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THE LIFTING OF POLYNOMIAL TRACES REVISITED

CHRISTINE BERNARDI, MONIQUE DAUGE, AND YVON MADAY

Abstract. We construct a lifting operator of polynomial traces on an interval
that is stable in appropriate Sobolev norms. Next we extend this result to
the case of traces vanishing at the endpoints of the interval. This has two
applications, the interpolation of polynomial spaces and the evaluation by
discrete formulas of fractional order Sobolev norms on polynomials.

Résumé

Nous construisons un opérateur de relèvement de traces polynômiales sur un
intervalle qui est stable par rapport à des normes de Sobolev appropriées. Puis
nous étendons ce résultat au cas de traces nulles aux extrémités de l’intervalle.
Ceci a deux applications: l’interpolation d’espaces de polynômes, l’évaluation
par des formules discrètes de normes de Sobolev d’ordre non entier appliquées
à des polynômes.

1. Introduction

This paper is motivated by the derivation of precise results about the behavior of

the fractional order norms H1/2 and H
1/2
00 in the set of polynomials with one vari-

able. These norms are the natural candidates for stating stability results on traces
of general functions of two variables defined over a bounded, regular enough, do-
main over its whole boundary or parts of it. They are also the natural measures for
deriving stable liftings or extensions for functions defined on (part of) the bound-
ary of a two-dimensional domain, we refer to [14] for an introduction and advanced
properties of trace and lifting operators in a general functional framework.

The lifting of polynomial traces into spaces of polynomials has given rise to a
large number of works; see the pioneering paper [4] and also, in the same period, [13],
[15], [9] for two-dimensional domains, next [5], [16] for three-dimensional domains,
and more recently [3]. Indeed, such results are very useful for the treatment of
nonhomogeneous Dirichlet boundary conditions both in finite element methods and
in spectral discretizations, and also for handling the matching conditions on the
interfaces when working with domain decomposition techniques (see [18] or [19],
for instance).

For some applications, (sub)optimal estimates which do not make use of frac-
tional order Sobolev spaces are sufficient; see [13], [9]. For many other applications
optimal estimates are required; the trace is estimated in H1/2 and the lifting in H1

(or the trace in L2 and the lifting in H1/2 as in [3]). In comparison with standard
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lifting operators acting between ordinary functions, the requirement that polyno-
mials should be preserved brings severe difficulties; in particular, the localization
by means of smooth cutoff functions cannot be employed any more.

The main difficulty is to lift a polynomial trace which is given on an edge (of, e.g.,
a triangle or a rectangle) and which is zero at the ends of this edge, by a polynomial
which is zero on both other edges adjacent to the first one. The strategy of [4] (see
also [3] for a more global and symmetric implementation of this idea) is to apply
a standard regularizing kernel on traces modified by an integral operator acting on
the boundary. Another strategy is the division-lifting-multiplication algorithm: It
consists in dividing the trace by an elementary polynomial in one variable which is
zero at the ends, to lift it by a regularizing kernel, and to multiply by a polynomial
in two variables which is zero on the adjacent edges.

This strategy has been mentioned in our note [7], but the complete proof was
never published in the literature until now. In this situation, we encounter the

limit case of the exponent 1/2, and the space H
1/2
00 has to be employed. In the

present work, we study the construction of two lifting operators from an edge to
a rectangle, the first one being classical and the second one extending the nullity
conditions to adjacent edges. We prove with full details their continuity on the

spaces H1/2 and H
1/2
00 , respectively. In the second case in particular, our proof

requires the use of several types of weighted Sobolev spaces. Nevertheless, this
construction by the division-lifting-multiplication algorithm provides an interesting
and simple alternative to the constructions of [4] and [3].

The construction of lifting operators which are stable both in the algebraic sense
(polynomial traces extended into polynomials in two variables) and in the analytical
sense (with respect to the fractional order norms), interesting per se, also allows us
to derive accurate statements on these norms for polynomials. It is well known that,
over finite-dimensional spaces (here the space of polynomials with degree ≤ N), all
the norms are equivalent. But the constants arising in the various equivalence may
depend on the dimension of these spaces. A main application of the existence of
stable liftings is to prove that, in fact, these constants do not depend on N , and this
is one of our aims for writing this paper. This result was already briefly announced
(see [15]), employed (see [17], [12]), and generalized (see [5]).

There are many possible applications of the properties given here; we quote [12]
for recent ones. Note also that the results in [11] can be made more precise thanks
to our analysis. We propose other applications at the end of the paper.

The outline of the paper is as follows.
• In Section 2, we construct a lifting of polynomial traces on one edge of a

rectangle into the space of polynomials on this rectangle and prove the continuity
of this operator.

• In Section 3, we construct a lifting of polynomial traces on the same edge,
but now vanishing at the endpoints of this edge, into the space of polynomials on
the rectangle which vanish on its two edges adjacent to the first one, and we also
prove the continuity of this operator.

• Section 4 is devoted to one of the applications of the previous analysis, i.e.,
the comparison of the fractional order intrinsic norms on the spaces of polynomials
with the interpolation norms.

• In Section 5, we continue the analysis in [11] and [9] and propose a constructive
way to evaluate the fractional-order Sobolev norms of the polynomials; see also [12].
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• The ability to evaluate fractional order norms is first illustrated in Section
6 on the example of the Legendre polynomials. In addition, based on numerical
results, we conjecture an asymptotic behavior for the H1/2 operator-norm of the
L2-projection operator onto polynomial spaces.

2. Lifting of polynomial traces

We first present the notation that is used in this section and later on. Next,
we describe the different steps that are required for the construction of the lifting
operator and, at each step, we prove the corresponding continuity property. We
conclude with the final theorem.

2.1. Notation. Let Λ be the open interval (−1, 1) and Θ the rectangle Λ× (0, 1).
The generic points in Λ and Θ are denoted by X and (X, Y ), respectively. For
simplicity, we still use the notation Λ for the edge Λ × {0} of Θ. Indeed, we are
interested in the lifting of traces on Λ into functions on Θ.

For any one-dimensional interval I and any nonnegative integer N , let PN (I)
be the space of restrictions to I of polynomials with one variable and degree ≤ N
with respect to this variable. Similarly, for any one-dimensional intervals I and J
and any nonnegative integer N , let PN (I ×J ) be the space of restrictions to I ×J
of polynomials with two variables and degree ≤ N with respect to each variable. In
this section, we are interested in the construction of a stable lifting operator which
maps PN (Λ) into PN (Θ) for each positive integer N .

On the one-dimensional interval I, we recall the standard notation

(2.1) L2(I) =
{
ϕ : I → R measurable; ‖ϕ‖L2(I) =

(∫
I
|ϕ(x)|2 dx

) 1
2 < +∞

}
.

