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SHARPNESS IN RATES OF CONVERGENCE

FOR THE SYMMETRIC LANCZOS METHOD

REN-CANG LI

Abstract. The Lanczos method is often used to solve a large and sparse
symmetric matrix eigenvalue problem. There is a well-established convergence
theory that produces bounds to predict the rates of convergence good for a
few extreme eigenpairs. These bounds suggest at least linear convergence
in terms of the number of Lanczos steps, assuming there are gaps between
individual eigenvalues. In practice, often superlinear convergence is observed.
The question is “do the existing bounds tell the correct convergence rate in
general?”. An affirmative answer is given here for the two extreme eigenvalues
by examples whose Lanczos approximations have errors comparable to the
error bounds for all Lanczos steps.

1. Introduction

The Lanczos method is widely used for finding a small number of eigenvalues and
their associated eigenvectors of a large symmetric matrix because it requires only
matrix-vector products to extract enough information to compute desired solutions.
There is a well-established convergence theory to go with the method in terms of
error bounds indicating how fast the computed approximations converge to a few
extreme eigenpairs. These bounds usually underestimate the rate of convergence,
however. In practice, often the observed convergence is (much) faster than these
error bounds suggest [7, 24, 27]. This paper investigates the attainability of these
bounds in general.

However, in finite precision without full orthogonalization, the Lanczos method
can behave very differently from what it is supposed to be in theory [4, 6]. Nonethe-
less the existing theoretic bounds which assume exact arithmetic are still very sug-
gestive as to what we may expect numerically. In this paper we assume exact
arithmetic.

By default, all vectors are column vectors. Given an N ×N Hermitian matrix A
and a vector b of dimension N , the Lanczos process [20] may be compactly described
as follows:

(1.1) AXk = XkHk + fke
T
k ,
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where Xk is N×k and has orthonormal columns with its first column being a scalar
multiple of b, fk (a vector of dimension N) satisfies X∗

kfk = 0, ek is a k-vector with
all entries zero except its last entry which is 1, and Hk is k × k, real symmetric,
and tridiagonal. The eigenvalue problem for Hk is then solved. Let (µ, z) be an
eigenpair of Hk, i.e., Hkz = µz. An approximate eigenpair (µ,Xkz), so-called a
Ritz pair of the Ritz value µ and its associated Ritz vector Xkz, is obtained for A.
Without loss of generality, we shall consider only the case when Hk is irreducible;
namely, none of its off-diagonal entries is zero. It can be seen that

(1.2) the column space of Xk = Kk(A, b)
def
= span{b, Ab, . . . , Ak−1b},

the kth Krylov subspace of A on b. Often we write Kk ≡ Kk(A, b) for short when
A and b are evident from the context. Assume that A admits the following eigen-
decomposition:

(1.3) A = QΛQ∗, Q∗Q = IN , Λ = diag(λ1, λ2, . . . , λN ).

Then Q’s jth column Q(:,j) is the eigenvector of A associated with the eigenvalue
λj . For the sake of presentation, assume

(1.4) λ1 ≤ λ2 ≤ · · · ≤ λN .

Naturally, we ask how well does an eigenvalue of Hk approximate A’s eigenvalue,
and how far is Q(:,j) from Kk(A, b). A well-developed theory for this is due to
Kaniel [10] and Saad [21], and if more detailed information on A’s eigenvalue dis-
tribution is available, better bounds can be derived, too [20].

Consider A = diag(λ1, λ2, . . . , λN ) with either randomly or equidistantly dis-

tributed {λj}N−1
j=1 on [−1,−δ] and λN = 0 whose associated eigenvector is eN . If

the Lanczos algorithm is applied to A on a vector b of all ones, Figure 1.1 plots

(1.5)

√
N − 1√

(N − 1) + |Tk−1(δN )|2

/
sin∠(eN ,Kk),

which is the ratio of a bound due to Kaniel [10] and Saad [21] for this case (see
Remark 3.2) over the actual sine of the angle ∠(eN ,Kk), where

κN =
λN − λ1

λN − λN−1
, δN =

κN + 1

κN − 1
,

and TN−1 is the (N − 1)st Chebyshev polynomial of the first kind. This figure
indicates that the bound of Kaniel and Saad can dramatically overestimate the
actual sine of the angle as k varies.

To the best of my knowledge, there is no study in the past regarding the sharpness
of the existing error bounds for the symmetric Lanczos method. Perhaps this is due
in part to the fact that these bounds were established with a technique basically the
same as the one for obtaining the error bounds for the conjugate gradient method
(CG) [3, 5, 22, 24, 26]. The latter were argued to be (locally) sharp [1, 5] and
more recently (globally) sharp1 [16, 18]. Consequently the existing error bounds

1This concept of local and global sharpness is coined by [18] based on the consideration that
the sharpness claim in, e.g., [1, 5], is in fact in the sense that for each iteration step k there is
a linear system Ax = b (depending on k) on which the kth CG residual attains the bound. It
turns out that for such Ax = b, CG computes the exact solution in the very next iteration [10]! In
[16, 18], however, it is demonstrated that there are linear systems Ax = b on which CG residuals
are comparable to the existing bounds for all iteration steps.
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Figure 1.1. The Lanczos Algorithm for Ax = λx with A =
diag(λ1, λ2, . . . , λN ) on b, the vector of all ones, where {λj}N−1

j=1 is ei-

ther equidistantly (left plot) or randomly (right plot) distributed.

for the Lanczos method could also be sharp at least for the first Ritz value, thanks
to Sleijpen and van der Sluis [24, Theorems 6.1 and 6.2].

