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THE MINKOWSKI QUESTION MARK FUNCTION:

EXPLICIT SERIES FOR THE DYADIC PERIOD FUNCTION

AND MOMENTS

GIEDRIUS ALKAUSKAS

Abstract. Previously, several natural integral transforms of the Minkowski
question mark function F (x) were introduced by the author. Each of them
is uniquely characterized by certain regularity conditions and the functional
equation, thus encoding intrinsic information about F (x). One of them, the
dyadic period function G(z), was defined as a Stieltjes transform. In this paper
we introduce a family of “distributions” Fp(x) for �p ≥ 1, such that F1(x) is
the question mark function and F2(x) is a discrete distribution with support
on x = 1. We prove that the generating function of moments of Fp(x) satisfies
the three-term functional equation. This has an independent interest, though
our main concern is the information it provides about F (x). This approach
yields the following main result: we prove that the dyadic period function is a
sum of infinite series of rational functions with rational coefficients.

1. Introduction and main result

The aim of this paper is to continue investigations on the moments of the
Minkowski ?(x) function, begun in [1], [2] and [3]. The function ?(x) (“the question
mark function”) was introduced by Minkowski as an example of a continuous func-
tion F : [0,∞) → [0, 1), which maps rationals to dyadic rationals, and quadratic
irrationals to nondyadic rationals. For a nonnegative real x it is defined by the
expression

F ([a0, a1, a2, a3, ...]) = 1− 2−a0 + 2−(a0+a1) − 2−(a0+a1+a2) + ...,(1)

where x = [a0, a1, a2, a3, ...] stands for the representation of x by a (regular) con-
tinued fraction [15]. By tradition, this function is more often investigated in the
interval [0, 1]. Accordingly, we make a convention that ?(x) = 2F (x) for x ∈ [0, 1].
For rational x, the series terminates at the last nonzero partial quotient an of the
continued fraction. This function is continuous, monotone and singular [9]. A
by far not complete overview of the papers written about the Minkowski ques-
tion mark function or closely related topics (Farey tree, enumeration of rationals,
Stern’s diatomic sequence, various 1-dimensional generalizations and generaliza-
tions to higher dimensions, statistics of denominators and Farey intervals, Haus-
dorff dimension and analytic properties) can be found in [1]. These works include
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[5], [6], [8], [9], [10], [12], [13] (this is the only paper where the moments of a certain
singular distribution, a close relative of F (x), were considered), [11], [14], [16], [18],
[20], [24], [25], [26], [27], [28], [29], [30], [31], [33]. The internet page [36] contains an
up-to-date and exhaustive bibliographical list of papers related to the Minkowski
question mark function.

Recently, Calkin and Wilf [8] defined a binary tree which is generated by the
iteration

a

b
�→ a

a+ b
,

a+ b

b
,

starting from the root 1
1 . The last two authors have greatly publicized this tree,

but it was known long ago to physicists and mathematicians (alias, Stern-Brocot or
Farey tree). Elementary considerations show that this tree contains every positive
rational number once and only once, each being represented in lowest terms. The
first four iterations lead to
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(2)

It is of utmost importance to note that the nth generation consists of exactly
those 2n−1 positive rational numbers, whose elements of the continued fraction sum
up to n. This fact can be easily inherited directly from the definition. First, if the
rational number a

b is represented as a continued fraction [a0, a1, ..., ar], then the

map a
b → a+b

b maps a
b to [a0 + 1, a1..., ar]. Second, the map a

b → a
a+b maps a

b

to [0, a1 + 1, ..., ar] in case a
b < 1, and to [0, 1, a0, a1, ..., ar] in case a

b > 1. This
is an important fact which makes the investigations of rational numbers according
to their position in the Calkin-Wilf tree highly motivated from the perspective of
metric number theory and the dynamics of continued fractions.

It is well known that each generation of (2) possesses a distribution function
Fn(x), and Fn(x) converges uniformly to F (x). The function F (x) as a distribu-
tion function (in the sense of probability theory, which imposes the condition of
monotonicity) is uniquely determined by the functional equation [1]

2F (x) =

{
F (x− 1) + 1 if x ≥ 1,

F ( x
1−x ) if 0 ≤ x < 1.

(3)

This implies F (x)+F (1/x) = 1. The mean value of F (x) has been investigated by
several authors, and was proved to be 3/2.

Lastly, and most importantly, let us point out that, surprisingly, there are strik-
ing similarities and parallels between the results proved in [1] and [2] with Lewis-
Zagier’s ([22], [23]) results on period functions for Maass wave forms. (See [2] for
the explanation of this phenomena.)
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Just before formulating the main theorem of this paper, we provide a short
summary of previous results proved by the author about certain natural integral
transforms of F (x). Let

ML =

∫ ∞

0

xL dF (x), mL =

∫ ∞

0

( x

x+ 1

)L

dF (x) = 2

∫ 1

0

xL dF (x).

Both sequences are of definite number-theoretical significance because

ML = lim
n→∞

21−n
∑

a0+a1+...+as=n

[a0, a1, .., as]
L, mL = lim

n→∞
22−n

∑
a1+...+as=n

[0, a1, .., as]
L,

(the summation takes place over rational numbers represented as continued frac-
tions; thus, a0 ≥ 0, ai ≥ 1 and as ≥ 2). We define the exponential generating
functions

M(t) =
∞∑

L=0

ML

L!
tL =

∫ ∞

0

ext dF (x),

m(t) =

∞∑
L=0

mL

L!
tL =

∫ ∞

0

exp
( xt

x+ 1

)
dF (x) = 2

∫ 1

0

ext dF (x).

One directly verifies that m(t) is an entire function, and that M(t) is a meromorphic
function with simple poles at z = log 2 + 2πin, n ∈ Z. Further, we have

M(t) =
m(t)

2− et
, m(t) = etm(−t).

The second identity represents only the symmetry property, given by F (x)+F (1/x)
= 1. The main result about m(t) is that it is uniquely determined by the regularity

condition m(−t) � e−
√
log 2

√
t, as t → ∞, the boundary condition m(0) = 1, and

the integral equation

m(−s) = (2es − 1)

∫ ∞

0

m
′(−t)J0(2

√
st) dt, s ∈ R+.(4)

(Here J0(�) stands for the Bessel function J0(z) =
1
π

∫ π

0
cos(z sin x) dx.)

Our primary object of investigation is the generating function of moments. Let
G(z) =

∑∞
L=1 mLz

L−1. This series converges for |z| ≤ 1, and the functional equa-
tion for G(z) (see below) implies that all the derivatives of G(z) exist at z = 1 if
we approach this point while remaining in the domain 	z ≤ 1. Then the integral

G(z) =

∫ ∞

0

1

x+ 1− z
dF (x) = 2

∫ 1

0

x

1− xz
dF (x)(5)

(which is a Stieltjes transform of F (x)) extendsG(z) to the cut plane C\(1,∞). The
generating function of moments ML does not exist due to the factorial growth of
ML, but this generating function can still be defined in the cut plane C′ = C\(0,∞)
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by
∫∞
0

x
1−xz dF (x). In fact, this integral just equals G(z + 1). Thus, there exist all

higher derivatives of G(z) at z = 1, and 1
(L−1)!

dL−1

dzL−1G(z)
∣∣
z=1

= ML, L ≥ 1. The

following result was proved in [1].

Theorem 1.1. The function G(z), defined initially as a power series, has an an-
alytic continuation to the cut plane C \ (1,∞) via (5). It satisfies the functional
equation

1

z
+

1

z2
G
(1
z

)
+ 2G(z + 1) = G(z),(6)

and also the symmetry property

G(z + 1) = − 1

z2
G
(1
z
+ 1

)
− 1

z

(which is a consequence of the main functional equation). Moreover, G(z) → 0 if
z → ∞ and the distance from z to a half-line [0,∞) tends to infinity. Conversely,
the function having these properties is unique.

Accordingly, this result and the specific appearance of the three-term functional
equation justifies the name for G(z) as the dyadic period function.

We wish to emphasize that the main motivation for previous research was clari-
fication of the nature and structure of the moments mL. It was greatly desirable to
give these constants (emerging as if from geometric chaos) some expression other
than the one obtained directly from the Farey (or Calkin-Wilf) tree, which could
reveal their structure to a greater extent. This is accomplished in the current work.
Thus, the main result can be formulated as follows.

Theorem 1.2. There exist canonical and explicit sequence of rational functions
Hn(z), such that for {|z| ≤ 3

4} ∪ {|z + 9
7 | ≤

12
7 } one has an absolutely convergent

series

G(z) =

∫ ∞

0

1

x+ 1− z
dF (x) =

∞∑
n=0

(−1)nHn(z), Hn(z) =
Bn(z)

(z − 2)n+1
,

where Bn(z) is polynomial with rational coefficients of degree n − 1. For n ≥ 1 it
has the following reciprocity property:

Bn(z + 1) = (−1)nzn−1Bn

(1
z
+ 1

)
, Bn(0) = 0.

The rational functions Hn(z) are defined via implicit and rather complicated
recurrence (27) (see Section 6). The following table gives the initial polynomials
Bn(z).
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n Bn(z)

0 −1

1 0

2 −1

6
z

3
1

9
z2 − 2

9
z

4 − 2

27
z3 +

53

270
z2 − 53

270
z

5
4

81
z4 − 104

675
z3 +

112

675
z2 − 224

2025
z

6 − 8

243
z5 +

47029

425250
z4 − 1384

14175
z3 − 787

30375
z2 +

787

60750
z

7
16

729
z6 − 1628392

22325625
z5 +

272869

22325625
z4 +

5392444

22325625
z3 − 238901

637875
z2 +

477802

3189375
z

Remark. The constant 3
4 can be replaced by any constant less than 1.29−1 (the

latter comes exactly from Lemma A.3). Unfortunately, our method does not allow
to prove an absolute convergence in the disk |z| ≤ 1. In fact, apparently the true
region of convergence of the series in question is the half-plane 	z ≤ 1. Take, for
example, z0 = 2

3 + 4i. Then by (6) and the symmetry property one has

G(z0) =
1

2
G(z0 − 1)− 1

2(z0 − 1)2
G
( 1

z0 − 1

)
− 1

2(z0 − 1)

= − 1

2(z0 − 2)2
G
(z0 − 1

z0 − 2

)
− 1

2(z0 − 1)2
G
( 1

z0 − 1

)
− 1

2(z0 − 2)
− 1

2(z0 − 1)
.

