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CHOOSING THE CORRECT ELLIPTIC CURVE

IN THE CM METHOD

K. RUBIN AND A. SILVERBERG

Abstract. We give an elementary way to distinguish between the twists of
an ordinary elliptic curve E over Fp in order to identify the one with p+1−2U
points, when p = U2 + dV 2 with 2U, 2V ∈ Z and E is constructed using the
CM method for finding elliptic curves with a prescribed number of points. Our
algorithms consist in most cases of reading off simple congruence conditions
on U and V modulo 4.

1. Introduction

For various purposes, including elliptic curve primality proving and finding suit-
able elliptic curves for elliptic curve cryptography or for pairing-based cryptography,
one wants to find an elliptic curve E over some Fp with a given number N of points.
The standard way of doing this is the “CM method” ([1]; see also Chapter VIII of
[4] or IX.15 of [11]), a version of which proceeds as follows.

(1) Find U , V , and d such that p := U2+dV 2 is prime andN = p+1−2U , with
d a squarefree positive integer, and U and V integers if d ≡ 1 or 2 (mod 4)
and half-integers if d ≡ 3 (mod 4). (For now, assume for simplicity that
d �= 1, 3.)

(2) Compute the minimal polynomial of j(zd) (or some other suitable class
invariant) over Q, where zd is in the complex upper half-plane and Z+Zzd
is the ring of integers of Q(

√
−d), and find a root j of this polynomial in

Fp.
(3) Write down an elliptic curve E over Fp with j(E) = j. Then |E(Fp)| =

p+1−2εU with ε ∈ {±1}. If ε = 1, then E is the desired curve. If ε = −1,
the twist of E is the desired curve.

The sign ε determines whether the desired curve (with N points over Fp) is E or
its quadratic twist. A number of ad hoc methods have been used to compute ε. In
A.14.4.2 of IEEE 1363-2000: Standard Specifications For Public Key Cryptography
[17] (see also the implementation [31]), the method for distinguishing between the
two twists is to take one of them, choose a random point P on it, and compute
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NP . If NP = O (and (4U)P �= O), then |E(Fp)| = N as desired; if NP �= O, then
the twist of E has N points.

In this paper we give an easy way to determine ε, i.e., to decide whether the
desired curve is E or its twist. In most cases our algorithm is a simple test of
congruence conditions on U and V modulo 4.

The cases d = 1 and 3 date back to Gauss. Other individual values of d were
dealt with by a number of authors; see p. 349 of [25] for some of the relevant
references. The case where d is prime and d ≡ 3 (mod 4) was dealt with by Gross
[15, 14]. The case where d ≡ 3 (mod 4) and 3 � d (i.e., d ≡ 7 or 11 (mod 12)) was
dealt with by Stark [34].

Atkin and Morain discussed in [1] the case when the imaginary quadratic field
Q(

√
−d) has class number one (i.e., the cases dealt with by Gross in [14] and

d = 1, 2, 3) (see also [20]). They left the case where d ≡ 3 (mod 4) and the class
number of Q(

√
−d) is two as an open problem (see Conjecture 8.1 of [1]).

In [22, 23], a simple method is given for distinguishing the two twists that is
applicable in the case where d ≡ 3 (mod 8) and U, V /∈ Z. See [19] for other recent
work on this question. Morain [21] recently gave a way to distinguish between the
twists using congruence conditions in certain cases, for example in the case when 3
is not inert in the imaginary quadratic field and (2V )d is divisible by 3.

This paper settles the problem in full generality. In particular, we settle the
conjecture of Atkin and Morain, and our results apply to all squarefree d, and all
class numbers. In those cases where the methods of Gross or Stark apply, our
method is faster because we only need to check congruences on U and V (mod 4),
while they need to compute a Jacobi symbol modulo d.

Our algorithms for computing the sign ε are easy to implement. When d ≡ 3
or 2 (mod 4), determining ε, once a curve has been obtained by the CM method
above, consists of checking some congruences modulo 4, using our Algorithms 3.1
or 3.2. (Alternatively, if d ≡ 3 or 2 (mod 4), in Algorithms 3.1′ or 3.2′ one com-
putes a Jacobi symbol modulo d or d/2.) When d ≡ 1 (mod 4), a small amount
of additional computation is needed, in Algorithm 3.3. These computations are
simpler than the current methods, which require first computing a Jacobi symbol
and a square root modulo the large prime p, in order to find a point P on the curve,
and then computing NP .