The main contribution of this paper is to show that the existing error bounds
for the Lanczos method are indeed sharp in general, despite Figure 1.1. The same
conclusion was also reached in the unpublished technical report [16], where exam-
ples were constructed with the Chebyshev zero nodes. Here with the help of the
Chebyshev extreme nodes, we are able to devise examples for which the existing
error bounds are much closer to the actual sines.

This paper strives to produce difficult problems for the Lanczos method, but
it does so from a different perspective from Scott [23], where efforts were made to
select a perverse starting vector b to delay the convergence until the last step. Since
the theory of Kaniel and Saad guarantees fast and noticeable convergence provided
the starting vector has a nontrivial component in the direction of the eigenvectors
associated with the extreme eigenvalues which also have nontrivial gaps from the
rest of the eigenvalues, any perverse starting vector of Scott’s choice must have a
negligible component in the direction of the desired eigenvectors. On the contrary,
this paper and [16] assume the nontrivial components in all eigenvector directions
and seek certain eigenvalue distributions so as to almost achieve the existing error
bounds.

It is worth mentioning that in the potential-theoretic approach, Kuijlaars [12, 13]
studied which eigenvalues are found first given how A’s eigenvalues are distributed
as N → ∞, and what are their associated convergence rates as k goes to ∞ while
k/N stays fixed.

The rest of this paper is organized as follows. Section 2 presents some prelimi-
nary material that will be used frequently later. Section 3 investigates the sharpness
of the existing error bounds for eigenvectors associated with the two extreme eigen-
values, while Section 4 is concerned with eigenvalues. Finally, concluding remarks
are given in Section 5.
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Notation. Throughout this paper, Cn×m is the set of all n×m complex matrices,
Cn = Cn×1, and C = C1. Similarly define Rn×m, Rn, and R except replacing the
word complex by real. In (or simply I if its dimension is clear from the context) is
the n × n identity matrix, and ej is the jth column of an identity matrix with a
compatible dimension in the context. The superscript ∗ denotes conjugate transpose
while T denotes transpose only. We shall also adopt a MATLAB-like convention
to access the entries of vectors and matrices. i : j is the set of integers from i to j
inclusive and i : i = {i}. For a vector u and a matrix X, u(j) is u’s jth entry, X(i,j)

is X’s (i, j)th entry, diag(u) is the diagonal matrix with (diag(u))(j,j) = u(j); X’s
submatrices X(k:�,i:j), X(k:�,:), and X(:,i:j) consist of intersections of row k to row �
and column i to column j, row k to row �, and column i to column j, respectively.
The generic norm ‖ · ‖2 is the usual �2 norm of a vector or the spectral norm of a
matrix.

2. Preliminaries

The mth Chebyshev polynomial of the 1st kind is

Tm(t) = cos(m arccos t) for |t| ≤ 1,(2.1)

=
1

2

(
t+

√
t2 − 1

)m

+
1

2

(
t−

√
t2 − 1

)m

for |t| ≥ 1.(2.2)

It frequently shows up in numerical analysis and computations because of its nu-
merous nice properties; for example, |Tm(t)| ≤ 1 for |t| ≤ 1 and |Tm(t)| grows
extremely fast2 for |t| > 1. We will also need [18]

(2.3)

∣∣∣∣Tm

(
1 + t

1− t

)∣∣∣∣ = ∣∣∣∣Tm

(
t+ 1

t− 1

)∣∣∣∣ = 1

2

[
∆m

t +∆−m
t

]
for 1 �= t > 0,

where

(2.4) ∆t
def
=

√
t+ 1

|
√
t− 1|

for t > 0.

Tm(t) has m + 1 extreme points in [−1, 1], the so-called mth Chebyshev extreme
nodes :

(2.5) τjm = cosϑjm, ϑjm =
j

m
π, 0 ≤ j ≤ m,

at which |Tm(τjm)| = 1. Given α < β, set

(2.6) ω =
β − α

2
> 0, τ = −α+ β

β − α
.

Throughout the rest of this paper, ω and τ are always defined this way when the
interval [α, β] is specified; otherwise they can be any two numbers. The linear
transformation

(2.7) t(z) =
z

ω
+ τ =

2

β − α

(
z − α+ β

2

)

2In fact, a result due to Chebyshev himself says that if p(t) is a polynomial of degree no greater
than m and |p(t)| ≤ 1 for −1 ≤ t ≤ 1, then |p(t)| ≤ |Tm(t)| for any t outside [−1, 1] [2, p.65].
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maps z ∈ [α, β] one-to-one and onto t ∈ [−1, 1]. With its inverse transformation
x(t) = ω(t− τ ), we define the so-called mth translated Chebyshev extreme nodes on
[α, β] as

(2.8) τ trjm = ω(τjm − τ ), 0 ≤ j ≤ m.

