[·/w(s) − w(t), t ≤ s ≤
T ; X̃i, Ỹi, Z̃i]. The presentation (3.15) follows from the equalities

v̄(tN , X̃N )ỸN + Z̃N = ϕ(X̃N)ỸN + Z̃N ,(3.17)

Ew[v̄(t1, X̄t0,X̃0
(t1))Ȳt0,X̃0,Ỹ0

(t1) + Z̄t0,X̃0,Ỹ0,Z̃0
(t1)](3.18)

= Ew
[
ϕ(X̄t0,x(T ))Ȳt0,x,1(T ) + Z̄t0,x,1,0(T )

]
,

Ew[v̄(tk, X̃k)Ỹk + Z̃k] = Ew[v̄(tk+1, X̄tk,X̃k
(tk+1))Ȳtk,X̃k,Ỹk

(tk+1)

+ Z̄tk,X̃k,Ỹk,Z̃k
(tk+1)],

(3.19)

k = 1, . . . , N − 1.

The equality (3.17) is obvious. To prove (3.18) and (3.19), we use the following
evident equalities:

(3.20) Ȳtk,x,y(ϑ) = Ȳtk,x,1(ϑ) · y, Z̄tk,x,y,z(ϑ) = z + Z̄tk,x,1,0(ϑ) · y.
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We have (see (3.14))

v̄(tk, X̃k) = Ew,X̃k [ϕ(X̄tk,X̃k
(T ))Ȳtk,X̃k,1

(T ) + Z̄tk,X̃k,1,0
(T )]

= Ew,X̃k [ϕ(X̄tk+1,X̄tk,X̃k
(tk+1)(T ))Ȳtk+1,X̄tk,X̃k

(tk+1),Ȳtk,X̃k,1(tk+1)(T )

+Z̄tk+1,X̄tk,X̃k
(tk+1),Ȳtk,X̃k,1(tk+1),Z̄tk,X̃k,1,0(tk+1)(T )].

Therefore due to (3.20), we get

v̄(tk, X̃k) = Ew,X̃k [{ϕ(X̄tk+1,X̄tk,X̃k
(tk+1)(T ))Ȳtk+1,X̄tk,X̃k

(tk+1),1(T )

+Z̄tk+1,X̄tk,X̃k
(tk+1),1,0(T )} · Ȳtk,X̃k,1

(tk+1) + Z̄tk,X̃k,1,0
(tk+1)]

= Ew,X̃k [v̄(tk+1,X̄tk,X̃k
(tk+1)) · Ȳtk,X̃k,1

(tk+1) + Z̄tk,X̃k,1,0
(tk+1)].

Substituting this v̄(tk, X̃k) in Ew[v̄(tk, X̃k)Ỹk + Z̃k] and again using (3.20), we
obtain (3.19). The equality (3.18) is proved analogously. So, the presentation
(3.15) is proved.

Our next step consists in estimating the smallness of the one-step error. It is
easy to see that Z̃i+1 = Z̄ti,X̃i,Ỹi,Z̃i

(ti+1) and Ỹi+1 = Ȳti,X̃i,Ỹi
(ti+1). Then

ρi(X̃i, Ỹi, Z̃i) = ρi(X̃i, Ỹi) = Ew,X̃i,Ỹi Ỹi+1[v̄(ti+1, X̃i+1)− v̄(ti+1, X̄ti,X̃i
(ti+1))].

Now we write the Taylor expansion of v̄(ti+1, X̃i+1) with respect to powers of ∆̃i :=

X̃i+1−X̃i in a neighborhood of X̃i and with the Lagrange remainder term containing
terms of order four. We similarly expand v̄(ti+1, X̄ti,X̃i

(ti+1)) with respect to ∆̄i :=

X̄ti,X̃i
(ti+1)− X̃i. As a result, we get

ρi(X̃i, Ỹi) = Ew,X̃i,Ỹi Ỹi+1

⎡
⎣ 1

24

d∑
j1,j2,j3,j4=1

{
∂4v

∂xj1∂xj2∂xj3∂xj4
(θ̃)× ∆̃j1

i ∆̃j2
i ∆̃j3

i ∆̃j4
i

− ∂4v

∂xj1∂xj2∂xj3∂xj4
(θ̄)× ∆̄j1

i ∆̄j2
i ∆̄j3

i ∆̄j4
i

}⎤
⎦ ,

where θ̃ is a point between X̃i+1 and X̃i, and θ̄ is a point between X̄ti,X̃i
(ti+1) and

X̃i. Then it is not difficult to obtain that for p ≥ 1,

(3.21) E|ρi(X̃i, Ỹi, Z̃i)|2p = O(h4p).

Due to (3.15) and (3.21), we get
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ED2p
N = E

[
N−1∑
i=0

ρi(X̃i, Ỹi, Z̃i)

]2p

(3.22)

≤ N2p−1
N−1∑
i=0

E
∣∣∣ρi(X̃i, Ỹi, Z̃i)

∣∣∣2p ≤ C(x)h2p,

which implies (3.13) (and consequently (3.11)). The inequality (3.12) is proved
exactly as its analogue in Theorem 3.1. �

Remark 3.1. In some particular cases of the SPDE (2.1)-(2.2) the order of a.s. con-
vergence of the Euler schemes (3.2), (3.3) and (3.7), (3.10) is higher. For instance,
it is not difficult to modify the proofs of Theorems 3.1 and 3.2 to get that the Euler
schemes have a.s. order of convergence 1 − ε if a and αr are constant and βr = 0
and γr = 0 (note that in this case (2.7) is a system with additive noise for which
the standard Euler scheme for SDEs is of mean-square order 1 [23]). Furthermore,
in [25] it is proved that the schemes considered there are also of a.s. order 1 − ε
when αr = 0, γr = 0, c = 0, f = 0, βr �= 0.

Remark 3.2. Using the weak-sense numerical integration of SDEs in bounded do-
mains (see [23, Chap. 6] and the references therein), the proposed approach can be
carried over to the boundary value problems for SPDEs.

4. Other probabilistic representations, Monte Carlo error,

and variance reduction

Using the Monte Carlo technique, we approximate the solution of the backward
SPDE (2.1)-(2.2) as (see (2.6)):

v(t, x) := v(t, x;ω) = Ew [ϕ(Xt,x(T ))Yt,x,1(T ) + Zt,x,1,0(T )](4.1)

≈ v̄(t, x) := Ew [ϕ(XN)YN + ZN ]

≈ v̂(t, x) :=
1

M

M∑
m=1

[ϕ(mXN )mYN + mZN ] ,

where the first approximate equality involves an error due to replacing X, Y, Z by
XN , YN , ZN (the error of numerical integration of (2.7) by (3.7) or (3.2)) and the
error in the second approximate equality comes from the Monte Carlo technique;

mXN , mYN , mZN , m = 1, . . . ,M, are independent realizations of XN , YN , ZN .
The error of numerical integration was analyzed in the previous section. Now let

us consider the Monte Carlo error. The error of the Monte Carlo method in (4.1)
is evaluated by

ρ̄ = c

[
V arw

{
ϕ(X̄t,x(T ))Ȳt,x,1(T ) + Z̄t,x,1,0(T )

}]1/2
M1/2

,

where, e.g., the values c = 1, 2, 3 correspond to the fiducial probabilities 0.68, 0.95,
0.997, respectively. Since V arw

{
ϕ(X̄t,x(T ))Ȳt,x,1(T ) + Z̄t,x,1,0(T )

}
is close to the

variance

V := V arw [ϕ(Xt,x(T ))Yt,x,1(T ) + Zt,x,1,0(T )] ,

we can assume that the error of the Monte Carlo method is estimated by

ρ = c
V 1/2

M1/2
.
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If V is large, then we have to simulate a very large number of trajectories to achieve
a satisfactory accuracy. Fortunately, there exist other probabilistic representations
for v(t, x) which allow us to reduce the variance.

The solution of the problem (2.1)-(2.2) also has the following probabilistic rep-
resentations:

(4.2) v(t, x) = Ew [ϕ(Xt,x(T ))Yt,x,1(T ) + Zt,x,1,0(T )] , t0 ≤ t ≤ T,

where Xt,x(s), Yt,x,y(s), Zt,x,y,z(s), t ≤ s ≤ T, is the solution of the SDEs

dX =

[
b(s,X)−

q∑
r=1

αr(s,X)βr(s,X)−
p∑

r=1

σr(s,X)µr(s,X)

]
ds(4.3)

+

p∑
r=1

σr(s,X)dWr(s) +

q∑
r=1

αr(s,X)dwr(s), X(t) = x,

dY = c(s,X)Y ds+

p∑
r=1

µr(s,X)Y dWr(s) +

q∑
r=1

βr(s,X)Y dwr(s), Y (t) = y,

dZ = f(s,X)Y ds+

p∑
r=1

λr(s,X)Y dWr(s) +

q∑
r=1

γr(s,X)Y dwr(s), Z(t) = z,

and where µ = (µ1, . . . , µp)
� and λ = (λ1, . . . , λp)

� are arbitrary p-dimensional
vector functions satisfying some regularity assumptions. When µ = 0 and λ = 0,
we have the usual representation (2.6)-(2.7). The representation for µ = 0, λ �= 0
follows from the equality

Ew

∫ T

t

λ�(s,X(s))Y (s)dW (s) = 0.