Next, for any nonnegative integer m, we consider the usual Sobolev space Hm(I)
of functions such that all their derivatives of order ≤ m belong to L2(I), namely

(2.2) Hm(I) =
{
ϕ ∈ L2(I); ‖v‖Hm(I) =

( m∑
k=0

‖dkϕ‖2L2(I)
) 1

2 < +∞
}
,

where dk stands for the derivative of order k. In what follows, we also need the
seminorm

(2.3) |ϕ|Hm(I) = ‖dmϕ‖L2(I).

The Sobolev spaces of fractional order can be defined in several ways, for instance
by interpolation methods [2, Chap. VII]; however, we have rather introduced them
by the way of an intrinsic norm. For any positive real number τ and for any function
ϕ defined a.e. on I, let qτ [ϕ] be defined a.e. on I × I by

(2.4) qτ [ϕ](x, x
′) =

|ϕ(x)− ϕ(x′)|
|x− x′|τ .

Any positive real number s which is not an integer can be written �s� + σ, where
�s� denotes its integer part and 0 < σ < 1; the space Hs(I) is thus defined as the
space of functions ϕ in L2(I) such that

(2.5) ‖ϕ‖Hs(I) =
(
‖ϕ‖2H�s�(I) + ‖qσ+ 1

2
[d�s�ϕ]‖2L2(I×I)

) 1
2 < +∞.
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Similarly, on any two-dimensional connected domain O with a Lipschitz-contin-
uous boundary, we recall that

(2.6) L2(O) =
{
v : O → R measurable; ‖v‖L2(O) =

(∫
O
|v(x)|2 dx

) 1
2 < +∞

}
,

with the notation x = (x, y), and also that

(2.7) H1(O) =
{
v ∈ L2(O);

‖v‖H1(O) =
(
‖v‖2L2(O) + ‖∂xv‖2L2(O) + ‖∂yv‖2L2(O)

) 1
2 < +∞

}
.

The final result of this section involves the spaces H1(Θ) and H1/2(Λ). Here is
the explicit expression of the norm associated with this latter space:

(2.8) ‖ϕ‖
H

1
2 (Λ)

=
(
‖ϕ‖2L2(Λ) +

∫ 1

−1

∫ 1

−1

|ϕ(X)− ϕ(X′)|2
|X − X′|2 dXdX′

) 1
2

.

2.2. Construction of the lifting operator. The lifting operator is built in three
steps, according to the geometry of the domain in which we lift the traces.

Step 1. Lifting from R into a strip.

Let S denote the infinite strip R × (0, 2). For any nonnegative integer N , we
introduce the space PN (S) of restrictions to S of polynomials with two variables
and total degree ≤ N . Next, we define the operator LS on integrable functions ϕ
by

(2.9) for a.e. (x, y) ∈ S, (LSϕ)(x, y) =
1

y

∫ x+ y
2

x− y
2

ϕ(t) dt.

It satisfies the basic property:

(2.10) for a.e. x ∈ R, lim
y→0

(LSϕ)(x, y) = ϕ(x),

so that LS is a lifting operator.
We omit the proof of the first lemma since it is obvious.

Lemma 2.1. For any nonnegative integer N , the operator LS maps PN (R) into
PN (S).

In order to prove the next lemma, we write (2.9) in a different form:

(2.11) (LSϕ)(x, y) =

∫ +∞

−∞
χ(t)ϕ(x+ yt) dt,

where χ stands for the characteristic function of the interval (− 1
2 ,

1
2 ). Denoting by

a hat the Fourier transform on R, we observe that

(2.12) χ̂(ξ) =
2√
2π

sin( ξ2 )

ξ
,

so that, in particular, the function χ̂ belongs to H1(R).

Lemma 2.2. The operator LS is continuous from H1/2(R) into H1(S).
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Proof. Let ϕ be any function in H1/2(R). Due to the tensorization property

H1(S) = H1(R;L2(0, 2)) ∩ L2(R;H1(0, 2)),

it suffices to check that ∫ +∞

−∞
‖L̂Sϕ(ξ, · )‖2H1(I,ξ) dξ < +∞,

where I stands for the interval (0, 2), and the parameter-dependent norm ‖·‖H1(I,ξ)
is defined as

‖v‖2H1(I,ξ) = (1 + ξ2) ‖v‖2L2(I) + |v|2H1(I).

Denoting by χy the function χy(t) =
1
y χ( t

y ), we observe that (2.11) can be written

equivalently as the convolution

LSϕ(·, y) = ϕ ∗ χy,

whence (see [20, §2.2.1] for instance)

(2.13) L̂Sϕ(ξ, y) =
√
2π ϕ̂(ξ) χ̂y(ξ) =

√
2π ϕ̂(ξ) χ̂(yξ).

Thus, we derive

‖L̂Sϕ(ξ, · )‖2H1(I,ξ) = 2π |ϕ̂(ξ)|2 ‖χ̂(yξ)‖2H1(I,ξ).

First, for |ξ| ≥ 1, by using the change of variable z = yξ, we obtain

(2.14) ‖L̂Sϕ(ξ, · )‖2H1(I,ξ) ≤ c (1 + ξ2)
1
2 |ϕ̂(ξ)|2 ‖χ̂‖2H1(R).

Second, for |ξ| < 1, the same change of variable yields

ξ2 ‖L̂Sϕ(ξ, · )‖2L2(I) + |L̂Sϕ(ξ, · )|2H1(I) ≤ c |ξ| |ϕ̂(ξ)|2 ‖χ̂‖2H1(R),

while it follows from (2.13) that (note that 0 < y < 2)

‖L̂Sϕ(ξ, · )‖2L2(I) ≤ c |ξ|−1|ϕ̂(ξ)|2 ‖χ̂‖2L2(0,2ξ).

Next, we observe that the quantity |ξ|−1 ‖χ̂‖2L2(0,2ξ) is bounded independently of ξ

(see (2.12)); hence inequality (2.14) still holds for |ξ| < 1. We also note that the

quantity ‖(1+ ξ2)
1
4 ϕ̂‖L2(R) is equivalent to ‖ϕ‖

H
1
2 (R)

(see [20, §2.3.3]). Combining

all this leads to ∫ +∞

−∞
‖L̂Sϕ(ξ, · )‖2H1(I,ξ)

dξ ≤ c ‖ϕ‖2
H

1
2 (R)

,

which is the desired result. �

Step 2. Lifting from Λ into a triangle.

