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TATE-SHAFAREVICH GROUPS AND K3 SURFACES

PATRICK CORN

Abstract. This paper explores a topic taken up recently by Logan and van
Luijk, finding nontrivial 2-torsion elements of the Tate-Shafarevich group of
the Jacobian of a genus-2 curve by exhibiting Brauer-Manin obstructions to
rational points on certain quotients of principal homogeneous spaces of the Ja-
cobian, whose desingularizations are explicit K3 surfaces. The main difference
between the methods used in this paper and those of Logan and van Luijk is
that the obstructions are obtained here from explicitly constructed quaternion
algebras, rather than elliptic fibrations.

1. Introduction

Let C be a curve of genus 2 over a number field k, with Jacobian J . In an effort
to describe the (finite) set C(k), we are led to the study of J(k). To determine its
rank, we refer to a well-known exact sequence

(1) 0 → J(k)/2J(k) → Sel(2)(k, J) → X(k, J)[2] → 0,

where the middle group is effectively computable. See [17] for a comprehensive de-
scription of the computation, which has been implemented in the computer algebra
system MAGMA ([2]).

So computing the group on the left is more or less equivalent to computing the
rather mysterious group on the right. In this paper, we find examples of curves
C over Q such that X(Q, J)[2] is nonzero, by finding explicit elements of this
group. Such elements can be represented by 2-coverings X of J which have points
everywhere locally but no k-points. The strategy, as in [12], is to prove that the
Hasse principle fails for X by exhibiting a Brauer-Manin obstruction to rational
points on the desingularization of the quotient X/ι, where ι is the involution on X
corresponding to multiplication by −1 on J . This desingularization is a K3 surface
which can be given explicitly as the smooth complete intersection of 3 quadrics in
P5.

The result is the following theorem.

Theorem 1.1. Let S be the set of primes splitting completely in a certain finite
extension K/Q (this extension is given explicitly in the statement of Proposition
5.3). For all n equal to the product of primes in S, the genus-2 curve

Cn : y
2 = n(x2 − 5x+ 1)(x3 − 7x+ 10)(x+ 1)

satisfies X(Q, Jac(C))[2] �= 0.
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The curve with n = 1 was originally obtained by a computer search over products
of polynomials of degrees 2, 3, 1 with small coefficients.

I thank Ronald van Luijk for introducing me to this topic and for many helpful
conversations. I would also like to thank Bjorn Poonen for several enlightening
comments, and in particular for the method of computing problematic smooth
places outlined in the proof of the main theorem. Finally I thank the anonymous
referee for his thoughtful comments and suggestions.

2. The Brauer-Manin obstruction

2.1. Generalities. First we briefly review the Brauer-Manin obstruction to the
Hasse principle. Let V be a smooth proper k-variety, k a number field. Then the
map V (Ak) →

∏
v V (kv) is a bijection ([16], pp. 98-99). We will suppose that this

set V (Ak) is nonempty.
For any scheme V we can define the Brauer group BrV = H2(Vet,Gm). If

Pv ∈ V (kv), functoriality gives an evaluation map BrV → Br kv; it is natural to
denote the image of an element A ∈ BrV by A(Pv). For an element A ∈ BrV ,
define the set

V (Ak)
A = {(Pv) ∈ V (Ak) :

∑
v

invv A(Pv) = 0},

where the sum is over all places v of k, and define

(2) V (Ak)
Br =

⋂
A∈BrV

V (Ak)
A.

Here invv : Br kv → Q/Z is an isomorphism if v is non-Archimedean, or the
injection 1

2Z/Z → Q/Z if kv = R, or the zero map if kv = C. Class field theory
shows that

V (k) ⊆ V (Ak)
Br ⊆ V (Ak),

so we say that V has a Brauer-Manin obstruction to the Hasse principle if V (Ak)
Br

is empty, so that V (k) is as well.
For many classes of varieties, it is believed that the Brauer-Manin obstruction

to the Hasse principle is “the only one”; that is, if V (Ak)
Br is nonempty, then so

is V (k). It is not known (even conjecturally) whether or not the Brauer-Manin
obstruction to the Hasse principle is the only one for K3 surfaces.

2.2. The key isomorphism. The map V → Spec k induces a map Br k → BrV ,
which is injective if V (Ak) is nonempty. Elements in the image of this map are
called constant algebras. Two elements of BrV which differ by a constant algebra
cut out the same subset of V (Ak), so the intersection (2) defining V (Ak)

Br need

only be taken over a set of representatives of
BrV

Br k
.

Proposition 2.1. For V a smooth projective geometrically integral k-variety, k a
number field, with V (Ak) �= ∅, there is an isomorphism

(3)
Br1 V

Br k
→ H1(k,PicV ),

where V = V ×k k and Br1 V = ker(BrV → BrV ) is the “algebraic part” of the
Brauer group.
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Proof. This is a standard consequence of the Hochschild-Serre spectral sequence;
see for instance [16], Corollary 2.3.9. �

It is, unfortunately, very difficult in general to compute the inverse of the iso-
morphism (3) explicitly. The crux of the computation is an explicit use of the fact

(due to Tate) that H3(k, k
∗
) = 0; that is, one must express an arbitrary 3-cocycle

with values in k
∗
as a coboundary. In the next section, we discuss one way around

this problem.

2.3. Quaternion algebras in Br1(V ). One common way of constructing explicit
elements of Br1(V ) is as follows:

Definition 2.2. For c ∈ k∗ and g ∈ k(V )∗, the quaternion algebra (c, g) is a four-
dimensional central simple k(V )-algebra with k(V )-basis 1, i, j, ij, satisfying i2 = c,
j2 = g, and ij = −ji.

Of course, quaternion algebras are quite general objects; the reason we study
the special quaternion algebras defined above is the following standard lemma:

Lemma 2.3. For c ∈ k∗ and g ∈ k(V )∗, a quaternion algebra (c, g) ∈ Br k(V ) is
in the image of the map BrV → Br k(V ) if and only if div(g) = D + σD, where
D is a divisor defined over k(

√
c) and σ is the nontrivial element of Gal(k(

√
c)/k).

It is a constant algebra if and only if div(g) = D′ + σD′, where D′ is a principal
divisor defined over k(

√
c).

Proof. See [8], Proposition 2.2.3 or [4], Proposition 4.17. �

Note that the quaternion algebra (c, g) will always split over the quadratic ex-
tension k(

√
c), so its image in H1(k,PicV ) will restrict to 0 in H1(k(

√
c),PicV ).

