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APPROXIMATION OF NONLINEAR WAVE EQUATIONS WITH

NONSTANDARD ANISOTROPIC GROWTH CONDITIONS

JONAS HAEHNLE AND ANDREAS PROHL

Abstract. Weak solutions for nonlinear wave equations involving the p(x)-
Laplacian, for p : Ω → (1,∞) are constructed as appropriate limits of solutions
of an implicit finite element discretization of the problem. A simple fixed-point
scheme with appropriate stopping criteria is proposed to conclude convergence
for all discretization, regularization, perturbation, and stopping parameters
tending to zero. Computational experiments are included to motivate inter-
esting dynamics, such as blowup, and asymptotic decay behavior.

1. Introduction

Let T > 0, and Ω ⊂ R
d, d ≥ 1 be a bounded Lipschitz domain. Consider

p ∈ C
(
Ω, (1,∞)

)
, such that

(1.1)
∣∣p(x)− p(y)

∣∣ ≤ c∣∣ln |x− y|
∣∣ ∀ |x− y| < 1

2
,

for some c > 0. Suppose that f : Ω × R → R is continuous, with suitable growth

conditions, and F (x, u) =
∫ u

0
f(x, s) ds. Given

(
u0, v0

)
∈ W

1,p(x)
0 (Ω)× L2(Ω), we

seek (global weak) solutions u : (0, T )× Ω → R, such that (α ≥ 0)

utt − div
(
|∇u|p(x)−2∇u

)
− α∆ut + f(x, u) = 0 in ΩT := (0, T ]× Ω,

u(0, ·) = u0, ut(0, ·) = v0 in Ω,(1.2)

u = 0 on ∂ΩT := (0, T ]× ∂Ω .

This is a prototype problem with nonstandard p(x)-growth condition, and energy
functional
(1.3)

Ep

[
u, v

]
=

∫
Ω

[
1

p(x)
|∇u|p(x) + 1

2
|v|2 + F (x, u)

]
dx for p ∈ C

(
Ω; (1,∞)

)
,

where the classical solutions to (1.2) satisfy

(1.4) Ep

[
u(t, ·), ut(t, ·)

]
+ α

∫
ΩT

|∇ut|2 dxdt = Ep

[
u0, v0

]
∀ t ≥ 0 .

One motivation comes from studying evolutionary problems with nonstandard
anisotropic growth conditions, which may e.g. provide further insight into the be-
havior of solutions of semi-/quasilinear wave equations with critical (de-)focusing
nonlinearities, such as finite time blow-up behavior [4, 22, 8, 27, 14, 16, 7, 32, 17, 18],
decay behavior of global solutions [6, 26, 5, 3], relevancy of weak and/vs. strong
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damping in this context, and/or dependence of solutions on initial data of small,
finite, or infinite energies [24, 14]. A possible physical motivation for (1.2) are
models from viscoelasticity, where (1.2) for 2 ≤ p ≡ const is the subject of several
studies; see e.g. [15, 28].

Functionals with variable exponents (1.3) are currently the subject of intensive
research, and analytical studies of variational problems with nonstandard p(x)-
growth have led to interesting results, and are still rapidly developing; see e.g. [11, 2,
12, 13, 2, 30, 10]. However, it is only recently that related parabolic equations with
anisotropic nonstandard growth conditions have been studied, both analytically
[1] and numerically [29], where the latter work includes computational studies to
motivate decay behavior, or blowup of solutions for supercritical nonlinearities. The
goal of this work is to extend this program to the nonlinear wave equation (1.2).
In particular, we

(1) construct a convergent finite element based scheme: A fully practical dis-
cretization is provided, which includes a fixed-point strategy to solve nonlin-
ear algebraic problems at each iteration step, in combination with an appro-
priate stopping criterion. In particular, the fixed-point algorithm requires a

regularization ∆
δ(x)
p(x)u := div

(
[|∇u|2 + δ(x)]

p(x)−2
2 ∇u

)
, for δ ∈ L∞(

Ω, (0, 1]
)

of ∆p(x)u := div
(
|∇u|p(x)−2∇u

)
in (1.2) to validate a contraction property

for all p ∈ C
(
Ω, [2,∞)

)
. Overall convergence of iterates to a weak solution

of (1.2) in the sense of Definition 2.1 will be shown for all discretization,
perturbation, regularization, and thresholding parameters tending to zero.

(2) perturb the numerical scheme: Since a complicated p : Ω → [2,∞) crucially
affects numerical integration, approximations pε ∈ C

(
Ω, [2,∞)

)
might be

useful; we verify that for pε ↓ p simultaneously to other convergences in
item (1), iterates of the numerical scheme (see Scheme A, and Algorithm A1

below) converge to weak solutions of (1.2).
(3) computationally study the qualitative behavior of solutions: Scheme A and

Algorithm A1 are convergent discretizations, in the sense that subsequences
of solutions converge to weak solutions of (1.2). This theoretical back-
ground justifies computational studies to motivate interesting behaviors of
weak solutions of (1.2), such as asymptotic decay properties for subcritical
nonlinearities. Moreover, computational experiments are provided for sit-
uations which cannot be covered theoretically so far, such as α = 0, and
values p− := infΩ p < 2, large or infinite initial energies, and supercritical
involved nonlinearities.

The remainder of this work is organized as follows. In Section 2, we recall useful
properties of the Orlicz spaces Lp(x) and Wm,p(x), and define weak solutions of
(1.2). In Section 3, we propose an implicit, regularized finite element discretiza-
tion of (1.2) (Scheme A) and validate solvability, and obtain a discrete version of
the energy identity (1.4) for iterates of Scheme A (α ≥ 0 and p− > 0). Subse-
quence convergence of iterates to weak solutions in the sense of Definition 2.1 for
(independently) vanishing discretization and regularization parameters is stated in
Theorem 3.1, for α > 0, and p− ≥ 2. This result is achieved for initial data of fi-
nite energy, and functions f in (1.2) which satisfy the asymptotic growth condition
(2.3), for 1 < γ < p−.
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Solving nonlinear problems in Scheme A requires an iterative procedure; in Sec-
tion 4, we discuss how the goal to validate a discrete energy law interferes with the
goal to validate a contraction property at this point. The fixed-point algorithm,
Algorithm A1, together with a stopping criterion, is proposed, and overall conver-
gence of iterates of this fully practical scheme for all discretization, regularization,
and thresholding parameters tending to zero is stated in Theorem 4.1. Computa-
tional examples addressing both issues related to the given numerical schemes and
qualitative behaviors of solutions are reported in Section 5.