Let T denote the equilateral triangle with vertices a− = (−1, 0),a+ = (1, 0) and

a0 = (0,
√
3). For any nonnegative integer N , we introduce the space PN (T ) of

restrictions to T of polynomials with two variables and total degree ≤ N .
It is readily checked from (2.9) (see also Figure 1) that, for any point (x, y) in

T , the value of LSϕ at (x, y) only depends on the values of ϕ on Λ. Therefore, in
analogy with (2.9), we define the operator LT on functions ϕ integrable on Λ by

(2.15) for a.e. (x, y) ∈ T , (LT ϕ)(x, y) =
1

y

∫ x+ y
2

x− y
2

ϕ(t) dt.
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a− = (−1, 0) a+ = (1, 0)

a0 = (0,
√

3)

a0 = (0, 2)

Λ

(x, y)

(x + y
2 , 0)(x − y

2 , 0)

T

T

Figure 1. The lifting from Λ to triangles T and T ′

Thus, this operator satisfies the lifting property:

(2.16) for a.e. x ∈ Λ, lim
y→0

(LT ϕ)(x, y) = ϕ(x).

The next statement is easily derived from Lemmas 2.1 and 2.2.

Lemma 2.3. The operator LT
(i) maps PN (Λ) into PN (T ) for any nonnegative integer N ,
(ii) is continuous from H1/2(Λ) into H1(T ).

Remark 2.4. Formula (2.15) still makes sense for a.e. (x, y) in the larger triangle
T ′ with vertices a−,a+ and a′

0 = (0, 2), defining a lifting operator LT ′ continuous

from H1/2(Λ) into H1(T ′).

Step 3. Lifting from Λ into Θ.

Finally, let Z denote the isosceles trapezium (in the British sense of a quadrilat-
eral with two parallel edges)

(2.17) Z =
{
(x, y) ∈ T ; y < 1

}
,

and let LZ be the restriction of LT to Z:

(2.18) LZϕ = LT ϕ
∣∣
Z .

The introduction of Z is motivated by the existence of a one-to-one homography
F which maps the rectangle Θ onto Z, see Figure 2:

(2.19) (x, y) = F (X, Y ) =
(
(1− Y√

3
)X , Y

)
.
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a− = (−1, 0) a+ = (1, 0)

a0 = (0,
√

3)

Λ

Z Θ
F−1

T

Figure 2. The homographic transformation from Z onto Θ

Thus we can define the lifting operator LΘ by

(2.20) for a.e. (X, Y ) ∈ Θ, (LΘϕ)(X, Y ) = (LZϕ) ◦ F (X, Y ).

This of course makes sense because F maps Θ onto Z. Moreover, F maps the line
Y = 0 onto the line y = 0, so that the lifting property (2.16) is still satisfied by the
operator LΘ.

We need two further properties of the mapping F : v 
→ v ◦ F .

Lemma 2.5. For any nonnegative integer N , the operator F maps PN (Z) into
PN (Θ).

Proof. Any polynomial vN in PN (Z) can be written as

vN (x, y) =
N∑

n=0

N−n∑
�=0

αn� x
ny�,

so that

(vN ◦ F )(X, Y ) =

N∑
n=0

N−n∑
�=0

αn�

(
1− Y√

3

)n

X
n
Y
�.

This yields the desired result. �
Lemma 2.6. The operator F is continuous from H1(Z) into H1(Θ).

Proof. This follows from the fact that the Jacobian matrix of F is bounded on Θ
and has a determinant larger than 1− 1√

3
. �

2.3. The lifting theorem. The main result of this section now follows from the
definition (2.20) and Lemmas 2.3, 2.5 and 2.6.

Theorem 2.7. The operator LΘ defined in (2.20)

(i) satisfies the lifting property

(2.21) for a.e. X ∈ Λ, lim
Y→0

(LΘϕ)(X, Y ) = ϕ(X);

(ii) maps PN (Λ) into PN (Θ) for any nonnegative integer N ;
(iii) satisfies the continuity property for a positive constant c:

(2.22) ∀ϕ ∈ H
1
2 (Λ), ‖LΘϕ‖H1(Θ) ≤ c ‖ϕ‖

H
1
2 (Λ)

.
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3. Lifting of flat polynomial traces

By “flat” traces, we mean traces that vanish at the endpoints of the interval Λ.
We now intend to construct a lifting operator that preserves this nullity property,
i.e., that maps these traces onto functions vanishing on each of the two vertical
edges {±1} × (0, 1) of the rectangle Θ. Our proof of the continuity of the new
lifting operator requires the introduction of some weighted Sobolev spaces.

3.1. Notation. For any integer N ≥ 2, let P0
N (Λ) be the space of polynomials in

PN (Λ) which vanish at the endpoints ±1 of Λ. Similarly, we introduce the space

(3.1) P�N (Θ) =
{
vN ∈ PN (Θ); vN (±1, Y ) = 0, 0 ≤ Y ≤ 1

}
.

Note that

(3.2) P0
N (Λ) = (1− X

2)PN−2(Λ), P�N (Θ) = (1− X
2)PN−2,N (Θ),

where PN−2,N (Θ) stands for the space of polynomials with degree ≤ N − 2 with
respect to X and ≤ N with respect to Y . We are now interested in defining a new
stable lifting operator which maps P0

N (Λ) into P�N (Θ) for each positive integer N .
On the rectangle Θ, we also introduce the space

(3.3) H1
�(Θ) =

{
v ∈ H1(Θ); v(±1, Y ) = 0 for a.e. Y , 0 ≤ Y ≤ 1

}
,

and we note that P�N (Θ) is a finite-dimensional subspace of H1�(Θ).
On the interval Λ and for any real number α, we introduce the weighted Sobolev

space

(3.4) V
1
2
α (Λ) =

{
ϕ : Λ → R measurable; ‖ϕ‖

V
1
2
α (Λ)

< +∞
}
,

where the norm ‖ · ‖
V

1
2
α (Λ)

is defined by (see [20, Chap. 3] for analogous definitions)

(3.5) ‖ϕ‖
V

1
2
α (Λ)

=
(∫ 1

−1

|ϕ(X)|2 (1− X
2)α−1 dX

+

∫ 1

−1

∫ 1

−1

|ϕ(X)(1− X
2)

α
2 − ϕ(X′)(1− X

′2)
α
2 |2

|X − X′|2 dXdX′
) 1

2

.

Remark 3.1. In the specific case α = 0, when comparing the norm in (3.5) with

the intrinsic norm on H
1/2
00 (Λ) as given in [14, Chap. I, Th. 11.7] for instance, we

observe that the spaces V
1/2
0 (Λ) and H

1/2
00 (Λ) coincide.

Similarly, we define weighted Sobolev spaces on the two-dimensional domains
introduced in Section 2, for any real number α:

• On the equilateral triangle T , we consider the weight

(3.6) ρ(x, y) =
(
(1− x2)2 + y2

) 1
2 .