It can be verified that τ0m = β and τmm = α.

3. Eigenvector convergence

Let us look at how close Q(:,j) is to Kk(A, b). It can be seen that

(3.1) sin∠(Q(:,j),Kk) = min
x∈Kk

‖Q(:,j) − x‖2.

Given any number ν, this can be turned into the following minimization problem:

min
x∈Kk

‖Q(:,j) − x‖2 = min
φk−1

‖Q(:,j) − φk−1(A)b‖2

= min
ψk−1

‖Q(:,j) − ψk−1(A− νI)b‖2

= min
ψk−1

‖ej − ψk−1(Λ− νI)Q∗b‖2

= min
u(1)=1

‖(ej diag(g)V T
k,N )u‖2,(3.2)

where φk−1 and ψk−1 denote polynomials of degree at most k − 1, u ∈ Ck+1 with
its first entry u(1) forced to be 1 always,

(3.3) g = Q∗b,

and

(3.4) Vk,N
def
=

⎛⎜⎜⎜⎝
1 1 · · · 1
α1 α2 · · · αN

...
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
N

⎞⎟⎟⎟⎠ ,

a k×N rectangular Vandermonde matrix with αi = λi−ν (1 ≤ i ≤ N). That Q(:,j)

is close to Kk(A, b) as measured by sin∠(Q(:,j),Kk) does not necessarily imply that
there is a Ritz vector that approximates Q(:,j) well. For that the reader is referred
to [9], where it is proved that, under suitable separation conditions, if Q(:,j) is close
to Kk(A, b), then there is a Ritz vector that approximates Q(:,j) well.

For k ≥ N , Kk is either the entire space CN (RN ) or is A’s invariant subspace.
The former case implies

0 = min
x∈Kk

‖Q(:,j) − x‖2 = min
u(1)=1

‖(ej diag(g)V T
k,N )u‖2,

and the latter case implies

min
x∈Kk

‖Q(:,j) − x‖2 =

{
0, if g(j) �= 0,
1, if g(j) = 1.

So it suffices to restrict 1 ≤ k ≤ N − 1 from now on.
Equation (3.2) points to a new direction to analyze the convergence behavior

of the Lanczos algorithm, i.e., by studying the minimization problem on its right-
hand side. This will be the approach we will take from now on. Inequality (3.5)
in the next theorem turns out to be equivalent to an existing bound but expressed
differently, as explained in Remark 3.2. We present it here for completeness. The
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sharpness of the inequality will be investigated afterwards (only for the case of
j = N).

Theorem 3.1. Let the Hermitian matrix A have eigendecomposition (1.3) with
{λi}Ni=0 ordered as in (1.4), and let Kk ≡ Kk(A, b) as in (1.2) and g = Q∗b as in
(3.3). Then for 1 ≤ k ≤ N − 1,

(3.5) sin∠(Q(:,j),Kk) ≤
εj√
1 + ε2j

,

where (set γN = ςN = 1 by convention
∏N

j=N+1(· · · ) ≡ 1)

κj =
λj − λ1

λj − λj−1
, δj =

κj + 1

κj − 1
, γj =

N∏
i=j+1

(λi − λ1), ςj =

N∏
i=j+1

(λi − λj),

χj =
γj
ςj

·
‖g(1:j−1)‖2

|g(j)|
, εj =

χj

|Tk−1−(N−j)(δj)|
.

Proof. It suffices to bound the right-hand side of (3.2) with ν = 0. For ω and τ
in (2.6) with [α, β] = [λ1, λj−1], |Tk−1−(N−j)(λi/ω + τ )| ≤ 1 for 1 ≤ i ≤ j − 1.

Let v ∈ Ck+1 with v(1) = 1 and v(i) = ξ ci−2 for 2 ≤ i ≤ k + 1, where the ci are

coefficients of ti in

φk−1(t) =

N∏
i=j+1

(t− λi)× Tk−1−(N−j)(t/ω + τ ),

and ξ ∈ C is to be determined such that ξ g(j)ζ = −|ξ g(j)ζ|, where ζ = φk−1(λj).
Then

min
u(1)=1

‖(ej diag(g)V T
k,N )u‖2 ≤ ‖(ej diag(g)V T

k,N )v‖2

≤
[
|ξ|2γ2

j ‖g(1:j−1)‖22 + (1− |g(j)ξ ζ|)2
]1/2

.

Now it is clear that |ξ| should be chosen to minimize the last quantity above, which
gives

|ξ| =
|g(j)ζ|

γ2
j ‖g(1:j−1)‖22 + |g(j)ζ|2

and

(3.6) min
u(1)=1

‖(ej diag(g)V T
k,N )u‖2 ≤

γj‖g(1:j−1)‖2√
γ2
j ‖g(1:j−1)‖22 + |g(j)ζ|2

.