Both arguments under G on the right belong to the unit circle, and thus we can use
the Taylor series for G(z). Using numerical values of mL, obtained via the method
described in Appendix A.2., we obtain: G(z0) = 0.078083+ + 0.205424+i, with all
digits exact. On the other hand, the series in Theorem 1.2 for n = 60 gives

60∑
n=0

(−1)nHn(z0) = 0.078090+ + 0.205427+i.

Finally, based on the last integral in (5), we can calculate G(z) as a Stieltjes in-
tegral. If we divide the unit interval into N = 3560 equal subintervals, and use
the Riemann-Stieltjes sum, we get an approximate value G(z0) ≈ 0.078082+ +
0.205424+i. All evaluations match very well.

Experimental Observation 1.3. We conjecture that the series in Theorem 1.2
converges absolutely for 	z ≤ 1.

With a slight abuse of notation, we will henceforth write f (L−1)(z0) instead of
dL−1

dzL−1 f(z)
∣∣
z=z0

.
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Corollary 1.4. The moments mL can be expressed by the convergent series of
rational numbers:

mL = lim
n→∞

22−n
∑

a1+a2+...+as=n

[0, a1, a2, ..., as]
L =

1

(L− 1)!

∞∑
n=0

(−1)nH(L−1)
n (0).

The speed of convergence is given by the following estimate:
∣∣∣H(L−1)

n (0)
∣∣∣ � 1

nM ,

for every M ∈ N. The implied constant depends only on L and M .

Thus, m2 =
∑∞

n=0(−1)nH′
n(0) = 0.2909264764+. Regarding the speed, numeri-

cal calculations show that in fact the convergence is geometric. Theorem 1.2 in the
case z = 1 gives

M1 = G(1) = 1 + 0 +

∞∑
n=0

1

6

(2
3

)n

=
3

2
,

which we already know (see Corollary 4.5; the above is a Taylor series for M1( p)
in powers of p − 2, specialized at p0 = 1). Geometric convergence would be
the consequence of the fact that analytic functions mL( p) extend beyond p = 1
(see below). This is supported by the phenomena represented as Experimental
Observation 1.5. Meanwhile, we are able to prove only the given rate. If we were
allowed to use the point z = 1, Theorem 1.2 would give a convergent series for the
moments ML as well. This is exactly the same as the series in Corollary 1.4; only
one needs to use a point z = 1 instead of z = 0.

Experimental Observation 1.5. For L ≥ 1, the series

ML( p) =
1

(L− 1)!
·

∞∑
n=0

( p− 2)nH(L−1)
n (1), ML(1) = ML,

has exactly 2− 1
L√2

as a radius of convergence.

To this account, Proposition 4.3 endorses this phenomenon, which is highly sup-
ported by numerical calculations, and which does hold for L = 1.

The following three tables give starting values for the sequence H′
n(0).

n H′
n(0) n H′

n(0)

0
1

4
5 − 7

2 · 34 · 52

1 0 6 − 787

28 · 35 · 53

2
1

48
7

238901

27 · 36 · 54 · 7

3 − 1

72
8 − 181993843

210 · 37 · 55 · 72

4
53

8640
9

12965510861

26 · 38 · 56 · 73 · 17
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n H′
n(0)

10 − 8026531718888633

212 · 39 · 57 · 74 · 11 · 172

11
797209536976557079423

211 · 310 · 58 · 75 · 112 · 173 · 31

12
4198988799919158293319845971

214 · 311 · 59 · 76 · 113 · 13 · 174 · 312

13 −12702956822417247965298252330349561

210 · 312 · 510 · 77 · 114 · 132 · 175 · 313

14
7226191636013675292833514548603516395499899

216 · 313 · 511 · 78 · 115 · 133 · 176 · 314

n H′
n(0)

15 −129337183009042141853748450730581369733226857443915617

215 · 314 · 512 · 79 · 116 · 134 · 177 · 315 · 43 · 127

16
31258186275777197041073243752715109842753785598306812028984213251

218 · 315 · 513 · 710 · 117 · 135 · 178 · 316 · 432 · 1272

17 −3282520501229639755997762022707321704397776888948469860959830459774414444483

212 · 316 · 514 · 711 · 118 · 136 · 179 · 317 · 433 · 1273 · 257

The float values of the last three rational numbers are −0.000025804822076,
0.000018040274062 and −0.000010917558446, respectively. The alternating sum of

the elements in the table is
∑N

n=0(−1)nH′
n(0) = 0.2909255862+ (where N = 17),

whereas N = 40 gives 0.2909264880+, and N = 50 gives 0.2909264784+. Note that
the manifestation of Fermat and Mersenne primes in the denominators at an early
stage is not accidental, minding the exact value of the determinant in Lemma 6.1,
Chapter 6 (see below). Moreover, the prime powers of every odd prime that divides
the denominator increase each time by 1 while passing from H′

n(0) to H′
n+1(0).

The pattern for the powers of 2 is more complicated. More thorough research of
the linear map in Lemma 6.1 can thus clarify prime decomposition of denominators;
numerators remains much more complicated.

As will be apparent later, the result in Theorem 1.2 is derived from the knowledge
of p-derivatives of G( p, z) at p = 2 (see below). On the other hand, since there
are two points ( p = 2 and p = 0) such that all higher p-derivatives of G( p, z) are
rational functions in z, it is not completely surprising that the approach through
p = 0 also gives convergent series for the moments, though in this case we are
forced to use Borel summation. At this point, the author does not have a strict
mathematical proof of this result (since the function G( p, z) is meanwhile defined
only for 	 p ≥ 1), though numerical calculations provide overwhelming evidence for
its validity.
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Experimental Observation 1.6. Define the rational functions (with rational
coefficients) Qn(z), n ≥ 0, by

Q0(z) = − 1

2z
, and recurrently by

Qn(z) =
1

2

n−1∑
j=0

1

j!
· ∂j

∂zj
Qn−j−1(−1) ·

(
zj − 1

zj+2

)
.

Then

mL = lim
n→∞

22−n
∑

a1+a2+...+as=n

[0, a1, a2, ..., as]
L(7)

=
1

(L− 1)!

∞∑
r=0

( ∞∑
n=0

Q
(L−1)
n (−1)

n!
·
∫ r+1

r

tne−t dt
)
.

Moreover,

Qn(z) =
(z + 1)(z − 1)Dn(z)

zn+1
, n ≥ 1,

where Dn(z) are polynomials with rational coefficients (Qp integers for p �= 2) of
degree 2n− 2 with the reciprocity property

Dn(z) = z2n−2Dn

(1
z

)
.

Note the order of summation in the series formL, since the reason for introducing
exponential functions is because we use Borel summation. For example,

“1− 2 + 4− 8 + 16− 32 + ...”
Borel
=

∞∑
r=0

( ∞∑
n=0

(−2)n

n!
·
∫ r+1

r

tne−t dt
)
=

1

3
.

The following table gives initial results.

n Dn(z) n Dn(z)

1 1
4 4 1

8 (2z
6 − 3z5 + 6z4 − 3z3 + 6z2 − 3z + 2)

2 1
4 (z

2 + 1) 5 1
4 (z

8 − 2z7 + 4z6 − 7z5 + 4z4 − 7z3 + 4z2 − 2z + 1)

3 1
4 (z

4 − z3 + z2 6 1
8 (2z

10 − 5z9 + 12z8 − 20z7 + 37z6

− z + 1) −20z5 + 37z4 − 20z3 + 12z2 − 5z + 2)

The next table givesQ′
n(−1) = 2(−1)nDn(−1) explicitly: these constants appear

in the series defining the first nontrivial moment m2. Also, since these numbers are
p-adic integers for p �= 2, there is a hope for the successful implementation of the
idea from the last chapter in [2]; that is, possibly one can define moments mL as
p-adic rationals as well.
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n Q′
n(−1) n Q′

n(−1) n Q′
n(−1) n Q′

n(−1)

0 1
2 8 1417

4 16 206836175
64 24 1685121707817

32

1 − 1
2 9 − 8431

8 17 − 339942899
32 25 − 92779913448103

512

2 1 10 50899
16 18 1125752909

32 26 80142274019997
128

3 − 5
2 11 −9751 19 − 15014220659

128 27 − 1111839248032133
512

4 25
4 12 30365 20 25188552721

64 28 7740056893342455
1024

5 −16 13 − 3069719
32 21 − 170016460947

128 29 − 13515970598654393
512

6 43 14 1227099
4 22 1153784184807

256 30 47354245650630005
512

7 − 971
8 15 − 31719165

32 23 − 983668214037
64 31 − 665632101181145115

2048

The final table in this section lists float values of the constants

ϑr =

∞∑
n=0

Q′
n(−1)

n!
·
∫ r+1

r

tne−t dt, r ∈ N0,

∞∑
r=0

ϑr = m2,

appearing in the Borel summation.

r ϑr r ϑr

0 0.2327797875 6 0.0004701146
1 0.0471561089 7 0.0004980015
2 0.0085133626 8 0.0004005270
3 0.0005892453 9 0.0002722002
4 −0.0001872357 10 0.0001607897
5 0.0002058729 11 0.0000812407

Thus,
∑11

r=0 ϑr = 0.2909400155+ = m2 + 0.000013539+.
This paper is organized as follows. In Section 2, for each p, 1 ≤ p < ∞,

we introduce a generalization of the Farey (Calkin-Wilf) tree, denoted by Q p.
This leads to the notion of p-continued fractions and p-Minkowski question mark
functions Fp(x). Though p-continued fractions are of independent interest (one
could define a transfer operator, to prove an analogue of the Gauss-Kuzmin-Lévy
theorem, various metric results and introduce structural constants), we confine
ourselves to the facts which are necessary for our purposes and leave the deeper
research for the future. In Section 3 we extend these results to the case of complex
p, | p− 2| ≤ 1. The crucial consequence of these results is the fact that a function
X( p, x) (which gives a bijection between trees Q1 and Q p) is a continuous function
in x and an analytic function in p for | p − 2| ≤ 1. In Section 4 we introduce
exactly the same integral transforms of Fp(x) as was done in a special (though most
important) case of F (x) = F1(x). Also, in this section we prove certain relations
among the moments. In Section 5 we give the proof of the three-term functional
equation for G p(z) and the integral equation for m p(t). Finally, Theorem 1.2 is
proved in Section 6. The hierarchy of sections is linear, and all results from previous
sections are used in Section 6. Appendix A contains: derivation for the series (7);
MAPLE codes to compute rational functions Hn(z) and Qn(z); description of a
high-precision method to calculate numerical values for the constants mL; auxiliary
lemmas for Section 3. The paper also contains graphs of some p-Minkowski question
mark functions Fp(x) for real p, and also pictures of locus points of elements of
trees Q p for certain characteristic values of p.
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2. p-question mark functions and p-continued fractions

In this section we introduce a family of natural generalizations of the Minkowski
question mark function F (x). Let 1 ≤ p < 2. Consider the following binary tree,
which we denote by Q p. We start from the root x = 1. Further, each element
(“root”) x of this tree generates two “offspring” by the following rule:

x �→ px

x+ 1
,

x+ 1

p
.