Note that this function is equivalent to the distance to the set of corners {a−,a+}
(see Figure 1 for the notation). Then, we define V1

∗,α(T ) as the space of measurable
functions v on T such that ‖v‖V1∗,α(T ) < +∞, with

(3.7) ‖v‖V1∗,α(T )) =
(∫

T
|v(x, y)|2 ρ(x, y)α−2 dxdy

+

∫
T
|(grad v)(x, y)|2 ρ(x, y)α dxdy

) 1
2

.
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The space of restrictions to the trapezium Z of functions in V1
∗,α(T ) is also denoted

by V1
∗,α(Z).

• Next, on Z, we consider the weight

δ(x, y) =
(
1− y√

3

)2

− x2.

This function is equivalent to the distance to the union of the two skew edges of
Z. Then, we define V1�,α(Z) as the space of measurable functions v on Z such that
‖v‖V1�,α(Z) < +∞, with

(3.8) ‖v‖V1�,α(Z) =
(∫

Z
|v(x, y)|2 δ(x, y)α−2 dxdy

+

∫
Z
|(grad v)(x, y)|2 δ(x, y)α dxdy

) 1
2

.

• Finally, on the rectangle Θ, we define V1�,α(Θ) as the space of measurable func-
tions v on Θ such that ‖v‖V1�,α(Θ) < +∞, with

(3.9) ‖v‖V1�,α(Θ) =
(∫

Θ

|v(X, Y )|2 (1− X
2)α−2 dXdY

+

∫
Θ

|(grad v)(X, Y )|2 (1− X
2)α dXdY

) 1
2

.

In the case α = 0, it follows from the standard Hardy inequality, see [20, §3.2.6,
Rem. 1] for instance, that the space V1�,0(Θ) coincides with H1�(Θ). Our aim is to

exhibit a new lifting operator which is continuous from H
1/2
00 (Λ) into H1�(Θ).

3.2. Construction of the lifting operator. The lifting operator L 0
Θ

is con-
structed from the division-multiplication formula

(3.10) L 0
Θ
= M1 ◦ LΘ ◦ M−1,

where LΘ is the operator constructed in Section 2 (see Theorem 2.7) and, for any
real number β, Mβ denotes the multiplication by (1− X

2)β:

(3.11) for a.e. X ∈ Λ, (Mβv)(X) = v(X) (1− X
2)β.

It follows from this definition and the properties of the operator LΘ that the op-
erator L 0

Θ
still satisfies the lifting property (2.21). Moreover, from (3.2), it is clear

that it maps P0
N (Λ) into P�N (Θ) (more precisely and with obvious notation into

P�N,N−2(Θ)). So, it remains to investigate its continuity properties. For this, we
study successively the continuity of the three operators which are involved in its
definition in appropriate weighted spaces.

Step 1. Continuity of the operator Mβ on Λ.

The next lemma follows immediately from the definition (3.5) of the norm of the

weighted space V
1/2
α (Λ).

Lemma 3.2. For any real numbers α and β, the operator Mβ is continuous from

V
1/2
α (Λ) into V

1/2
α−2β(Λ).

In what follows, we use this lemma with α = 0 and β = −1.

Step 2. Weighted continuity of the operator LΘ.
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a− = (−1, 0) a+ = (1, 0)

a0

(−1 + δ, 0) (1 − δ, 0)

Tδ

Figure 3. The polygon Tδ (with δ = 0.08)

We go back to the different steps leading to the definition (2.20) of the operator
LΘ. So we first prove the weighted analogue of Lemma 2.3.

Lemma 3.3. For any real number α, the operator LT defined in (2.15) is contin-

uous from V
1/2
α (Λ) into V 1

∗,α(T ).

Proof. Let ϕ be any function in V
1/2
α (Λ). As the restriction of ϕ to the interval

(−1+δ, 1−δ) for any fixed δ > 0 belongs to H1/2(−1+δ, 1−δ), Lemma 2.3 together
with Remark 2.4 implies that LT ϕ belongs to H1(Tδ), where, see Figure 3,

Tδ = T ∩ (1− δ)T ′.

So, by symmetry, it remains to prove that LT ϕ belongs to V 1
∗,α(C), where

• C denotes the sector with vertex a− = (−1, 0), opening π
3 and radius 1,

• V 1
∗,α(C) is obviously defined as the space of restrictions to C of functions in

V 1
∗,α(T ); thus the weight on C is now bounded from above and below by a constant

times the distance ρ− to a−.
We introduce the annulus (see Figure 4)

K0 =
{
(x, y) ∈ C; 1

2 < ρ−(x, y) < 1
}
.

We check that, for the interval I0,

I0 =
(
−1 +

2−
√
3

8
,−1 +

√
5

2

)
,

the values of LT ϕ on the annulus K0 only depend on the values of ϕ on I0. From
Lemma 2.3, we derive the estimate

‖LT ϕ‖H1(K0) ≤ c ‖ϕ‖
H

1
2 (I0)

.
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Figure 4. The sector C and its dyadic partition

Since both weights ρ and 1− x2 are bounded together with their inverses ρ−1 and
(1 − x2)−1 on K0 and I0, respectively, we deduce the estimate, with the obvious
definition of the new norms by restriction,

(3.12) ‖LT ϕ‖V 1∗,α(K0) ≤ c ‖ϕ‖
V

1
2

α (I0)
.

The proof now follows from a dyadic partition argument. For any j ≥ 0, let Φj

denote the mapping (x, y) 
→ (−1 + 2−j (x+ 1), 2−j y) and set

Kj = Φj(K0), Ij = Φj(I0).

Then, since LT (ϕ ◦ Φj) = (LT ϕ) ◦ Φj , we deduce from (3.12) that

‖(LT ϕ) ◦ Φj‖V 1∗,α(K0) ≤ c ‖ϕ ◦ Φj‖
V

1
2

α (I0)
.

Next, we derive by a change of variables that

‖LT ϕ‖2V 1∗,α(Kj)
≤ c 2jα ‖(LT ϕ) ◦ Φj‖2V 1∗,α(K0)

and 2jα ‖ϕ ◦ Φj‖2
V

1
2

α (I0)
≤ c′‖ϕ‖2

V
1
2

α (Ij)
.

Combining all this yields the uniform estimate for all integers j ≥ 0:

‖LT ϕ‖2V 1∗,α(Kj)
≤ c ‖ϕ‖2

V
1
2

α (Ij)
.
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Summing up the above inequalities on j, we obtain∑
j≥0

‖LT ϕ‖2V 1∗,α(Kj)
≤ c

∑
j≥0

‖ϕ‖2
V

1
2

α (Ij)
.

Since the union of the Kj is the sector C and since LT ϕ belongs to H1
loc(C), we

deduce that ∑
j≥0

‖LT ϕ‖2V 1∗,α(Kj)
= ‖LT ϕ‖2V 1∗,α(C).