There is also a well-known formula for the local invariant of such a quaternion
algebra in BrV : for any point Pv ∈ V (kv), we have that

invv(c, g)(Pv) = [c, g(Pv)]v,

where [a, b]v is the Hilbert symbol of a, b ∈ k∗v expressed as an element of
1

2
Z/Z.

So [a, b]v = 0 if and only if x2 − ay2 − bz2 represents 0 in kv; otherwise, it equals
1/2.

Algorithm 2.4. Given a class of varieties over k, here is how we look for varieties
V in that class with quaternion algebras of the above type generating nonconstant
elements in Br1(V ):

(1) Find a Gk-invariant generating set Γ for PicV (possibly a subgroup of PicV
will work as well; see the comments).

(2) The action of the Galois group on Γ induces a map Gk → Aut(Γ). By
inflation-restriction, H1(k,PicV ) will be isomorphic to H1(H,PicV ),
where H is the image of Gk inside Aut(Γ). List the cohomology groups
H1(H,PicV ) for every subgroup H of Aut(Γ); these are the possibilities
for H1(k,PicV ).

(3) Search the subgroups of Aut(Γ) to find H such that H1(H,PicV ) = Z/2
but H1(H ′,PicV ) = 0 for some subgroup H ′ ⊂ H of index 2.

(4) Give conditions on V such that the image of Gk in Aut(Γ) equals H.
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(5) Let L be the fixed field of H ′. Use the equality H1(H,PicV ) = Z/2 to find
a nonzero divisor class d ∈ PicVL such that d + σd = 0 in PicVL, σ the
nontrivial element of Gal(L/k).

(6) Given d and L, find a divisor D defined over L whose class is d. (Such a
divisor is guaranteed to exist whenever V has points everywhere locally;
see [8], Proposition 1.3.4.) Then our quaternion algebra is (c, g), where
L = k(

√
c) and g is a function whose divisor is D + σD.

Comments on the algorithm: Carrying out step (1) requires that we know quite
a lot about the geometry of V . Even for general K3 surfaces, this is too hard. Some
previous attempts to carry out this algorithm explicitly have restricted themselves
to Del Pezzo surfaces (e.g. [8], [10], [9]), or special K3 surfaces such as diagonal
quartic hypersurfaces ([4]) or Kummer surfaces ([1]). As we will see, theK3 surfaces
we examine in this paper come equipped with a Gk-invariant set Γ of 32 lines
generating a subgroup of PicV which is free of rank 17. In general, we will want
PicV to have no 2-torsion; see the comments for Step (5).

In Step (3), we usually search for the largest possible such H, so that we can
study the broadest possible class of varieties V admitting a nonconstant quaternion
algebra of the above type in Br1 V . The conditions on H and H ′ can be relaxed
somewhat if need be: what we are looking for is a subgroup H and an index-2
subgroup H ′ of H such that the restriction of some order-2 element of H1(H,PicV )
is zero in H1(H ′,PicV ). In practice, the largest such H and H ′ usually satisfy the
stronger conditions given in the algorithm.

We carry out Step (5) using the following procedure: let P = PicV . Then there
is an isomorphism

(P/2P )Gk

P
Gk

/2P
Gk

→ H1(k, P )[2]

sending a divisor class e representing an element of (P/2P )Gk to the class of the
cocycle cτ = 1

2 (τe − e) (cf. [9], Lemma 3.1; here cτ is well defined because P has

no 2-torsion). Since we have computed H1(k, P )[2], we can find a nontrivial cτ and
hence a nontrivial e. If this cocycle trivializes upon restriction to GL, then we can
find an e on the left defined over L, and then the divisor class d = 1

2 (σe−e) satisfies
d+ σd = 0 in PicVL.

Moreover, in this case, the class in Br1(V )/Br k of the quaternion algebra (c, g)
that we obtain at the end of the algorithm corresponds via the isomorphism (3) to
the class of the cocycle cτ , so if we know that this cocycle is not a coboundary, we
are guaranteed that the quaternion algebra we have found is nonconstant.

In practice, we usually write down conditions on V in Step (4) in such a way
that generically H1(k, P )[2] is nontrivial, because the image of Gk → Aut(Γ) is
the subgroup H we found in Step (3); but if the image of Gk → Aut(Γ) is strictly
contained in H, it might happen that the quaternion algebra (c, g) we construct is
constant.

If Γ generates a subgroup Q of P , then step (2) enumerates the possibilities
for H1(k,Q), and the rest of the algorithm constructs a quaternion algebra whose
corresponding cocycle in H1(k,Q) is not a coboundary. If Q is a proper subgroup
of P , then the restriction of this quaternion algebra to H1(k, P ) might be zero. So
in this case (and the problem case in the above paragraph), we will get a bona fide
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element of BrV from the above algorithm, but it will not furnish a Brauer-Manin
obstruction to rational points on V .

3. Genus-2 curves and K3 surfaces: A review of the theory

The material in this section is taken largely from [12].

3.1. Construction of the K3 surface. Let C be a genus-2 curve over a number

field k and let J be its Jacobian. We wish to associate, to an element δ ∈ Sel(2)(k, J),
a K3 surface Vδ with points everywhere locally, such that if δ is in the image of
J(k)/2J(k), then Vδ has a rational point.

Definition 3.1. For f(x) ∈ k[x] of degree 6, set Af = k[x]/(f(x)).

Definition 3.2. For any δ ∈ A∗
f , define

Vf,δ = {q ∈ Af : δq
2 ≡ quadratic mod f}.

If we write q(x) =
∑5

i=0 aix
i, then q lies in Vf,δ if and only if the coefficients

of x3, x4, and x5 in δq2 all vanish. Considered as polynomials in the ai, these
coefficients C3, C4, C5 are homogeneous of degree 2.

Definition 3.3. For δ ∈ A∗
f , define Vδ to be the variety in P5 consisting of points

(a0 : · · · : a5) such that
∑5

i=0 aix
i ∈ Vf,δ. One shows ([12], Proposition 2.1.2) that

Vδ is a smooth complete intersection of the three quadrics C3, C4, C5, which makes
it a K3 surface of degree 8.

Let Hf be the kernel of the norm map A∗
f/(A

∗
f )

2k∗ → k∗/(k∗)2 (which is well

defined because the degree of f is even). Then Lemma 5.1 of [17] describes a map
∆k : J(k)/2J(k) → Hf whose kernel has order 1 or 2; as usual, it is induced from

the homomorphism Div0⊥(C)(k) → A∗
f defined by P 	→ x(P ) − x, where Div0⊥(C)

consists of divisors whose support is disjoint from that of div(y). In addition, the
lemma gives necessary and sufficient conditions under which the kernel will have
order 1. It suffices, for instance, for f to have a factor of odd degree. (See Theorem
13.2 of [15] for a generalization.) Following section 5 of [17], we say that “k satisfies
condition (‡)” (thinking of f as fixed) if the kernel has order 1.