For µ �= 0, it can be proved by arguments similar to those in [16, pp. 308-309],
making use of Theorem 4.4.5 [16, p. 152] for the forward flow. We should note that
X, Y , Z in (4.2)-(4.3) differ from X, Y , Z in (2.6)-(2.7); however, this does not
lead to any ambiguity. While v(t, x) does not depend on the choice of µ and λ, the
variance

V = V arw [ϕ(Xt,x(T ))Yt,x,1(T ) + Zt,x,1,0(T )]

does. Then one may hope to find µ and λ such that the variance V is relatively
low and thus the Monte Carlo error can be reduced. Theorem 4.1 is helpful in this
respect. Its use for variance reduction gives the method of importance sampling
if λ = 0 and the method of control variates if µ = 0. The form of Theorem 4.1
is very similar to the corresponding well-known result in the case of deterministic
PDEs (see [20, 27, 22] and also [23, Section 2.4]). However, its proof is much more
complicated in the case of SPDEs than for PDEs as can be seen below.

Theorem 4.1. Let Assumptions 2.1-2.3 hold. Let µr and λr be such that for any
x ∈ Rd there exists a solution to the system (4.3) on the interval [t, T ]. Then

V arw [ϕ(Xt,x(T )) Yt,x,1(T ) + Zt,x,1,0(T )]

= Ew

∫ T

t

Y 2
t,x,1

p∑
r=1

[
d∑

i=1

σi
r

∂v

∂xi
+ µrv + λr

]2

dθ(4.4)

provided that the expectation in (4.4) exists. In (4.4) all the functions in the inte-
grand have (θ,Xt,x(θ)) as their argument.
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Proof. It is convenient to introduce the notation

Ew
s (·) := E (·/w(s′)− w(s), s ≤ s′ ≤ T ) ,

v(s, x) = v(s, x;ω) := Ew
s [ϕ(Xs,x(T ))Ys,x,1(T ) + Zs,x,1,0(T )](4.5)

:= E [ϕ(Xs,x(T ))Ys,x,1(T ) + Zs,x,1,0(T )/w(s
′)− w(s), s ≤ s′ ≤ T ] .

Clearly, Ew
t (·) = Ew (·) . The notation V arws (·) can be introduced analogously.

We get from (4.5):

v(s,Xt,x(s)) = E[ϕ(Xs,Xt,x(s)(T ))Ys,Xt,x(s),1(T ) + Zs,Xt,x(s),1,0(T )/(4.6)

W (s′)−W (t), t ≤ s′ ≤ s;w(s′)− w(t), t ≤ s′ ≤ T ].

The presentation (4.6) follows from the assertion: let F̃ and F ′ be independent

σ-algebras and F̃ ∨ F ′ be the minimal σ-algebra generated by F̃ and F ′; if ξ is
F̃ -measurable, f(x;ω) does not depend on F̃ , and E(f(x;ω)/F ′) = ψ(x;ω), then

E(f(ξ;ω)/F̃ ∨ F ′) = ψ(ξ;ω) (for the trivial F ′ this assertion can be found, e.g.,
in [6, §10, Lemma 1], [4, Proposition 1.12], which proof can be straightforwardly

generalized for a general F ′). In the case of (4.6) we have ξ = Xt,x(s), F̃ is the
minimal σ-algebra generated by {W (s′)−W (t), t ≤ s′ ≤ s; w(s′)−w(t), t ≤ s′ ≤ s},
F ′ is the minimal σ-algebra generated by {w(s′)−w(s), s ≤ s′ ≤ T}, and f(x;ω) =
v(s, x;ω).

Furthermore, we obtain

E [v(s,Xt,x(s))Yt,x,1(s) + Zt,x,1,0(s)/w(s
′)− w(t), t ≤ s′ ≤ T ]

= E[E(ϕ(Xs,Xt,x(s)(T ))Ys,Xt,x(s),1(T ) + Zs,Xt,x(s),1,0(T )/

W (s′)−W (t), t ≤ s′ ≤ s;w(s′)− w(t), t ≤ s′ ≤ T )

× Yt,x,1(s) + Zt,x,1,0(s)/w(s
′)− w(t), t ≤ s′ ≤ T ]

= E[E(ϕ(Xt,x(T ))Yt,x,1(T ) + Zt,x,1,0(T )/W (s′)−W (t),

t ≤ s′ ≤ s;w(s′)− w(t), t ≤ s′ ≤ T )/w(s′)− w(t), t ≤ s′ ≤ T ]

= E[ϕ(Xt,x(T ))Yt,x,1(T ) + Zt,x,1,0(T )/w(s
′)− w(t), t ≤ s′ ≤ T ] = v(t, x).

Thus, we prove that for any s, t ≤ s ≤ T, the following formula holds:

(4.7) v(t, x) = Ew
t [v(s,Xt,x(s))Yt,x,1(s) + Zt,x,1,0(s)] , t ≤ s.

Introduce the auxiliary function:

U(t, x, y, z) := v(t, x)y + z.

Partition the interval [t, T ] with the time step h and present the variance V in the
following way (see a similar recipe in [29]):

V = V arwt [ϕ(Xt,x(T ))Yt,x,1(T ) + Zt,x,1,0(T )]

= Ew
t [U(T,Xt,x(T ), Yt,x,1(T ), Zt,x,1,0(T ))− U(t, x, 1, 0)]

2

= Ew
t

[
N−1∑
k=0

{U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))

− U(tk, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))}
]2

.
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Using (4.7), we get

E(U(tn+1, Xt,x(tn+1), Yt,x,1(tn+1), Zt,x,1,0(tn+1))/w(s
′)− w(t), t ≤ s′ ≤ T ;

W (s′′)−W (t), t ≤ s′′ ≤ tn)

= Yt,x,1(tn)

×E
(
U(tn+1, Xtn,Xt,x(tn)(tn+1), Ytn,Xt,x(tn),1(tn+1), Ztn,Xt,x(tn),1,0(tn+1))

/w(s′)− w(t), t ≤ s′ ≤ T ;W (s′′)−W (t), t ≤ s′′ ≤ tn) + Zt,x,1,0(tn)

= Yt,x,1(tn)v(tn, Xt,x(tn)) + Zt,x,1,0(tn)

= U(tn, Xt,x(tn), Yt,x,1(tn), Zt,x,1,0(tn)),

whence for k < n,

Ew
t ([U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))

− U(tk, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))]

× [U(tn+1, Xt,x(tn+1), Yt,x,1(tn+1), Zt,x,1,0(tn+1))

− U(tn, Xt,x(tn), Yt,x,1(tn), Zt,x,1,0(tn)))])

= Ew
t ([U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))

− U(tk, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))]

E(U(tn+1, Xt,x(tn+1), Yt,x,1(tn+1), Zt,x,1,0(tn+1))

− U(tn, Xt,x(tn), Yt,x,1(tn), Zt,x,1,0(tn))

/w(s′)− w(t), t ≤ s′ ≤ T ;W (s′′)−W (t), t ≤ s′′ ≤ tn)) = 0.

Then

V =
N−1∑
k=0

Ew
t {U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))(4.8)

− U(tk, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))}2.

We rewrite the terms under the expectation in (4.8) as

U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))(4.9)

− U(tk, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))

= [U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))

− U(tk+1, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))]

+ [U(tk+1, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))

− U(tk, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))]

= [U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))

− U(tk+1, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))]

+ Yt,x,1(tk) [v(tk+1, Xt,x(tk))− v(tk, Xt,x(tk))] .

Let

Λrv(t, x) :=

d∑
i=1

σi
r(t, x)

∂

∂xi
v(t, x).
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Applying the Ito formula to the first term on the right-hand side of (4.9), we get

U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))(4.10)

− U(tk+1, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))

=

∫ tk+1

tk

Yt,x,1(θ) [Lv(tk+1, Xt,x(θ)) + f(θ,Xt,x(θ))] dθ

+

q∑
r=1

∫ tk+1

tk

Yt,x,1(θ) [Mrv(tk+1, Xt,x(θ)) + γr(θ,Xt,x(θ)))] dwr(θ)

+

p∑
r=1

∫ tk+1

tk

Yt,x,1(θ)[Λrv(tk+1, Xt,x(θ)) + µr(θ,Xt,x(θ))v(tk+1, Xt,x(θ))

+ λr(θ,Xt,x(θ))]dWr(θ).