2. Preliminaries

Below, unless explicitly stated, always let Ω ⊂ R
d, for d = 2, 3, be a bounded

Lipschitz domain, and let p, pε ∈ C
(
Ω, (1,∞)

)
satisfy (1.1). The material presented

in Section 2.1 can be found in [13, 33].

2.1. Spaces Lp(x)(Ω) and Wm,p(x)(Ω). Let p ∈ C
(
Ω; (1,∞)

)
be given, with p ∈

[p−, p+], p+ := supΩ p, and let (1.1) be valid. We define the generalized Lebesgue
space

Lp(x)(Ω) :=
{
u : Ω → R : u is a measurable real-valued function,

ρp(x)(λu) < ∞ for λ > 0
}
,

where ρp(x)(u) =
∫
Ω
|u|p(x) dx is called the modular. We introduce the so-called

Luxemburg norm on Lp(x)(Ω),

‖u‖Lp(x) := inf
{
λ > 0 : ρp(x)(

u

λ
) ≤ 1

}
.

If p is constant, then the variable exponent Lebesgue spaces coincide with the
classical Lebesgue space. For all u ∈ Lp(x)(Ω), the following holds:

(2.1) min
{
‖u‖p−

Lp(x) , ‖u‖
p+

Lp(x)

}
≤ ρp(x)(u) ≤ max

{
‖u‖p−

Lp(x) , ‖u‖
p+

Lp(x)

}
.

The tuple
(
Lp(x)(Ω), ‖ · ‖Lp(x)(Ω)

)
is a separable Banach space, and its conjugate

space is Lq(x)(Ω), for 1
q(x) +

1
p(x) = 1. Given u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), it

follows that ∣∣∣∫
Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1

q−

)
‖u‖Lp(x)(Ω)‖v‖Lq(x)(Ω).

If p1, p2 ∈ C
(
Ω, (1,∞)

)
, such that p1(x) ≤ p2(x) in Ω, then Lp2(x)(Ω) ⊂ Lp1(x)(Ω),

and the embedding is continuous.

The (separable, reflexive) Banach space W
1,p(x)
0 (Ω) is defined by

W
1,p(x)
0 (Ω) :=

{
u ∈ Lp(x) : |∇u| ∈ Lp(x)(Ω), u = 0 on ∂Ω

}
,

which is endowed with the norm

‖u‖
W

1,p(x)
0

:= ‖u‖Lp(x) + ‖∇u‖Lp(x) .

An equivalent norm of W
1,p(x)
0 (Ω) is given by ‖∇u‖Lp(x)(Ω). We have that C∞

0 (Ω)

is dense in W
1,p(x)
0 (Ω). The embedding W

1,p(x)
0 (Ω) ⊂ Lq(x)(Ω) is continuous and

compact if

(2.2) 1 < q(x) ≤ sup
Ω

q(x) < inf
Ω

p∗(x) with p∗(x) =

{
dp(x)
d−p(x) , p(x) < d,

∞, p(x) > d .
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Moreover,

‖u‖Lp(x) ≤ C‖∇u‖Lp(x) ∀u ∈ W
1,p(x)
0 (Ω).

We define the p(x)-Laplace operator −∆p(x)u := −div
(
|∇u|p(x)−2∇u

)
; it is the

derivative of the strictly convex functional Ep(x) : W
1,p(x)
0 (Ω) → R given in (1.3).

The mapping −∆p(x) : W
1,p(x)
0 (Ω) →

(
W

1,p(x)
0 (Ω)

)∗
is continuous, bounded, and

strictly monotone [11].

2.2. Weak solution of (1.2). Let f : Ω → R be a continuous function satisfying
the growth condition

(2.3)
∣∣f(x, s)∣∣ ≤ hf (x) + C1|s|γ−1 ∀ (x, s ) ∈ Ω× R ,

for some γ > 1, and hf ∈ L∞(Ω;R+). In the following, we define weak solutions to
(1.2).

Definition 2.1. Fix T > 0, and let Ω ⊂ R
d be a bounded Lipschitz domain. Let

p ∈ C
(
Ω, (1,∞)

)
be such that (1.1) holds, and

(
u0, v0

)
∈ W

1,p(x)
0 (Ω) × L2(Ω).

Then u : ΩT → R is called a weak solution to (1.2) (α > 0) if

(i) u ∈ L∞(
0, T ;W

1,p(x)
0 (Ω)

)
∩W 1,∞(

0, T ;L2(Ω)
)
∩W 1,2

(
0, T ;W 1,2

0 (Ω)
)
,

(ii) initial data are attained, i.e., for t → 0,

u(t, ·) ⇀ u0 in W 1,p(x)(Ω), ut(t, ·) ⇀ v0 in L2(Ω),

(iii) for all ξ ∈ C∞
0

(
[0, T )× Ω

)
it follows that∫

ΩT

[
−utξt + |∇u|p(x)−2∇u · ∇ξ + α∇ut · ∇ξ

]
dxdt

=

∫
Ω

v0 · ξ(0, ·) dx−
∫
ΩT

f
(
x, u

)
ξ dxdt,

(iv) for almost every t ∈ [0, T ],

Ep

[
u(t, ·), ut(t, ·)

]
− Ep

[
u0, v0

]
≤ −α

∫ t

0

∫
Ω

|∇ut|2dxdt .

2.3. Discretization in time and space. Let Th be a quasi-uniform triangulation
of a polygonal or polyhedral domain Ω ⊂ R

d, d = 2, 3 into triangles or tetrahedra
of maximal diameter h > 0, i.e., Ω =

⋃
K∈Th

K. Let Nh = {x�}�∈L denote the

set of all nodes of Th. Let Vh = {U ∈ C(Ω) : U is affine on K, ∀K ∈ Th} be the
finite element space, and recall the nodal interpolation operator Ih : C(Ω) → Vh,
such that Ihψ =

∑
z∈Nh

ψ(z)ϕz; here, {ϕz : z ∈ Nh} ⊂ Vh denotes the nodal

basis for Vh, and ψ ∈ C(Ω). Moreover, we use the L2(Ω)-orthogonal projection
Ph : L2(Ω) → Vh; i.e., for every ϕ ∈ L2(Ω) there exists a unique Phϕ ∈ Vh,
satisfying (ϕ− Phϕ,Ψ) = 0 for all Ψ ∈ Vh.