We will use the notation T p(x) = x+1
p , U p(x) = px

x+1 . When p is fixed, we will

sometimes discard the subscript. Thus, the first four generations lead to
(8)

1
1

p
2

���������������� 2
p

����������������

p2

p+2

						
p+2
2 p






2 p
p+2

����
p+2
p2

������

p3

p2+ p+2

				
p2+ p+2
p2+2 p

p2+2 p
3 p+2


3 p+2
2 p2

���
2 p2

3 p+2

���
3 p+2
p2+2 p

���
p2+2 p
p2+ p+2

p2+ p+2
p3

����

We refer the reader to the paper [11], where authors consider a rather similar
construction, though having a different purpose in mind (see also [6]). Denote by
Tn( p) the sequence of polynomials, appearing as numerators of fractions of this
tree. Thus, T1( p) = 1, T2( p) = p, T3( p) = 2. Directly from the definition of this
tree we inherit that

T2n( p) = pTn( p) for n ≥ 1,

T2n−1( p) = Tn−1( p) + p−εTn( p) for n ≥ 2,

where ε = ε(n) = 1 if n is a power of two, and ε = 0 otherwise. Thus, the definition
of these polynomials is almost the same as it appeared in [17] (these polynomials
were named Stern polynomials by the authors), with the distinction that in [17]
everywhere one has ε = 0. Naturally, this difference produces different sequences
of polynomials.

There are 2n−1 positive real numbers in each generation of the tree Q p, say a
(n)
k ,

1 ≤ k ≤ 2n−1. Moreover, they are all contained in the interval [ p−1, 1
p−1 ]. Indeed,

this holds for the initial root x = 1, and

p− 1 ≤ x ≤ 1

p− 1
⇔ p− 1 ≤ px

x+ 1
≤ 1,

p− 1 ≤ x ≤ 1

p− 1
⇔ 1 ≤ x+ 1

p
≤ 1

p− 1
.

This also shows that the left offspring is contained in the interval [ p − 1, 1], while
the right one is in the interval [1, 1

p−1 ]. The real numbers appearing in this tree

have an intrinsic relation with the p-continued fractions algorithm. The definition
of the latter is as follows. Let x ∈ ( p− 1, 1

p−1 ). Consider the following procedure:

R p(x) =

⎧⎨⎩
T −1(x) = px− 1, if 1 ≤ x < 1

p−1 ,

I(x) = 1
x , if p− 1 < x < 1,

STOP, if x = p− 1.
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Then each such x can be uniquely represented as a p-continued fraction

x = [a0, a1, a2, a3, ....] p,

where ai ∈ N for i ≥ 1, and a0 ∈ N ∪ {0}. This notation means that in the course
of the iterations R∞

p (x) we apply T −1(x) exactly a0 times, then I once, then we

apply T −1 exactly a1 times, then I, and so on. The procedure terminates exactly
for those x ∈ ( p − 1, 1

p−1) that are the members of the tree Q p (“ p-rationals”).

Also, direct inspection shows that if the procedure does terminate, the last entry
as ≥ 2. Thus, we have the same ambiguity for the last entry exactly as is the case
with ordinary continued fractions. At this point it is straightforward to show that
the nth generation of Q p consists of x = [a0, a1, ..., as] p such that

∑s
j=0 aj = n,

exactly as in the case p = 1 and the tree (2).
Now, consider a function X p(x) with the following property: X p(x) = x, where

x is a rational number in the Calkin-Wilf tree (2), and x is a corresponding number
in the tree (8). In other words, X p(x) is simply a bijection between these two trees.
First, if x < y, then x < y. Also, all positive rationals appear in the tree (2)
and they are everywhere dense in R+. Moreover, T and U both preserve order,
and [ p − 1, 1

p−1 ) is a disjoint union of T [ p − 1, 1
p−1 ) and U [ p − 1, 1

p−1 ). Now

it is obvious that the function X p(x) can be extended to a continuous monotone
increasing function

X p(�) : R+ → [ p− 1,
1

p− 1

)
, X p(∞) =

1

p− 1
.

Thus,

X p

(
[a0, a1, a2, a3...]

)
= [a0, a1, a2, a3...] p.

As can be seen from the definitions of both trees (2) and (8), this function satisfies
the functional equations

X p(x+ 1) =
X p(x) + 1

p
,

X p

( x

x+ 1

)
=

pX p(x)

X p(x) + 1
,(9)

X p

( 1

x

)
=

1

X p(x)
.

The last one (symmetry property) is a consequence of the first two. We are not
aware whether this notion of p-continued fractions is new or not. For example,

1 +
√
1 + 4 p

2 p
= [1, 1, 1, 1, 1, 1, ...] p = X p

(1 +√
5

2

)
,

√
3 = [4, 2, 1, 10, 1, 1, 2, 1, 5, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 7, 4, ...] 3

2
,

2 = [4, 1, 1, 2, 1, 1]√2.

Now fix p, 1 ≤ p < 2. The following proposition follows immediately from the
properties of F (x).

Proposition 2.1. There exists a limit distribution of the nth generation of the tree
Q p as n → ∞, defined as

Fp(x) = lim
n→∞

2−n+1#{k : a
(n)
k < x}.
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This function is continuous, Fp(x) = 0 for x ≤ p− 1, Fp(x) = 1 for x ≥ 1
p−1 , and

it satisfies two functional equations:

2Fp(x) =

{
Fp( px− 1) + 1, if 1 ≤ x ≤ 1

p−1 ,

Fp(
x

p−x ), if p− 1 ≤ x ≤ 1.
(10)

Additionally,

Fp(x) + Fp

( 1

x

)
= 1 for x > 0.

The explicit expression for Fp(x) is given by

Fp([a0, a1, a2, a3, ...] p) = 1− 2−a0 + 2−(a0+a1) − 2−(a0+a1+a2) + ....

We will refer to the last functional equation as the symmetry property. As was
said, it is a consequence of the other two, though it is convenient to separate it.

Proof. Indeed, as is obvious from the observations above, we simply have

Fp

(
X p(x)

)
= F (x), x ∈ [0,∞).

Therefore, two functional equations follow from (3) and (9). All the other state-
ments are immediate and follow from the properties of F (x). �

Equally important, consider the binary tree (8) for p > 2. In this case an
analogous proposition holds.

Proposition 2.2. Let p > 2. Then there exists a limit distribution of the nth
generation as n → ∞. Denote it by f p(x) This function is continuous, f p(x) = 0
for x ≤ 1

p−1 , f p(x) = 1 for x ≥ p− 1, and it satisfies two functional equations:

2f p(x) =

{
f p( px− 1) if 1 ≤ x ≤ p− 1,
f p(

x
p−x ) + 1 if 1

p−1 ≤ x ≤ 1,

and

f p(x) + f p

( 1

x

)
= 1 for x > 0.

Proof. The proof is analogous to that of Proposition 2.1, only this time we use
equivalences

p− 1 ≤ x ≤ 1

p− 1
⇔ 1 ≤ px

x+ 1
≤ p− 1,

p− 1 ≤ x ≤ 1

p− 1
⇔ 1

p− 1
≤ x+ 1

p
≤ p− 1. �

For the sake of uniformity, we introduce Fp(x) = 1 − f p(x) for p > 2. Then
Fp(x) satisfies exactly the same functional equations (3), with a slight difference
that Fp(x) = 1 for x ≤ 1

p−1 and Fp(x) = 0 for x ≥ p − 1. Consequently, we will

not separate these two cases and all our subsequent results hold uniformly. To this

account it should be noted that, for example, in case p > 2 the integral
∫ 1

p−1
� d�

should be understood as −
∫ p−1

1
� d�. Figure 1 gives graphic images of typical cases

for Fp(x).



EXPLICIT SERIES FOR THE DYADIC PERIOD FUNCTION 395

0

0.2

0.4

0.6

0.8

0.5 1 1.5 2 2.5 3

x

p = 1.2, x ∈ [0.2, 3]

0

0.2

0.4

0.6

0.8

1

0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

p = 3, x ∈ [0.5, 2]

0

0.2

0.4

0.6

0.8

1

2 4 6 8

x

p = 10, x ∈ [0.1, 9]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

x

p = 25, x ∈ [0, 10]

Figure 1. Functions Fp(x)

3. Complex case

After dealing with the case of real p, 1 ≤ p < ∞, let us consider a tree (8) when
p ∈ C. For our purpose we will concentrate on the case | p − 2| ≤ 1. It should be
noted that the method which we use allows us to extend these results to the case
	 p ≥ 1. The question of determining the set in the complex plane where similar
results are valid remains open. More importantly, the problem of determining
all p ∈ C for which there exists an analytic function G p(z), which satisfies (22),
seems to be much harder and more interesting. Here and below [0,∞] stands for
a compactification of [0,∞). In the sequel, the notion of a function f(z) to be
analytic in the closed disc |z − 2| ≤ 1 means that for z0 �= 1, |z0 − 2| ≤ 1, this
function is analytic in a certain small neighborhood of z0. If z0 = 1, this means
that there exist all higher derivatives if one approaches the point z0 = 1 while
remaining in the disc |z − 2| ≤ 1.

In this section we prove the following result.

Theorem 3.1. There exists a unique function X p(x) = X( p, x) : {| p − 2| ≤ 1}
× {[0,∞]} → C ∪ {∞}, having these properties:

(i) X( p, x) satisfies the functional equations (9).
(ii) For fixed p �= 1, X( p, x) : [0,∞] → C is a continuous function, and the

image (denote it by I p) is thus a bounded curve; it is contained in the domain
C \ {|z + 1| ≤ 3

4}.
(iii) For every p, | p− 2| ≤ 1, p �= 1, in some neighborhood of p there exists the

derivative ∂
∂ pX( p, x), which is a continuous function for x ∈ [0,∞].
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(iv) There exist all derivatives SN (x) = ∂N

∂ pN
X( p, x)| p=1 : [0,∞) → R (the

derivatives are taken inside | p−2| ≤ 1). These functions are uniformly continuous
for irrational x in any finite interval. Moreover, SN (x) �N xN+1 for x ≥ 1, and
SN (x) �N 1 for x ∈ (0, 1).

The curve I p has a natural fractal structure: it decomposes into two parts,

namely
I p+1

p and
pI p

I p+1 , with a common point z = 1. Additionally, I p = 1
I p

.