We have posted PARI/GP [24] implementations of the algorithms at [27]. We
did not attempt to optimize our implementations.

We emphasize that our results do not speed up the most difficult part of the
CM method, which is computing the minimal polynomial in step (2) (nor the other
difficult steps of finding a representation p = U2 + dV 2 such that p+ 1− 2U = N
and d is small, and computing a root of the class polynomial modulo p). However,
it is standard to precompute class polynomials, and tables are even available online.
After tables of minimal polynomials for a desired range of d have been precomputed,
then our algorithms are faster than current methods.

As noted by the referee, state of the art CM method implementations use class
invariants of small height ([10, 9]; see also [35, 29, 13, 12, 30]). In [8], Enge carefully
computes the complexity of some class polynomial computations. Much work is
being done on finding better algorithms for computing Hilbert class polynomials
(i.e., the minimal polynomial for j(zd)); see for example [2, 5]. We leave open
the problems of modifying and improving the algorithms in this paper by using
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class invariants of smaller height, and of computing the complexity of optimized
algorithms and comparing them to the work of others.

Outline of the paper. In §2 we give some notation needed for our algorithms.
We state the algorithms in §3. Given a squarefree positive integer d, a prime p ≥ 5,
and half-integers U and V such that p = U2+dV 2, our algorithms output an elliptic
curve E over Fp such that |E(Fp)| = p+1− 2U . While the algorithms have simple
formulations and can be implemented in a straightforward way, without any deep
knowledge, they rely on our results in [26], which are based on deep results from the
theory of complex multiplication, including Shimura’s Reciprocity Law and work
of Rumely [28]. In §4 we state the results we need from [26] on counting points on
reductions of CM elliptic curves, and we sketch their proofs. In §5 we explain how
the correctness of our algorithms follows from the results stated in §4, and we give
examples in §6.

2. Notation

Throughout the paper we suppose d is a squarefree positive integer.
Let H denote the complex upper half-plane. Let

√
−d be the square root of −d

in H. Define zd ∈ H by the following table, depending on d (mod 8):

d (mod 8) 1, 2 or 5 3 6 7

zd
√
−d 3+

√
−d

2 3 +
√
−d −3+

√
−d

2

For z ∈ H, let Lz := Z+ Zz,

g2(z) := 60
∑

0�=ω∈Lz

ω−4 and g3(z) = 140
∑

0�=ω∈Lz

ω−6.

Let η denote the Dedekind eta function η(z) = e2πiz/24
∏∞

n=1(1− e2πinz) on H, and
define the Weber functions

γ2(z) := 12
g2(z)

(2πi)4η(z)8
and γ3(z) := −63

g3(z)

(2πi)6η(z)12
.

Let j(z) be the usual j-function. By Weber ([35]; see for example p. 326 of [30]),

(1) j(z) = γ2(z)
3 = 1728 + γ3(z)

2.

Recall that if E : y2 = x3 + ax+ b is an elliptic curve over Fp, then its quadratic

twist, which we will denote by E(c), is y2 = x3 + ac2x + bc3 for any non-square
c ∈ F×

p .

3. Algorithms

Throughout this section, the inputs are

• a prime number p ≥ 5,
• a squarefree positive integer d �= p, and
• U, V ∈ 1

2Z such that p = U2+dV 2. (If d ≡ 1 or 2 (mod 4), then necessarily
U, V ∈ Z.)
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The algorithms output an elliptic curve E over Fp such that |E(Fp)| = p+ 1− 2U .
Algorithms 3.1, 3.2, and 3.3 below cover the cases d ≡ 3, 2, 1 (mod 4), respec-

tively (excluding d = 1 and 3, which are treated separately in Algorithms 3.4 and
3.5). In each case the first step is the hard part of the CM method, namely, com-
puting a Hilbert class polynomial, and the second step is choosing a root mod p;
these are standard steps in the CM method. The new part is Step 3 (and Step 4
for Algorithm 3.3). Here, rather than finding a point on the curve and checking its
order, our algorithms for the most part use only elementary congruences.

Algorithms 3.1′ and 3.2′ are variants of Algorithms 3.1 and 3.2, replacing the
congruence conditions on U and V (mod 4) by a Jacobi symbol.

Algorithms 3.9 and 3.10 compute minimal polynomials of the appropriate class
invariants, which are used in Step 1 of each of the previous algorithms.

In §6 we give examples to illustrate the use of the algorithms.

Algorithm 3.1. Suppose d ≡ 3 (mod 4) and d �= 3.