On the other hand, the union of the intervals Ij is (−1,−1 +
√
5
2 ), and this union

is locally finite: for any j ≥ 0, Ij ∩ Ij+k = ∅ if k ≥ 6. From this we derive

∑
j≥0

‖ϕ‖2
V

1
2

α (Ij)
≤ 6 ‖ϕ‖2

V
1
2

α (−1,−1+
√

5
2 )

.

From the last three formulas, we obtain that LT ϕ belongs to V 1
∗,α(C), together

with the desired continuity property. �

Next, it is readily checked that the following inequality holds:

∀(x, y) ∈ Z, δ(x, y) ≤ ρ(x, y).

Thus, for all α ≥ 2, we have the corresponding inequalities on the weights:

∀(x, y) ∈ Z, δ(x, y)α−2 ≤ c ρ(x, y)α−2 and δ(x, y)α ≤ c ρ(x, y)α,

and we find that the space V 1
∗,α(Z) is imbedded in V1�,α(Z). Hence we deduce from

Lemma 3.3 the following lemma.

Lemma 3.4. For any real number α ≥ 2, the operator LZ defined in (2.18) is

continuous from V
1/2
α (Λ) into V1�,α(Z).

Finally, it follows from the definition (2.19) of F that

∀(X, Y ) ∈ Θ, δ ◦ F (X, Y ) =
(
1− X

2
) (

1− Y√
3

)2

.

Since 1− Y√
3
is bounded from below, we have the weighted analogue of Lemma 2.6.

Lemma 3.5. The operator F is continuous from V1�,α(Z) into V1�,α(Θ).

Thus, the next result follows from the definition (2.20) of LΘ and Lemma 3.4.

Lemma 3.6. For any real number α ≥ 2, the operator LΘ defined in (2.20) is

continuous from V
1/2
α (Λ) into V1�,α(Θ).

Step 3. Continuity of the operator Mβ on Θ.

The next property is an obvious consequence of the definition of the spaces
V1�,α(Θ).

Lemma 3.7. For any real numbers α and β, the operator Mβ is continuous from
V1�,α(Θ) into V1

�,α−2β(Θ).
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3.3. The lifting theorem. The final lifting result is now an easy consequence of
the definition (3.10) and Lemma 3.2 (with α = 0, β = −1), Lemma 3.6 (with α = 2)

and Lemma 3.7 (with α = 2 and β = 1) and the identity V
1/2
0 (Λ) = H

1/2
00 (Λ) stated

in Remark 3.1.

Theorem 3.8. The operator L 0
Θ

defined in (3.10)
(i) satisfies the lifting property

(3.13) for a.e. X ∈ Λ, lim
Y→0

(L 0
Θ
ϕ)(X, Y ) = ϕ(X);

(ii) maps H
1/2
00 (Λ) into H1�(Θ) and also P0

N (Λ) into P�N (Θ) for any integer N≥2;
(iii) satisfies the continuity property for a positive constant c:

(3.14) ∀ϕ ∈ H
1
2
00(Λ), ‖L 0

Θ
ϕ‖H1(Θ) ≤ c ‖ϕ‖

H
1
2
00(Λ)

.

4. Interpolation between polynomial spaces

For the sake of precision, we first recall from [14, Chap. 1, §4.2] the definition
of interpolation spaces (in the sense of traces) in the simple case of Hilbert spaces.
Note also that there exist several equivalent ways to define these spaces, e.g., the
K–method (see [14, Chap. 1, Th. 10.1] or [20, §1.8.1 and 1.8.2] for instance).

Definition 4.1. If X0 and X1 are two Hilbert spaces such that X1 is contained in
X0 with a continuous and dense embedding, the interpolation space [X1, X0]θ with
index θ, 0 < θ < 1, is defined as the set of traces ϕ = v(0) of measurable functions
v in (0, 1) with values in X1 such that the quantity

(4.1)
(∫ 1

0

‖v(t)‖2X1
t2θ

dt

t
+

∫ 1

0

‖v′(t)‖2X0
t2θ

dt

t

) 1
2

is finite, and its norm is defined as the trace norm, i.e., the infimum of (4.1) on the
functions v such that ϕ = v(0).

From this definition, the interpolation space of index θ between a space of poly-
nomials XN provided with the norm ‖ · ‖X1

and this same space provided with the
norm ‖ · ‖X0

obviously coincides with XN . The question is: Are the equivalence
constants between the interpolation norm and the norm ‖ · ‖[X1,X0]θ independent

of N? The aim of this section is to give an answer in the particular case θ = 1
2 for

specific spaces X0 and X1 and when the spaces XN are either the spaces PN (Λ) or
P0
N (Λ) introduced above.

4.1. First interpolation result. The next result relies on the fact that the in-
terpolation space of index 1

2 between H1(Λ) and L2(Λ) coincides with the space

H1/2(Λ), and that the interpolation norm is equivalent to the norm (2.8).

Notation 4.2. Let ‖ · ‖N, 12
denote the interpolation norm of index 1

2 between the

space PN (Λ) provided with the norm of H1(Λ) and this same space provided with
the norm of L2(Λ).

Theorem 4.3. There exist two positive constants c and c′ such that, for any non-
negative integer N and for any polynomial ϕN in PN (Λ), the following inequalities
hold:

(4.2) c ‖ϕN‖
H

1
2 (Λ)

≤ ‖ϕN‖N, 12
≤ c′ ‖ϕN‖

H
1
2 (Λ)

.
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Proof. We establish successively the two inequalities.
1) Since the imbeddings of PN (Λ) endowed with the H1(Λ)–norm into H1(Λ)

and of PN (Λ) endowed with the L2(Λ)–norm into L2(Λ) both have norm 1, the first
inequality is a direct consequence of the principal theorem of interpolation; see [14,
Chap. 1, Th. 5.1] (and also [2, Thm 7.17] for a more precise version).

2) Using the Definition 4.1 with θ = 1
2 , X0 = PN (Λ) with L2(Λ)-norm and

X1 = PN (Λ) with H1(Λ)-norm, we find that

‖ϕN‖N, 12
≤ inf

vN ∈ PN (Θ)
vN (·,0)=ϕN on Λ

‖vN‖H1(Θ),

whence in particular

‖ϕN‖N, 12
≤ ‖LΘϕN‖H1(Θ).

Thus, the second inequality follows from Theorem 2.7; see (2.22). �

Remark 4.4. The previous lines yield that, when the interpolation norm is used on
H1/2(Λ) instead of the intrinsic norm (2.8), the first inequality in (4.2) holds with
the constant c equal to 1.

4.2. Second interpolation result. Similarly, the interpolation space of index 1
2

between H1
0 (Λ) and L2(Λ) coincides with the space H

1/2
00 (Λ) (see [14, Chap. 1, Th.