If k satisfies condition (‡), we can identify Sel(2)(k, J) with the set of elements
of Hf whose images in Hf ⊗ kv lie in the image of ∆kv

for all places v of k.1

Henceforth, we will assume that k satisfies (‡), and we will think of Sel(2)(k, J)
as the subset of Hf described in the above paragraph. The goal is then to compute
that set and to look for elements in it which are not in the image of ∆k.

This is where the set Vf,δ comes in: Proposition 3.2.6 of [12] shows that if

δ ∈ Sel(2)(k, J) is in the image of ∆k, then there is a polynomial q ∈ Vf,δ. For
the sake of concreteness, we sketch the proof: δ will be congruent mod (A∗

f )
2k∗ to

(x(P1) − x)(x(P2) − x) for some pair of points P1, P2 ∈ C(k) that are either both
defined over k, or defined and conjugate over a quadratic extension of k. We restate
this fact:

1In general, this set is known as the “fake 2-Selmer group,” but it is isomorphic with the
2-Selmer group if k satisfies condition (‡); see [17], section 5.
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Proposition 3.4. Let C be a genus-2 curve given by y2 = f(x), f(x) ∈ k[x] of

degree 6, and let J be its Jacobian. Suppose that k satisfies (‡). If δ ∈ Sel(2)(k, J)

is in the image of the map J(k)/2J(k) → Sel(2)(k, J) from (1), then the K3 surface
Vδ has a rational point.

We can view this result from another perspective as well: elements δ ∈
Sel(2)(k, J) correspond to 2-coverings Xδ of J , which are twists of J equipped with
a map π : X → J defined over k which is a twist of multiplication by 2 on Jk. Such
2-coverings inherit an involution defined over k descending from multiplication by
−1 on J . Then the surface Vδ is the minimal nonsingular model of the quotient of
Xδ by this involution. (It is a twist of the desingularized Kummer surface of J ; cf.
Chapter 16 of [7].)

The element δ comes from J(k)/2J(k) if and only if Xδ is the trivial twist of J ,

which happens if and only if Xδ(k) is nonempty. But since δ ∈ Sel(2)(k, J), we must
have that Xδ(kv) is nonempty for all places v of k. Certainly if Xδ has a point in
some field K, then Vδ will have a point in K as well. So Vδ has points everywhere
locally, and Vδ(k) = ∅ will imply that Xδ(k) = ∅ and hence that δ does not come
from J(k)/2J(k), which is the same as saying that it maps to a nontrivial element
of X(k, J)[2].

Remark 3.5. It may be true that Xδ(k) is empty while Vδ(k) is nonempty; since
Xδ is really the surface in whose rational points we are interested, one might hope
to work directly with it instead of Vδ. Of course, the reason we do not do this is
that the usual explicit description of Xδ is as an intersection of 72 quadrics in P15

(just as it is for the Jacobian itself; see [7], Chapter 2 for the construction).

Remark 3.6. If f(x) has a k-rational root, we can find a model C ′ for C of the
form w2 = g(u), deg g = 5. If we carry through the above constructions in Ag

instead of Af , we get a smooth complete intersection of two quadrics in P4, which

is a Del Pezzo surface Wβ of degree 4, where β is the element of Sel(2)(k, JacC ′)
corresponding to δ (see [6] and [3]). We will see later that Vδ is a double cover of
Wβ . Then, just as in the previous remark, it may be true that Wβ(k) is nonempty
while Vδ(k) is empty; in fact, this happens for the curve given in Theorem 1.1
(assuming that the Brauer-Manin obstruction to the Hasse principle is the only
one for Del Pezzo surfaces).

3.2. The 32 lines and PicVδ. Here we review the construction of the 32 lines on
PicVδ and analyze the structure of PicVδ as a Gk-module. The ideas are taken
from [12], but the notation will be different.

For δ ∈ A∗
f , let r1, . . . , r6 be the roots of f in k. Fix a choice of square roots zi

of δ(ri) in k.
For an element s = (s1, . . . , s6) ∈ (Z/2)6, define γs to be the unique degree-5

polynomial satisfying γs(ri) =
(−1)si

zi
for 1 ≤ i ≤ 6. Now define

Ls = {γs(x)(tx+ u) : t, u ∈ k}
and notice that δ(x)q(x)2 ≡ (tx+u)2 mod f , for any q(x) ∈ Ls. The projectivization
(as in Definition 3.3) of Ls is a line Ls on Vδ. Notice that if s+ s′ = (1, 1, 1, 1, 1, 1),
we have that γs = −γs′ , so Ls = Ls′ . Thus we have 32 lines Ls indexed by elements
of (Z/2)6/〈(1, 1, 1, 1, 1, 1)〉.
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It is not hard to determine the intersection pairing as applied to the subgroup
generated by these lines in PicVδ; one obtains

Ls1 · Ls2 =

⎧⎪⎨
⎪⎩
−2 if s1 and s2 differ in 0 or 6 places,

1 if s1 and s2 differ in 1 or 5 places,

0 otherwise.

The first line follows by the adjunction formula for K3 surfaces, and the second
and third lines follow by direct calculations. From these intersection numbers we
obtain

Proposition 3.7 ([12], Proposition 2.1.21). The classes of the 32 lines on Vδ

generate a subgroup of PicVδ isomorphic to Z17.

Remark 3.8. In the generic case this subgroup equals all of PicVδ (Proposition
2.1.30 of [12]). As noted above, even if Vδ is not generic, we can still use the sub-
group Q generated by the classes of the lines to give us an element of H1(k,PicVδ),
using the natural map H1(k,Q) → H1(k,PicVδ.

4. The algorithm for Vδ

Viewed in terms of Algorithm 2.4, the end of the previous section carries out
Step (1) for the class of varieties of the form Vδ; then Γ is in our case the set of
32 lines on Vδ defined earlier. We proceed to carry out the remaining steps of the
algorithm.

Let GΓ be the group (Z/2)6/〈(1, 1, 1, 1, 1, 1)〉 indexing the 32 lines. Then, by
a straightforward analysis of the intersection pairing on Γ (which is Proposition
2.2.11 of [12]), Aut(Γ) is isomorphic to GΓ � S6, where the symmetric group acts
on GΓ by permuting indices (which corresponds to permuting the square roots zi
of δ(ri)), and GΓ acts on itself by addition.

For δ ∈ Sel(2)(k, J), the image of Gk → Aut(Γ) must lie in a subgroup of
index 2 inside Aut(Γ), because the norm of δ is required to be a square in k (the
2-Selmer group is a subgroup of the kernel Hf of the norm map). Indeed, this
index-2 subgroup is the semi-direct product of S6 with the index-2 subgroup of GΓ

of elements whose sum is 0. This is a group G of order 11520 which acts on Z17 in a
prescribed way. MAGMA can enumerate its subgroups H and compute H1(H,Z17)
for each one. This is Step (2).