Given a time-step size k > 0, and a sequence {ϕj} in some Banach space X, we
set dtϕ

j := k−1
{
ϕj − ϕj−1

}
for j ≥ 1, and d2tϕ

j ≡ dt
(
dtϕ

j
)
= k−2

{
ϕj − 2ϕj−1 +

ϕj−2
}
for j ≥ 2. Note that (dtϕ

j , ϕj) = 1
2dt‖ϕj‖2 + k

2‖dtϕj‖2 if X is a Hilbert

space. Piecewise constant interpolations of {ϕj} are defined for t ∈ [tj , tj+1), and
0 ≤ j ≤ J − 1 by

ϕ−(t) := ϕj and ϕ+(t) := ϕj+1,
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and a piecewise affine interpolation on [tj , tj+1) is defined by

ϕ(t) :=
t− tj
k

ϕj+1 +
tj+1 − t

k
ϕj .

Then ‖φ± − φ‖X ≤ 2k ‖dtφ‖X .

3. An implicit finite element discretization of (1.2)

In the following, let
(
U0, V 0

)
≡

(
PL2u0, PL2v0

)
∈
[
Vh

]2
, and U−1 := U0−kV 0.

The main goal in this section is to show that iterates of Scheme A below exist,
satisfy a discrete energy law, and converge to weak solutions of (1.2) in the sense
of Definition 2.1, for discretization, regularization, and perturbation parameters
tending to zero.

Scheme A. Let U−1, U0 ∈ Vh be given. For every 1 ≤ j ≤ J , find U j ∈ Vh such
that for all W ∈ Vh,

(
d2tU

j ,W
)
+

([
|∇U j |2 + δ(x)

] pε(x)−2
2 ∇U j ,∇W

)(3.1)

+ α
(
∇dtU

j ,∇W
)
+
(
f̃(x, U j , U j−1),W

)
= 0,

for some δ ∈ L∞(
Ω, [0, 1]

)
, a function pε ∈ C

(
Ω, (1,∞)

)
approximating p, and

(3.2) f̃(x, a, b) =

{
F (x,a)−F (x,b)

a−b if a = b,

f(x, a) if a = b .

The latter construction is to validate a discrete energy inequality for iterates(
U j , V j

)
:=

(
U j , dtU

j
)
(1 ≤ j ≤ J) solving (3.1), where (ϕ, ψ ∈ Vh)

Eδ
pε

[
ϕ, ψ

]
:=

∫
Ω

[
1

pε(x)

[
|∇ϕ|2 + δ(x)

] pε(x)
2 +

1

2
|ψ|2 + F (x, ϕ)

]
dx .

In a first step, we show the well-posedness of Scheme A and the convergence of
iterates to weak solutions of (1.2) for

(
k, h, δ, pε− p

)
→ 0 for finite initial energies,

provided that 1 < γ < p−, for p− ≥ 2.

Theorem 3.1. Let T > 0, Ω ⊂ R
d, d = 2, 3 be a bounded Lipschitz domain, α ≥ 0,

and p ∈ C
(
Ω, (1,∞)

)
such that (1.1) holds. Assume that U0 ⇀ u0 in W

1,p(x)
0 (Ω),

and V 0 ⇀ v0 in L2(Ω) for h → 0, and let f : Ω× R → R be a continuous function
which satisfies (2.3), with

(3.3) 1 < γ < p− .

(i) For sufficiently small k, h > 0, δ ∈ L∞(
Ω, [0, 1]

)
, and given pε ∈ C

(
Ω, (1,∞)

)
,

which satisfies (1.1) for every ε ≥ 0, and

(3.4) pε(x) ≥ p(x) in Ω, such that ‖p− pε‖L∞(Ω) ≤ ε,

there exists {U j}Jj=1 ⊂ Vh which solves (3.1) and satisfies the discrete energy in-
equality

(3.5) Eδ
pε

[
U j , V j

]
+

k2

2

j∑
�=1

‖d2tU �‖2L2 ≤ Eδ
pε

[
U0, V 0

]
(1 ≤ j ≤ J).
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(ii) Let α > 0 and p− ≥ 2. For every t ∈ [tj−1, tj) (1 ≤ j ≤ J), and

U(t, ·) ≡ Uk,h,δ(x),ε(t, ·) :=
t− tj−1

k
U j +

tj − t

k
U j−1 in Ω,

there exist a convergent subsequence {U}, and u ∈ L∞(
0, T ;W

1,p(x)
0 (Ω)

)
, such that

U
∗
⇀ u in L∞(

0, T ;W 1,p(x)(Ω)
)

( k, h, δ(x), ε ) → 0.

Moreover, u : ΩT → R is a weak solution of (1.2) in the sense of Definition 2.1.

Remark 1. Let f(x, u) = −|u|γ−2u, and p ≥ 2 be constant in (1.2). (i) Assume
α = 0. If γ > p, solutions with negative initial energy blow up in finite time [4, 20].
(ii) The same behavior is known for α > 0; see [31, 25].

The proof is split into two parts, where the first addresses existence of solu-
tions {U j}1≤j≤J ⊂ Vh of Scheme A, as well as the discrete energy inequality
(3.5); the second part verifies convergence of iterates towards weak solutions for(
k, h, δ(x), ε

)
→ 0.

Proof (Theorem 3.1, part (i)). Step 1. Existence of sequences {U j}Jj=1 ⊂ Vh that

solve (3.1). For every k, h > 0, and p− > 1, solutions U j ∈ Vh of Scheme A

minimize the continuous functional Ej
k,h : Vh → R, with (j ≥ 1)

(3.6)
Ej

k,h[W ] :=

∫
Ω

[ 1

2k2
|W − 2U j−1 + U j−2|2 + 1

pε(x)

(
|∇W |2 + δ(x)

) pε(x)
2

+
α

2k
|∇(W − U j−1)|2 + 1

θ
F
(
x, θW + (1− θ)U j−1

)]
dx ,

for some θ ∈ (0, 1). Here, we use the fact that f̃(x, a, b) = f
(
x, θa + (1 − θ)b

)
for

some θ ∈ (0, 1). In order to bound the last term in (3.6), we recall (2.3) and use
Poincaré’s and Young’s inequalities to find∫

Ω

∣∣F (x,W )
∣∣dx =

∫
Ω

∣∣∣∫ W

0

f(x, s)ds
∣∣∣dx

≤
∫
Ω

∫ W

0

[
C1|s|γ−1 + hf (x)

]
ds dx

≤ C1

γ
‖W‖γLγ + ‖hf‖L∞ ‖W‖L1

≤ C

[
C1

γ
+ 1

]
‖∇W‖γLγ + ‖hf‖

γ
γ−1

L∞ .