As a consequence, 0 /∈ I p for p �= 1. Figures 2–4 show the images of I p for
certain characteristic values of p. They are indeed all continuous curves, at least
for 	 p ≥ 1! Further, Figure 5 shows the image of the curve d

d pX( p, x)| p=1.5+0.5i,

x ∈ [0,∞].
The investigations of the tree Q p deserve a separate paper. I am very grateful to

my colleagues Jeffrey Lagarias and Stefano Isola, who sent me various references,
also informing me about the intrinsic relations of this problem with: Julia sets of
rational maps of the Riemann sphere; iterated function systems; forward limit sets
of semigroups; various topics from complex dynamics and the geometry of discrete
groups. Thus, the problem is much more subtle and involved than it appears to
be. This poses a difficult question on the limit set of the semigroup generated by
the transformations U p and T p, or any other two “conjugate” analytic maps of the
Riemann sphere (say, two analytic maps A and B are “conjugate” if A(α) = α,
B(β) = β, A(β) = B(α) for some two points α and β on the Riemann sphere).
Possibly, certain techniques from complex dynamics do apply here. As pointed
out by Curtis McMullen, the property of boundedness of I p can be reformulated
in a coordinate-free manner. It appears that this curve consists of the closure of
the attracting fixed points of the elements of the semigroup 〈T p,U p〉. Then the
property for the curve being bounded and being bounded away from z = 0 means
that it does not contain a repelling fixed point of T p (z = ∞) and a repelling fixed
point of U p (z = 0). It contains neither of the repelling fixed points of the elements
of this semigroup. Note that T2(1) = U2(1) = 1, T ′

2 (1) = U ′
2(1) = 1/2. Thus,

there exists a small open ball D around z = 1, such that T2(D) ⊂ D, U2(D) ⊂ D,
and the last two maps are contractions in D. This strict containment is an open
condition on p, and thus there exists a neighborhood of p = 2 such that Theorem
3.1 does hold. I am grateful to Curtis McMullen for this remark: we get the result
almost for free. Yet, the full result for | p − 2| ≤ 1 is needed. This is not a new
kind of problem. Some cases of pairs of Möbius transformations were studied. For
example, the author in [7] deals with the case of a semigroup generated by two
maps z �→ sz ± 1, for fixed s, |s| < 1, and investigates a closure of a set of all
attracting fixed points. For example, for |s| > 2−1/2, this set is connected. Further
development of this problem can be seen in [32]. On the other hand, the case of
one rational map is rather well understood, and it is treated in [4]. Thus, though
the machinery of complex dynamics can greatly clarify our understanding of the
structure of the curve I p, we will rather employ the techniques from the analytic
theory of continued fractions. The main source is the monograph by H.S. Wall [34].
(Lemmas A.1, A.2 and A.3 can be found in Appendix A.2.)
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Proof of Theorem 3.1. We need the following two results.

Theorem 3.2 ([34], p. 57). Let vν , ν ∈ N be positive numbers such that

v1 < 1, vν + vν+1 ≤ 1, for ν ≥ 1.(11)

Suppose we are given complex numbers eν , ν ≥ 2, such that

|eν+1| − 	(eν+1) ≤ vν , ν ≥ 1.(12)

Define the sequence bν by the recurrence b1 = 1, eν+1 = 1
bνbν+1

, ν ≥ 1. Then the

continued fraction

F =
1

1 +
e2

1 +
e3

1 +
e4

. . .

(13)

converges if, and only if, (a) some eν vanishes, or (b) eν �= 0 for ν ≥ 2 and the
series

∑∞
ν=1 |bν | diverges. Moreover, if eν(z) : K1 → K2 are analytic functions of

a complex variable, K1 and K2 are compact sets, (11) and (12) are satisfied, and
the above series diverges uniformly, then the continued fraction converges uniformly
for all z ∈ K1.

Theorem 3.3 ([34], p. 60). If all vν = 1
2 , and the conditions (a) and (b) of Theorem

3.2 hold, then |F − 1| ≤ 1, F �= 0.

For a, b ∈ N, p ∈ C, | p− 2| ≤ 1, define the rational functions

Wa( p) =
pa − 1

pa+1 − pa
,

Ta,b( p) = W−1
a ( p)W−1

b ( p) p−a =
( p− 1)2 pb

( pa − 1)( pb − 1)
, Ta,∞( p) =

( p− 1)2

( pa − 1)
.

Since, for fixed p �= 1, Wa( p) → p − 1, as a → ∞, then there exist two constants
k1 = k1( p) and k2 = k2( p), such that

0 < k1 ≤ |Wa( p)| ≤ k2 < +∞, a ∈ N.(14)

Let x ≥ 1, x = [a1, a2, a3, ...], be an irrational number, ai ∈ N. Let us consider the
continued fraction

F( p, x) = F( p, a1, a2, ...) =
1

1 +
Ta1,a2

( p)

1 +
Ta2,a3

( p)

1 +
Ta3,a4

( p)

. . .

.(15)
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If x = [a1, a2, ..., aκ] ≥ 1 is rational, let us define

F( p, x) = F( p, a1, a2, ..., aκ) =
1

1 +
Ta1,a2

( p)

1 +
Ta2,a3

( p)

1 +

. . .

1 + Taκ,∞

.

From the definition, this continued fraction obeys the following rule:

F( p, a1, a2, ...) =
1

1 + Ta1,a2
( p) · F( p, a2, a3...)

.

We will now apply Theorem 3.2 to F( p, a1, a2, a3, ...). Suppose x is irrational.
Thus, let eν = Taν−1,aν

( p), ν ≥ 2. Let us define constants

µ(a, b) = sup
p∈C,| p−2|≤1

|Ta,b( p)| − 	(Ta,b( p)).

By Lemma A.1, µ(a, b) + µ(b, c) < 0.76, a, b, c ∈ N. Further, from the definition in
Theorem 3.2 it follows that

b2ν = Wa1
( p)Wa2ν

( p) pa2ν−1−...+a3−a2+a1 ,

b2ν+1 = W−1
a1

( p)Wa2ν+1
( p) pa2ν−...−a3+a2−a1 .(16)

It is obvious that the series
∑∞

ν=1 |bν | diverges. Hence, Theorem 3.2 tells us that
the continued fraction converges, and that for fixed irrational x = [a1, a2, ...] > 1,
F( p0, a1, a2, ...) is an analytic function in p0 in some small neighborhood of p. For
rational x this is in fact a rational function.

As is shown in [34], the νth convergent of the continued fraction (13) (denote it
by Aν

Bν
) is equal to the νth convergent (denote it by Pν

Qν
) of the continued fraction

1

b1 +
1

b2 +
1

b3 +
1

. . .

.

Moreover, since (11) and (12) are satisfied, we have that, for a certain positive
constant k = k(b1, b2, b3) ([34], pp. 55-56),

|Q2ν | ≥ k(1 + |b2|+ |b4|+ ...+ |b2ν |),
|Q2ν+1| ≥ k(1 + |b3|+ |b5|+ ...+ |b2ν+1|),(17) ∣∣∣Aν+1

Bν+1
− Aν

Bν

∣∣∣ =
1

|QνQν+1|
.

Now we have

Proposition 3.4. Fix p ∈ C, | p− 2| ≤ 1, p �= 1. Let x = [a1, a2, ...] ≥ 1 be a real
number. The function F( p, x) : [1,∞] → C is continuous.

Proof. Fix an irrational x > 1. Let δ > 0 and y ≥ 1 be such that |x − y| < δ.
Then there exists an N such that the first N partial quotients of x and y coincide,



EXPLICIT SERIES FOR THE DYADIC PERIOD FUNCTION 401

N = N(δ) → ∞ as δ → 0. Consequently, let the corresponding convergents to
F( p, x) and F( p, y) be, respectively,

A1

B1
,

A2

B2
, ...,

AN

BN
,

AN+1

BN+1
,

AN+2

BN+2
, ...;

A1

B1
,

A2

B2
, ...,

AN

BN
,

A′
N+1

B′
N+1

,
A′

N+2

B′N+2
... .

Now, combining (14), (16) and (17) we see that

|Q2νQ2ν+1| > k2k31k
−1
2 ×

(
| p|a1 + | p|a3−a2+a1 + ...+ | p|a2ν−1−...+a3−a2+a1

)
×
(
| p|a2−a1 + | p|a4−a3+a2−a1 + ...+ | p|a2ν−...−a3+a2−a1

)
.

Denote c1 = k2k31k
−1
2 . Let | p|a2�−1−...+a3−a2+a1 = λ�, 1 ≤ � ≤ ν. The above

inequality and the arithmetic-harmonic mean inequality give

|Q2νQ2ν+1| > c1(λ1 + λ2 + ...+ λν) · (| p|a2λ−1
1 + | p|a4λ−1

2 + ...+ | p|a2νλ−1
ν )

≥ | p|c1(λ1 + λ2 + ...+ λν) · (λ−1
1 + λ−1

2 + ...+ λ−1
ν )≥| p|c1ν2, ν ≥ 1.

Analogously we prove that |Q2ν−1Q2ν | > | p|c2ν2, ν ≥ 2. Thus, |QνQν+1| > cν2

for a certain real c > 0, ν ≥ 2. We see that (17) yields∣∣∣F( p, x)− AN

BN

∣∣∣ < ∞∑
ν=N

1

|QνQν+1|
≤

∞∑
ν=N

c−1

ν2
<

c−1

N − 1
;
∣∣∣F( p, y)− AN

BN

∣∣∣ < c−1

N − 1
.

This implies that |F( p, x) − F( p, y)| < 2c−1

N−1 . In case x is rational we argue in a

similar way. In this case note that real numbers close to x = [a1, a2, ..., aκ] are of the
form either [a1, a2, ..., aκ, T, ...] or [a1, a2, ..., aκ − 1, 1, T, ...] for T sufficiently large.
The case x = ∞ is analogous. This establishes the validity of the proposition. �

Eventually, for real numbers x ≥ 0, x = [a0, a1, a2, ...], let us define

X( p, [a0, a1, ...]) = Wa0
( p) +

p−a0

Wa1
( p) +

p−a1

Wa2
( p) +

p−a2

Wa3
( p) +

. . .

.