We look in Step (3) for maximal subgroups H of G such that H1(H,Z17) = Z/2
and H1(H ′,Z17) = 0 for some index-2 subgroup H ′ ⊂ H. MAGMA finds two
conjugacy classes of such subgroups. One class consists of subgroups of order 96;
the other consists of subgroups of order 128. Here we exhibit a Brauer-Manin
obstruction coming from the first conjugacy class; presumably we could use the
same techniques to try to find one coming from the second class.

4.1. The subgroup H96 and the shape of f(x). Consider polynomials f(x) of
the shape

f(x) = f2(x)f3(x)(x− r6),

where fi is an irreducible polynomial of degree i. (Note that condition (‡) is auto-
matic, since f has a factor of odd degree.) Let C be the genus-2 curve y2 = f(x).
Pick the ordering of the roots of f that lists the two roots of f2, then the three roots

of f3, then r6. Suppose also that δ ∈ Sel(2)(k, J) satisfies the condition that δ(r1)
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is a square in Q(r1), where r1 is a root of f2(x). Then the image of Gk → Aut(Γ)
will sit inside the subgroup of GΓ � S6 generated by the elements

(0, 0, 1, 0, 0, 1), (0, 0, 1, 1, 1, 1), (12), (345), (34),

where the first two elements are in GΓ and the last three elements are permutations
in S6.

It is not hard to check that this is a subgroup H96 of order 96. If we define H48 to
be the index-2 subgroup consisting of elements which leave z6 =

√
δ(r6) unchanged,

then MAGMA computes that H1(H96,Z
17) = Z/2 and H1(H48,Z

17) = 0.
Now let us see where the nontrivial element of H1(H96,Z

17) comes from: set

d =
(
�(0,0,0,1,1,0) + �(0,0,0,1,1,1)

)
−
(
�(0,0,1,0,0,0) + �(0,0,1,0,0,1)

)
,

where �s is the divisor class of Ls. One computes that σd = d for all d ∈ H48, and
σd = −d for all σ ∈ H96 \H48. So d is the divisor class we referred to in Step (5)
of Algorithm 2.4.

Now the fixed field of the intersection of H48 with the image of Gk → Aut(Γ)

will be L = k(
√
δ(r6)). The remaining step in the algorithm is to find a divisor

D ∈ Div(Vδ)L whose divisor class is d. Of course we will have to use the fact that Vδ

has points everywhere locally. The easiest way to solve this computational problem,
generally speaking, is to reduce it to solving a certain norm equation which we are
guaranteed has a solution by the Hasse Norm Theorem. We now show how this
can be accomplished for Vδ.

4.2. The divisor D and the quaternion algebra. The strategy is to take a
divisor E in the class of d defined over a higher-degree extension of k, and then
to subtract the divisor of a judiciously chosen rational function to E in order to
obtain a divisor defined over L. That is, we want

τ (E − (h)) = E − (h) for all τ ∈ GL.

Here we begin with

E =
(
L(0,0,0,1,1,0) + L(0,0,0,1,1,1)

)
−
(
L(0,0,1,0,0,0) + L(0,0,1,0,0,1)

)
.

The stabilizer H12 of the divisor E (not its class) in H96 is generated by (0, 0, 1, 1,
0, 0) · (34), (12), (45). It has order 12 and index 4 in H48. We wish to find a
function (h) such that E − (h) is fixed by H48. That is, for all τ ∈ H48, we want
E − τE = div(h/τh).

There are four left cosets of H12 in H48, and we first identify what the divisor
of h/τh must be for τ in each coset. For ease of notation, we identify an element

s ∈ GΓ with the binary number
∑6

i=1 2
6−isi. So, in this notation,

E = L6 + L7 − (L8 + L9).
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So we get

τ ∈ H12 ⇒ div(h/τh) = 0,

τ ∈ (0, 0, 1, 1, 0, 0)H12 ⇒ div(h/τh) = L4 + L5 + L6 + L7

− (L8 + L9 + L10 + L11),

τ ∈ (0, 0, 0, 1, 1, 0)H12 ⇒ div(h/τh) = L6 + L7 + L14 + L15

− (L0 + L1 + L8 + L9),

τ ∈ (0, 0, 1, 0, 1, 0)H12 ⇒ div(h/τh) = L2 + L3 + L6 + L7

− (L8 + L9 + L12 + L13).

Proposition 4.1. Fix an index set I = i1, i2, i3 ∈ {1, 2, 3, 4, 5, 6}. Fix a sequence
B = (b1, b2, b3) ∈ Z/2. Let EI,B be the sum of the eight lines Ls, s ∈ GΓ, where
sij = bj. Then EI,B is a hyperplane section.

Proof. This is a restatement of Lemma 2.1.24 in [12]. �
The point of this proposition is that we can write the above divisors as differences

of hyperplane sections. For 3 ≤ i ≤ 6, define pi to be a linear polynomial cutting
out E{1,2,i},{0,0,0}, and define qi to be a linear polynomial cutting out E{1,2,i},{0,0,1}.
Then we see that

L4 + L5 + L6 + L7 − (L8 + L9 + L10 + L11) = div

(
p3
p4

)
,

L6 + L7 + L14 + L15 − (L0 + L1 + L8 + L9) = div

(
q5
p4

)
,

L2 + L3 + L6 + L7 − (L8 + L9 + L12 + L13) = div

(
p3
p5

)
.

Next we consider certain conditions on the pi and qi, which have so far only been
defined up to scalar multiples. In the two propositions that follow, we show first
that these conditions are sufficient to construct an explicit divisor in the divisor
class of E which is defined over L, and then we verify that we can always find pi
and qi satisfying these conditions.

Condition 1. We wish to choose pi and qi to have coefficients in k(r1, zi, z6) and
to be defined so that (0, 0, 1, 1, 1, 1)pi = qi. This condition will be immediate from
the construction of the pi and qi we will outline below.

Condition 2. We wish to choose pi and qi so that σpi = pj and σqi = qj if
σ ∈ H96 ∩ S6 sends i to j, and so that

τpi =

{
pi if τ ∈ H96 ∩GΓ has a 0 in the ith spot,

qi if τ ∈ H96 ∩GΓ has a 1 in the ith spot.

This condition is easy to satisfy, as we will shortly see.

Condition 3. We also want that piqi = pjqj for 3 ≤ i, j ≤ 5. This condition is
more difficult to ensure; we will need to use the fact that Vδ has points everywhere
locally.