The coefficients of the operators L and Mr in (4.10) have (θ,Xt,x(θ)) as their
argument. We note (see [29]) that the use of the Ito formula here is legitimate since

v(tk+1, x) is F tk+1

T -adapted and independent of Fθ, θ ≤ tk+1.
Further, since v(t, x) satisfies the SPDE (2.1), we can present the second term

on the right-hand side of (4.9) as

Yt,x,1(tk) [v(tk+1, Xt,x(tk))− v(tk, Xt,x(tk))](4.11)

= −Yt,x,1(tk)

[∫ tk+1

tk

[(Lv)(θ,Xt,x(tk)) + f(θ,Xt,x(tk))] dθ

+

q∑
r=1

∫ tk+1

tk

[(Mrv)(θ,Xt,x(tk)) + γr(θ,Xt,x(tk)))] ∗ dwr(θ)

]
.

We note that all the functions in the integrands in (4.11) have (θ,Xt,x(tk)) as their
argument.

Using (4.9)-(4.11), properties of Ito integrals, and the independence of w and W,
we obtain

Ew
t {U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))

(4.12)

− U(tk, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))}2

= Ew
t

[∫ tk+1

tk

{Yt,x,1(θ) [Lv(tk+1, Xt,x(θ)) + f(θ,Xt,x(θ))]

− Yt,x,1(tk) [(Lv)(θ,Xt,x(tk)) + f(θ,Xt,x(tk))]}dθ

+

q∑
r=1

{∫ tk+1

tk

Yt,x,1(θ) [Mrv(tk+1, Xt,x(θ)) + γr(θ,Xt,x(θ)))] dwr(θ)

−Yt,x,1(tk)

∫ tk+1

tk

[(Mrv)(θ,Xt,x(tk)) + γr(θ,Xt,x(tk)))] ∗ dwr(θ)

}]2

+ 2Ew
t

p∑
r=1

∫ tk+1

tk

Yt,x,1(θ)

× [Λrv(tk+1, Xt,x(θ)) + µr(θ,Xt,x(θ))v(tk+1, Xt,x(θ)) + λr(θ,Xt,x(θ))] dWr(θ)
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×
[∫ tk+1

tk

Yt,x,1(θ) [Lv(tk+1, Xt,x(θ)) + f(θ,Xt,x(θ))] dθ

+

q∑
r=1

∫ tk+1

tk

Yt,x,1(θ) [Mrv(tk+1, Xt,x(θ)) + γr(θ,Xt,x(θ)))] dwr(θ)

]

+

p∑
r=1

Ew
t

∫ tk+1

tk

Y 2
t,x,1(θ)[Λrv(tk+1, Xt,x(θ)) + µr(θ,Xt,x(θ))v(tk+1, Xt,x(θ))

+ λr(θ,Xt,x(θ))]
2dθ.

In this proof let us use the notation O(hq) for random variables which tend to
zero at least as hq a.s. when h → 0. We have for any 0 < ε < 1/2,

wr(s+ h)− wr(s) = O(h1/2−ε), Wr(s+ h)−Wr(s) = O(h1/2−ε) a.s.,

and also
v(s+ h, x)− v(s, x) = O(h1/2−ε) a.s.

One can show that for 0 < ε < 1/2,∫ tk+1

tk

Yt,x,1(θ) [Lv(tk+1, Xt,x(θ)) + f(θ,Xt,x(θ))]

− Yt,x,1(tk) [(Lv)(θ,Xt,x(tk)) + f(θ,Xt,x(tk))]}dθ = O(h),∫ tk+1

tk

Yt,x,1(θ) [Mrv(tk+1, Xt,x(θ)) + γr(θ,Xt,x(θ)))]dwr(θ)

= Yt,x,1(tk)

∫ tk+1

tk

[(Mrv)(tk+1, Xt,x(tk)) + γr(θ,Xt,x(tk)))] dwr(θ) +O(h1−ε)

= Yt,x,1(tk)

∫ tk+1

tk

[(Mrv)(tk+1, Xt,x(tk)) + γr(θ,Xt,x(tk)))] ∗ dwr(θ) +O(h1−ε)

= Yt,x,1(tk)

∫ tk+1

tk

[(Mrv)(θ,Xt,x(tk)) + γr(θ,Xt,x(tk)))] ∗ dwr(θ) +O(h1−ε),

Ew
t

∫ tk+1

tk

Yt,x,1(θ)[Λrv(tk+1, Xt,x(θ)) + µr(θ,Xt,x(θ))v(tk+1, Xt,x(θ))

+ λr(θ,Xt,x(θ))]dWr(θ)

×
∫ tk+1

tk

Yt,x,1(θ) [Lv(tk+1, Xt,x(θ)) + f(θ,Xt,x(θ))] dθ

= O(h3/2−ε),

Ew
t

∫ tk+1

tk

Yt,x,1(θ)[Λrv(tk+1, Xt,x(θ)) + µr(θ,Xt,x(θ))v(tk+1, Xt,x(θ))

+ λr(θ,Xt,x(θ))]dWr(θ)

×
∫ tk+1

tk

Yt,x,1(θ) [Mrv(tk+1, Xt,x(θ)) + γr(θ,Xt,x(θ)))] dwr(θ)

= Ew
t

∫ tk+1

tk

Yt,x,1(θ)[Λrv(tk+1, Xt,x(θ)) + µr(θ,Xt,x(θ))v(tk+1, Xt,x(θ))

+ λr(θ,Xt,x(θ))]dWr(θ)
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×
∫ tk+1

tk

Yt,x,1(tk) [(Mrv) (tk+1, Xt,x(tk)) + γr(θ,Xt,x(tk)))] dwr(θ)

+O(h3/2−ε) = O(h3/2−ε) ,

Ew
t

∫ tk+1

tk

Y 2
t,x,1(θ)[Λrv(tk+1, Xt,x(θ)) + µr(θ,Xt,x(θ))v(tk+1, Xt,x(θ))

+ λr(θ,Xt,x(θ))]
2dθ

= Ew
t

∫ tk+1

tk

Y 2
t,x,1(θ)[(Λrv)(θ,Xt,x(θ)) + µr(θ,Xt,x(θ))v(θ,Xt,x(θ))

+ λr(θ,Xt,x(θ))]
2dθ +O(h3/2−ε).

Substituting the above relations in the right-hand side of (4.12), we obtain

Ew
t {U(tk+1, Xt,x(tk+1), Yt,x,1(tk+1), Zt,x,1,0(tk+1))

− U(tk, Xt,x(tk), Yt,x,1(tk), Zt,x,1,0(tk))}2

=

p∑
r=1

Ew
t

∫ tk+1

tk

Y 2
t,x,1(θ)[(Λrv)(θ,Xt,x(θ)) + µr(θ,Xt,x(θ))v(θ,Xt,x(θ))

+ λr(θ,Xt,x(θ))]
2dθ +O(h3/2−ε),

which substitution in (4.8) gives

V =

p∑
r=1

Ew
t

∫ T

t

Y 2
t,x,1(θ)[(Λrv)(θ,Xt,x(θ)) + µr(θ,Xt,x(θ))v(θ,Xt,x(θ))

+ λr(θ,Xt,x(θ))]
2dθ +

N−1∑
k=0

O(h3/2−ε),

and tending h to 0 we arrive at (4.4). �

Theorem 4.1 implies that if µr and λr are such that

(4.13)
d∑

i=1

σi
r

∂v

∂xi
+ µrv + λr = 0, r = 1, . . . , p,

then the right-hand side of (4.4) is zero and, consequently, the variance is zero. We
recall that v(s, x) depends on w(θ)−w(s), s ≤ θ ≤ T. However, we need to require
that µr(s, x) does not depend on w(θ)−w(s), s ≤ θ ≤ T ; otherwise, the coefficients
in (4.3) depend on w(θ) − w(s), s ≤ θ ≤ T, and we are facing the difficulty with
interpreting (4.3) except the case when αr is independent of x and βr = γr = 0. In
the case mentioned, all the integrals appearing in the integral form of (4.3) can be
given the usual meaning in the sense of Ito calculus. At the same time, dependence
of the function λr(s, x) on w(θ) − w(s), s ≤ θ ≤ T, does not cause any trouble in
interpreting the third equation in (4.3), and the identity (4.13) can, in principle, be
reached. We note that Theorem 4.1 and its proof are valid for λr(s, x) depending
on w(θ) − w(s), s ≤ θ ≤ T. Furthermore, when (4.3) is discretely simulated, one
can simulate the process w(s) in advance and fix it. Then it is possible to get
approximate solutions of (4.3) for µr depending on a current position and on the
fixed w(θ)−w(s), s ≤ θ ≤ T . Thus we obtain a heuristic interpretation of (4.3) for
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µr depending on the future of w and, apparently, the result of Theorem 4.1 can be
used for such µr as well.