Now by (2.6),
λj

ω
+ τ =

2λj

λj−1 − λ1
− λj−1 + λ1

λj−1 − λ1
=

κj + 1

κj − 1
,

and thus |ζ| = ςj |Tk−1−(N−j)(δj)|, and we have (3.5). �

Remark 3.1. It is known that the eigenvalues at both ends are often the first few
to emerge from an application of the Lanczos method. But this is not reflected by
Theorem 3.1 because for small j and huge N , γj and ςj not only complicates the
bound by (3.5) but also may significantly offset the effectiveness of |Tk−1−(N−j)(δj)|.
A remedy for generating better bounds for small j is by applying the theorem to
−A upon noticing Kk(A, b) ≡ Kk(−A, b). Thus any conclusion on approximating
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the largest eigenvalues by the Lanczos algorithm has a counterpart for the smallest
eigenvalues. Owing to this property, we in this paper will focus only on approxi-
mating the largest eigenvalues and their associated eigenvectors.

Remark 3.2. Inequality (3.5) is equivalent to an existing bound of Kaniel and Saad

[20, p. 270] because sin θ ≤ ε/
√
1 + ε2 is equivalent to tan θ ≤ ε for 0 ≤ θ < π/2.

In the rest of this section, we will investigate the attainability of the bound by
(3.5) for j = N only. Before we present our main result, Theorem 3.2, for the
section, we shall introduce some notation and establish two lemmas. Throughout
the rest of this paper, we set

(3.7) n = N − 1,

and define

(3.8) Ψt,k =

⎧⎪⎪⎨⎪⎪⎩
k−1∑
i=0

′ |Ti(t)|2, for 1 ≤ k ≤ n− 1,

k−1∑
i=0

′′ |Ti(t)|2, for k = n,

where
∑′

i means the first term is halved, while for
∑′′

i both the first and last terms
are halved.

In its present general form, the next lemma was proved in [16, 18]. It was also
implied by the proof of [8, Theorem 2.1]. See also [19].

Lemma 3.1. If Z has full column rank, then

(3.9) min
|u(1)|=1

‖Zu‖2 =
[
eT1 (Z

∗Z)−1e1
]−1/2

.

Lemma 3.2. Let α < β < 0, and let Vk,N have nodes αi+1 = τ tri n−1 (0 ≤ i ≤ n−1)
on [α, β], and αN = 0. σ ∈ C is a given number and nonzero.

(1) For

(3.10) g(i)
def
=

{
σ/

√
2, for i ∈ {1, n},

σ, for 2 ≤ i ≤ n− 1,

we have for 1 ≤ k ≤ n,

(3.11) min
|u(1)|=1

∥∥(eN diag(g)V T
k,N )u

∥∥
2
=

[
1 +

|g(N)|2

‖g(1:n)‖22
2Ψτ,k

]−1/2

,

where τ = −(α+ β)/(β − α) is given by (2.6).
(2) For

(3.12) g(i)
def
=

⎧⎨⎩ σ
√
1/|τ tri−1n−1|, for i ∈ {1, n},

σ
√
2/|τ tri−1n−1|, for 2 ≤ i ≤ n− 1,

we have for 1 ≤ k ≤ n,

(3.13) min
|u(1)|=1

∥∥(eN diag(g)V T
k,N )u

∥∥
2
=

[
1 +

|g(N)|2

‖g(1:n)‖22
ρ−2
k−1 |Tk−1(τ )|2

]−1/2

,
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where κ = α/β > 1, and
(3.14)

1

2
<

1

2

(
1 +

2∆n−1
κ

∆
2(n−1)
κ + 1

)
≤ ρ2k−1 =

1

2

(
1 +

∆
2(k−1)
κ +∆

2[(n−1)−(k−1)]
κ

∆
2(n−1)
κ + 1

)
≤ 1.

Proof. Set

Z ≡ (eN diag(g)V T
k,N ) =

(
0 diag(g(1:n))V

T
k,n

1 g(N) e
T
1

)
,

since αN = 0. It can be seen that Z has full column rank if g(i) �= 0 for 1 ≤ i ≤ n.

Then by Lemma 3.1, we need to compute
[
eT1 (Z

∗Z)−1e1
]−1/2

. We have

Z∗Z =

(
1 g(N) e

T
1

g∗(N)e1 |g(N)|2e1eT1 + V̄k,nGnV
T
k,n

)
=

(
1

g∗(N)e1 In

)(
1

V̄k,nGnV
T
k,n

)(
1 g(N) e

T
1

In

)
,

where V̄k,n is the complex conjugate of Vk,n and Gn = [diag(g(1:n))]
∗diag(g(1:n)).

Therefore

eT1 (Z
∗Z)−1e1 = eT1

(
1 −g(N) e

T
1

I

)(
1 [

Vk,nGnV
T
k,n

]−1

)(
1

−g∗(N)e1 I

)
e1

= 1 + |g(N)|2eT1
[
Vk,nGnV

T
k,n

]−1
e1.(3.15)

For g as in (3.10), Gn = |σ|2 diag(2−1, 1, 1, . . . , 1, 2−1), and Li [17, Theorem 5.3]
yields that3