Since [pε]− > γ, there exists a constant C = C (hf ) > 0, such that

(3.7)

∫
Ω

∣∣F (x,W )
∣∣dx ≤ C +

∫
Ω

1

2pε(x)

(
|∇W |2 + δ(x)

) pε(x)
2 dx.

Hence, we may conclude coercivity of Ej
k,h : Vh → R, and hence existence of a

(unique) minimizer U j ∈ Vh.
Step 2. Discrete energy estimate (3.5). Choose W = dtU

j in (3.1). Then a
convexity argument and summation over all 1 ≤ � ≤ j lead to the discrete energy
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inequality

(3.8)

Eδ
pε

[
U j , V j

]
+

k2

2

j∑
�=1

‖dtV j‖2L2

+ α

j∑
�=1

‖∇V j‖2L2 ≤ Eδ
pε

[
U0, V 0

]
(1 ≤ j ≤ J) .

Since F (x, U j) =
∫ Uj

0
f(x, s) ds, by the growth condition (2.3), and Sobolev em-

bedding, we obtain

∫
Ω

∣∣F (x, U j)
∣∣dx ≤ ‖hf‖

L
γ

γ−1
‖U j‖Lγ + C1‖U j‖γLγ .

Since [pε]− > γ, we may proceed as in (3.7) and obtain from (3.8)

1

2

∫
Ω

[ 1

pε(x)

[
|∇U j |2 + δ(x)

] pε(x)
2 + |V j |2

]
dx

+
k

2

j∑
�=1

∫
Ω

[
k|dtV �|2 + α|∇V �|2

]
dx ≤ Eδ

pε

[
U0, V 0

]
+ C .(3.9)

�

We use V j = dtU
j ∈ Vh to restate (3.1) in the following way:

(
dtV

j ,W
)
+
([

|∇U j |2 + δ(x)
] pε(x)−2

2 ∇U j ,∇W
)

(3.10)

+ α
(
∇dtU

j ,∇W
)
+
(
f̃(x, U j , U j−1),W

)
= 0,(

V j ,Ψ
)
−

(
dtU

j ,Ψ
)
= 0 ,(3.11)

for all
(
W,Ψ

)
∈

[
Vh

]2
. This formulation of the problem leads to the following

result.

Lemma 3.1. Let {U j}j≥−1 ⊂ Vh solve Scheme A. For all T > 0, and Ψ ∈
W 1,1

(
0, T ;Vh

)
∩ L2

(
0, T ;Vh

)
, it follows that

(3.12)∣∣∣∫ T

0

[
−
(
Ut,Ψt

)
+
([

|∇U |2 + δ(x)
] pε(x)−2

2 ∇U,∇Ψ
)

+ α
(
∇Ut,∇Ψ

)
+
(
f
(
x, U

)
,Ψ

)]
ds+

(
V (T, ·),Ψ(T, ·)

)
−
(
V (0, ·),Ψ(0, ·)

)∣∣∣
≤

∣∣∣∫ T

0

([
|∇U |2 + δ(x)

] pε(x)−2
2 ∇U −

[
|∇U+|2 + δ(x)

] pε(x)−2
2 ∇U+,∇Ψ

)
ds

∣∣∣
+
∣∣∣∫ T

0

(
V − V +,Ψt

)
ds

∣∣∣+ ∣∣∣∫ T

0

(
f
(
x, U

)
− f̃

(
x, U+, U−),Ψ)

ds
∣∣∣.



196 JONAS HAEHNLE AND ANDREAS PROHL

Proof. We rewrite (3.10) as follows: for all Ψ,Φ ∈ W 1,1
(
0, T ;Vh

)
∩ L2

(
0, T ;Vh

)
,∫ T

0

[(
Vt,Ψ

)
+
(
[|∇U+|2 + δ(x)]

pε(x)−2
2 ∇U+,∇Ψ

)
(3.13)

+ α
(
∇Ut,∇Ψ

)
+
(
f̃(x, U+, U−),Ψ

)]
dt = 0,∫ T

0

[
(V +,Ψ)− (Ut,Ψ)

]
dt = 0 .(3.14)

Integration by parts in time in the first term in (3.13) yields∫ T

0

(
Vt,Ψ

)
dt = −

∫ T

0

(
V,Ψt

)
dt+

(
V (T, ·),Ψ(T, ·)

)
−
(
V (0, ·),Ψ(0, ·)

)
= −

∫ T

0

(
Ut,Ψt

)
dt−

∫ T

0

(
V + − V,Ψt

)
dt

+
(
V (T, ·),Ψ(T, ·)

)
−
(
V (0, ·),Ψ(0, ·)

)
,

thanks to (3.14). Putting things together verifies the assertion of the lemma. �
The following result gives uniform bounds for {V }.

Lemma 3.2. Suppose that the assumptions of Theorem 3.1(ii) are valid. Then

‖Vt‖
L2
(
0,T ;W−1,[p−]′

) + ‖V ‖
L2
(
0,T ;W 1,2

) ≤ C.

Proof. We use (3.13), and employ W 1,p-stability of PL2 , see [9, Theorems 3 & 4],
to conclude

‖Vt(s, ·)‖W−1,[p−]′ := sup
ϕ∈W

1,p−
0

(
Vt(s, ·), PL2ϕ

)
‖ϕ‖W 1,p−

≤ C
[
‖∇U+(s, ·)‖p−−1

Lp− + ‖∇Ut(s, ·)‖L2 + ‖U(s, ·)‖p−−1

Lp− + 1
]
.