Proposition 4.2. Suppose that pi and qi satisfy Conditions 1,2,3. Let

h = 1 +
p3
p4

+
q5
p4

+
p3
p5

.
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Then the divisor E − (h) is defined over the field L = k(z6).

Proof. By condition 1, the rational function h is defined over the field k(r1, z3,
z4, z5). Note that z6 is automatically contained in this field extension because
of the requirement that the product of the zi is in k (and the requirement that
z1 ∈ k(r1)). The Galois group of this field extension is a subgroup of H96. So we
must only show that E − τE = div(h/τh) for every τ ∈ H48.

First we show that τh = h for τ ∈ H12. Clearly this is the case for τ = (12).
Now

(45)h = 1 +
p3
p5

+
q4
p5

+
p3
p4

= 1 +
p3
p5

+
p4
q5

+
p3
p4

= h

and

((0, 0, 1, 1, 0, 0) · (34))h = (0, 0, 1, 1, 0, 0)

(
1 +

p4
p3

+
q5
p3

+
p4
p5

)

= 1 +
q4
q3

+
q5
q3

+
q4
p5

= 1 +
p3
p4

+
p3
p5

+
p4
q5

= h.

So div(h/τh) depends only on the left coset of H12 to which τ belongs. In the
computations that follow, it will help to note that

h =
p4p5 + p3p5 + p3p4 + p5q5

p4p5

and to notice that the numerator is invariant under permutations of the coordinates
3, 4, 5, by Condition 3. So we are reduced to three computations:

h

(34)h
=

p3p5
p4p5

=
p3
p4

,

h

(0, 0, 0, 1, 1, 0)h
=

(p4p5 + p3p5 + p3p4 + p5q5)q4q5
(q4q5 + p3q5 + p3q4 + p5q5)p4p5

=
q5
p4

(p4q4)p5 + p3q4p5 + (p4q4)p3 + (p5q5)q4
(p5q5)q4 + (p5q5)p3 + p3q4p5 + (p5q5)p5

=
q5
p4

(using Condition 3 several times),

h

(35)h
=

p4p3
p4p5

=
p3
p5

.

In each case, h/τh has the divisor we want. �

Proposition 4.3. In the above situation, we can construct functions pi and qi
satisfying Conditions 1, 2, 3.

Proof. Define

pi(a0, a1, a2, a3, a4, a5) =

5∑
j=0

(
rj1(r2 − ri)

z2zi
+

rj2(ri − r1)

ziz1
+

rji (r1 − r2)

z1z2

)
aj .

Define qi by replacing zi with −zi everywhere. We must now show that the inter-
section divisor of the hyperplane cut out by pi with Vδ is in fact E{1,2,i},{0,0,0}.
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To see this, let q(x) =
∑5

j=0 ajx
j , and suppose that q(rm) =

1

zm
(trm + u) for

m = 1, 2, i. Then

pi(a0, a1, a2, a3, a4, a5) =
q(r1)(r2 − ri)

z2zi
+

q(r2)(ri − r1)

ziz1
+

q(ri)(r1 − r2)

z1z2

=
1

z1z2zi
((r2 − ri)(tr1 + u) + (ri − r1)(tr2 + u) + (r1 − r2)(tri + u))

= 0.

Hence the lines whose classes appear in E{1,2,i},{0,0,0} all lie on the hyperplane cut
out by pi.

Similarly we can show that the intersection divisor of the hyperplane cut out
by qi with Vδ is E{1,2,i},{0,0,1}. Now Conditions 1 and 2 are immediate from the

construction of pi and qi. Note also that piqi actually has coefficients in k(z2i ), as it
is invariant under the transposition of the indices 1, 2 as well as the map zi 	→ −zi.

Now we must arrange for Condition 3 to hold by multiplying the p’s and q’s by

suitable constants. For 3 ≤ i ≤ 6, consider the rational function
piqi
p6q6

on V . Note

that its divisor is 0, so it is a nonzero constant ui. To evaluate this constant, let
Pv ∈ V (kv) be a point not in the support of this rational function, and note that

ui =
pi(Pv)qi(Pv)

p6(Pv)q6(Pv)
=

av
bv

,

where av is a norm from kv(zi) to kv(z
2
i ) and bv is a norm from kv(z6) to kv.

Lemma 4.4 ([13], VIII.1.11). Let k be a field of characteristic �= 2. An element

c ∈ k∗ is the product of a norm from k(
√
a) and a norm from k(

√
b) if and only if,

as an element of k(
√
ab), it is a norm from k(

√
a,
√
b).

Let Li = k(z2i ). For any place w of Li, the expression ui = av(1/bv) exhibits
ui ∈ Li as the product of a norm from (Li)w(zi) and a norm from (Li)w(z6). By
Lemma 4.4, we see that ui is a norm from (Li)w(zi, z6) to (Li)w(ziz6). By the
Hasse Norm Theorem, it follows that ui is a norm from Li(zi, z6) to Li(ziz6), say
of di ∈ Li(zi, z6). Let σ = (0, 0, 1, 1, 1, 1) ∈ GΓ. Then di(σdi) = ui, and if we let dj
be the image of di under an element of H96 ∩ S6, transposing i and j, we see that

piqi
pjqj

=
diσdi
djσdj

,

and thus if we replace pi by pi/di and qi by qi/(σdi), we have found functions
satisfying Condition (3). �

Once we have constructed h such that E−τE = div(h/τh), the rational function
g we want will be a function whose divisor is (E− (h))+σ(E− (h)), where σ is any
element of H96 \H48. The most convenient σ to choose is certainly (0, 0, 1, 1, 1, 1) ∈
GΓ, because σE = −E. Thus the rational function g we use is a function whose
divisor is −(h · (0, 0, 1, 1, 1, 1)h). We can drop the negative sign, since we have a
quaternion algebra, i.e. (c, g) = (c, 1/g). So we can take

g = h · (0, 0, 1, 1, 1, 1)h times a constant,

where we know that we will be able to find a constant so that g is invariant under
the action of the Galois group.
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Remark 4.5. It appears at first glance that g will always be a norm from k(z6) to
k, which would make the quaternion algebra we have constructed trivial in BrV .
But h is not itself defined over k(z6), so indeed this algebra is nontrivial in general.

Remark 4.6. Here is how we arrange for Condition 3 to hold in practice. We know
from the proof above that there are constants di ∈ k(zi, z6) (which are conjugate to
each other under the action of S3 on the indices 3, 4, 5) such that (pi/di)σ(pi/di) is
independent of i, for 3 ≤ i ≤ 5; here σ is the element (0, 0, 1, 1, 1, 1) ∈ GΓ sending
zi 	→ −zi for 3 ≤ i ≤ 6.