(3.16)
[
eT1

(
Vk,nGnV

T
k,n

)−1
e1

]−1/2

= ‖g(1:n)‖2 (2Ψτ,k)
−1/2,

which, together with (3.15), leads to (3.11). For g as in (3.12),

Gn = |σ|2diag(1/|τ tr0n−1|, 2/|τ tr1n−1|, 2/|τ tr2n−1|, . . . , 2/|τ trn−2n−1|, 1/|τ trn−1n−1|),

and Li [17, Theorem 5.4] yields that4

(3.17)
[
eT1

(
Vk,nGnV

T
k,n

)−1
e1

]−1/2

= ‖g(1:n)‖2 ρk−1 |Tk−1(τ )|−1,

which, together with (3.15), leads to (3.13). �

Theorem 3.2. Suppose A is Hermitian with its first n eigenvalues {λj}nj=1 being
the translated Chebyshev extreme nodes in [α, β] = [λ1, λn] and its last eigenvalue
λN > λn, and suppose A admits an eigendecomposition (1.3) and g = Q∗b. Let
τ tri n−1 (0 ≤ i ≤ n− 1) be the translated Chebyshev extreme nodes in

[α, β] = [λ1 − λN , λn − λN ].

3Li [17, Theorem 5.3] is really for σ = 1. But since |σ|2 can be factored out in Gn, one still
has (3.16). This comment also applies to (3.17).

4Li [17, Theorem 5.4] was stated for all τ tri−1n−1 > 0, but it is not hard to see that the theorem

holds for all τ tri−1n−1 < 0 because Vk,n with all nodes negative can be turned into one with all

nodes positive by pre-multiplying the diagonal matrix diag(1,−1, 1,−1, . . .).
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Apply the Lanczos algorithm with A on b as in (1.1). We have
(3.18)[

1 +
|g(N)|2

(n− 1)c21
2ΨδN ,k

]−1/2

≤ sin∠(Q(:,N),Kk) ≤
[
1 +

|g(N)|2

(n− 1)c22
2ΨδN ,k

]−1/2

,

where δN is as in Theorem 3.1,

c1 = min

{√
2|g(1)|,

√
2|g(n)|, min

1<i<n
|g(i)|

}
,

c2 = max

{√
2|g(1)|,

√
2|g(n)|, max

1<i<n
|g(i)|

}
.

Also [
1 +

|g(N)|2

ζc23
ρ−2
k−1 |Tk−1(δN )|2

]−1/2

(3.19)

≤ sin∠(Q(:,N),Kk)

≤
[
1 +

|g(N)|2

ζc24
ρ−2
k−1 |Tk−1(δN )|2

]−1/2

,

where ζ =
∑′′

0≤i≤n−1 2/|τ tri n−1|, ρk−1 as in (3.14) with κ ≡ κN = (λN −λ1)/(λN −
λn), and

c3 = min

{√
|τ tr0n−1| |g(1)|,

√
|τ trn−1n−1| |g(n)|, 2−1/2 min

1<i<n

√
|τ tri−1n−1| |g(i)|

}
,

c4 = max

{√
|τ tr0n−1| |g(1)|,

√
|τ trn−1n−1| |g(n)|, 2−1/2 max

1<i<n

√
|τ tri−1n−1| |g(i)|

}
.

Proof. In (3.2), take ν = λN , and Vk,N with nodes αi = λi − λN (1 ≤ i ≤ N).
Then

sin∠(Q(:,N),Kk) = min
u(1)=1

‖(eN diag(g)V T
k,N )u‖2.

Note that {αi}Ni=1 are the same as the ones in Lemma 3.2 and τ = −(β + α)/(β −
α) = δN . It can be seen that

min
u(1)=1

‖(eN diag(g̃)V T
k,N )u‖2 ≤ min

u(1)=1
‖(eN diag(g)V T

k,N )u‖2(3.20)

≤ min
u(1)=1

‖(eN diag(ĝ)V T
k,N )u‖2,

where
(3.21)

g̃(i) =

{
c1/

√
2, for i ∈ {1, n},

c1, for 2 ≤ i ≤ n− 1,
ĝ(i) =

{
c2/

√
2, for i ∈ {1, n},

c2, for 2 ≤ i ≤ n− 1,

and g̃(N) = ĝ(N) = g(N). Item 1 of Lemma 3.2 and (3.20) give (3.18), upon noticing

that (n− 1)c21 = ‖g̃(1:n)‖22 and (n− 1)c22 = ‖ĝ(1:n)‖22. The inequalities in (3.20) also
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Figure 3.1. Ratios of the upper bound by (3.5) for j = N over

sin∠(Q(:,N),Kk). Left: g = (2−1/2, 1, 1, . . . , 1, 2−1/2, 0.1)T; Right: g is
random and ‖g‖2 = 1.

hold for

(3.22)

g̃(i) =

⎧⎪⎨⎪⎩
c3
√

1
|τtri−1n−1|

, for i ∈ {1, n},

c3
√

2
|τtri−1n−1|

, for 2 ≤ i ≤ n− 1,

ĝ(i) =

⎧⎪⎨⎪⎩
c4
√

1
|τtri−1n−1|

, for i ∈ {1, n},

c4
√

2
|τtri−1n−1|

, for 2 ≤ i ≤ n− 1,

and again g̃(N) = ĝ(N) = g(N). Item 2 of Lemma 3.2 and (3.20) give (3.19), upon

noticing that ζc23 = ‖g̃(1:n)‖22 and ζc24 = ‖ĝ(1:n)‖22. �

Theorem 3.2 leads to two examples that can demonstrate that the existing bound

(3.23) sin∠(Q(:,N),Kk) ≤
[
1 +

|g(N)|2

‖g(1:n)‖22
|Tk−1(δN )|2

]−1/2

by Theorem 3.1 for j = N is rather sharp in general.