Estimate (3.9) then implies the first part of the assertion. The second part follows
from (3.9) and

‖V ‖
L2
(
0,T ;W 1,2

) ≤ ‖V −‖
L2
(
0,T ;W 1,2

) + ‖V +‖
L2
(
0,T ;W 1,2

).
�

Proof (Theorem 3.1, part (ii)). Step 3. Passing to the limit ( k, h, δ(x), ε ) → 0 in
(3.1). It follows from (3.9) that there exist

u ∈ L∞(
0, T ;W

1,p(x)
0 (Ω)

)
∩W 1,∞(

0, T ;L2(Ω)
)
∩W 1,2

(
0, T ;W 1,2

0 (Ω)
)
,

and a convergent subsequence of {U}k,h,δ(x),ε such that for ( k, h, δ(x), ε ) → 0,
(3.15)

U
∗
⇀ u

U ⇀ u

[|∇U+|2 + δ]
pε−2

2 ∇U+ ∗
⇀ b

V ⇀ ut

U,U+, U− → u

f(·, U), f̃
(
·, U+, U−) → f(·, u)

in L∞(
0, T ;W

1,p(x)
0 (Ω)

)
∩W 1,∞(

0, T ;L2(Ω)
)
,

in W 1,2
(
0, T ;W 1,2

0 (Ω)
)
,

in L∞(
0, T ;L

p(x)
p(x)−1 (Ω)

)
,

in W 1,2
(
0, T ;W−1,[p−]′(Ω)

)
∩ L2

(
0, T ;W 1,2

0 (Ω)
)
,

in W 1,2
(
0, T ;L2(Ω)

)
,

in L
γ

γ−1 (ΩT ),
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thanks to (3.5) and Lemma 3.2; property (3.15)5 is a consequence of the control

(3.16) ‖V + − V ‖L2(ΩT ) ≤
√
k
[√

k‖Vt‖L2(ΩT )

]
≤

√
kEδ

pε
[U0, V0]

and follows from the Aubin-Lions compactness result. Property (3.15)6 is a conse-
quence of the following bound, which is uniform in

(
k, h, δ(x), ε

)
:∫

ΩT

∣∣f(·, U)
∣∣ γ
γ−1 dxdt ≤ C,

thanks to γ < p−, and (3.15)5; the second property here uses f̃(·, U+, U−) =
f(·, θU+ + (1− θ)U−) for some θ ∈ (0, 1).

We can now identify limits in (3.12): let Ψ = Ihξ(t, ·) for ξ ∈ C∞
0

(
[0, T ) × Ω

)
.

Thanks to [Id − Ih]ξ(t, ·) → 0 in C∞
0 (Ω) (h → 0) for every t ∈ [0, T ], and (3.15),

(3.16), the right-hand side of (3.12) vanishes for
(
k, h, δ(x), ε

)
→ 0, and we obtain

(3.17)

∫ T

0

[
−
(
ut, ξt

)
+
(
b,∇ξ

)
+ α

(
∇ut,∇ξ

)
+
(
f
(
x, u

)
, ξ
)]

ds =
(
v0, ξ(0, ·)

)
∀ ξ ∈ C∞

0

(
[0, T )× Ω

)
.

It remains to show that b = |∇u|p(x)−2∇u. For this purpose, monotonicity of

−∆p(x) : W
1,p(x)
0 (Ω) →

[
W

1,p(x)
0 (Ω)

]∗
implies(

[|∇U+|2 + δ]
pε(x)−2

2 ∇U+ − [|∇Ihξ+|2 + δ]
pε(x)−2

2 ∇Ihξ+,∇[U+ − Ihξ+]
)
≥ 0,

for every W (t, ·) = [U+ − Ihξ+](t, ·) ∈ Vh, where ξ ∈ C∞
0

(
[0, T ) × Ω

)
. We use

equation (3.13) to conclude from this inequality that∫ T

0

[
−
(
f̃(·, U+, U−), U+ − Ihξ+

)
−
(
Vt, U

+ − Ihξ+
)
− α

(
∇Ut,∇[U+ − Ihξ+]

)
−
(
[|∇Ihξ+|2 + δ]

pε(x)−2
2 ∇Ihξ+,∇[U+ − Ihξ+]

)]
dt ≥ 0 .

Passing to the limit
(
k, h, δ(x), ε

)
→ 0, and again using (3.15), (3.17), together

with [Id− Ih]ξ(t, ·) → 0 (h → 0) in W 1,∞(Ω) then yields

(3.18)

∫ T

0

(
b− |∇ξ|p(x)−2∇ξ,∇[u− ξ]

)
dt ≥ 0 ∀ ξ ∈ C∞

0

(
[0, T )× Ω

)
.

Here, we use the following property, which employs W 1,∞(Ω)-stability of the La-
grange interpolation operator,∥∥∥|∇Ihξ+|p(x)−2

(
1− |∇Ihξ+|pε(x)−p(x)

)
∇Ihξ+

∥∥∥
L1

≤ C
(
1 + ‖∇ξ+‖L∞

)p+−1
∥∥∥1− |∇Ihξ+|pε(x)−p(x)

∥∥∥
L1

.

We split the second factor as follows:[∫
{|∇Ihξ+|≤2}

+

∫
{|∇Ihξ+|>2}

]∣∣∣1− |∇Ihξ+|pε(x)−p(x)
∣∣∣dx.

Convergence to zero of the first term for ε → 0 is immediate; for the second term,
we calculate that∫

{|∇Ihξ+|>2}

∣∣∣1− exp
(
ε ln

[
|∇Ihξ+|

])∣∣∣dx → 0 (ε → 0) .
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Let us come back to (3.18): Choosing ξ = u±αζ, and letting α → 0, we employ

monotonicity of ∆p(x) : W
1,p(x)
0 (Ω) →

[
W

1,p(x)
0 (Ω)

]∗
to conclude that∫ T

0

(
b− |∇u|p(x)−2∇u,∇ζ

)
dt = 0 ∀ ζ ∈ C∞

0

(
[0, T )× Ω

)
,

which validates b = |∇u|p(x)−2∇u. This identification in (3.17) verifies property
(iii) of Definition 2.1.

Properties (ii), resp. (iii), of Definition 2.1 are now immediate consequences of
(i), resp. (3.5). �

Remark 2. 1. Suppose that F : Ω×R → R is convex in the second argument. Then
we can use the following discretization instead of (3.1):(

d2tU
j ,W

)
+
([

|∇U j |2 + δ(x)
] pε(x)−2

2 ∇U j ,∇W
)

(3.19)

+ α
(
∇dtU

j ,∇W
)
+
(
f(x, U j),W

)
= 0,

for all W ∈ Vh. In this case, existing solutions {U j}j≥0 ⊂ Vh minimize (3.6), with
θ = 1, and satisfy (3.5) as well.