Of course, µr and λr satisfying (4.13) cannot be constructed without knowing
v(s, x), t ≤ s ≤ T, x ∈ Rd. Nevertheless, Theorem 4.1 claims a general possibility
of variance reduction by a proper choice of the functions µr and λr. Theorem 4.1
can be used, for example, if we know a function ṽ(s, x) being close to v(s, x) (see
a practical approach to constructing such approximate functions in the case of
deterministic PDEs in [26]). Then we take any µr and λr satisfying

(4.14)

d∑
i=1

σi
r

∂ṽ

∂xi
+ µr ṽ + λr = 0,

and we expect that the variance V arw [ϕ(Xt,x(T ))Yt,x,1(T ) + Zt,x,1,0(T )] is small
although not zero.

5. Layer methods for linear SPDEs

In the previous sections we use the averaging over the characteristic formula
to propose Monte Carlo methods for linear SPDEs. In this section we exploit
probabilistic representations to construct some layer methods for linear SPDEs (see
them in the case of deterministic PDEs in [21, 23]). Layer methods for semilinear
SPDEs are considered in the next section. The layer methods are competitive with
finite difference schemes [10, 34]. They can be used for relatively low-dimensional
SPDEs when one needs to find the solution v(t, x) everywhere in [t0, T ]×Rd. The
bottleneck for using the layer methods in the case of higher-dimensional SPDEs
is interpolation, which should be used to restore the function v̄(tk, x), x ∈ Rd,
by its values v̄(tk, xj) at a set of nodes xj . The linear interpolation, which is
successfully applied for low-dimensional problems, is not effective for the higher-
dimensional ones. However, layer methods can be turned into numerical algorithms
by exploiting other approximations of functions. New developments in the theory
of multidimensional approximation (see, e.g., [33] and the references therein) give
approximations which can work well in relatively high dimensions.

The method (3.7), (3.10) can be turned into a layer method. Indeed, analo-
gously to the probabilistic representation (2.6)-(2.7) one can write down the local
probabilistic representation of the solution to (2.1)-(2.2) (see (4.7)):

(5.1) v(tk, x) = Ew [v(tk+1, Xtk,x(tk+1))Ytk,x,1(tk+1) + Ztk,x,1,0(tk+1)] ,

where Xt,x(s), Yt,x,y(s), Zt,x,y,z(s), t ≤ s ≤ T, is the solution of the SDEs (2.7).
Replacing Xtk,x(tk+1), Ytk,x,1(tk+1), Ztk,x,1,0(tk+1), by the one-step Euler approx-
imation X̄tk,x(tk+1), Ȳtk,x,1(tk+1), Z̄tk,x,1,0(tk+1) as in (3.7), (3.9), we obtain the
one-step approximation v̆(tk, x) for v(tk, x) :

(5.2) v̆(tk, x) = Ew
[
v(tk+1, X̄tk,x(tk+1))Ȳtk,x,1(tk+1) + Z̄tk,x,1,0(tk+1)

]
.

Now for simplicity in writing let us consider the case d = 1 and q = 1. Thanks
to the use of the discrete random variables (3.9), the expectation in (5.2) can be
evaluated exactly:
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v̆(tk, x)=

{
1

2
v
(
tk+1, x+ h [b(tk, x)−α(tk, x)β(tk, x)]+h1/2σ(tk, x)+α(tk, x)∆kw

)(5.3)

+
1

2
v
(
tk+1, x+ h [b(tk, x)− α(tk, x)β(tk, x)]− h1/2σ(tk, x) + α(tk, x)∆kw

)}
× [1 + hc(tk, x) + β(tk, x)∆kw] + hf(tk, x) + γ(tk, x)∆kw.

Based on the one-step approximation (5.3), we obtain the layer method for (2.1)-
(2.2) with d = 1, q = 1:

ṽ(tN , x) = ϕ(x),(5.4)

ṽ(tk, x)=

{
1

2
ṽ
(
tk+1, x+ h [b(tk, x)−α(tk, x)β(tk, x)]+h1/2σ(tk, x)+α(tk, x)∆kw

)

+
1

2
ṽ
(
tk+1, x+ h [b(tk, x)− α(tk, x)β(tk, x)]− h1/2σ(tk, x) + α(tk, x)∆kw

)
× [1 + hc(tk, x) + β(tk, x)∆kw] + hf(tk, x) + γ(tk, x)∆kw, k = N − 1, . . . , 0.

It is not difficult to see that ṽ(tk, x) from (5.4) coincides with the ṽ(tk, x) due to
(3.10). Then according to Theorem 3.2, the estimates (3.11) and (3.12) are valid
for ṽ(tk, x) from (5.4).

To realize (5.4) numerically, it is sufficient to calculate the functions ṽ(tk, x) at
some knots xj applying some kind of interpolation at every layer. So, to become a
numerical algorithm, the layer method (5.4) needs a discretization in the variable
x. Consider the equidistant space discretization:

(5.5) xj = x0 + jhx, j = 0,±1,±2, . . . ,

where x0 is a point on R and hx > 0 is a step of the space discretization. Using,
for instance, linear interpolation, we construct the following algorithm on the basis
of the layer method (5.4):

v̄(tN , x) = ϕ(x),(5.6)

v̄(tk, xj) =

{
1

2
v̄
(
tk+1, xj + h [b(tk, xj)− α(tk, xj)β(tk, xj)]

+h1/2σ(tk, xj) + α(tk, xj)∆kw
)

+
1

2
v̄
(
tk+1, xj + h [b(tk, xj)− α(tk, xj)β(tk, xj)]− h1/2σ(tk, xj) + α(tk, xj)∆kw

)}
× [1 + hc(tk, xj) + β(tk, xj)∆kw] + hf(tk, xj) + γ(tk, xj)∆kw, j = 0,±1,±2, . . . ,

v̄(tk, x) =
xj+1 − x

hx
v̄(tk, xj) +

x− xj

hx
v̄(tk, xj+1), xj ≤ x ≤ xj+1,(5.7)

k = N − 1, . . . , 1, 0.

We use the same notation v̄ for the two different functions: one is defined by the
layer algorithm (5.6)-(5.7) and the other is defined in Section 3.1 for (3.3), but this
should not cause any confusion since we do not use the approximation (3.3) in the
current section.

If we need the solution of (2.1)-(2.2) for all points (tk, xi), we can use (5.6)-(5.7)
to find v̄(tk, xj) layerwise. But if we need the solution at a particular point (tk, x),
the formula (3.10) is more convenient.
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Remark 5.1. Thanks to the probabilistic approach, we do not need any stability
criteria for the layer methods in comparison with finite-difference schemes, on which
the Lax-Richtmyer equivalence theorem imposes a requirement on the relation be-
tween the time step h and the space step hx. E.g., for b = 0, α = 0, c = 0, β = 0,
and σ is a constant, the method (5.4) (we note that it does not need an interpo-
lation in this case) coincides with the stable finite-difference scheme (see [10] and
the references therein)

v̄(tk, xj)− v̄(tk+1, xj)

h
=

σ2

2

v̄(tk+1, xj+1)− 2v̄(tk+1, xj) + v̄(tk+1, xj−1)

h2
x

+ f(tk, xj) + γ(tk, xj)
∆kw

h

with hx = σ
√
h. In layer methods the suitable choice of points at which v̄ has

to be evaluated is achieved automatically by taking into account the coefficient
dependence on the space variables and a relationship between various terms (driving
noise, diffusion, and advection) in an intrinsic manner.

To prove the next convergence theorem, we need to impose additional assump-
tions on the considered problem to Assumptions 2.1-2.3 from Section 2.

Assumption 5.1. We assume that the coefficients a, b, αr are uniformly bounded
and that the function ϕ has bounded derivatives up to a sufficiently high order (i.e.,
it is globally Lipschitz).

Theorem 5.1. Let Assumptions 2.1, 2.3, and 5.1 hold. The algorithm (5.6)-(5.7)
with hx = κh3/4, κ > 0, satisfies the inequality for p ≥ 1 :

(5.8)
(
E |v̄(tk, x)− v(tk, x)|2p

)1/(2p)

≤ Kh1/2,

where K does not depend on x, h, k, i.e., in particular, (5.6)-(5.7) is of mean-square
order 1/2.

For almost every trajectory w(·) and any ε > 0 the algorithm (5.6)-(5.7) with
hx = κh3/4 converges with order 1/2− ε, i.e.,

(5.9) |v(tk, x)− v̄(tk, x)| ≤ C(ω)h1/2−ε a.s.,

where C does not depend on x, h, k.

Proof. We first prove that

(5.10)
(
E |v̄(tk, xj)− v(tk, xj)|2p

)1/(2p)

≤ Kh1/2.