11.7] for instance).

Notation 4.5. Let ‖ · ‖0
N, 12

denote the interpolation norm of index 1
2 between the

space P0
N (Λ) provided with the norm of H1

0 (Λ) and this same space provided with
the norm of L2(Λ).

Theorem 4.6. There exist two positive constants c and c′ such that, for any integer
N ≥ 2 and for any polynomial ϕN in P0

N (Λ), the following inequalities hold:

(4.3) c ‖ϕN‖
H

1
2
00(Λ)

≤ ‖ϕN‖0N, 12
≤ c′ ‖ϕN‖

H
1
2
00(Λ)

.

Proof. The first inequality is proved in the same way as before for Theorem 4.3.
Concerning the second inequality, we now find that

‖ϕN‖0N, 12
≤ inf

vN ∈ P
�
N (Θ)

vN (·,0)=ϕN on Λ

‖vN‖H1(Θ),

from which we deduce that

‖ϕN‖0N, 12
≤ ‖L 0

Θ
ϕN‖H1(Θ).

Thus, the desired inequality follows from Theorem 3.8. �

The results of Theorems 4.3 and 4.6 extend to much more general situations; see
[8, §II.4]. However the application that we present in Section 5 only requires these
results.

5. Evaluation of fractional-order norms of polynomials

The aim of this section is to evaluate the H1/2(Λ)–norm of polynomials in PN (Λ)

and the H
1/2
00 (Λ)–norm of polynomials in P0

N (Λ) by means of discrete (generalized
Fourier) coefficients on suitable polynomial eigenvector bases. The next statements
are extensions of the results first presented in [11].
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5.1. Constructive evaluation of H1/2(Λ)-norms of polynomials. For each
fixed integer N ≥ 0, we consider the sequence of discrete Neumann eigenpairs
(λN,j ,ΦN,j), 0 ≤ j ≤ N , where the eigenvalues are given in increasing order:

λN,0 < λN,1 < · · · < λN,N

and, for 0 ≤ j ≤ N , the eigenvector ΦN,j belongs to PN (Λ) and satisfies

(5.1) ∀ϕN ∈ PN (Λ),

∫ 1

−1

Φ′
N,j(X)ϕ

′
N (X) dX = λN,j

∫ 1

−1

ΦN,j(X)ϕN (X) dX.

Obviously both these eigenvalues and the corresponding eigenvectors depend upon
the polynomial degree N , whence the index N .

We also assume that all these eigenvectors have been normalized to have a unit
L2(Λ)–norm,

(5.2) ‖ΦN,j‖L2(Λ) = 1.

Note that the smallest Neumann eigenvalue λN,0 is equal to 0 independently of N ,
and that the corresponding eigenvector ΦN,0 is a constant equal to 1√

2
.

Notation 5.1. For any integrable function χ on Λ, the quantity SN, 12
(χ) is defined

by

(5.3) SN, 12
(χ) =

N∑
j=0

|χj
N |2

(
1 + λN,j

) 1
2 , with χj

N =

∫ 1

−1

χ(X) ΦN,j(X) dX.

Proposition 5.2. There exist positive constants C and C ′, independent of the
polynomial degree N , such that the following estimates hold for every polynomial
χN in PN (Λ):

(5.4) C ‖χN‖2
H

1
2 (Λ)

≤ SN, 12
(χN ) ≤ C ′ ‖χN‖2

H
1
2 (Λ)

.

Proof. Each polynomial χN in PN (Λ) admits the expansion

χN =
N∑
j=0

χj
N ΦN,j ,

for the χj
N introduced in (5.3). Since the basis {ΦN,j}0≤j≤N is orthonormal in

L2(Λ) and orthogonal in H1(Λ) with norms ‖ΦN,j‖H1(Λ) = (1 + λN,j)
1/2, we find

that the mapping χN 
→ (χj
N )0≤j≤N is an isometry

(i) from PN (Λ) provided with the norm ‖ · ‖L2(Λ) onto RN+1 provided with the
Euclidean norm

‖(χj
N )‖

0
=

( N∑
j=0

|χj
N |2

) 1
2

,

(ii) from PN (Λ) provided with the norm ‖ · ‖H1(Λ) onto RN+1 provided with the
norm

‖(χj
N )‖

1
=

( N∑
j=0

|χj
N |2

(
1 + λN,j

)) 1
2

.

So the desired result follows from an interpolation argument, combined with The-
orem 4.3. �
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5.2. Constructive evaluation of H
1/2
00 (Λ)-norms of polynomials. For each

fixed integer N ≥ 2, we consider the discrete Dirichlet eigenpairs (µN,j ,
ΨN,j), 1 ≤ i ≤ N − 1, with eigenvalues

µN,1 < µN,2 < · · · < µN,N−1

and eigenvectors ΨN,j in P0
N (Λ) solutions of

(5.5) ∀ψN ∈ P0
N (Λ),

∫ 1

−1

Ψ′
N,j(X)ψ

′
N (X) dX = µN,j

∫ 1

−1

ΨN,j(X)ψN (X) dX.

There also, these eigenvalues and eigenvectors depend upon the polynomial degree
N . We still assume that all these eigenvectors have been normalized to have a unit
L2(Λ)–norm,

(5.6) ‖ΨN,j‖L2(Λ) = 1.

Notation 5.3. For any integrable function χ on Λ, the quantity S0
N, 12

(χ) is defined

by

(5.7) S0
N, 12

(χ) =

N−1∑
j=1

|χj
N |2

(
1 + µN,j

) 1
2 , with χj

N =

∫ 1

−1

χ(X)ΨN,j(X) dX.

We omit the proof of the next statement since it is exactly the same as for
Proposition 5.2 when using Theorem 4.6 instead of Theorem 4.3.

Proposition 5.4. There exist two positive constants C and C ′, independent of the
polynomial degree N , such that the following estimates hold for every polynomial
χN in P0

N (Λ):

(5.8) C ‖χN‖2
H

1
2
00(Λ)

≤ S0
N, 12

(χN ) ≤ C ′ ‖χN‖2
H

1
2
00(Λ)

.

Remark 5.5. Let us consider the bilinear form

a(χN , ξN ) =

N−1∑
j=1

χj
NξjN

(
1 + µN,j

) 1
2 ,

with χj
N =

∫ 1

−1

χN (X)ΨN,j(X) dX, ξjN =

∫ 1

−1

ξN (X)ΨN,j(X) dX.

Proposition 5.4 yields that it is continuous and elliptic on the space P0
N (Λ) equipped

with the norm ‖ · ‖
H

1
2
00(Λ)

, with norm and ellipticity constant independent of N . So,

among other applications, this form could be an efficient tool for the extension to
spectral elements of the domain decomposition algorithm recently proposed in [6].