2. For general continuous f : Ω×R → R, we may employ scheme (3.19) as well,
or the following semi-implicit variant,

(
d2tU

j ,W
)
+
([

|∇U j |2 + δ(x)
] pε(x)−2

2 ∇U j ,∇W
)(3.20)

+ α
(
∇dtU

j ,∇W
)
+
(
f(x, U j−1),W

)
= 0,

for all W ∈ Vh. However, in both cases, (3.3) has to be sharpened to γ ≤ p−
2 + 1,

and the discrete energy inequality (3.5) does not hold any more. The reason for
this comes from the following modifications of (3.8) (1 ≤ j ≤ J):
(3.21)

max
1≤�≤j

[1
2
‖V �‖2L2 +

∫
Ω

1

pε(x)

(
|∇U �|2 + δ(x)

) pε(x)
2 dx

]

+
k2

2

j∑
�=1

‖dtV j‖2L2 + αk

j∑
�=1

‖∇V j‖2L2

≤ 1

2
‖V 0‖2L2 +

∫
Ω

1

pε(x)

(
|∇U0|2 + δ(x)

) pε(x)
2 dx+ k

j∑
�=1

∣∣(f(x, U �), V �
)∣∣ .

We use Young’s inequality and (2.3) to bound the last term as follows:

≤ k

j∑
�=1

[
|f(x, U �)‖L[2∗]′ ‖V �‖L2∗

]
≤ k

j∑
�=1

[
Cα‖U �‖2(γ−1)

L[2∗]′(γ−1) +
α

2
‖∇V �‖2L2

]
,

where we put hf ≡ 1 in (2.3) for simplicity. Hence, in order to use the discrete
version of Gronwall’s lemma, we need 2(γ − 1) ≤ p−.

4. A simple fixed point scheme to solve Algorithm A

For every j ≥ 1 in Scheme A, a nonlinear algebraic equation has to be solved; a
simple fixed point strategy, together with a stopping criterion, could be as follows.
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Algorithm A0. Let U0 ∈ Vh, V
0 := dtU

0 ∈ Vh, and set j := 1.
1. Set U j,0 := U j−1 and � = 0.
2. Compute U j,� ∈ Vh such that for all W ∈ Vh,

(4.1)

(U j,� − U j−1

k2
,W

)
+
([

|∇U j,�−1|2 + δ(x)
] pε(x)−2

2 ∇U j,�,∇W
)

+
α

k

(
∇[U j,� − U j−1],∇W

)
+
(
f̃(x, U j,�−1, U j−1),W

)
=

1

k
(dtU

j−1,W ) .

3. For fixed θ > 0, stop if

(4.2)

∥∥∥[|∇U j,�−1|2 + δ(x)
] pε(x)−2

2 ∇U j,� −
[
|∇U j,�|2 + δ(x)

] pε(x)−2
2 ∇U j,�

∥∥∥
L

pε(x)
pε(x)−1

+
∥∥∥f̃(x, U j,�, U j−1)− f̃(x, U j,�−1, U j−1)

∥∥∥
L2

≤ θ,

set U j := U j,�, j := j + 1, and go to Step 1.
4. Set � := �+ 1, and go to Step 2.

Unfortunately, it is not clear whether a contraction property holds, the reason
being the modified nonlinearity f̃ . For this reason, we base the following algorithm
on discretization (3.19); see Remark 2, which discusses existence of solutions for
monotone f , or more general situations, where (2.3) holds for γ ≤ p−

2 +1, and thus
allows for convergence of iterates towards weak solutions of (1.2) in the sense of
Definition 2.1.

Algorithm A1. Let U0 ∈ Vh, V
0 := dtU

0 ∈ Vh, and set j := 1.
1. Set U j,0 := U j−1 and � = 0.
2. Compute U j,� ∈ Vh such that for all W ∈ Vh,(U j,� − U j−1

k2
,W

)
+
([

|∇U j,�−1|2 + δ(x)
] pε(x)−2

2 ∇U j,�,∇W
)

(4.3)

+
α

k

(
∇[U j,� − U j−1],∇W

)
+
(
f(x, U j,�−1),W

)
=

1

k
(dtU

j−1,W ) .

3. For fixed θ > 0, stop if

(4.4)

∥∥∥[|∇U j,�−1|2 + δ(x)
] pε(x)−2

2 ∇U j,� −
[
|∇U j,�|2 + δ(x)

] pε(x)−2
2 ∇U j,�

∥∥∥
L

pε(x)
pε(x)−1

+
∥∥∥f(x, U j,�)− f(x, U j,�−1)

∥∥∥
L2

≤ θ,

set U j := U j,�, j := j + 1, and go to Step 1.
4. Set � := �+ 1, and go to Step 2.

Below, we validate overall convergence to weak solutions of (1.2) in the sense of
Definition 2.1. For this purpose, we assume that f is differentiable with respect to
its second argument, and for some 1 < r < ∞,

(4.5)
∣∣ ∂
∂s

f(x, s)
∣∣ ≤ C(1 + |s|r) ∀x ∈ Ω .

Theorem 4.1. Suppose that the assumptions of Theorem 3.1 are valid, α > 0,
and (4.5) holds. Let δ ∈ C

(
Ω, [0, 1]

)
such that δ(x) > 0 if p ≡ p(x) < 3, and

δ(x) = 0 otherwise. For all � ≥ 0, there exists a unique solution U j,� ∈ Vh to (4.3).
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Moreover, there exists C̃ ≡ C̃(d, r,Ω) > 0 such that if for all 1 ≤ j ≤ J it follows
that

(4.6)

α2k2h−dr + χ{2≤pε(·)≤3}

[
max

{2≤pε(·)≤3}

[
δ(·)

]pε(·)−3
h−[d+2]

+ max
{2≤pε(·)≤3}

h−[d+2](pε(·)−2)
]

+ χ{pε(·)>3}h
−[d+2](pε(·)−2) < C̃−1k−2α2 ,

then (� ≥ 1)

(4.7)

[
‖U j,�+1 − U j,�‖2L2 + αk‖∇[U j,�+1 − U j,�]‖2L2

]
≤ q

[
‖U j,� − U j,�−1‖2L2 + αk‖∇[U j,� − U j,�−1]‖2L2

]
where q < 1 .

Finally, let either F : Ω × R → R be convex in the second argument, or else

γ ≤ p−
2 +1. Then iterates {U j,�}j of Algorithm A1 which meet the stopping criterion

in Step 3 subconverge to weak solutions of (1.2) in the sense of Definition 2.1, for(
k, h, δ(x), ε, θ

)
→ 0, as is specified in Theorem 3.1.