In connection with the algorithm (5.6)-(5.7), we introduce the random sequence

X̆i, Y̆i, Z̆i, i = k, . . . , N, in the following way. We fix k and put X̆k = xj , Y̆k = 1,

Z̆k = 0 (to avoid confusion, we note that the index k of X̆k, Y̆k, Z̆k means that

X̆k, Y̆k, Z̆k belong to the kth time layer, while the index j of xj corresponds to the

space discretization (5.5)). Knowing X̆i, we introduce the auxiliary values X̆±
i+1 at

the (i+ 1)-th step, i = k, . . . , N − 1:
(5.11)

X̆±
i+1 := X̆i + h

[
b(ti, X̆i)− α(ti, X̆i)β(ti, X̆i)

]
± h1/2σ(ti, X̆i) + α(ti, X̆i)∆iw.



2094 G. N. MILSTEIN AND M. V. TRETYAKOV

Then X̆i+1 for i = k, . . . , N − 2 is defined as the random variable distributed
according to the law:

P (X̆i+1 = xl) =
1

2

xl+1 − X̆−
i+1

hx
, P (X̆i+1 = xl+1) =

1

2

X̆−
i+1 − xl

hx
,

P (X̆i+1 = xm) =
1

2

xm+1 − X̆+
i+1

hx
, P (X̆i+1 = xm+1) =

1

2

X̆+
i+1 − xm

hx
,

where xl, xl+1, xm, xm+1 are such that xl ≤ X̆−
i+1 < xl+1, xm < X̆+

i+1 ≤ xm+1;

and X̆N is distributed as

P (X̆N = X̆−
N ) = P (X̆N = X̆+

N ) =
1

2
;

Y̆i+1 and Z̆i+1 for i = k, . . . , N − 1 are defined in the following way:

Y̆i+1 = Y̆i

[
1 + hc(ti, X̆i) + β(ti, X̆i)∆iw

]
,

Z̆i+1 = Z̆i + hf(ti, X̆i)Y̆i + γ(ti, X̆i)Y̆i∆iw.

It can be directly verified that

(5.12) v̄(tk, xj) = Ew
[
v̄(tk+1, X̆k+1)Y̆k+1 + Z̆k+1

]
.

Using equalities of the type (3.20) and the fact that X̆k+1 takes the values on the
set of knots of the space discretization, we get

v̄(tk, xj) = Ew
[
v̄(tk+2, X̆k+2)Y̆k+2 + Z̆k+2

]
.

Carrying on in this way, we obtain that v̄(tk, xj) admits the following probabilistic
representation:

(5.13) v̄(tk, xj) = Ew
[
v̄(tN , X̆N )Y̆N + Z̆N

]
= Ew

[
ϕ(X̆N )Y̆N + Z̆N

]
.

Now we shall act analogously to the proof of Theorem 3.2 and prove the inequal-
ity

(5.14)
(
E |v̄(tk, xj)− ṽ(tk, xj)|2p

)1/(2p)

≤ Kh1/2.

Then the inequality (5.10) follows from Theorem 3.2 (see (3.11)).
We write the difference DN := v̄(tk, xj)−ṽ(tk, xj) in the form (see (3.15)-(3.16)):

DN = Ew
[
ϕ(X̆tk,xj

(tN )) Y̆tk,xj ,1(tN ) + Z̆tk,xj ,1,0(tN )
]
− Ew

[
ϕ(X̃N )ỸN + Z̃N

](5.15)

= Ew
N−1∑
i=0

ρi(X̆i, Y̆i, Z̆i),

where

ρi(X̆i, Y̆i, Z̆i) = Ew,X̆i,Y̆i,Z̆i [ṽ(ti+1, X̆i+1)Y̆i+1 + Z̆i+1(5.16)

−ṽ(ti+1, X̃ti,X̆i
(ti+1))Ỹti,X̆i,Y̆i

(ti+1)− Z̃ti,X̆i,Y̆i,Z̆i
(ti+1)].

One can prove that the function ṽ(ti, x) from (3.10) is sufficiently smooth in x and
satisfies (together with its derivatives) the same inequality as the function v(t, x)
(see the inequality (2.5)).
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Our next step is to get an estimate for ρi(X̆i, Y̆i, Z̆i). Since Y̆i+1 = Ỹti,X̆i,Y̆i
(ti+1),

Z̆i+1 = Z̃ti,X̆i,Y̆i,Z̆i
(ti+1), we have

ρi(X̆i, Y̆i, Z̆i) = ρi(X̆i, Y̆i) = Ew,X̆i,Y̆i Y̆i+1[ṽ(ti+1, X̆i+1)− ṽ(ti+1, X̃ti,X̆i
(ti+1))]

= Y̆i+1E
w,X̆i,Y̆i [ṽ(ti+1, X̆i+1)− ṽ(ti+1, X̃ti,X̆i

(ti+1))].

We expand ṽ(ti+1, X̆i+1) with respect to powers of ∆̆i := X̆i+1 − X̆i in a neigh-

borhood of X̆i and with the Lagrange remainder term containing terms of or-
der four, and we similarly expand ṽ(ti+1, X̃ti,X̆i

(ti+1)) with respect to the ∆̃i :=

X̃ti,X̆i
(ti+1)− X̆i. One can verify that for p ≥ 1:

Ew,X̆i,Y̆i [∆̆i − ∆̃i] = Ew,X̆i,Y̆i [X̆i+1 − X̃ti,X̆i
(ti+1)]

= Ew,X̆i [X̆i+1 − X̃ti,X̆i
(ti+1)] = 0,

E
(
Ew,X̆i,Y̆i [∆̆r

i − ∆̃r
i ]
)2p

= O(h4p
x ), r = 2, 3,

and for hx ≤ κ

√
h,

E
(
Ew,X̆i,Y̆i [∆̆4

i ]
)2p

= O(h4p), E
(
Ew,X̆i,Y̆i [∆̃4

i ]
)2p

= O(h4p).

Then, taking into account hx = κh3/4, it is not difficult to prove that

E
∣∣∣ρi(X̆i, Y̆i, Z̆i)

∣∣∣2p ≤ Kh3p.

From here, using the same arguments as in the proof of Theorem 3.2 (see (3.22)),
we obtain (5.14) and, consequently, (5.10).

Due to the smoothness of v(t, x) in x, we have

v(tk, x) =
xj+1 − x

hx
v(tk, xj) +

x− xj

hx
v(tk, xj+1) +O(h2

x), xj ≤ x ≤ xj+1,

where E|O(h2
x)|2p ≤ Kh4p

x . Then

v̄(tk, x)− v(tk, x) =
xj+1 − x

hx
[v̄(tk, xj)− v(tk, xj)]

+
x− xj

hx
[v̄(tk, xj+1)− v(tk, xj+1)] +O(h2

x),

and, using (5.10) and that hx = κh3/4, we obtain

E|v̄(tk, x)− v(tk, x)|2p ≤ K·
(
E|v̄(tk, xj)− v(tk, xj)|2p

+E|v̄(tk, xj+1)− v(tk, xj+1)|2p
)
+Kh3p ≤ Khp,

whence (5.8) follows. The inequality (5.9) is proved as its analogue in Theorem 3.1.
�

We note that for some particular SPDEs (see Remark 3.1) the algorithm (5.6)-
(5.7) with hx = κh converges with the weak order 1− ε.

Remark 5.2. The generalization to the multidimensional SPDE, d > 1, q ≥ 1, is
straightforward (see it in the case of deterministic PDEs in [21, 23]). We also note
that other types of interpolation can be exploited here to construct layer algorithms
[21, 23].
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6. Layer methods for semilinear SPDEs

In this section, we generalize layer methods for the linear SPDEs considered
in Section 5 to the case of semilinear SPDEs (see layer methods for semilinear
deterministic PDEs in [21, 23] and for quasilinear deterministic PDEs in [24]). As
in the previous section, we restrict ourselves to the one-dimensional (d = 1) and one
noise (q = 1) case for simplicity in writing only. There is no difficulty in generalizing
the methods of this section to the multi-dimensional multi-noise case (see how this
is done in the case of deterministic PDEs in, e.g., [21, 23]).

We consider the Cauchy problem for the backward semilinear SPDE:

− dv = [Lv + f(t, x, v)] dt(6.1)

+

[
α(t, x, v)

∂

∂x
v + γ(t, x, v)

]
∗ dw(t), (t, x) ∈ [T0, T )×R,

v(T, x) = ϕ(x), x ∈ R,(6.2)

where

Lv(t, x) :=
1

2
a(t, x, v(t, x))

∂2

∂x2
v(t, x) + b(t, x, v(t, x))

∂

∂x
v(t, x),(6.3)

f(t, x, v) := f0(t, x)v + f1(t, x, v), γ(t, x, v) := γ0(t, x)v + γ1(t, x, v).