Example 3.1. Let A be as described in Theorem 3.2 such that c1 = c2; namely, g
takes the form of (3.10). Then (3.18) becomes an equality

(3.24) sin∠(Q(:,N),Kk) =

[
1 +

|g(N)|2

‖g(1:n)‖22
2ΨδN ,k

]−1/2

.

To compare the right-hand side of (3.23) and that of (3.24), we notice that

(3.25) |Ti(δN )| = 1

2

[
∆i

κN
+∆−i

κN

]
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by (2.3). It can be seen that

1 ≤ RHS of (3.23)

RHS of (3.24)
≤

√
2ΨδN ,k

|Tk−1(δN )|2 ,

and at the same time if |g(N)| > 0 and κN > 1,

RHS of (3.23)

RHS of (3.24)
∼

√
2ΨδN ,k

|Tk−1(δN )|2

as N > k → ∞. Here and in what follows, the notation ak,N ∼ bk,N means
ak,N/bk,N → 1 as N > k → ∞. Now for 1 < k ≤ n − 1, by (3.25) and writing ∆
for ∆κN

for short,

ΨδN ,k =
1

2
+

k−1∑
i=1

1

4

[
∆2i + 2 +∆−2i

]
=

1

4

∆2k − 1

∆2 − 1
+

1

2
(k − 1) +

1

4

∆−2k − 1

∆−2 − 1
,

and for k = n,

ΨδN ,n =
1

2
+

n−1∑
i=1

1

4

[
∆2i + 2 +∆−2i

]
− 1

8

[
∆2(n−1) + 2 +∆−2(n−1)

]
=

1

4

∆2n − 1

∆2 − 1
+

1

2
(k − 1) +

1

4

∆−2n − 1

∆−2 − 1
− 1

8

[
∆2(n−1) + 2 +∆−2(n−1)

]
.

Therefore for N > k → ∞,
(3.26)

RHS of (3.23)

RHS of (3.24)
∼

√
2ΨδN ,k

|Tk−1(δN )|2 ∼

⎧⎪⎨⎪⎩
√

2∆2

∆2−1 =
1+

√
κN√

2 4
√
κN

, for k ≤ n− 1,√
∆2+1
∆2−1 =

√
1+κN√
2 4
√
κN

, for k = n.

The left plot in Figure 3.1 is for the leftmost ratio for κN = 10 and 102 and N = 50.
Our asymptotical analysis in (3.26) shows up in the plot:

1 +
√
κN√

2 4
√
κN

=

{
1.6551, for κN = 10,
2.4597, for κN = 102,

√
1 + κN√
2 4
√
κN

=

{
1.3188, for κN = 10,
2.2472, for κN = 102.

The right plot in Figure 3.1 is for a random unit vector g. It, too, indicates that
the existing bound by (3.5) for j = N is fairly tight.

Example 3.2. Let A be as described in Theorem 3.2 such that c3 = c4; namely, g
takes the form of (3.12). Then (3.19) becomes an equality

(3.27) sin∠(Q(:,N),Kk) =

[
1 +

|g(N)|2

‖g(1:n)‖22
ρ−2
k−1 |Tk−1(δN )|2

]−1/2

.

It can be seen that

1 ≤ RHS of (3.23)

RHS of (3.27)
≤ ρ−1

k−1,

and at the same time if |g(N)| > 0 and κN > 1,

RHS of (3.23)

RHS of (3.27)
∼ ρ−1

k−1
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Figure 3.2. Ratios of the upper bound by (3.5) for j = N over
sin∠(Q(:,N),Kk) for g as in (3.12) with σ = 1.

as N > k → ∞. But 1 ≤ ρ−1
k−1 ≤

√
2, which means the ratio is bounded uniformly

by
√
2. Figure 3.2 plots the ratio with σ = 1 and g(N) = 0.1.

4. Eigenvalue convergence

A is Hermitian; so is Hk = X∗
kAXk. We expect the largest eigenvalue µk of Hk

best approximates λN . We have

µk = max
z

z∗Hkz

z∗z
= max

z

z∗X∗
kAXkz

z∗X∗
kXkz

= λN + max
u∈Kk

u∗(A− λNI)u

u∗u

= λN +max
φk−1

[φk−1(A− λNI)b]∗(A− λNI)[φk−1(A− λNI)b]