6. Numerical illustrations

We use the results of Section 5 first to evaluate the H1/2(Λ)-norms of some poly-
nomials, second to evaluate the norms of some projection operators onto polynomial
spaces as endomorphisms of H1/2(Λ).
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Figure 5. Evaluation of the H1/2(Λ)-norm of Ln

6.1. Evaluation of norms of polynomials. Let (Ln)n denote the family of
Legendre polynomials: Each Ln has degree n, is orthogonal to the other ones
in L2(Λ) and satisfies Ln(1) = 1. It is well known that

(6.1) ‖Ln‖L2(Λ) =

√
2

2n+ 1
,

and also (see [10, §1 and eq. (5.3)])

(6.2) ‖L′
n‖L2(Λ) =

√
n(n+ 1).

Thus the family of Legendre polynomials satisfies the following inverse inequality:

(6.3) ‖L′
n‖L2(Λ) ≤

√
3n

3
2 ‖Ln‖L2(Λ).

This is sharper than the general and optimal estimate (see [10, Chap. I, Th. 5.2]
for instance): for any integer N ≥ 0,

(6.4) ∀ϕN ∈ PN (Λ), ‖ϕ′
N‖L2(Λ) ≤

√
3N2‖ϕN‖L2(Λ).

All this naturally leads to the question of the behavior of the H1/2(Λ)-norm of Ln.
Indeed, it is possible to evaluate the H1/2(Λ)-norm of Ln analytically by us-

ing the explicit definition (2.8) of the norm; we refer to [1] for this very tedious
computation that provides the estimates for all n ≥ 2,

(6.5) c
√
log n ≤ ‖Ln‖

H
1
2 (Λ)

≤ c′
√
log n,

with constants c and c′ independent of n. We first evaluate numerically these con-
stants. For this, we use formula (2.8) and compute exactly the double integral
which appears in it via appropriate quadrature formulas (exact numerical integra-
tion is possible since the integrand is a polynomial with two variables and diagonal
values for X = X

′ are equal to the square of the derivative).
Figure 5 presents the quantity ‖Ln‖2

H
1
2 (Λ)

/ log n as a function of n, for n varying

from 2 to 40 (left part) and from 2 to 4000 (right part). From this, it appears that
c can be taken equal to 2 and c′ to 3.11, with a common limit close to 2 when n
tends to +∞.
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Figure 6. Comparison of the H1/2(Λ)-norm of Ln and of its con-
structive evaluation

From (6.5) and (6.1)–(6.2), the following inequalities can be observed:

‖Ln‖H1(Λ) ≤ c n (log n)−
1
2 ‖Ln‖

H
1
2 (Λ)

,

‖Ln‖
H

1
2 (Λ)

≤ c′ (n log n)
1
2 ‖Ln‖L2(Λ).

So, the norm of Ln in Hs(Λ), 0 ≤ s ≤ 1, is not evenly distributed as a function of

s: It does not behave like n− 1
2+

3
2 s, as could be derived from the upper bound

‖Ln‖Hs(Λ) ≤ c ‖Ln‖1−s
L2(Λ)‖Ln‖sH1(Λ).

In a next step we compare the H1/2(Λ)-norm of the Ln with their discrete
evaluation as given in Proposition 5.2. Figure 6 presents the ratio

(6.6) AN,n =
SN, 12

(Ln)

‖Ln‖2
H

1
2 (Λ)

(see Notation 5.1), for even degrees n, 2 ≤ n ≤ N , and for N = 20, 40, 60, 80, 100
(left part), for N = 500 and 1000 (right part). Note that problem (5.1) is solved
by using the Matlab routine eig.m for computing eigenpairs.

Figure 6 is in good coherence with the results of Proposition 5.1, which states
that

C ≤ AN,n ≤ C ′.

The numerical evidence is that C can be taken equal to 0.15 and C ′ to 0.3.

Remark 6.1. We also observe that, for a fixed n, AN,n tends to a limit A∞,n when
N tends to +∞, and more precisely that

|AN,n −A∞,n|
A∞,n

< 10−2,

when n ≤ N
2 , which is useful to have an accurate evaluation of ‖Ln‖

H
1
2 (Λ)

.

Remark 6.2. The computation cost to evaluate the H1/2(Λ)-norm of a polynomial
with degree ≤ N

2 either by formula (2.8) or by means of SN, 12
is nearly the same.

However, when the norms of a large number of polynomials must be evaluated,
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using the discrete quantity SN, 12
is much more efficient. Indeed, solving problem

(5.1) requires a constant times N3 operations but, once it is done, the quantities
SN, 12

(ϕ) for any ϕ in PN (Λ) can be computed with a lower complexity.

6.2. Evaluation of norms of projection operators. The numerical evaluation
of the H1/2(Λ)-norms allows us to answer another interesting question that re-
mained unsolved (at least to our knowledge): It concerns the operator-norm of the
L2(Λ)-projection operator πN over the set PN (Λ) in various norms. By definition,
denoting by ‖ · ‖L(E) the norm of the endomorphisms of any Hilbert space E, we
know that

(6.7) ‖πN‖L(L2(Λ)) = 1.

We refer to [10, §II.1] for the following optimal result:

(6.8) ‖πN‖L(H1(Λ)) ≤ C
√
N,

from which we derive, by interpolation, the upper bound

(6.9) ‖πN‖
L(H

1
2 (Λ))

≤ C N
1
4 .

By no means does the above equality in the H1(Λ)-norm imply that this inequality
for the H1/2(Λ)-norm is optimal.

Remark 6.3. In order to illustrate the optimality of (6.8), we have solved the eigen-
value problem, for N+ = 2N : Find χ in PN+

(Λ)/R and ρ in R such that

∀ϕ ∈ PN+
(Λ)/R,

∫ 1

−1

(πN−1χ)
′(X) (πN−1ϕ)

′(X) dX = ρ

∫ 1

−1

χ′(X)ϕ′(X) dX.

Among the 2N eigenvalues ρ, N−1 are obviously equal to 1 and N −1 are equal to
0. But the last two eigenvalues behave like N . Note also that the last eigenpair for
πN−1 coincides with the penultimate eigenpair for πN . We observe numerically the
following asymptotics for these eigenvalues (independently of the choice of N+ ≥
N + 2):

N

4
+

5

8
+

3

16N
− 3

32N2
. . . ,

N

4
+

3

8
+

3

16N
+

3

32N2
. . . .