We consider the normal form Ni of piqi with respect to a Gröbner basis for the
ideal generated by the defining equations of Vδ. The normal form is a uniquely
determined representative of the equivalence class of piqi modulo this ideal; it is
clear from the construction of the normal form that the normal forms of piqi and
pjqj are permuted just as piqi and pjqj are, by the action of S3 on the indices. Fixing
a monomial appearing in Ni and calling its coefficient ci, we note that ci ∈ k(zi)
should satisfy

ci
cj

=
piqi
pjqj

=
Nσ(di)

Nσ(dj)
.

Note also that
Nσ(di)

ci
is independent of i, but since this quantity is in k(z2i , z6)

∗ for each i, it follows that
it lies in k(z6)

∗.
So we search for n ∈ k(z6)

∗ such that cin is a norm from k(zi, z6) to k(z2i , ziz6);
we are guaranteed that such n exist, and in practice we find them quickly (e.g.
using the NormEquation function in MAGMA).

In fact, in every explicit example that the author has written down, he has been
able to find a value of n lying in k∗, but the author does not know if it is always
possible to find n ∈ k∗ in general.

5. Proof of the main theorem

Theorem 5.1. Let C be the hyperelliptic curve y2 = (x2−5x+1)(x3−7x+10)(x+1).
Then X(Q, Jac(C))[2] = Z/2× Z/2.

Proof. Let J = Jac(C). Let f(x) be the sextic polynomial defining C. First note
that it is easy to show that J(Q)/2J(Q) is a vector space over Z/2 of dimension at
least 2; the quadratic factor of f(x) gives a nontrivial 2-torsion element in J(Q),
and there is also an element of J(Q)/2J(Q) induced by the point in J(Q) coming
from the point (−1, 0) ∈ C(Q) (MAGMA checks easily that these elements are
distinct). According to Stoll’s algorithm from [17], now implemented in MAGMA

as TwoSelmerGroup, we can compute Sel(2)(Q, J), and we find that it is a vector
space over Z/2 of dimension equal to 4. (As remarked above, condition (‡) is
automatic because f has a factor of odd degree.) Moreover, since C has a rational
point, its Jacobian is even (in the language of [14]); that is, the order of X(Q, J)[2]
is a square. Hence it is either 1 or 4. So we need only exhibit one nontrivial element
of X(Q, J)[2] to complete the proof.

Define δ ∈ A∗
f by

(4) δ(x) = − 7

2965
(377x5 − 706x4 − 5200x3 + 2061x2 − 9086x− 12308).
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Then MAGMA shows that δ gives an element of Sel(2)(J). The K3 surface Vδ is
given by the vanishing of the polynomials

− 377a20 − 1604a0a1 − 4310a0a2 − 9600a0a3 − 14130a0a4 − 24100a0a5 − 2155a21

− 9600a1a2 − 14130a1a3 − 24100a1a4 + 3002a1a5 − 7065a22 − 24100a2a3

+ 3002a2a4 − 3752a2a5 + 1501a23 − 3752a3a4 + 380254a3a5

+ 190127a24 + 505356a4a5 + 2697585a25,

353a20 + 1053a0a1 + 3820a0a2 + 12135a0a3 + 16210a0a4 + 49701a0a5 + 1910a21

+ 12135a1a2 + 16210a1a3 + 49701a1a4 − 7880a1a5 + 8105a22 + 49701a2a3

− 7880a2a4 + 197631a2a5 − 3940a23 + 197631a3a4 − 507830a3a5 − 253915a24

+ 1686873a4a5 − 2233480a25,

1300a20 + 6321a0a1 + 17920a0a2 + 34505a0a3 + 63708a0a4 + 62335a0a5 + 8960a21

+ 34505a1a2 + 63708a1a3 + 62335a1a4 + 90560a1a5 + 31854a22 + 62335a2a3

+ 90560a2a4 − 243597a2a5

+ 45280a23 − 243597a3a4 − 202262a3a5 − 101131a24

− 3623209a4a5 − 1919025a25.

Since δ(r6) = −7, we will be using the Azumaya algebra (−7, g), where g is
constructed as in the previous section. (Notice that the nontrivial element of the
Galois group of Q(z6) sends z6 	→ −z6.) The denominator G of g, which is a
constant multiple of h · (0, 0, 1, 1, 1, 1)h, is p4p5q4q5. This is a constant multiple of
(p6q6)

2. Plugging in any point in V (kv) to (p6q6)
2 yields a norm from kv(z6) to

kv, so when we compute the invariant of g, we can ignore the contribution coming
from its denominator. The numerator is a homogeneous polynomial F of degree 4,
so we are reduced now to computing the expressions (−7, F (Pv))v for all places v
of Q and all points Pv ∈ V (kv). (The value F (Pv) is not invariant under projective
scaling of the coordinates of Pv, but since F has even degree, it is invariant modulo
squares. Thus we can use any choice of coordinates for Pv when we compute these
expressions.)

We have fixed G, but notice that g, and hence F , are only defined up to multi-
plication by a rational constant; call it c0. However, since

∑
v(−7, c0)v = 0, we are

guaranteed to get the correct invariant sum no matter which choice of F we make
(as long as this choice is uniform for all v).

Next we wish to compute the primes of bad reduction for Vδ, for the purposes
of invariant computations. This is a standard computation using the minors of the
matrix of partial derivatives; we can also note that the bad primes must divide the
discriminant of the minimal Galois extension over which all the lines are defined.
In our case, the bad primes are 2, 3, 7, 83, 739,∞. Note that if −7 is a square in Qp

we know automatically that the quaternion algebra (−7, F/G) will have constant
invariant 0 at p. So we do not have to analyze p = 2, 739.

These will not be the only primes to consider when we compute the possibilities
for invp A(Pp), Pp ∈ Vδ(Qp). Here we repeat a standard lemma that allows us to
restrict our consideration to a finite set of primes.

Lemma 5.2. Let V be a smooth projective geometrically integral k-variety, k a
number field, g ∈ k(V )∗, and let (L/k, g) be a quaternion algebra in BrV . Let v be
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a non-Archimedean place of k and suppose that v does not ramify in L and that V
has smooth reduction at v. Then invv(L/k, g)(Pv) is independent of the choice of
Pv ∈ V (kv).

Proof. See Lemma 8.4, [9]. �

So if p is not a bad prime for Vδ and p does not ramify in k(z6), then the
invariants of the quaternion algebra (δ(r6), g)(Pp) will be independent of the choice
of Pp. When will it be nonzero?

The proof of Lemma 8.4 of [9] implies that, if δ(r6) is not a square mod p, the
invariant of (δ(r6), g)(Pp) will equal mp/2 ∈ 1

2Z/Z, where mp is the integer such
that mpVp appears in the divisor of g (here Vp denotes the special fiber of the
smooth model V of Vδ over SpecZp).