After an equivalence transformation ([34], p.19), this can be given an expression

X( p, [a0, a1, ...]) = Wa0
( p) + p−a0W−1

a1
( p) · F( p, a1, a2, a3, ...).(18)

From the very construction, this function satisfies the functional equations (9),
is continuous at x = 1 and thus, according to Proposition 3.4, is continuous for
x ∈ [0,∞]. Obviously, (9) determines the values of X( p, x) at rational x uniquely;
hence a continuous solution to (9) is unique. We are left to show that the image of
the curve I p is contained outside the circle |z + 1| ≤ 3

4 . This is equivalent to the

statement that
pI p

I p+1 is contained inside the circle |z− p| ≤ 4 p
3 . But the points on

pI p

I p+1 are exactly the point on the curve I p with a0 = 0. Thus, we need to show

that

| p−1
X( p, [0, a1, a2, ...])− 1| = | p−1W−1

a1
F( p, a1, a2, ...)− 1| ≤ 4

3
.(19)



402 GIEDRIUS ALKAUSKAS

Unfortunately, we cannot apply Theorem 3.3 directly to all p, | p−2| ≤ 1, since the
table above Lemma A.1 shows that µ(1, b) > 1

2 for infinitely many b. The maximum
values µ(1, b) (see the definition of this constant) are produced by points p close
either to χ = 2 + e2πi/3, or to χ. For this reason let us introduce

µ�(a, b) = sup
p∈C,| p−2|≤1,| p−χ|≥0.19,| p−χ|≥0.19

|Ta,b( p)| − 	(Ta,b( p)).

Then indeed µ�(a, b) < 1
2 for all a, b ∈ N. Thus, Theorem 3.3 gives |F( p, a1, a2, ...)−

1| ≤ 1, and the statement (19) follows from Lemma A.3. In case | p − 2| ≤ 1,
| p − χ| < 0.19 (or | p− χ| < 0.19) we use another theorem by Wall ([34], p. 152),
which describes the value region of a continued fraction (13), provided elements eν
belong to the compact domain in the parabolic region |z| − 	(zeiφ) ≤ 2h cos2 φ

2 ,

for certain fixed −π < φ < +π, 0 < h ≤ 1
4 . We omit the details. This proves part

(ii). In a similar fashion we prove part (iii). Finally, a direct inspection shows
that slightly modified proofs remain valid in case p = 1 if we define a function to
be analytic at p = 1, if it possesses all higher p-derivatives, while remaining inside
the disc | p− 2| ≤ 1. �

Definition 3.5. We define the Minkowski p-question mark function Fp(x) : I p →
[0, 1], by

Fp(X( p, x)) = F (x), x ∈ [0,∞].

4. Properties of integral transforms of Fp(x)

For given p, | p− 2| ≤ 1, we define

χn =
p+ pn−1 − 2

pn−1( p− 1)
, In = [χn, χn+1] = X( p, [n, n+ 1]) for n ∈ N0.

Complex numbers χn stand for the analogue of nonnegative integers on the curve
I p. In other words, χn = Un( p − 1). We consider In as part of the curve I p

contained between the points χn and χn+1. Thus, χ0 = p − 1, χ1 = 1, and the
sequence χn is “increasing”, in the sense that χj as a point on a curve I p is
between χi and χk if i < j < k. Moreover,

⋃∞
n=0 In ∪ { 1

p−1} = I p.

Proposition 4.1. Let ω(x) : I p → C be a continuous function. Then∫
I p

ω(x) dFp(x) =

∞∑
n=0

1

2n+1

∫
I p

ω
( x

pn−1(x+ 1)
+

pn − 1

pn+1 − pn

)
dFp(x).

Proof. Indeed, using (10) we obtain∫
I p

ω(x) dFp(x) =
∞∑

n=0

∫
In

ω(x) dFp(x) =
∞∑
n=0

∫
T n(I0)

ω(x) dFp(x)

x→T nx
=

∞∑
n=0

1

2n

∫
I0

ω(T nx) dFp(x)
x→Ux
=

∞∑
n=0

1

2n+1

∫
I p

ω(T nUx) dFp(x),

and this is exactly the statement of the proposition. �
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For L, T ∈ N0, let us introduce

BL,T ( p) =
∞∑
n=0

1

2n+1 pTn

( pn − 1

pn+1 − pn

)L

.

For example,

B0,T =
pT

2 pT − 1
, B1,T ( p) =

pT

(2 pT − 1)(2 pT+1 − 1)
,

B2,T ( p) =
pT (2 pT+1 + 1)

(2 pT+2 − 1)(2 pT+1 − 1)(2 pT − 1)
,

B3,T ( p) =
pT (4 p2T+3 + 4 pT+2 + 4 pT+1 + 1)

(2 pT+3 − 1)(2 pT+2 − 1)(2 pT+1 − 1)(2 pT − 1)
,

B4,T ( p) =
pT (2 pT+2 + 1)(4 p2T+4 + 6 pT+3 + 8 pT+2 + 6 pT+1 + 1)

(2 pT+4 − 1)(2 pT+3 − 1)(2 pT+2 − 1)(2 pT+1 − 1)(2 pT − 1)
.

As is easy to see, BL,T ( p) are rational functions in p for L, T ∈ N0. Indeed,

BL,T ( p) =
1

( p− 1)L
·

∞∑
n=0

1

pTn2n+1

(
1− 1

pn

)L

=
1

2( p− 1)L
·

L∑
s=0

(−1)s
(
L

s

) ∞∑
n=0

1

2n pn(s+T )

=
pT

( p− 1)L
·

L∑
s=0

(−1)s
(
L

s

)
ps

2 ps+T − 1

=
pTRL,T ( p)

(2 pT+L − 1)(2 pT+L−1 − 1) · ... · (2 pT+1 − 1)(2 pT − 1)
,

where RL,T ( p) are polynomials. This follows from the observation that p = 1 is a
root of the numerator of multiplicity not less than L.

As in the case p = 1, our main concerns are the moments of the distributions
Fp(x), which for L ∈ N are defined by

mL( p) = 2

∫
I0

xL dFp(x) =

∫
I p

( px

x+ 1

)L

dFp(x)

= 2

∫ 1

0

X
L( p, x) dF (x) = lim

n→∞
22−n

∑
a1+a2+...+as=n

[0, a1, a2, .., as]
L
p

ML( p) =

∫
I p

xL dFp(x).

Thus, if supz∈I p
|z| = ρ p > 1, which is finite for 	 p ≥ 1, p �= 1 (see Section 3),

then ML( p) ≤ ρLp.

Proposition 4.2. The function mL( p) is analytic in the disc | p−2| ≤ 1, including
its boundary. In particular, if in this disc,

m̂L( p) :=
mL( p)

pL
=

∞∑
v=0

ηv,L( p− 2)v,

then for any M ∈ N, one has the estimate ηv,L � v−M as v → ∞.
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Proof. The function X( p, x) possesses a derivative in p for 	 p ≥ 1, | p − 2| ≤ 1,
and these are bounded and continuous functions for x ∈ R+. Therefore mL( p)

has a derivative. For p = 1, M ∈ M there exists ∂M

∂ pM X( p, x) � xM+1, and it is

a continuous function for irrational x. Additionally, F ′(x) = 0 for x ∈ Q+. This
proves the analyticity of mL( p) in the disc | p − 2| ≤ 1. Then an estimate for the
Taylor coefficients is the standard fact from Fourier analysis. In fact,

ηv,L =

∫ 1

0

m̂L(2 + e2πiϑ)e−2πivϑ dϑ.

The function m̂L(2 + e2πiϑ) ∈ C∞(R); hence the iteration of integration by parts
implies the needed estimate. �

Proposition 4.3. The functions ML( p) and mL( p) are related via rational func-
tions BL,T ( p) in the following way:

ML( p) =
L∑

s=0

ms( p)BL−s,s( p)

(
L

s

)
.

Proof. Indeed, this follows from the definitions and Proposition 4.1 in the case
ω(x) = xL. �

Let us introduce, following [1] in the case p = 1, the following generating func-
tions:

m p(t) =
∞∑

L=0

mL( p)
tL

L!
= 2

∫
I0

ext dFp(x) =

∫
I p

exp
( pxt

x+ 1

)
dFp(x);

G p(z) =

∞∑
L=1

mL( p)

pL
zL−1 =

∫
I p

1

x+ 1− z
dF p(x) =

∫ ∞

0

1

X( p, x) + 1− z
dF (x).

(20)

The situation p = 2 is particularly important, since all these functions can be
explicitly calculated, and it provides the case where all the subsequent results can
be checked directly and the starting point in proving Theorem 1.2. Thus,

m2(t) = et, G2(z) =
1

2− z
.

By the definition, the expressions mL( p)/ p
L are Taylor coefficients of G p(z) at

z = 0. Differentiation L−1 times under the integral defining G p(z) and substitution
z = 1 gives
(21)

G(L−1)
p (1) = (L− 1)!

∫
I p

1

xL
dFp(x) = (L− 1)!ML( p) ⇒ G p(z + 1) =

∞∑
L=0

ML( p)z
L−1,

with a radius of convergence equal to ρ−1
p . As was proved in [1] and mentioned

before, in case p = 1 (ρ1 = ∞) this must be interpreted that all derivatives exist at
z = 1. The next proposition shows how the symmetry property reflects in m p(t).

Proposition 4.4. One has

m p(t) = e pt
m p(−t).
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Proof. Indeed,

m p(t) =

∫
I p

exp
( pxt

x+ 1

)
dFp(x) =

∫
I p

exp
(
pt− pt

x+ 1

)
dFp(x)

= e pt

∫
I p

exp
(
− pt

x+ 1

)
dFp(x)

x→ 1
x= e pt

m p(−t). �

This result allows us to obtain linear relations among moments mL( p) and the
exact value of the first (trivial) moment m1( p).

Corollary 4.5. One has

m1( p) =
p

2
, M1( p) =

p2 + 2

4 p− 2
.

Proof. Indeed, the last proposition implies

mL( p) =
L∑

s=0

(
L

s

)
(−1)sms( p) p

L−s, L ≥ 0.

For L = 1 this gives the first statement of the corollary. Additionally, Proposition
4.3 for L = 1 reads as

M1( p) =
p

2 p− 1
·m1( p) +

1

2 p− 1
,

and we are done. �

5. Three-term functional equation

Theorem 5.1. The function G p(z) can be extended to an analytic function in the
domain C \ (I p + 1). It satisfies the functional equation

1

z
+

p

z2
G p

( p

z

)
+ 2G p(z + 1) = pG p( pz), for z /∈ I p + 1

p
.(22)

Its consequence is the symmetry property

G p(z + 1) = − 1

z2
G p

(1
z
+ 1

)
− 1

z
.

Moreover, G p(z) → 0 if dist(z, I p) → ∞.
Conversely, the function satisfying this functional equation and the regularity

property is unique.