This of course corroborates the optimality of (6.8), since we have evaluated the
quantity

‖πN‖2L(H1(Λ)/R) = max
ϕ∈H1(Λ)/R

∫ 1

−1
|(πN−1ϕ)

′(X)|2 dX∫ 1

−1
|ϕ′(X)|2 dX

by means of

max
ϕ∈PN+

(Λ)/R

∫ 1

−1
|(πN−1ϕ)

′(X)|2, dX∫ 1

−1
|ϕ′(X)|2 dX

,

which is equal to the maximal eigenvalue ρ.

In order to evaluate ‖πN‖
L(H

1
2 (Λ))

, we again take N+ equal to 2N and compute

the quantity

(6.10) BN = max
ϕ∈PN+

(Λ)

SN++, 12
(πNϕ)

SN++, 12
(ϕ)

;
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Figure 7. Evaluation of the H1/2(Λ) operator-norm of πN

(see Notation 5.1) for different choices of N++ ≥ N+. Indeed, the numerical evalu-
ation of the H1/2(Λ)-norms is based on N++ eigenpairs and, according to Remark
6.1, it seems appropriate to choose N++ larger than twice the maximal degree N+

of the involved polynomials.
Figure 7 presents BN as a function of N running through all multiples of 12, first

for N++ = N+ and N between 12 and 996, second for N++ = 2N+ and N between
12 and 720. It can be observed that the values of BN are nearly independent of the
choice of N++ ≥ N+, in contrast with our first protective statement; that is why
we stop the (extremely time-consuming) computation at N = 720 for N++ = 2N+.

In view of the previous computation, we compare the square of the norm of πN

with some power of N or of logN . Figure 8 presents as functions of N the divided
differences

(6.11)
logBN+12 − logBN

log(N + 12)− logN
(left part)

and
logBN+12 − logBN

log
(
log(N + 12)

)
− log

(
logN

) (right part),

for the same values of N as in Figure 7.
We thus observe that the quantity ‖πN‖

L(H
1
2 (Λ))

satisfies, for all values of N ,

(6.12) C (logN)1.4 ≤ ‖πN‖2
L(H

1
2 (Λ))

≤ C ′N0.2.

So the lack of stability of the operator πN in the H1/2(Λ) operator-norm is clearly
weaker than what could be deduced from (6.9). Moreover, an extrapolation of the
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Figure 9. The largest three eigenvalues in problem (6.13)

previous numerical results (the left curves of Figure 8 apparently tend to zero and
the right curves to 2) leads us to propose the following

Conjecture. C logN ≤ ‖πN‖
L(H

1
2 (Λ))

≤ C ′ logN .

Remark 6.4. In analogy with Remark 6.3 and again with N+ = 2N , we have solved
the following eigenvalue problem: Find χ in PN+

(Λ) and ρ in R such that

(6.13) ∀ϕ ∈ PN+
(Λ), b(πNχ, πNϕ) = ρ b(χ, ϕ),
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for the scalar product b(·, ·) defined by

(6.14) b(ψ, ξ) =

N++∑
j=0

ψjξj
(
1 + λN++,j

) 1
2 ,

with ψj =

∫ 1

−1

ψ(X) ΦN++,j(X) dX, ξj =

∫ 1

−1

ξ(X) ΦN++,j(X) dX.

Figure 9 presents the largest three eigenvalues ρ as functions of N. We observe that
the difference between the largest two eigenvalues goes decreasing and that the
third eigenvalue is close to 1 but slightly increasing with N , which suggests that
the situation is more complex than for the L2(Λ)- and H1(Λ)-norms.

References

[1] Y. Achdou, Y. Maday, O.B. Widlund, Iterative substructuring preconditioners for mortar
element methods in two dimensions, SIAM J. Numer. Anal. 36 (1999), 551–580. MR1675257

(99m:65233)
[2] R.A. Adams, Sobolev Spaces, Academic Press (1975). MR0450957 (56:9247)
[3] M. Ainsworth, L. Demkowicz, Explicit polynomial preserving trace liftings on a triangle,

Math. Nachr. 282 (2009), 640–658.
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[16] R. Muñoz-Sola, Polynomial liftings on a tetrahedron and application to the h-p version of
the finite element method in three dimensions, SIAM J. Numer. Anal. 34 (1997), 282–314.
MR1445738 (98k:65069)

[17] L.F. Pavarino, O.B. Widlund, A polylogarithmic bound for an iterative substructuring
method for spectral elements in three dimensions, SIAM J. Numer. Anal. 33 (1996), 1303–
1335. MR1403547 (97h:65151)

[18] A. Quarteroni, A. Valli, Domain Decomposition Methods for Partial Differential Equa-
tions, Numerical Mathematics and Scientific Computation, Oxford University Press (1999).
MR1857663 (2002i:65002)

http://www.ams.org/mathscinet-getitem?mr=1675257
http://www.ams.org/mathscinet-getitem?mr=1675257
http://www.ams.org/mathscinet-getitem?mr=0450957
http://www.ams.org/mathscinet-getitem?mr=0450957
http://www.ams.org/mathscinet-getitem?mr=896241
http://www.ams.org/mathscinet-getitem?mr=896241
http://www.ams.org/mathscinet-getitem?mr=1286532
http://www.ams.org/mathscinet-getitem?mr=1286532
http://www.ams.org/mathscinet-getitem?mr=1179731
http://www.ams.org/mathscinet-getitem?mr=1179731
http://www.ams.org/mathscinet-getitem?mr=1076961
http://www.ams.org/mathscinet-getitem?mr=1076961
http://www.ams.org/mathscinet-getitem?mr=1208043
http://www.ams.org/mathscinet-getitem?mr=1208043
http://www.ams.org/mathscinet-getitem?mr=923923
http://www.ams.org/mathscinet-getitem?mr=923923
http://www.ams.org/mathscinet-getitem?mr=2429871
http://www.ams.org/mathscinet-getitem?mr=946376
http://www.ams.org/mathscinet-getitem?mr=946376
http://www.ams.org/mathscinet-getitem?mr=0247243
http://www.ams.org/mathscinet-getitem?mr=0247243
http://www.ams.org/mathscinet-getitem?mr=1055459
http://www.ams.org/mathscinet-getitem?mr=1055459
http://www.ams.org/mathscinet-getitem?mr=1445738
http://www.ams.org/mathscinet-getitem?mr=1445738
http://www.ams.org/mathscinet-getitem?mr=1403547
http://www.ams.org/mathscinet-getitem?mr=1403547
http://www.ams.org/mathscinet-getitem?mr=1857663
http://www.ams.org/mathscinet-getitem?mr=1857663


THE LIFTING OF POLYNOMIAL TRACES REVISITED 69

[19] A. Toselli, O. Widlund, Domain Decomposition Methods – Algorithms and Theory,
Springer Series in Computational Mathematics 34, Springer-Verlag (2005). MR2104179
(2005g:65006)

[20] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland
(1978). MR503903 (80i:46032b)

Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie,
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