Pick a point P ∈ Vδ(Q). Write g = F/G, where F and G are as above; they
are homogeneous polynomials in six variables with integer coefficients. Since G
is a norm from k(z6)(Vδ) to k(Vδ), we can ignore it for the purposes of invariant
computations. If there is a prime p over p not dividing F (P ), then Pp ∈ Vp(Fp) is
not in the support of g (or some rational function obtained from g by multiplying the
denominator by a norm from k(z6)(Vδ)), so the integer m must equal 0. So the set
of primes at which invp(δ(r6), g)(Pp) is not always 0, independent of Pp ∈ Vδ(Qp), is
contained in the union of the set of bad primes with the set of primes of Z dividing
N(F (P )), where N denotes the absolute norm down to Q.

This is true for all P , so after intersecting the set of prime divisors of N(F (P ))
for various P , we obtain the set

{5, 61, 347, 739, 3433, 4337, 6833, 663149189, 69804594311}

of primes p at which Vδ has smooth reduction but the integermp is possibly nonzero.
After throwing out the primes for which −7 is a square in Q∗

p, we get

{5, 61, 3433, 663149189}.

For each p in this set, we find that mp is odd. This is not hard to check: as the
invariant is constant, we need only lift one point not in the support of F/G in
Vδ(Qp) to high enough precision in order to evaluate F at it. Since the invariant
at each of these primes is 1/2 and there is an even number of them, their net
contribution to the sum is 0. So we obtain∑

v

invv(−7, F/G)(Pv) = inv3(−7, F/G)(P3) + inv7(−7, F/G)(P7)

+ inv83(−7, F/G)(P83) + inv∞(−7, F/G)(P∞).

To carry out the invariant computation at ∞, we first show that the value of the
function F on the points in Vδ(R) is either always positive or always negative. To
see this, consider the polynomial whose roots are ±z3,±z4,±z5; this polynomial
can be written as h(x2), where h(x) = x3 − 126x2 + 7938x + 250047. Notice that
h(x) has one real root, which is negative. Under any embedding of the splitting
field of h(x2) into C such that the image of z23 is the negative real root, the images
of z24 and z25 are distinct and conjugate. Choose such an embedding so that z4 and
−z5 are complex conjugates. Then consider the action of complex conjugation on
the pi and qi; we see that it sends p3 to q3 and vice versa, while it sends p4 to q5
and p5 to q4.
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Now F is a constant multiple of

(p3p5 + p3p4 + p4p5 + p3q3)(q3q5 + q3q4 + q4q5 + p3q3),

and if we plug in a point in Vδ(R) to both these factors, we see immediately that
we get the product of a complex number and its conjugate. So if we can show that
F is never zero on Vδ(R), we can deduce that it is either always positive or always
negative. It can be easily verified, either by plugging in a specific real-valued point
or noticing that F is actually a positive constant multiple of the above function,
that F is always positive. This shows that the invariant is actually zero.

To see that F never vanishes on Vδ(R), note that if F (P ) = 0 for some P ∈ Vδ(R),
then both factors of F vanish at P (since they are complex conjugates). So P lies
on the intersection of the K3 surface Vδ with the two hypersurfaces cut out by
the factors of F ; this intersection is zero-dimensional, and MAGMA computes that
there are no real points on it.

At 83 we note that there is one singular F83-valued point in the special fiber V83,
but it does not lift to any points mod 832. By a theorem of Bright ([5], Theorem
1), the invariant is constant above any smooth F83-point, so we need merely write
down all points in Vδ(F83), and lift each one to high enough precision in order to
evaluate F/G at it. (Hensel’s lemma guarantees that any lift of a smooth F83-point
to any larger finite field will lift to a Z83-point.) Doing this computation for each
of the 6960 smooth points in Vδ(F83), we find that each point has a lift P mod 835

such that the 83-adic valuation of F (P ) is either 2 or 4. The invariant at P is 0 or
1/2 depending on whether or not F (P ) has even or odd valuation, respectively; so
in all cases, we find that the invariant at 83 is zero.

At 7, we compute that V (F7) has 71 points. One of these points, Ps = (3: 6: 3 :
1 : 2 : 1), is singular, and the set

{P ∈ V (F7) : F (P ) = 0}

has 15 elements (including the singular point). For the other 56 points, we find
that F (P ) = 1, 2, or 4, which are the squares in F∗

7, so the invariant is zero at all
these points.

Again using Theorem 1 of [5], we find one lift P of each of the 14 remaining
nonsingular points in V (F7) to a point in V (Z7) (at least one of whose coordinates
is a unit; we will call such a P normalized) and compute F (P ) for each such lift. In
particular, we see that F (P ) ≡ 72, 2 · 72, or 4 · 72 mod 73 for each of these points,
so F (P ) is a square in Z7, so the invariant is zero at these points as well.

Above the point Ps, Bright’s theorem does not apply, and we must actually
consider all possible lifts of Ps to P ∈ V (Z7). A lengthy MAGMA computation
shows that for any such normalized P , F (P ) ≡ 2 · 74 mod 75, so once again the
invariant is zero at all these points, and hence the invariant is zero at all points in
V (Q7).

At 3, we compute that V (F7) has 40 points. All of them are singular, so Bright’s
theorem does not apply. A MAGMA computation similar to the one at 7 shows
that if P is any normalized point in V (Z3), v3(F (P )) = 5. So the invariant is 1/2
at all points in V (Q3).

Hence the sum
∑

invv A(Pv) is constant and equal to 1/2 for all (Pv) ∈ Vδ(AQ),

so Vδ(AQ)
Br = ∅, so Vδ(Q) = ∅. So δ ∈ Sel(2)(Q, J) maps to a nonzero element of

X(Q, J)[2]. �
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Proposition 5.3. Let n be a (positive) product of primes splitting completely in
the field

L(
√
2,
√
−739),

where L is the field of definition of the 32 lines of the curve C given above (so L
is the degree-96 splitting field of (x2 − 35x + 49)(x6 − 126x4 + 7938x2 + 250047)).
Then the Jacobian Jn of the curve given by

y2 = n(x2 − 5x+ 1)(x3 − 7x+ 10)(x+ 1)

satisfies X(Q, Jn)[2] �= 0.