Assumption 6.1. We assume that the coefficients a(t, x, v), b(t, x, v), f0(t, x),
f1(t, x, v), α(t, x, v), γ0(t, x), and γ1(t, x, v) and the function ϕ(x) are bounded and
have bounded derivatives up to some order and that the coercivity condition is
satisfied, i.e., σ2(t, x, v) := a(t, x, v)−α2(t, x, v) ≥ 0 for all t, x, v. We also suppose
that the problem (6.1)-(6.2) has the classical solution v(t, x), which has derivatives
in x up to a sufficiently high order, and that the solution and its spatial derivatives
have bounded moments up to some order.

We note that under Assumption 6.1 the existence of the classical solution is
proved in the case a(t, x, v) = a(t, x), b(t, x, v) = b(t, x), α(t, x, v) = α(t, x) in [14]
and in the case a(t, x, v) = a(t, x) in [28, 30].

Formally generalizing the one-step approximation (5.3), we get the one-step ap-
proximation for the semilinear problem (6.1)-(6.2):

v̆(tk, x) =
1

2
v
(
tk+1, x+ hb(tk, x, v(tk+1, x))(6.4)

+h1/2σ(tk, x, v(tk+1, x)) + α(tk, x, v(tk+1, x))∆kw
)

+
1

2
v
(
tk+1, x+ hb(tk, x, v(tk+1, x))

−h1/2σ(tk, x, v(tk+1, x)) + α(tk, x, v(tk+1, x))∆kw
)

+ hf(tk, x, v(tk+1, x)) + γ(tk, x, v(tk+1, x))∆kw.

In the rest of this section we use the same letter K for various deterministic
constants and C = C(ω) for various positive random variables.

Lemma 6.1. Let Assumptions 6.1 hold. The error ρ = ρ(tk) = v̆(tk, x)− v(tk, x)
of the one-step approximation (6.4) is estimated as

|E(ρ|F tk+1

T )| ≤ C(ω)h2, |E(∆kwρ|F tk+1

T )| ≤ C(ω)h2,(6.5)
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(
E [ρ]2p

)1/(2p)

≤ Kh, p ≥ 1,(6.6)

where C(ω) and K do not depend on h, k, x and EC2 < ∞. In the case of additive
noise, α = 0 and γ(t, x, v) = γ(t, x) (i.e., γ0(t, x) = 0, γ1(t, x, v) = γ(t, x)), the
error ρ satisfies (6.5) and

(6.7)
(
E [ρ]2p

)1/(2p)

≤ Kh3/2, p ≥ 1.

Proof. We note that the increments ∆kw and the values v(tk+1, x), ∂
jv(tk+1, x)/∂x

j

are independent. Using the assumptions, we first expand the right-hand side of (6.4)
at (tk+1, x) with the Lagrange remainder containing fourth-order spatial derivatives
and then obtain

v̆(tk, x) = v(tk+1, x) + [α(tk, x, v(tk+1, x))∆kw + hb(tk, x, v(tk+1, x))]
∂v

∂x
(tk+1, x)

(6.8)

+
1

2

[
hσ2(tk, x, v(tk+1, x)) + α2(tk, x, v(tk+1, x)) (∆kw)

2
] ∂2v

∂x2
(tk+1, x)

+ hf(tk, x, v(tk+1, x)) + γ(tk, x, v(tk+1, x))∆kw + r1(tk+1, x),

where the remainder r1(tk+1, x) satisfies the inequalities (in the general case)

|E
(
r1(tk+1, x)|F tk+1

T

)
| ≤ C(ω)h2, |E

(
∆kwr1(tk+1, x)|F tk+1

T

)
| ≤ C(ω)h2,

(6.9)

(
E [r1(tk+1, x)]

2p
)1/(2p)

≤ Kh3/2.

Introduce the operators:

Lxψ(t, z) :=
∂

∂t
ψ(t, z) + [Lv(t, x) + f(t, x, v(t, x))]

∂

∂z
ψ(t, z)

+
1

2

[
α(t, x, v(t, x))

∂

∂x
v + γ(t, x, v(t, x))

]2
∂2

∂z2
ψ(t, z),

Λxψ(t, z) :=

[
α(t, x, v(t, x))

∂

∂x
v + γ(t, x, v(t, x))

]
∂

∂z
ψ(t, z).

Due to the backward Ito formula [32, 28], we have for a smooth ψ(t, z) and t ≤ tk+1 :

ψ(t, v(t, x)) = ψ(tk+1, v(tk+1, x)) +

∫ tk+1

t

Lxψ(s, v(s, x))ds(6.10)

+

∫ tk+1

t

Λxψ(s, v(s, x)) ∗ dw(s).

We write the solution v(t, x), T0 ≤ t ≤ tk+1, of (6.1)-(6.2) as

v(t, x) = v(tk+1, x) +

∫ tk+1

t

[Lv(s, x) + f(s, x, v(s, x))] ds(6.11)

+

∫ tk+1

t

[
α(s, x, v(s, x))

∂v

∂x
(s, x) + γ(s, x, v(s, x))

]
∗ dw(s)

and, in particular,

v(tk, x) = v(tk+1, x) +

∫ tk+1

tk

[Lv(s, x) + f(s, x, v(s, x))] ds(6.12)

+

∫ tk+1

tk

[
α(s, x, v(s, x))

∂v

∂x
(s, x) + γ(s, x, v(s, x))

]
∗ dw(s).
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We substitute the expression for v(s, x) from (6.11) in the parts of the integrand in
(6.12):

Lv(s, x) = Ls,xv(tk+1, x) +

∫ tk+1

s

Ls,x [Lv(s′, x) + f(s′, x, v(s′, x))] ds′

(6.13)

+

∫ tk+1

s

Ls,x

[
α(s′, x, v(s′, x))

∂v

∂x
(s′, x) + γ(s′, x, v(s′, x))

]
∗ dw(s′),

∂v

∂x
(s, x) =

∂v

∂x
(tk+1, x) +

∫ tk+1

s

∂

∂x
[Lv(s′, x) + f(s′, x, v(s′, x))] ds′

+

∫ tk+1

s

∂

∂x

[
α(s′, x, v(s′, x))

∂v

∂x
(s′, x) + γ(s′, x, v(s′, x))

]
∗ dw(s′),

where

Ls,xψ(t, z) :=
1

2
a(s, x, v(s, x))

∂2

∂z2
ψ(t, z) + b(s, x, v(s, x))

∂

∂z
ψ(t, z).

Now we apply the Ito formula (6.10) to f, α and γ in (6.12) and to the coeffi-
cients a and b appearing in Ls,xv(tk+1, x) in (6.13). Then taking into account the
assumptions and properties of Ito integrals, we obtain

v(tk, x) = v(tk+1, x) + h

[
1

2
a(tk+1, x, v(tk+1, x))

∂2

∂x2
(6.14)

+b(tk+1, x, v(tk+1, x))
∂

∂x

]
v(tk+1, x)

+ hf(tk+1, x, v(tk+1, x))

+

[
α(tk+1, x, v(tk+1, x))

∂v

∂x
(tk+1, x)

+ γ(tk+1, x, v(tk+1, x))

]
∆kw + r2(tk+1, x),

where the remainder r2(tk+1, x) satisfies the inequalities of the form (6.5)-(6.6)
in the general case and of the form (6.9) in the case α = 0, γ(t, x, v) = γ(t, x).
Furthermore, in (6.14) we expand the coefficients at (tk, x, v(tk+1, x)) and the new
remainder has the same properties as r2. The obtained result is subtracted from
(6.8) and we get (taking into account that a = σ2 + α2)
(6.15)

ρ = v̆(tk, x)−v(tk, x) =
1

2

∂2v

∂x2
(tk+1, x)α

2(tk, x, v(tk+1, x))
[
(∆kw)

2 − h
]
+r(tk+1, x),

where the remainder r(tk+1, x) has the same properties as r2. Lemma 6.1 evidently
follows from (6.15). �
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Based on the one-step approximation (6.4), we obtain the layer method:

v̄(tN , x) = ϕ(x),(6.16)

v̄(tk, x) =
1

2
v̄
(
tk+1, x+ hb(tk, x, v̄(tk+1, x))

+h1/2σ(tk, x, v̄(tk+1, x)) + α(tk, x, v̄(tk+1, x))∆kw
)

+
1

2
v̄
(
tk+1, x+ hb(tk, x, v̄(tk+1, x))

−h1/2σ(tk, x, v̄(tk+1, x)) + α(tk, x, v̄(tk+1, x))∆kw
)

+hf(tk, x, v̄(tk+1, x)) + γ(tk, x, v̄(tk+1, x))∆kw, k = N − 1, . . . , 1, 0.

Let us prove the following technical lemma, which will be exploited in proving
the convergence Theorem 6.1.