Remark 3. In Theorem 4.1, we assume α > 0; however, for α = 0, a corresponding
convergence result can be derived for iterates {U j,�}� ⊂ Vh of Algorithm A1 towards
solutions U j ∈ Vh of Scheme A (1 ≤ j ≤ J), provided a more restrictive mesh
constraint than (4.6) holds.

Proof. Step 1. Contraction principle. Let j ≥ 1 be fixed, and

(4.8) ρpε
(∇U j−1) + ‖dtU j−1‖2L2 ≤ C,

independently of j. For every � ≥ 1, existence and uniqueness of a solution U j,� ∈ Vh

follow from the Lax-Milgram theorem. To show convergence of {U j,�}�, we establish
an L2(Ω)-contraction property (4.7). Let Ej,� := U j,� − U j,�−1 ∈ Vh; we subtract
two successive versions of (4.3) and choose W = Ej,� as a test function,

(4.9)

1

2
‖Ej,�‖2L2 +

αk

2
‖∇Ej,�‖2L2 ≤ Ck4

∥∥∥f(·, U j,�−1
)
− f

(
·, U j,�−2

)∥∥∥2
L2

+ Cα−1k3
∥∥∥[|∇U j,�−1|2 + δ(x)

] pε(x)−2
2 ∇U j,�

−
[
|∇U j,�−2|2 + δ(x)

] pε(x)−2
2 ∇U j,�−1

∥∥∥2
L2
,

by Young’s inequality.
The leading error term on the right-hand side of (4.9) is bounded by an inverse

estimate, and (4.5), for some ξ ∈ (0, 1),

≤ Ck4
[
1 +

∥∥ξU j,�−1 + (1− ξ)U j,�−2
∥∥2r
L∞

]
‖Ej,�−1‖2L2

≤ Ck4
[
1 + h−dr

∥∥ξU j,�−1 + (1− ξ)U j,�−2
∥∥2r
L2

]
‖Ej,�−1‖2L2 .

Note that ‖U j,�‖L2 ≤ C, for all � ≥ 0, which easily follows from choosing W = U j,�

in (4.3), and using (4.8).
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Since x �→
[
|x|2 + δ(x)

]q
is differentiable, we then obtain

‖Ej,�‖2L2 +
αk

4
‖∇Ej,�‖2L2 ≤ Ck4h−dr‖Ej,�−1‖2L2

+ Ck3α−1
[∥∥∥[|∇U j,�−2|2 + δ(x)

] pε(x)−2
2 ∇Ej,�−1

∥∥∥2
L2

+ max
ζ∈{∇Uj,�−1,∇Uj,�−2}

∥∥∥pε(x)− 2

2

(
|ζ|2 + δ(x)

) pε(x)−4
2 2|ζ||∇U j,�||∇Ej,�−1|

∥∥∥2
L2

]
.

By an inverse estimate, ‖∇U j,�‖L∞ ≤ Ch−[ d2+1]‖U j,�‖L2 , and (4.8) we obtain

‖Ej,�‖2L2 +
αk

4
‖∇Ej,�‖2L2 ≤ Ck4h−dr‖Ej,�−1‖2L2

+ Ck3α−1‖∇Ej,�−1‖2L2

[
ess supΩ

∣∣∣|∇U j,�−2|2 + δ(x)
∣∣∣pε(x)−2

+ max
ζ∈{∇Uj,�−1,∇Uj,�−2}

ess supΩ

∣∣∣|ζ|2 + δ(x)
∣∣∣pε(x)−3

h−[d+2]
]
.

Hence, (4.6) is sufficient to validate a contraction principle for iterates.
Step 2. Overall convergence. The previous step shows that Algorithm A termi-

nates. Hence, for every θ > 0, and every j ≥ 1, there exists � := �(j, θ) < ∞ such
that the stopping criterion is met, and for all W ∈ Vh, we have

(4.10)

(
d2tU

j ,W
)
+
([

|∇U j |2 + δ(x)
] pε(x)−2

2 ∇U j ,∇W
)
+
(
f(x, U j),W

)
=

([
|∇U j |2 + δ(x)

] pε(x)−2
2 ∇U j −

[
|∇U j,�|2 + δ(x)

] pε(x)−2
2 ∇U j ,∇W

)
+
(
f(x, U j)− f(x, U j,�),W

)
.

Because of Step 3 in Algorithm A, the right-hand side may be bounded by
θ
(
‖∇W‖Lp(x) + ‖W‖L2

)
. As a consequence, we may follow the (slightly modified)

proof of Theorem 3.1 to conclude subsequence convergence. �

Theorem 4.1 specifies situations where Algorithm A1 terminates and motivates
combined choices of the regularization function δ ∈ C

(
Ω; [0, 1]

)
, the function pε ∈

C
(
Ω; (1,∞)

)
, discretization parameters k, h > 0, and gives a theoretical indication

for the stopping criterion (4.4).

5. Computational experiments

In this section, we report on experiments where we use Algorithm A1, im-
plemented in MATLAB, with a direct solution of linear systems of equations.
Below, let x = ( x1, x2 )

�. The function (x1, x2) �→ exp(−(x1 − 0.5)2/0.03) ∗
exp(−(x2 − 0.5)2/0.03) will be referred to as “hat”. All examples use vanishing
Neumann boundary conditions, and δ = 10−7 = θ. We typically need 2 or 3
fixed-point iterations per step.

The first example is to study the solution’s behavior for p+/p− � 1. It also
exemplifies the fact that weak solutions to (1.2) for supercritical growth of f exist,
provided initial data satisfy a certain smallness condition.

Example 5.1. Let Ω = (0, 1)2, T = 1, α ∈ {0, 0.25}, as well as v0 = 0, and
u0 = 2 ∗ hat. Choose f(x, u) = −|u|γ−2u, for γ = 5, and p(x) = 1 + 2x1x2.
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Figure 1. Example 5.1: Energy plot.

Figure 2. Example 5.1: The two rows show snapshots of u at
times t = 0.1, 0.4, 0.7, 1 (left to right) for α = 0, 0.25, respectively.

Plots for the decaying energy (α > 0), resp. constant energy (α = 0), are shown
in Figure 1. Snapshots of u at times t = 0.1, 0.4, 0.7, 1 are given in Figure 2 for
γ = 5. For γ = 1.5 we experience very similar behavior.

A reverse calculation, started at time t = T/2 for the above example with α = 0
and γ = 1.5, recovered the initial data up to an L2-error of 1.3∗10−3, and L∞-error
of 5.4 ∗ 10−3.