Proof. Let f(x) = (x2 − 5x + 1)(x3 − 7x + 10)(x + 1). Again, condition (‡) is
automatic since f has an odd-degree factor. Note that Af = Anf . We show that
the element

δ = − 7

2965
(377x5 − 706x4 − 5200x3 + 2061x2 − 9086x− 12308)

lies in Sel(2)(Q, Jn). By Corollary 5.11 of [17], we must check this only at ∞, 2,
and primes p such that p2 divides the discriminant of nf(x). So we must check ∞,
2, 7, 739, and primes dividing n. At primes p dividing n, we actually show that the
image of δ lies in (A∗

nf )
2Q∗

p. Let r1 and r2 be the roots of x2 − 5x+ 1, let r3, r4, r5
be roots of x3 − 7x+ 10, and let r6 = −1. Consider the isomorphism

Anf → Q(r1)⊕Q(r3)⊕Q

given by g(x) 	→ (g(r1), g(r3), g(r6)). The image of δ under this isomorphism is

(δ(r1), δ(r3), δ(−1)) = (z21 , z
2
3 ,−7).

For primes p splitting completely in L, these three elements z21 , z
2
3 , and −7 are

actually in (Q∗
p)

2 (their square roots z1, z3, and z6 lie in L). So in fact the image

of g(x) lies in ((Anf ⊗ Qp)
∗)2, so it is zero in Hf ⊗ Qp; hence it is trivial in the

image of ∆Qp
.

At the primes p = ∞, 2, 7, 739, we notice that n is a square in Q∗
p; so the fact that

δ lies in ∆Qp
(Jn(Qp)/2Jn(Qp)) follows from the fact that it lies in ∆Qp

(J1(Qp)/

2J1(Qp)). So δ does indeed lie in Sel(2)(Q, Jn).
Finally, the associated surfaces Xδ and Vδ are the same for Jn as they are for J1;

since Xδ has no rational points, this shows as before that δ maps to a nontrivial
element of X(Q, Jn). This completes the proof. �

6. Connections with Del Pezzo surfaces of degree 4

In this section, we consider the odd-degree model C ′ of C obtained by sending
the rational point (−1, 0) to infinity. Its equation is

w2 = (7u2 − 7u+ 1)(16u3 − 4u2 − 3u+ 1),

via the change of variables w = y/(x+1)3, u = 1/(x+1). Here we prove a general
lemma about the relationship between these two curves.
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Lemma 6.1. Consider a hyperelliptic curve C1 over a number field k with equation

y2 = f5(x)(x− a).

Let C2 be the odd-degree model of this curve, given by the equation

w2 = u5f5

(
1

u
+ a

)
,

where w = y/(x−a)3, u = 1/(x−a). Let f(x) be the sextic polynomial defining C1

and g(u) the quintic polynomial defining C2. Let δ ∈ Sel(2)(k, JacC1), considered

as in [17] as a subgroup of A∗
f/(A

∗
f )

2k∗, and let β be an element in Sel(2)(k, JacC2),

considered as in [17] as a subgroup of A∗
g/(A

∗
g)

2. There is a natural isomorphism

Sel(2)(k, JacC1) → Sel(2)(k, JacC2); suppose it sends δ to β. Let Wβ be the inter-
section of two quadrics obtained as the projectivization of the set

Wg,β = {s(u) ∈ Ag : β(u)s(u)
2 ≡ quadratic (mod g)}

(cf. [6] and [3]). Then the K3 surface Vδ obtained from C1 is a double cover of Wβ,
which is a smooth Del Pezzo surface of degree 4. It ramifies over the projectivization
of

{s(u) ∈ Ag : β(u)s(u)
2 ≡ linear (mod g)}.

Proof. Note that k[x]/(f5(x)) ∼= k[u]/(g(u)). Now the Chinese Remainder Theorem
gives a natural isomorphism between A∗

f/(A
∗
f )

2Q∗ and Ag/(A
∗
g)

2, as the first group
is isomorphic to

(k[x]/f5(x))
∗ ⊕ k∗

squares · k∗
and the second group is isomorphic to

(k[u]/(g(u)))∗

squares
.

It is not hard to see that this isomorphism restricts to an isomorphism φ :

Sel(2)(k, JacC1) → Sel(2)(k, JacC2) (where these Selmer groups are realized, as in
[17], as subgroups of A∗

f/(A
∗
f )

2k∗ and Ag/(A
∗
g)

2, respectively). (As usual, condition

(‡) is immediate from the factorization of f .)
The fact that Wβ is a smooth Del Pezzo surface of degree 4 is Lemma 17 of [3].

Now suppose q ∈ Vf,δ, so that δq2 is congruent to a quadratic polynomial c mod f .
Let c1(u) = u2c(1/u+ a)/δ(a); then c1 is also quadratic. If β = φ(δ), then

β(u) ≡ u6δ(1/u+ a)/δ(a) mod (A∗
g)

2,

and if we choose this representative polynomial for the class of β, we see that the
polynomial s(u), defined by the formula

(5) s(u) ≡ u−2q(1/u+ a) mod g(u),

is in Wg,β , because β(u)s(u)2 ≡ c1(u) (mod g(u)). Note that s(u) is well defined,
because u is invertible mod g(u).

So (5) gives a map Vf,δ → Wg,β , which induces a map Vδ → Wβ . Now consider
s(u) ∈ Wg,β , and suppose that βs2 ≡ c1 mod g. Let r1, . . . , r6 be the roots of f in

k, where r6 = a. Now q ∈ Vf,δ maps to s if and only if

q(ri) =
1

(ri − a)2
s

(
1

ri − a

)
, 1 ≤ i ≤ 5.
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Note that the quadratic polynomial associated to q is c(x) = δ(a)(x− a)2c1(1/(x−
a)). So if q is to lie in Vf,δ, we must have that q(a)2 is the leading term of c1.
Generically there are two choices for the square root of this leading term (these
choices coincide when the leading term is 0). The result follows. �

As mentioned above, the lemma implies that if Wβ has a Brauer-Manin obstruc-
tion to rational points, then so does Vδ, and if Wβ fails the Hasse principle, then
so does Vδ. So the “K3 method” of exhibiting explicit elements of X[2] will work
whenever the “Del Pezzo method” of [6] and [11] works. (Of course, the K3 method
also works more generally; it applies to any genus-2 curve y2 = f(x), while the Del
Pezzo method works only for curves with odd-degree models. The example given
in [12] is an example of an application of the K3 method to a curve without an
odd-degree model.)

For the curve y2 = (x2−5x+1)(x3−7x+10)(x+1) and specific choice of δ given
in (4), this construction produces a Del Pezzo surface Wβ with points everywhere
locally. As it happens, however, Logan’s program for Del Pezzo surfaces ([11])
shows that Wβ has no Brauer-Manin obstruction to rational points. We expect
that it satisfies the Hasse principle as well (although the size of the coefficients in
the defining equations for Wβ precludes a successful search for rational points of
small naive height). In any case, this shows that the K3 method is in fact strictly
stronger than the Del Pezzo method, even in the case when both methods apply.
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