Lemma 6.2. Let Assumptions 6.1 hold. Then

R(tk, x) := v̄(tk, x)− v(tk, x)(6.17)

=
1

2
R(tk+1, x+ b̄h+ σ̄h1/2 + ᾱ∆kw) +

1

2
R(tk+1, x+ b̄h− σ̄h1/2 + ᾱ∆kw)

+∆fh+∆γ∆kw +
∂v

∂x
(tk+1, x)(∆bh+∆α∆kw) + r + ρ,

where ρ is the one-step error as in Lemma 6.1 and

| r | ≤ C | R(tk+1, x) | (h+∆2
kw).

Proof. From (6.16) and due to the equality v̄(tk+1, ·) = v(tk+1, ·) + R(tk+1, ·), we
get

v̄(tk, x) =
1

2
v(tk+1, x+ b̄h+ σ̄h1/2 + ᾱ∆kw) +

1

2
v(tk+1, x+ b̄h− σ̄h1/2 + ᾱ∆kw)

(6.18)

+
1

2
R(tk+1, x+ b̄h+ σ̄h1/2 + ᾱ∆kw) +

1

2
R(tk+1, x+ b̄h− σ̄h1/2 + ᾱ∆kw)

+f̄h+ γ̄∆kw, k = N − 1, . . . , 1, 0,

where b̄, σ̄, ᾱ, f̄ , γ̄ are the coefficients b(t, x, v), . . . , γ(t, x, v) calculated at t =
tk, x = x, v = v̄(tk+1, x) = v(tk+1, x) +R(tk+1, x).

We have

(6.19) b̄ = b(tk, x, v(tk+1, x) +R(tk+1, x)) = b(tk, x, v(tk+1, x)) + ∆b := b+∆b,

where ∆b satisfies the inequality

(6.20) | ∆b | ≤ K | R(tk+1, x) |
with a deterministic constant K. Due to the uniform boundedness of b, we also get

(6.21) | ∆b |2 ≤ | ∆b | ×K | R(tk+1, x) | ≤ K | R(tk+1, x) | .
Analogously,

σ̄ = σ +∆σ, | ∆σ | ≤ K | R(tk+1, x) |, | ∆σ |2 ≤ K | R(tk+1, x) |,(6.22)

ᾱ = α+∆α, | ∆α | ≤ K | R(tk+1, x) |, | ∆α |2 ≤ K | R(tk+1, x) | .
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For ∆f and ∆γ, we have

(6.23) | ∆f | ≤ K | R(tk+1, x) |, | ∆γ | ≤ K | R(tk+1, x) | .
It is not difficult to see that (6.20)-(6.22) imply the equalities

v(tk+1, x+ b̄h± σ̄h1/2 + ᾱ∆kw) = v(tk+1, x+ bh± σh1/2 + α∆kw)(6.24)

+
∂v

∂x
(tk+1, x+ bh± σh1/2 + α∆kw)(∆bh±∆σh1/2 +∆α∆kw) + r,

where

(6.25) | r | ≤ C | ∆bh±∆σh1/2 +∆α∆kw |2 ≤ C | R(tk+1, x) | (h+∆2
kw),

and C is a random variable with uniformly bounded second moment EC2.
Furthermore,

(6.26)
∂v

∂x
(tk+1, x+bh±σh1/2+α∆kw) =

∂v

∂x
(tk+1, x)+Ch1/2+C∆kw, EC2 < ∞.

Substituting (6.26) in (6.24) and then the new (6.24) in (6.18) and taking into
account (6.20)-(6.22) with (6.25), we obtain

v̄(tk, x) =
1

2
v(tk+1, x+ bh+ σh1/2 + α∆kw) +

1

2
v(tk+1, x+ bh− σh1/2 + α∆kw)

(6.27)

+fh+ γ∆kw +∆fh+∆γ∆kw +
∂v

∂x
(tk+1, x)(∆bh+∆α∆kw)

+
1

2
R(tk+1, x+ b̄h+ σ̄h1/2 + ᾱ∆kw) +

1

2
R(tk+1, x+ b̄h− σ̄h1/2 + ᾱ∆kw) + r

= v̆(tk, x)+
1

2
R(tk+1, x+ b̄h+ σ̄h1/2+ ᾱ∆kw) +

1

2
R(tk+1, x+ b̄h− σ̄h1/2+ ᾱ∆kw)

+∆fh+∆γ∆kw +
∂v

∂x
(tk+1, x)(∆bh+∆α∆kw) + r,

where the new r also satisfies

| r | ≤ C | R(tk+1, x) | (h+∆2
kw).

At last using Lemma 6.1, we obtain

R(tk, x) = v̄(tk, x)− v(tk, x) = v̆(tk, x)− v(tk, x)(6.28)

+
1

2
R(tk+1, x+ b̄h+ σ̄h1/2 + ᾱ∆kw) +

1

2
R(tk+1, x+ b̄h− σ̄h1/2 + ᾱ∆kw)

+∆fh+∆γ∆kw +
∂v

∂x
(tk+1, x)(∆bh+∆α∆kw) + r

=
1

2
R(tk+1, x+ b̄h+ σ̄h1/2 + ᾱ∆kw) +

1

2
R(tk+1, x+ b̄h− σ̄h1/2 + ᾱ∆kw)

+∆fh+∆γ∆kw +
∂v

∂x
(tk+1, x)(∆bh+∆α∆kw) + r + ρ,

whence (6.17) follows. �

Due to Lemmas 6.1 and 6.2, one can expect that the method (6.16) converges
with the mean-square order 1/2. But we have not succeeded in proving the corre-
sponding convergence theorem in the general case. Here we restrict ourselves to
proving the following theorem.
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Theorem 6.1. Let Assumptions 6.1 hold. Let α = 0 and b and σ be independent
of v. Then

(6.29) (E(v̄(tk, x)− v(tk, x))
2)1/2 ≤ Kh1/2,

where K does not depend on h, k, x. If, in addition, γ(t, x, v) = γ(t, x) (i.e., in the
additive noise case), then

(6.30) (E(v̄(tk, x)− v(tk, x))
2)1/2 ≤ Kh.

Proof. In the case α = 0 and b and σ independent of v, the remainder r in (6.28)
is equal to zero (see (6.25)). Then we get
(6.31)

R(tk, x) =
1

2
R(tk+1, x+bh+σh1/2)+

1

2
R(tk+1, x+bh−σh1/2)+∆fh+∆γ∆kw+ρ,

where ρ satisfies (6.6) in the case of general γ and (6.7) in the case γ(t, x, v) =
γ(t, x). Let us square (6.31) and then take conditional expectation with respect to

the σ-algebra F tk+1

T . We get

E(R2(tk, x) | F tk+1

T ) =
1

4
R2(tk+1, x+ bh+ σh1/2) +

1

4
R2(tk+1, x+ bh− σh1/2)

(6.32)

+
1

2
R(tk+1, x+ bh+ σh1/2)R(tk+1, x+ bh− σh1/2)

+h2(∆f)2 + h(∆γ)2 + E(ρ2 | F tk+1

T )

+(R(tk+1, x+ bh+ σh1/2) +R(tk+1, x+ bh− σh1/2))(∆fh+ E(ρ | F tk+1

T ))

+2∆fhE(ρ | F tk+1

T ) + 2∆γE(∆kwρ | F tk+1

T ).

Using Lemma 6.1 and the inequalities (6.23), one can estimate the terms in (6.32).
For instance,

| ∆γE(∆kwρ | F tk+1

T ) | ≤ K|R(tk+1, x)|C(ω)h2 ≤ 1

2
K2R2(tk+1, x)h+

1

2
C2(ω)h3.

Introduce the notation

m(tk) := sup
x

ER2(tk, x).

After taking expectations in (6.32), we easily obtain

ER2(tk, x) ≤ (1 +Kh)m(tk+1) + Eρ2(tk+1) +Kh3,

where the constant K does not depend on h, k, x. Therefore

m(tk) ≤ (1 +Kh)m(tk+1) + Eρ2(tk+1) +Kh3,

whence (6.29) follows because of Eρ2 ≤ Kh2 in the multiplicative noise case (i.e.,
when γ depends on v) and (6.30) follows because of Eρ2 ≤ Kh3 in the additive
noise case. �

Introduce the equidistant space discretization as in (5.5). Using linear inter-
polation, we construct the following algorithm on the basis of the layer method
(6.16):
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v̄(tN , x) = ϕ(x),(6.33)

v̄(tk, xj) =
1

2
v̄
(
tk+1, xj + hb(tk, xj , v̄(tk+1, xj))

+ h1/2σ(tk, xj , v̄(tk+1, xj)) + α(tk, xj , v̄(tk+1, xj))∆kw
)

+
1

2
v̄
(
tk+1, xj + hb(tk, xj , v̄(tk+1, xj))

− h1/2σ(tk, xj , v̄(tk+1, xj)) + α(tk, xj , v̄(tk+1, xj))∆kw
)

+hf(tk, xj , v̄(tk+1, xj)) + γ(tk, xj , v̄(tk+1, xj))∆kw, j = 0,±1,±2, . . . ,

v̄(tk, x) =
xj+1 − x

hx
v̄(tk, xj) +

x− xj

hx
v̄(tk, xj+1), xj ≤ x ≤ xj+1,(6.34)

k = N − 1, . . . , 1, 0.