Proof. Let w(x, z) = 1
x+1−z . Then it is straightforward to check that

w(
x+ 1

p
, z + 1) = p · w(x, pz),

w(
p

x+ 1
, z + 1) = − p

z2
w(x,

p

z
)− 1

z
.
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Thus, for | p− 2| ≤ 1, p �= 2,

2G p(z + 1) = 2

∫
I0

w(x, z + 1) dFp(x) + 2

∫
I p\I0

w(x, z + 1) dFp(x)

= 2

∫
I p

w(
px

x+ 1
, z + 1) dFp

( px

x+ 1

)
+ 2

∫
I p

w(
x+ 1

p
, z + 1) dFp

(x+ 1

p

)
=

∫
I p

w(
p

x+ 1
, z + 1) dFp(x) +

∫
I p

w(
x+ 1

p
, z + 1) dFp(x)

= −1

z
− p

z2
G p

( p

z

)
+ pG p( pz).

(In the first integral we used a substitution x → 1
x .) The functional equation holds

in the case p = 2 as well, which can be checked directly. The holomorphicity of
G p(z) follows exactly as in the case p = 1 [1]. All we need is the first integral in
(20) and the fact that I p is a closed set.

As was mentioned, the uniqueness of a function satisfying (22) for p = 1 was
proved in [1]. Thus, the converse implication follows from the analytic continuation
principle for the function in two complex variables ( p, z). (See Lemma 6.2 below,
where the proof in the case p = 2 is presented. A similar argument works for
general p.) �

Corollary 5.2. Let p �= 1, and let C be any closed smooth contour which rounds
the curve I p + 1 once in the positive direction. Then

1

2πi

∮
C

G p(z) dz = −1.

Proof. Indeed, this follows from the functional equation (22), as well as from the
symmetry property. It is enough to take a sufficiently large circle C = {|z| =
R} such that C −1 + 1 is contained in a small neighborhood of z = 1, for which
(C−1 + 1) ∩ (I p + 1) = ∅. This is possible since 0 /∈ I p (see Theorem 3.1). �

We finish by providing an integral equation for m p(t). We indulge in being
concise since the argument directly generalizes the one used in [1] to prove the
integral functional equation for m(t) (in our notation, this is m1(t)).

Proposition 5.3. Let 1 ≤ p < ∞ be real. Then the function m p(t) satisfies the

boundary condition m p(0) = 1, the regularity property m p(−t) � e−
√
t log 2, and the

integral equation

m p(−s) =

∫ ∞

0

m
′
p(−t)

(
2esJ0(2

√
pst)− J0(2

√
st)

)
dt, s ∈ R+.

For instance, in the case p = 1 this reduces to (4), and in the case p = 2 this
reads as

2es
∫ ∞

0

e−tJ0(2
√
2st) dt = 2ese−2s = e−s + e−s = e−s +

∫ ∞

0

e−tJ0(2
√
st) dt,

which is an identity [35].
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Proof. Indeed, the functional equation for G p(z) in the region 	z < −1 in terms
of m′

p(t) reads as

1

z
=

∫ ∞

0

m
′
p(−t)

( 2

z + 1
e

pt
z+1 +

1

z
etz − 1

z
e

t
z

)
dt.

Now, multiply this by e−sz and integrate over 	z = −σ < −1, where s > 0 is real.
All the remaining steps are exactly the same as in [1]. �

Remark. If p �= 1, the regularity bound is easier than in the case p = 1. Take, for
example, 1 < p < 2. Then

|m p(t)| ≤
∫ 1

p−1

p−1

∣∣∣ exp( pxt

x+ 1

)∣∣∣ dFp(x) <

∫ 1
p−1

p−1

et dFp(x) = et.

Thus, Proposition 4.4 gives |m p(−t)| < e(1− p)t. The same argument shows that for
p > 2 we have |m p(−t)| < e−t.

6. The proof: Approach through p = 2

Let us rewrite the functional equation for G p(z) = G( p, z) as

1

z
+

p

z2
G
(
p,

p

z

)
+ 2G( p, z + 1) = pG( p, pz).(23)

Direct induction shows that the following “chain-rule” holds:

∂n

∂ pn

(
pG( p, pz)

)
=

∑
i+j=n

(
n

j

)
p

∂i ∂j

∂ pi ∂zj
G( p, pz)zj

+
∑

i+j=n−1

n

(
n− 1

j

)
∂i ∂j

∂ pi ∂zj
G( p, pz)zj ,(24)

where in the summation it is assumed that i, j ≥ 0.
Now we will provide rigorous calculations which yield explicit series for G( p, z)

in terms of powers of ( p− 2) and certain rational functions. The function G( p, z)
is analytic in {| p − 2| ≤ 1} × {|z| ≤ 3

4}. This follows from Theorem 3.1 and the

integral representation (20). Thus, for {| p − 2| < 1} × {|z| ≤ 3
4} it has a Taylor

expansion

G( p, z) =
∞∑

L=1

∞∑
v=0

ηv,L · zL−1( p− 2)v.(25)

Moreover, the function G(2+e2πiϑ, 3
4e

2πiϕ) ∈ C∞(R×R), and it is double-periodic.
Thus,

ηv,L =
(4
3

)L−1
∫ 1

0

∫ 1

0

G(2+e2πiϑ,
3

4
e2πiϕ)e−2πivϑ−2πi(L−1)ϕ dϑ dϕ, v ≥ 0, L ≥ 1.

A standard trick from Fourier analysis (using iteration of integration by parts)
shows that ηv,L �M (4/3)L · (Lv)−M for any M ∈ N. Thus, (25) holds for ( p, z) ∈
{| p− 2| ≤ 1} × {|z| ≤ 3/4}.

Our idea is a simple one. Indeed, let us look at (20). This implies the Taylor
series for mL( p)/ p

L =
∑∞

v=0 ηv,L( p− 2)v, convergent in the disc | p− 2| ≤ 1. Due
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to the absolute convergence, the order of summation in (25) is not essential. This
yields

G( p, z) =
∞∑
v=0

( p− 2)v
( ∞∑

L=1

ηv,L · zL−1
)
.

Therefore, let

1

n!

∂n

∂ pn
G( p, z)

∣∣∣
p=2

= Hn(z) =

∞∑
L=1

ηn,L · zL−1.

We already know that H0(z) =
1

2−z . Though mL( p) are obviously highly transcen-

dental (and mysterious) functions, the series for Hn(z) is in fact a rational function
in z, and this is the main point of our approach. Moreover, we will show that

Hn(z) =
Bn(z)

(z − 2)n+1
,

where Bn(z) is a polynomial with rational coefficients of degree n − 1 with the
reciprocity property Bn(z + 1) = (−1)nzn−1Bn(

1
z + 1), Bn(0) = 0. We argue by

induction on n. First we need an auxiliary lemma.
Let Q[z]n−1 denote the linear space of dimension n of polynomials of degree ≤

n−1 with rational coefficients. Consider the following linear map Ln−1 : Q[z]n−1 →
Q[z]n−1, defined by

Ln−1(P )(z) = P (z + 1)− 1

2n+1
P (2z) +

(−1)n+1

2n+1
P
(2
z

)
zn−1.

Lemma 6.1. det(Ln−1) �= 0. Accordingly, Ln−1 is the isomorphism.

Remark. Let m =
[
n
2

]
. Then it can be proved that indeed det(Ln−1) =

∏m
i=1(4

i−1)

2m2+m
.

Proof. Suppose P ∈ ker(Ln−1). Then a rational function H(z) = P (z)
(z−2)n+1 satisfies

the three-term functional equation

H(z + 1)−H(2z) +H
(2
z

) 1

z2
= 0, z �= 1.(26)

Also, H(z) = o(1), as z → ∞. Now the result follows from the next

Lemma 6.2. Let Υ(z) be any analytic function in the domain C \ {1}. Then if
H(z) is a solution of the equation

H(z + 1)−H(2z) +H
(2
z

) 1

z2
= Υ(z),

such that H(z) → 0 as z → ∞, H(z) is analytic in C \ {2}, then such an H(z) is
unique.

Proof. All we need is to show that with the imposed diminishing condition, homo-
geneous equation (26) admits only the solution H(z) ≡ 0. Indeed, let H(z) be such
a solution. Put z → 2nz + 1. Thus,

H(2nz + 2)−H(2n+1z + 2) +
1

(2nz + 1)2
H
( 2

2nz + 1

)
= 0.
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This is valid for z �= 0 (since H(z) is allowed to have a singularity at z = 2).
Now sum this over n ≥ 0. Due to the diminishing assumption, one gets (after the
additional substitution z → z − 2)

H(z) = −
∞∑

n=0

1

(2nz − 2n+1 + 1)2
H
( 2

2nz − 2n+1 + 1

)
.

For clarity, put z → −z and consider a function Ĥ(z) = H(−z). Thus,

Ĥ(z) = −
∞∑

n=0

1

(2nz + 2n+1 − 1)2
Ĥ
( 2

2nz + 2n+1 − 1

)
.

Consider this for z ∈ [0, 2]. As can be easily seen, then all arguments on the right
also belong to this interval. We want to prove the needed result simply by applying
the maximum argument. The last identity is still insufficient. For this reason
consider its second iteration. This produces a series

Ĥ(z) =
∞∑

n,m=0

1

(2n+m+1z + 2n+m+2 − 2nz − 2n+1 + 1)2
Ĥ
(
ωm ◦ ωn(z)

)
,

where ωn(z) = 2
2nz+2n+1−1 . As we said, ωm ◦ ωn(z) ∈ [0, 2] for z ∈ [0, 2]. Since

a function Ĥ(z) is continuous in the interval [0, 2], let z0 ∈ [0, 2] be such that

M = |Ĥ(z0)| = supz∈[0,2] |Ĥ(z)|. Consider the above expression for z = z0. Thus,

M = |Ĥ(z0)| ≤
∞∑

n,m=0

∣∣∣ 1

(2n+m+1z0 + 2n+m+2 − 2nz0 − 2n+1 + 1)2
Ĥ
(
ωm ◦ ωn(z0)

)∣∣∣
≤ M

∞∑
n,m=0

1

(2n+m+2 − 2n+1 + 1)2
= 0.20453+M.

This is contradictory unless M = 0. By the principle of analytic continuation,
H(z) ≡ 0, and this proves the lemma. �

Remark. Direct inspection of the proof reveals that the statement of the lemma still
holds with a weaker assumption that H(z) is a real-analytic function on (−∞, 0].

Now, let us differentiate (23) n times with respect to p, use (24) and afterwards
substitute p = 2. This gives

n∑
j=1

2

j!

∂j

∂zj
Hn−j(2z)z

j +
n−1∑
j=0

1

j!