The following example is to study L∞-decay of u, ut, and ∇u in time for variable
exponents, including a study where p− = 0.

Example 5.2. Let Ω = (0, 1)2, T = 1, α = 1, as well as v0 = 0, and u0 = 0.5 ∗ hat.
Choose pi(x) = i+ 2x1x2, for i ∈ {0, 1, 2}, and f(x, u) = |u|γ−2u, for γ = 6.

Different decay rates of the energy, as well as the behavior of the L∞-norms of
u, ut, and ∇u are shown in Figure 3 for pi(x) = i+ 2x1x2, with i ∈ {0, 1, 2}.

As the images in the bottom row show, the smaller p, the better the initial data
are conserved. While ‖ut‖L∞ for p(x) = 2x1x2 appears to oscillate, the solution
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Figure 3. Example 5.2: Top row: Energy decay for i = 0, 1, 2.
Middle row: L∞-norms of u, ut, and ∇u (y-axis logarithmically
scaled) for i = 0, 1, 2. Bottom row: u at T = 1 for i = 0, 1, 2.

does not show big changes (note, however, that in this case the logarithmic plot
makes the oscillations look worse than they are).

Blowup behavior of (local strong) solutions to (1.2) for α = 0 has been shown in
[22] for nonlinearities where uf(x, u) ≥ (2 + β)F (x, u), for some β > 0, q ≡ 2, and
E
[
u0, v0

]
< 0; in [23], it is shown that weak (nonlinear) damping of the form

utt −∆u+ |ut|m−2ut + f(x, u) = 0 in ΩT

is insufficient to prevent the blow-up effect in the following sense: for f(x, u) =
−|u|γ−2u, and γ > m ≥ 2, and negative initial energies, local strong solutions
blow up in finite time; i.e., limt→T∗ ‖u(t, ·)‖L∞ = ∞, for some 0 < T ∗ < ∞.
Moreover, the solution blowup occurs if and only if the energy blows up; i.e.,
limt→T∗ Ep

[
u(t, ·), ut(t, ·)

]
= −∞. (In fact, weak solutions exist if m ≥ γ ≥ 2.)

In [15], the existence of weak solutions to (0 < α ≤ 1, and constant p ≥ 2)

utt −∆pu+ (∆)αut = |u|γ−2u in ΩT ,

for γ ≥ p is shown, provided that the initial data are properly chosen; blow-up
behavior of solutions in the case of negative initial energies and γ > p ≥ 2 is
verified in [31, 25, 16].

Examples 5.3 and 5.4 study related questions for variable exponents: blowup for
large initial data, and supercritical growth of f , for α = 1, 0, respectively.
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Figure 4. Example 5.3: Top row: Energy (left), and L∞-norms
of u, ut, and ∇u (log-plot). Bottom row: Snapshots of u at times
t = 0.01, 0.015, 0.017, 0.0191 (left to right).

Example 5.3. Let Ω = (0, 1)2, T = 1, α = 1, and u0 = 10 ∗ hat, v0 = 0. Choose
p = 2, and f(x, u) = −|u|γ−2u, for γ = 6.

Figure 4 shows energy blowup (to minus infinity), L∞-norms of u, ut, and ∇u,
as well as snapshots of u at times t = 0.01, 0.015, 0.017, 0.0191.

This example generalizes the Klein-Gordon equation with focusing nonlinearity,
utt −∆u− u5 = 0 in ΩT . In the case of spherically symmetric initial data ( u0, v0 )
it is known that solutions for small initial data exist and converge to zero [19],
and that large data solutions of negative energy blowup in finite time [22]; see also
[21]. As is motivated in [7], the static spherically symmetric solution f(r) = 1√

1+ r2

3

(r =
√
x2
1 + x2

2) is a candidate for a blowup with unbounded growth at r = 0 at a
rate 1√

T∗−t
.

Example 5.4. Let Ω = (0, 1)2, T = 1, α = 0, and u0 = 3 ∗ hat, v0 = 0. Choose
p = 3− 2 ∗ hat, and f(x, u) = −|u|γ−2u, for γ = 6.

Figure 5 shows energy blowup (apparently to plus infinity, but we are not sure
whether this is a numerical artifact), L∞-norms of u, ut, and ∇u, as well as snap-
shots of u at times t = 0.05, 0.1, 0.15, 0.154.

Solutions to both numerical schemes as well as the PDE (1.2) use energy-based
arguments, which require initial data of finite energy, in particular. In our last
example, we evolve initial data of low regularity/infinite energy, which leads to
interesting issues concerning locally existing solutions of typical nonlinear equations
[24], as well as blowup, as shown in the next example.
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Figure 5. Example 5.4: Top row: Energy before blowup (left),
energy including blowup (middle, log-plot), and L∞-norms of u,
ut, and ∇u (log-plot). Middle and bottom rows: Snapshots of u
at times t = 0.05, 0.1, 0.15, 0.154.

Example 5.5. Let Ω = (0, 1)2, T = 1, α = 0, v0 = 0, and u0 = 5 on [0.25, 0.375]2∪
[0.625, 0.75]2, and zero elsewhere. Let f(x, u) = |u|γ−2u, for γ = 6, and p(x) =
1 + 2x1x2.

Figure 6 shows energy blowup (to plus infinity) for different space discretizations
h = 1/16, 1/32, 1/64. The qualitative behavior of the solutions for different h seems
to be the same. Note, however, that the initial energy for h = 1/16 is negative,
while it is positive for finer h. L∞-norms of u, ut, and ∇u, as well as snapshots of
u at times t = 0.001, 0.04, 0.046, 0.0486 are given for the finest h only.

Again, we see (compare front and rear bricks) that (locally) smaller p better
preserve the structure, while with (locally) larger p, the brick crumbles much more.
Nevertheless, the large right-hand side ensures that both bricks blow up.



206 JONAS HAEHNLE AND ANDREAS PROHL

Figure 6. Example 5.5: Top row: Energies before blowup (left),
energies including blowup (middle, log-plot) for different space dis-
cretizations h = 1/16, 1/32, 1/64, as well as L∞-norm plots of u,
ut, and ∇u (log-plot) for h = 1/64. Middle and bottom rows:
Snapshots for h = 1/64 and t = 0.001, 0.04, 0.046, 0.0486.

Additional examples and short movies of the above computational studies can
be found online at http://na.uni-tuebingen.de/∼haehnle/wpx/.
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