The following convergence theorem is proved for this algorithm using ideas from
the above proof of Theorem 6.1 and also from the proof of an analogous theorem
for an algorithm in the deterministic case [23, Chapter 7].

Theorem 6.2. Let Assumptions 6.1 hold. Let α = 0 and b and σ be independent
of v. Then the error of the one-step approximation (6.33)-(6.34) with hx = κh3/4,
κ > 0, is estimated as

(6.35) (E(v̄(tk, x)− v(tk, x))
2)1/2 ≤ Kh1/2,

where K does not depend on h, k, x. If, in addition, γ(t, x, v) = γ(t, x) (i.e., in the
additive noise case) and hx = κh, κ > 0, then

(6.36) (E(v̄(tk, x)− v(tk, x))
2)1/2 ≤ Kh.

We note that Remark 5.2 is valid here.

7. Numerical experiments

7.1. Model problem: Ornstein-Uhlenbeck equation. We consider the prob-
lem

−dv =

[
a2

2

∂2v

∂x2
+ bx

∂v

∂x

]
dt+ α

∂v

∂x
∗ dw(t), (t, x) ∈ [T0, T )×R,(7.1)

v(T, x) = ϕ(x), x ∈ R,(7.2)

where w(t) is a standard scalar Wiener process, a, b, α are constants and

(7.3) σ2 = a2 − α2 ≥ 0.

The solution of the problem is given by (see (2.6)-(2.7)):

v(t, x) = Ewϕ(Xt,x(T )),(7.4)

dX = bXds+ σdW (s) + αdw(s).(7.5)

We have

(7.6) Xt,x(T ) = eb(T−t)x+

∫ T

t

eb(T−ϑ) [σdW (ϑ) + αdw(ϑ)] .
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Clearly, the conditional distribution of Xt,x(T ) under w(s), t ≤ s ≤ T, is Gaussian
with the parameters

m(t, x) := E (Xt,x(T )/w(s)− w(t), t ≤ s ≤ T )(7.7)

= eb(T−t)x+

∫ T

t

eb(T−ϑ)αdw(ϑ)

= eb(T−t)x+ α (w(T )− w(t)) + αb

∫ T

t

eb(T−ϑ) (w(ϑ)− w(t)) dϑ,

δ2(t) := V ar (Xt,x(T )/w(s)− w(t), t ≤ s ≤ T )(7.8)

=
σ2

2b

(
e2b(T−t) − 1

)
.

From here, we get the following explicit solution of the Ornstein-Uhlenbeck equa-
tion:

(7.9) v(t, x) = Ewϕ(Xt,x(T )) =
1√

2πδ(t)

∫ ∞

−∞
ϕ(ξ) exp

(
− (ξ −m(t, x))2

2δ2(t)

)
dξ.

We have

(7.10)
∂v

∂x
(t, x) =

eb(T−t)

√
2πδ3(t)

∫ ∞

−∞
ϕ(ξ) [ξ −m(t, x)] exp

(
− (ξ −m(t, x))

2

2δ2(t)

)
dξ.

Now consider the problem which is a perturbation of (7.1)-(7.2):

−du =

[
a2

2

∂2u

∂x2
+ (bx+ εb1(x))

∂u

∂x

]
dt+ α

∂u

∂x
∗ dw(t), (t, x) ∈ [T0, T )×R,

(7.11)

u(T, x) = ϕ(x), x ∈ R.(7.12)

Aiming to reduce variance in the Monte Carlo procedure, let us use the represen-
tation (4.2)-(4.3) with µ = 0 (hence Y ≡ 1) and with

(7.13) λ(s, x) = −σ
∂v

∂x
(s, x),

where ∂v/∂x is from (7.10). We have

(7.14) u(t, x) = Ew [ϕ(Xt,x(T )) + Zt,x,1,0(T )] ,

where X, Z satisfy the system

dX = [bX + εb1(X)] ds+ σdW (s) + αdw(s),(7.15)

dZ = −σ
∂v

∂x
(s,X)dW (s).

To realize (7.14), we use both the mean-square and the weak Euler procedures for
solving (7.15) with respect to the Wiener process W (t). Due to Theorem 4.1, the
variance is expected to be small if ε is relatively small. Here we exploit the control
variates method (we put µ = 0) for variance reduction. Since in the SPDEs (7.1)-
(7.2) and (7.11)-(7.12) the coefficient α is constant and β = γ = 0, the method of
important sampling can also be used without any theoretical difficulties (see the
corresponding comment at the end of Section 4).
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7.2. Numerical results. For definiteness, we simulate (7.1)-(7.2) with

(7.16) ϕ(x) = x2.

In the tests we fix a trajectory w(t), 0 ≤ t ≤ T, which is obtained with a small time
step equal to 0.0001. To evaluate the exact solution given by (7.9), we simulate
the integral in (7.7) by the trapezoidal rule with the step 0.0001. In Table 1 we
present the results of simulating the solution of (7.1)-(7.2), (7.16) by the weak
Euler-type scheme (3.7), (3.9). One can observe convergence with order one that
is in good agreement with our theoretical results (see Remark 3.1 and note that
in this example α and σ are constant). In the table the “±” reflects the Monte
Carlo error only, it gives the confidence interval for the corresponding value with
probability 0.95. Similar results are obtained by the mean-square Euler scheme
(3.2). For instance, for h = 0.1 (the other parameters are the same as in Table 1)
we get v̂(0, 0) = 0.7550± 0.0019.

Table 1. Ornstein-Uhlenbeck equation. Evaluation of v(t, x) from
(7.1)-(7.2), (7.16) with various time steps h. Here a = 1, b = −1,
α = 0.5, and T = 10. The expectations are computed by the Monte
Carlo technique simulatingM = 106 independent realizations. The
“±”reflects the Monte Carlo error only, it does not reflect the error
of the method. All simulations are done along the same sample
path w(t). The corresponding reference value is 0.73726, which is
found due to (7.9).

h v̂(0, 0)

0.2 0.7735± 0.0019

0.1 0.7557± 0.0018

0.05 0.7456± 0.0018

0.02 0.7412± 0.0018

0.01 0.7391± 0.0018

To demonstrate the variance reduction technique from Section 4, we first simulate
(7.1)-(7.2), (7.16) using a probabilistic representation of the form (7.14), (7.15) with
ε = 0. In particular, we obtain that for M = 104, h = 0.1 (the other parameters
are the same as in Table 1) v̂(0, 0) = 0.7562±0.0012 and for M = 100, h = 0.01 the
approximate value v̂(0, 0) = 0.7383 ± 0.0010. Recalling that the results in Table 1
are obtained with M = 106 Monte Carlo runs, one can see that we reach the same
level of the Monte Carlo error with significantly fewer Monte Carlo runs. We note
that although we use the optimal λ(s, x) here, the variance (and, consequently, the
Monte Carlo error) is not zero, which is due to the error of numerical integration
of the equation for Z in (7.15).

Now we evaluate the solution of the perturbed Ornstein-Uhlenbeck equation
(7.11)-(7.12). We take ϕ(x) from (7.16) and we choose a small ε > 0 and

(7.17) b1(x) = −x3.

We simulate (7.14), (7.15), (7.16), (7.17) both without employing the variance
reduction technique (i.e., we put Z(T ) = 0 in (7.14)) and with variance reduction
(i.e., using λ(s, x) from (7.13), (7.10)) by the Euler-type scheme (3.7), (3.9). The
results of the experiments are presented in Table 2. When the variance reduction
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Table 2. Perturbed Ornstein-Uhlenbeck equation. Evaluation of
u(t, x) from (7.11)-(7.12), (7.16), (7.17) at (0, 0) with various time
steps h. Here a = 1, b = −1, α = 0.5, ε = 0.1, and T = 10. The
expectations are computed by the Monte Carlo technique simulat-
ing M = 104 independent realizations. The corresponding refer-
ence value is 0.6006 ± 0.0004, which is found by simulation with
h = 0.001 and M = 106.

h without variance reduction with variance reduction

0.2 0.614± 0.014 0.6014± 0.0042

0.1 0.611± 0.014 0.6037± 0.0040

0.02 0.604± 0.014 0.6001± 0.0041

technique is used, the Monte Carlo error is 3.5 times less than in the standard
simulation without variance reduction. In other words, to reach the same accuracy,
we can run 12 times fewer trajectories in the case with variance reduction than
without one, which is a significant gain of computational efficiency.
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