[φk−1(A− λNI)b]∗[φk−1(A− λNI)b]
,

since Kk(A, b) = Kk(A− λNI, b). Substitute A = QΛQ∗ to get

(4.1) 0 ≥ µk − λN = −min
u

‖diag((λNI − Λ)1/2g)V T
k,Nu‖22

‖diag(g)V T
k,Nu‖22

,

where g = Q∗b as before, αi = λi − λN (1 ≤ i ≤ N) are the nodes for Vk,N , and u
is the vector of coefficients of φk−1. Recall n = N − 1. For ω and τ in (2.6) with
[α, β] = [α1, αn], |Tk−1(αj/ω + τ )| ≤ 1 for 1 ≤ i ≤ n. Let v ∈ Ck with v(i) being
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the coefficient of zi−1 in Tk−1(z/ω + τ ). We have

min
u

‖(λNI − Λ)1/2diag(g)V T
k,Nu‖22

‖diag(g)V T
k,Nu‖22

≤
‖(λNI − Λ)1/2diag(g)V T

k,Nv‖22
‖diag(g)V T

k,Nv‖22

≤ (λN − λ1)
‖g(1:n)‖22
|g(N)v(1)|2

= (λN − λ1)
‖g(1:n)‖22
|g(N)|2

1

|Tk−1(τ )|2
.(4.2)

Now by (2.6),

τ =
α1 + αn

α1 − αn
=

κN + 1

κN − 1
= δN ,

and by (2.3) and (4.1), we have

(4.3) 0 ≤ λN − µk ≤ (λN − λ1)ε
2
N ,

where κN , δN , and εN are as defined in Theorem 3.1. Inequality (4.3) is an existing
result of Kaniel and Saad [20]. Theorem 4.1 below presents a slightly sharper result
due to an anonymous referee.

Theorem 4.1. Let the Hermitian matrix A have the eigendecomposition (1.3) with
{λi}Ni=0 ordered as in (1.4), and let Kk ≡ Kk(A, b) as in (1.2), g = Q∗b as in (3.3),
1 ≤ k ≤ n, and µk is the largest eigenvalue of Hk. Then

(4.4) 0 ≤ λN − µk ≤ (λN − λ1)
ε2N

1 + ε2N
.

Proof. Letting y1 denote the closest unit vector in Kk to Q(:,N), apply Sun [25,
(2.4)] to get

(4.5) 0 ≤ λN − µk ≤ λN − y∗1Ay1 ≤ (λN − λ1) sin
2 ∠(Q(:,N),Kk),

which, combined with Theorem 3.1, leads to (4.4). �

We need the following lemma before presenting our main theorem in the section
that shows the bound by (4.4) is very sharp.

Lemma 4.1. Let α < β < 0, and let Vk,N have nodes αi+1 = τ tri n−1 (0 ≤ i ≤ n−1)
on [α, β], and αN = 0.

(1) For g as in (3.10),

(4.6) min
u

‖diag(g(1:n))V
T
k,nu‖22

‖diag(g)V T
k,Nu‖22

=

[
1 +

|g(N)|2

‖g(1:n)‖22
2Ψτ,k

]−1

,

where τ = −(α + β)/(β − α) is given by (2.6) and Ψτ,k is defined as in
(3.8).

(2) For g as in (3.12),

(4.7) min
u

‖diag(g(1:n))V T
k,nu‖22

‖diag(g)V T
k,Nu‖22

=

[
1 +

|g(N)|2

‖g(1:n)‖22
ρ−2
k−1 |Tk−1(τ )|2

]−1

,

where ρk−1 is defined as in (3.14) with κ = α/β > 1.
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Proof. Notice that Vk,N = (Vk,n e1) to get

‖diag(g)V T
k,Nu‖22 = ‖diag(g(1:n))V T

k,nu‖22 + |g(N)u(1)|2,

and thus

‖diag(g(1:n))V T
k,nu‖22

‖diag(g)V T
k,Nu‖22

=

[
1 +

|g(N)u(1)|2

‖diag(g(1:n))V T
k,nu‖22

]−1

.

Therefore

min
u

‖diag(g(1:n))V T
k,nu‖22

‖diag(g)V T
k,Nu‖22

=

[
1 + max

u

|g(N)u(1)|2

‖diag(g(1:n))V T
k,nu‖22

]−1

=

[
1 + |g(N)|2

1

min|u(1)|=1 ‖diag(g(1:n))V T
k,nu‖22

]−1

.(4.8)

For g as in (3.10), diag(g(1:n)) = σ diag(2−1/2, 1, 1, . . . , 1, 2−1/2), and Li [17, Theo-
rem 5.3] yields that

min
|u(1)|=1

‖diag(g(1:n))V T
k,nu‖22 = (n− 1)|σ|2 (2Ψτ,k)

−1 = ‖g(1:n)‖22 (2Ψτ,k)
−1 ,

which, together with (4.8), leads to (4.6). For g as in (3.12),

diag(g(1:n)) = σ diag

(√
1

|τ tr0n−1|
,

√
2

|τ tr1n−1|
,

√
2

|τ tr2n−1|
, . . . ,√

2

|τ trn−2n−1|
,

√
1

|τ trn−1n−1|

)
and Li [17, Theorem 5.4] yields that

min
|u(1)|=1

‖diag(g(1:n))V T
k,nu‖22 = ‖g(1:n)‖22 ρ2k−1 |Tk−1(τ )|−2,

which, together with (4.8), leads to (4.7). �

Theorem 4.2. Assume the conditions of Theorem 3.2, and let c1, c2, c3, c4, ζ,
and δN be the same as defined there. Let µk be the largest eigenvalue of Hk. Then
for 1 ≤ k ≤ n,

(λN − λn)

[
1 +

|g(N)|2

(n− 1)c21
2ΨδN ,k

]−1/2

(4.9)