∂j

∂zj
Hn−j−1(2z)z

j

−
n∑

j=1

2

j!

∂j

∂zj
Hn−j

(2
z

) 1

zj+2
−

n−1∑
j=0

1

j!

∂j

∂zj
Hn−j−1

(2
z

) 1

zj+2

= 2Hn(z + 1)− 2Hn(2z) + 2Hn

(2
z

) 1

z2
.(27)

(We recall here and in the sequel, for example, H′
n(2z) stands for d

duHn(u)
∣∣
u=2z

,

and not for d
dz (Hn(2z).) We note that this implies the reciprocity property

Hn(z + 1) = − 1

z2
Hn

(1
z
+ 1

)
, n ≥ 1.
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A posteriori, this clarifies how the identity F (x) +F (1/x) = 1 reflects in the series
for G(z), as stated in Theorem 1.2: the reciprocity property (nonhomogeneous
for n = 0 and homogeneous for n ≥ 1) is reflected in each of the summands
separately, whereas the three-term functional equation heavily depends on inter-
relations among Hn(z).

Now, suppose we know all Hj(z) for j < n.

Lemma 6.3. The left-hand side of the equation (27) is of the form

l.h.s. =
Jn(z)

(z − 1)n+1
,

where Jn(z) ∈ Q[z]n−1.

Proof. First, as is clear from the appearance of the l.h.s., we need to verify that
z does not divide a denominator, if the l.h.s. is represented as a quotient of two
co-prime polynomials. Indeed, using the symmetry property in (23) for the term
G( p, p

z ), we obtain the three-term functional equation of the form

− 1

p− z
− p

( p− z)2
G
(
p,

p

p− z

)
+ 2G( p, z + 1) = pG( p, pz).

Let us perform the same procedure which we followed to arrive at the equation
(27). Thus, differentiation n times with respect to p and substitution of p = 2
gives the expression of the form

l.h.s.2 = 2Hn(z + 1)− 2Hn(2z)− 2Hn

( 2

2− z

) 1

(2− z)2
,

where lh.s.2 is expressed in terms of Hj(z) for j < n. Nevertheless, this time the
common denominator of l.h.s.2 is of the form (z − 1)n+1(z − 2)n+2. As a corollary,
z does not divide it. Finally, due to the reciprocity property, for n ≥ 1 one has

Hn

( 2

2− z

) 1

(2− z)2
= −Hn

(2
z

) 1

z2
.

This shows that actually l.h.s. = l.h.s.2, and therefore if this is expressed as a
quotient of two polynomials in lowest terms, the denominator is a power of (z− 1).
Finally, it is obvious that this exponent is exactly n+1, and one easily verifies that
degJn(z) ≤ n− 1. (Possibly, Jn(z) can be divisible by (z − 1), but this does not
have an impact on the result.) �

Proof of Theorem 1.2. Now, using Lemma 6.1, we inherit that there exists a unique
polynomial Bn(z) of degree ≤ n − 1 such that Bn(z) =

1
2L

−1
n−1(Jn)(z). Summa-

rizing, Hn(z) = Bn(z)
(z−2)n+1 solves the equation (27). On the other hand, Lemma

6.2 implies that the solution of (27) we obtained is indeed the unique one. This
reasoning proves that for | p− 2| ≤ 1, |z| ≤ 3

4 we have the series

G( p, z) =
∞∑

n=0

( p− 2)n ·Hn(z).

This finally establishes the validity of Theorem 1.2. Note also that each summand
satisfies the symmetry property. The series converges absolutely for any z, |z| ≤
3/4, and if this holds for z, the same does hold for z

z−1 , which gives the circle

|z + 9/7| ≤ 12/7. �
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Curiously, one could formally verify that the function defined by this series does
indeed satisfy (22). Indeed, using (27), we get:

2G( p, z + 1) = 2H0(z + 1) + 2

∞∑
n=1

( p− 2)nHn(z + 1)

= 2H0(z + 1) +

∞∑
n=1

( p− 2)n

(
n∑

j=0

2

j!

∂j

∂zj
Hn−j(2z)z

j +

n−1∑
j=0

1

j!

∂j

∂zj
Hn−j−1(2z)z

j

−
n∑

j=0

2

j!

∂j

∂zj
Hn−j

(2
z

) 1

zj+2
−

n−1∑
j=0

1

j!

∂j

∂zj
Hn−j−1

(2
z

) 1

zj+2

)
.

Denote n− j = s. Then interchanging the order of summation for the first term of
the sum in the brackets, we obtain:

2

∞∑
n=1

( p−2)n
n∑

j=0

1

j!

∂j

∂zj
Hn−j(2z)z

j=2

∞∑
s=0

∞∑
j=0

( p−2)j+s 1

j!

∂j

∂zj
Hs(2z)z

j−2H0(2z)

= 2

∞∑
s=0

( p− 2)sHs(2z + ( p− 2)z)− 2H0(2z) = 2G( p, pz)− 2H0(2z).

The same works for the second sum:
∞∑

n=1

( p− 2)n
n−1∑
j=0

1

j!

∂j

∂zj
Hn−j−1(2z)z

j = ( p− 2)G( p, pz).

We perform the same interchange of summation for the second and the third sum-
mand, respectively. Thus, this yields

2G( p, z + 1) = pG( p, pz)− p

z2
G
(
p,

p

z

)
+ 2H0(z + 1)− 2H0(2z) +

2

z2
H0

(2
z

)
= pG( p, pz)− p

z2
G
(
p,

p

z

)
− 1

z
.

On the other hand, it is unclear how one can make this argument to work rigorously.
This would require a rather detailed investigation of the linear map Ln−1 and
recurrence (27), and this seems to be very technical.

Appendix A

A.1. Approach through p = 0. With a slight abuse of notation, we will use the
expression ∂s

∂ psG(0, z) to denote ∂s

∂ psG( p, z)
∣∣
p=0

for s ∈ N0. Though the function

G( p, z) is defined only for 	 p ≥ 1, z /∈ (I p + 1), assume that we are able to
prove that it is analytic in p in a certain wider domain containing a disc | p| < �,
� > 0. These are only formal calculations, but they unexpectedly yield series (7)
(see Section 1), and numerical calculations do strongly confirm the validity of it.

Thus, substitution of p = 0 into (23) gives G(0, z) = 1
2(1−z) . Partial differentia-

tion of (23) with respect to p, and consequent substitution of p = 0 gives

1

z2
G(0, 0) + 2

∂

∂ p
G(0, z + 1) = G(0, 0) ⇒ ∂

∂ p
G(0, z) =

(z − 1)2 − 1

4(z − 1)2
.

In the same fashion, differentiating the second time, we obtain ∂2

∂ p2G(0, z) =
(z−1)4−1
2(z−1)3 . In general, differentiating (23) n ≥ 1 times with respect to p, using



412 GIEDRIUS ALKAUSKAS

(24), and substituting p = 0, we obtain:

2
∂n

∂ pn
G(0, z + 1) =

∑
i+j=n−1

n

(
n− 1

j

)
∂i ∂j

∂ pi ∂zj
G(0, 0)

(
zj − 1

zj+2

)
.

Let

1

n!
· ∂n

∂ pn
G(0, z) = Qn(z).

Then

2Qn(z + 1) =

n−1∑
j=0

1

j!

∂j

∂zj
Qn−j−1(0)

(
zj − 1

zj+2

)
.

Consequently, we have a recurrent formula to compute rational functions Q(z). Let
Qn(z) = Qn(z + 1). Thus,

Qn(z) =
(z + 1)(z − 1)Dn(z)

zn+1
, n ≥ 1,

where Dn are polynomials of degree 2n− 2 with the reciprocity property Dn(z) =

z2n−2Dn

(
1
z

)
(this is obvious from the recurrence relation which defines Qn(z)).

Moreover, the coefficients of Dn are Qp integers for any prime p �= 2. These
calculations yield the following formal result:

G( p, z)“ = ”

∞∑
n=0

pn ·Qn(z − 1) =

∞∑
n=0

pn
z(z − 2)Dn(z − 1)

(z − 1)n+1
.

This produces the “series” for the second and higher moments of the form

m2( p) = p2 ·
∞∑
n=0

pnQ′
n(−1).

In particular, inspection of the table in Section 1 (where the initial values for
Q′

n(−1) are listed) shows that this series for p = 1 does not converge. However, the
Borel sum is properly defined and it converges exactly to the value m2. This gives
empirical evidence for the validity of (7). The principles of Borel summation also
suggest the mysterious fact that indeed G( p, z) analytically extends to the interval
p ∈ [0, 1].

Additionally, numerical calculations reveal the following fact: the sequence
n
√
|Q′

n(−1)| is monotonically increasing (apparently, tends to ∞), while
1
n log |Q′

n(−1)| − log n monotonically decreases (apparently, tends to −∞). Thus,

An < |Q′
n(−1)| < (cn)n,

for c = 0.02372 and A = 3.527, n ≥ 150. We do not have enough evidence to
conjecture the real growth of this sequence. If c = c(n) → 0, as n → ∞, then the
function

Λ(t) =

∞∑
n=0

Q′
n(−1)

n!
tn

is entire, and in case L = 2, result (7) is equivalent to the fact that∫ ∞

0

Λ(t)e−t dt = m2.
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A.2. Auxiliary lemmas. These lemmas are needed in Section 3. For a, b ∈ N,
p ∈ C, | p− 2| ≤ 1, define the rational functions

Wa( p) =
pa − 1

pa+1 − pa
, Ta,b( p) = W−1

a ( p)W−1
b ( p) p−a =

( p− 1)2 pb

( pa − 1)( pb − 1)
.

Let us define constants

µ(a, b) = sup
p∈C,| p−2|≤1

|Ta,b( p)| − 	(Ta,b( p)).

The following table provides some initial values for constants µ(a, b), computed
numerically.

b\a 1 2 3 4 5 6

1 0.25000000 0.01250000 0.00780868 0.03343231 0.05778002 0.07712952
2 0.29846114 0.03125000 0.00159908 0.01212467 0.02539758 0.03645721
3 0.35999295 0.05097235 0.00647895 0.00676996 0.01624300 0.02437494
4 0.41433340 0.07007201 0.01316542 0.00500146 0.01287728 0.01963810
5 0.45590757 0.08747624 0.02069451 0.00437252 0.01163446 0.01781467
6 0.48390408 0.10255189 0.02845424 0.00812804 0.01125132 0.01728395
7 0.49985799 0.11503743 0.03601828 0.01200557 0.01120308 0.01729854
8 0.50642035 0.12494927 0.04309384 0.01611126 0.01125789 0.01748823
9 0.50681483 0.13248892 0.04949922 0.02025219 0.01132055 0.01767914

10 0.50452450 0.13796512 0.05514483 0.02427779 0.01136245 0.01780892
11 0.50218322 0.14173414 0.06001269 0.02807992 0.01138335 0.01787452
12 0.50070286 0.14415527 0.06413550 0.03158969 0.01139099 0.01789618
13 0.49999979 0.14555794 0.06757752 0.03477145 0.01139235 0.01789583
14 0.49977304 0.14622041 0.07041891 0.03761547 0.01139159 0.01788837
15 0.49977361 0.14636154 0.07274403 0.04013040 0.01139057 0.01788111
· · · · · · · · · · · · · · · · · · · · ·
∞ 0.50000000 0.12500000 0.05479177 0.03097495 0.01138938 0.01787406

Note that there exists limb→∞ µ(a, b), and µ(a, b) → 0 uniformly in b, as a → ∞.
Thus, the table above and some standard evaluations give the following

Lemma A.1. Let a, b, c ∈ N. Then

µ(a, b) + µ(b, c) ≤ µ(1, 1) + µ(1, 9) < 0.76.

Lemma A.2. There exists an absolute constant c > 0 such that for all p ∈ C,

	 p ≥ 1, and all a ∈ N, one has
∣∣ pa−1

p−1

∣∣ > c.

Proof. Consider a contour, consisting of the segment [1 − iT, 1 + iT ], and a semi-

circle 1 + Teiφ, −π
2 ≤ φ ≤ π

2 . For sufficiently large T , pa−1
p−1 will be large on the

semicircle. Moreover, this function never vanishes inside or on the contour. Thus,
from the maximum-minimum principle, its minimal absolute value is obtained on
the segment [1− iT, 1 + iT ]. Thus, let p = 1

cosψ e
iψ, −π

2 < ψ < π
2 . Without loss of

generality, let ψ ≥ 0. Consider the case π
2a ≤ ψ < π

2 . Then∣∣∣ pa − 1

p− 1

∣∣∣2= 1
cos2a ψ

− 2 cos aψ
cosa ψ

+ 1
1

cos2 ψ
− 1

≥
1

cos2a ψ
− 2

cosa ψ
+ 1

1
cos2 ψ

− 1
=

(ρa − 1)2

ρ2 − 1
:= Y (ρ), ρ =

1

cosψ
.
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The function Y (ρ) is an increasing function in ρ for ρ ≥ 1. It is obvious that we
may consider a case of a sufficiently large. Thus,∣∣∣ pa − 1

p− 1

∣∣∣2 ≥ Y
( 1

cos π
2a

)
=

(
1

cosa π
2a

− 1
)2

tan2 π
2a

=

(
(1 + π2

8a2 + O(1)
a3 )a − 1

)2

π2

4a2 + O(1)
a3

=
π4

64a2 + O(1)
a3

π2

4a2 + O(1)
a3

=
π2

16
+

O(1)

a
.

Now let 0 ≤ ψ < π
2a . First, consider a function 1

y log cos(yψ) := V (y). It is a

decreasing function for 0 < y < π
2ψ . Indeed, this is equivalent to the inequality

− tanx · x− log cosx < 0, for 0 < x <
π

2
.

The function on the left is itself a decreasing function, with maximum value attained
at x = 0. Thus, V (1) ≥ V (a), which means cos aψ ≤ cosa ψ, and this gives∣∣∣ pa − 1

p− 1

∣∣∣2 ≥
1

cos2a ψ − 1
1

cos2 ψ − 1
≥ 1. �

Therefore, Lemma A.2 implies that the function p−1W−1
a ( p) is uniformly

bounded:

sup
a∈N,| p−2|≤1

| p−1W−1
a ( p)| = c < +∞.

This shows the validity of the following lemma (apart from a numerical bound,
which is the outcome of computer calculations).

Lemma A.3. One has

sup
| p−2|≤1,a∈N,|z−1|≤1

| p−1W−1
a ( p)z − 1| < 1.29.

A.3. Numerical values for the moments. Unfortunately, Corollary 1.4 is not
very useful in finding exact decimal digits of m2. In fact, the vector (m1,m2,m3, ...)
is the solution of an (infinite) system of linear equations, which encodes the func-
tional equation (6) (see [1], Proposition 6). Namely, if we denote cL =

∑∞
n=1

1
2nnL =

LiL(
1
2 ), we have a linear system for ms which describes the coefficients ms uniquely:

ms =

∞∑
L=0

(−1)LcL+s

(
L+ s− 1

s− 1

)
mL, s ≥ 1.

Note that this system is not homogeneous (m0 = 1). We truncate this matrix at
sufficiently high order to obtain float values. The accuracy of this calculation can
be checked on the test value m1 = 0.5. This approach yields (for the matrix of
order 325):

m2 = 0.2909264764293087363806977627391202900804371021955943665492+,

m3 = 0.1863897146439631045710466441086804351206556532933915498238+,

m4 = 0.1269922584074431352028922278802116388411851457617257181016+,
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with all 58 digits exact (note that 3m2−2m3 = 0.5). In fact, the truncation of this
matrix at an order 325 gives rather accurate values for mL for 1 ≤ L ≤ 125, well
in correspondence with an asymptotic formula [3]

mL = 4
√
4π2 log 2 · c0 · L1/4C

√
L +O(C

√
LL−1/4),(28)

where c0 =
∫ 1

0
2x(1− F (x)) dx = 1.030199563382+, C = e−2

√
log 2. The numerical

values for higher moments so obtained tend to deviate from this expression rather
quickly.

Kinney [16] proved that the Hausdorff dimension of growth points of ?(x) is equal
to

α =
1

2

(∫ 1

0

log2(1 + x) d?(x)
)−1

.

Lagarias [19] gives the following estimates: 0.8746 < α < 0.8749. Tichy and Uitz
[33] calculated α ≈ 0.875. Parad́ıs et al. [26] give the value α ≈ 0.874832. We have
(note that ?(1− x)+?(x) = 1):

A :=

∫ 1

0

log(1 + x) d?(x) =

∫ 1

0

log
(
1− 1− x

2

)
d?(x) +

∫ 1

0

log 2 d?(x)

= −
∞∑

L=1

1

L · 2L
∫ 1

0

(1− x)L d?(x) + log 2 = −
∞∑

L=1

mL

L · 2L + log 2.

Thus, we are able to present a much more precise result:

α =
log 2

2A
= 0.874716305108211142215152904219159757+

with all 36 digits exact. The author of this paper has contacted the authors of
[26] inquiring about the error bound for the numerical value of α they obtained. It
appears that for this purpose 10 generations of (2) were used. The authors of [26]
were very kind in agreeing to perform the same calculations with more generations.
Thus, if one uses 18 generations, this gives 0.874716 < α < 0.874719.

Additionally, the constant c0 in (28) is given by

c0 =

∫ 1

0

2x(1− F (x)) dx =
m(log 2)

2 log 2
=

1

2

∞∑
L=0

mL

L!
(log 2)L−1.

This series is fast convergent, and we obtain

c0 = 1.03019956338269462315600411256447867669415885918240+

A.4. Rational functions Hn(z). The following is MAPLE code for computing
rational functions:
Hn(z)=h[n] and coefficients
H′

n(0)=alpha[n] for 0 ≤ n ≤ 50.

> restart;

> with(LinearAlgebra):

> U:=50:

> h[0]:=1/(2-z):

> for n from 1 to U do

> j[n]:=1/2*simplify(

> add(unapply(diff(h[n-j],z$j),z)(2*z)*2/j!*(z^(j)),j=1..n)+
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> add(unapply(diff(h[n-j-1],z$j),z)(2*z)*1/j!*(z^(j)),j=1..n-1)+

> unapply(h[n-1],z)(2*z) ):

> k[n]:=simplify((z-1)^(n+1)*(unapply(j[n],z)(z)-

> unapply(j[n],z)(1/z)/z^2)):

> M[n,1]:=Matrix(n,n):M[n,2]:=Matrix(n,n): M[n,3]:=Matrix(n,n):

> for tx from 1 to n do for ty from tx to n do

> M[n,1][ty,tx]:=binomial(n-tx,n-ty)

> end do: end do:

> for tx from 1 to n do M[n,2][tx,tx]:=2^(n-tx) end do:

> for tx from 1 to n do M[n,3][tx,n+1-tx]:=2^(tx-1) end do:

> Y[n]:=M[n,1]-1/2^(n+1)*M[n,2]+(-1)^(n+1)/2^(n+1)*M[n,3]:

> A[n]:=Matrix(n,1):

> for tt from 1 to n do A[n][tt,1]:=coeff(k[n],z,n-tt) end do:

> B[n]:=MatrixMatrixMultiply(MatrixInverse(Y[n]),A[n]):

> h[n]:=add(z^(n-s)*B[n][s,1](s,1),s=1..n)/(z-2)^(n+1):

> end do:

>

> for n from 0 to U do alpha[n]:=unapply(diff(h[n],z$1),z)(0) end do;

It causes no complications to compute h[n] on a standard home computer for
0 ≤ n ≤ 60, though the computations heavily increase in difficulty for n > 60.

A.5. Rational functions Qn(z). This program computes Qn(z) =q[n] and the
values
Q′

n(−1) =beta[n] for 0 ≤ n ≤ 50.

> restart;

>q[0]:=-1/(2*z);

>N:=50:

>q[1]:=simplify(1/2*unapply(q[0],z)(-1)*(1-1/z^2)):

> for n from 1 to N do

> q[n]:=1/2*simplify(

> add(unapply(diff(q[n-j-1],z$j),z)(-1)/j!*(z^(j)-1/z^(j+2)),

> j=1..n-1)+

> unapply(q[n-1],z)(-1)*(1-1/z^2)

> ):

end do:

> for w from 0 to N do beta[w]:=unapply(diff(q[w],z$1),z)(-1) end do;
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Available at http://topo.math.u-psud.fr/ bousch (1993) (unpublished).

[8] N. Calkin, H. Wilf, Recounting the rationals, Amer. Math. Monthly 107 (4) (2000), 360-
363. MR1763062 (2001d:11024)
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[14] M. Kesseböhmer, B.O. Stratmann, Fractal analysis for sets of non-differentiability

of Minkowski’s question mark function; J. Number Theory 128 (9) (2008), 2663-2686.

MR2444218
[15] A. Ya. Khinchin, Continued fractions, The University of Chicago Press, 1964. MR0161833

(28:5037)
[16] J.R. Kinney, Note on a singular function of Minkowski, Proc. Amer. Math. Soc. 11 (5)

(1960), 788-794. MR0130330 (24:A194)
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