≤ λN − µk

≤ (λN − λ1)

[
1 +

|g(N)|2

(n− 1)c22
2ΨδN ,k

]−1/2

,

(λN − λn)

[
1 +

|g(N)|2

ζc23
ρ−2
k−1 |Tk−1(δN )|2

]−1/2

(4.10)

≤ λN − µk

≤ (λN − λ1)

[
1 +

|g(N)|2

ζc24
ρ−2
k−1 |Tk−1(δN )|2

]−1/2

.
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Proof. Let Γ = λNI −Λ. It can be verified that λN − λn ≤ ‖Γ‖2 ≤ λN − λ1. Thus

(λN − λn)
‖diag(g(1:n))V T

k,nu‖22
‖diag(g)V T

k,Nu‖22
≤

‖Γ1/2diag(g)V T
k,Nu‖22

‖diag(g)V T
k,Nu‖22

(4.11)

≤ (λN − λ1)
‖diag(g(1:n))V T

k,nu‖22
‖diag(g)V T

k,Nu‖22
.

It can be seen that, because of (4.8),
(4.12)

min
u

‖diag(g̃(1:n))V T
k,nu‖22

‖diag(g̃)V T
k,Nu‖22

≤ min
u

‖diag(g(1:n))V T
k,nu‖22

‖diag(g)V T
k,Nu‖22

≤ min
u

‖diag(ĝ(1:n))V T
k,nu‖22

‖diag(ĝ)V T
k,Nu‖22

,

where g̃ and ĝ are either given by (3.21) or by (3.22) and g̃(N) = ĝ(N) = g(N) always.
As in the proof of Theorem 3.2, τ = δN for [α, β] = [λ1 − λN , λn − λN ]. Item 1 of
Lemma 4.1, (4.11), and (4.12) give (4.9), upon noticing that (n− 1)c21 = ‖g̃(1:n)‖22
and (n − 1)c22 = ‖ĝ(1:n)‖22. Item 2 of Lemma 4.1, (4.11), and (4.12) give (4.10),

upon noticing that ζc23 = ‖g̃(1:n)‖22 and ζc24 = ‖ĝ(1:n)‖22. �
Similarly to our analysis in Examples 3.1 and 3.2, Theorem 4.2 will also lead

to examples for which the existing result (4.3) tells the correct rate of convergence
to λN . The details are omitted. Kaniel and Saad obtained similar bounds on
approximating other λj by Ritz values [20]. Their sharpness in general remains to
be studied.

Remark 4.1. Between Theorems 3.2 and 4.2, one implies the other with slightly
weakened inequalities. In fact we have

(4.13) (λN − λn)ε
2 ≤ λN − µk ≤ (λN − λ1)ε

2,

where ε = sin∠(Q(:,N),Kk). The second inequality in (4.13) is a consequence of
(4.5). To see the first inequality, let y be the corresponding Ritz vector to µk. By
[15, Theorem 2.1] or [11, Theorem 4],

ε ≤ sin∠(Q(:,N), y) ≤
√

λN − µk

λN − λn
,

which leads to the first inequality in (4.13). We note in passing that the subspace
version of (4.5) can be found in [14].

Remark 4.2. That the existing error bound for µk tells the correct rate of conver-
gence to λN also follows from two equivalence theorems between CG convergence
and the convergence of the first Ritz value, due to Sleijpen and van der Sluis [24,
Theorems 6.1 and 6.2], and a recent result of the author’s [18, Theorem 2.1]. In
fact the Hermitian matrix H constructed according to [24, Theorem 6.1] from the
matrix in [18, Theorem 2.1] relates to the Hermitian matrix A in Example 3.2 by
H = µA+ νI for two real numbers µ and ν. However, the implied bounds by [24,
Theorem 6.1] are weaker than those in Theorem 4.2. The details are omitted.

5. Concluding remarks

It is often observed that the existing error bounds for the symmetric Lanczos
algorithm for symmetric eigenvalue problems are very good in indicating the accu-
racy of the computed solutions for the first few iterations but after that the bounds
overestimate the actual errors often too much to be of much use. Is this always the
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case? We have devised examples for the symmetric Lanczos algorithm to demon-
strate that the computed solutions have errors that are comparable to the existing
error bounds at all iteration steps for the two extreme eigenpairs. This implies that
the existing bounds cannot be improved in general unless further information upon
the problems becomes available.

We only succeed in dealing with the largest and smallest eigenvalues and their
associated eigenvectors by showing that the existing bounds are sharp, modulo
modest factors. The situation for approximations to any other eigenvalues and
their associated eigenvectors can be very complicated, and we suspect that the
existing bounds would probably not be sharp, even after modulo modest constant
factors.

The foundation of this paper is built upon an explicit evaluation of certain min-
imization problems for the translated Chebyshev extreme nodes, similarly to [16]
where the translated Chebyshev zero nodes were used. This idea is extendable
to evaluate the minimization problems that are the same in form but involve the
translated zero nodes of an orthogonal polynomial; see [17, Section 6].

In passing, we also obtained a slightly improved error bound in (4.4) over (4.3),
an existing result of Kaniel and Saad [20].
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