Step 1. Compute the minimal polynomial f(w) ∈ Z[w] for γ3(zd)
√
−d, using Al-

gorithm 3.9 below.
Step 2. Compute a root β ∈ Fp of f(w) (mod p), compute α := −βV/U ∈ F×

p ,

compute δ := 1728 + α2 ∈ F×
p , and let E be the elliptic curve over Fp:

E : y2 = x3 − 27δ3x+ 54αδ4.

Step 3. If either:
(a) d ≡ 7 (mod 8) and U − V ≡ 1 (mod 4), or
(b) d ≡ 3 (mod 8) and

(b1) p ≡ U + V (mod 4) and 2U ≡ 0 (mod 2) , or
(b2) p ≡ 1 (mod 4) and 2U ≡ 3 (mod 4), or
(b3) p ≡ 3 (mod 4) and 2V ≡ 1 (mod 4),

then output E and terminate.
Step 4. Otherwise, find a non-square ν ∈ F×

p and output E(ν).

Note that U ∈ Z ⇐⇒ 2U ≡ 0 (mod 2) ⇐⇒ 2V ≡ 0 (mod 2).
Recall the Jacobi symbol

(
a
d

)
∈ {±1}.

Algorithm 3.1′. Suppose d ≡ 3 (mod 4) and d �= 3.

Step 1. Compute the minimal polynomial f(w) ∈ Z[w] for γ3(zd)
√
−d, using Al-

gorithm 3.9 below.
Step 2. Compute a root β ∈ Fp of f(w) (mod p), compute δ := 1728−β2/d ∈ F×

p ,
and let E be the elliptic curve over Fp:

E : y2 = x3 + 27δ3dx− 54βδ4d.

Step 3. If
(
4U
d

)
= 1, then output E and terminate.

Step 4. Otherwise, find a non-square ν ∈ F×
p and output E(ν).

Algorithm 3.2. Suppose d ≡ 2 (mod 4).

Step 1. Compute the minimal polynomial f(w) ∈ Z[w] for γ3(zd)
√
d, using Algo-

rithm 3.9 below.
Step 2. Compute a root β ∈ Fp of f(w) (mod p), compute α := βV/U ∈ F×

p ,

compute δ := 1728− α2 ∈ F×
p , and let E be the elliptic curve over Fp:

E : y2 = x3 + 27δ3x− 54αδ4.
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Step 3. If V ≡ 1 or U − 1 (mod 4), then output E and terminate.
Step 4. Otherwise, find a non-square ν ∈ F×

p and output E(ν).

Algorithm 3.2′. Suppose d ≡ 2 (mod 4).

Step 1. Compute the minimal polynomial f(w) ∈ Z[w] for γ3(zd)
√
d, using Algo-

rithm 3.9 below.
Step 2. Compute a root β ∈ Fp of f(w) (mod p), compute δ := 1728+β2/d ∈ F×

p ,
and let E be the elliptic curve over Fp:

E : y2 = x3 − 27δ3dx− 54βδ4d.

Step 3. Let d′ = d/2. If either:
(a) d ≡ 2 (mod 8) and

(
U
d′

)
= (−1)(U−1)/2(−1)(p−1)(p+d+3)/16, or

(b) d ≡ 6 (mod 8) and
(
U
d′

)
= (−1)(p−1)(p+d+11)/16,

then output E and terminate.
Step 4. Otherwise, find a non-square ν ∈ F×

p and output E(ν).

Algorithm 3.3. Suppose d ≡ 1 (mod 4) and d �= 1.

Step 1. Compute the minimal polynomial f1(w) + f2(w)
√
d for j(zd) over Q(

√
d),

with 2f1, 2f2 ∈ Z[w], using Algorithm 3.10 below.
Step 2. Compute:

a square root δ of d in Fp,
a root β ∈ Fp of f1(w) + δf2(w) (mod p),
α := β − 1728 ∈ F×

p ,

η := α(p−1)/4 ∈ F×
p ,

and let E be the elliptic curve over Fp:

E : y2 = x3 − 27β3αx+ 54β4α2.

Step 3. If V is even, let ε ∈ {±1} be such that ε ≡ η (mod p). Then:
Step 3a. If U ≡ ε (mod 4), then output E and terminate.
Step 3b. Otherwise, find a non-square ν ∈ F×

p , output E
(ν), and terminate.

Step 4. If V is odd, compute ι := δV/U ∈ F×
p .

Step 4a. If either:
(i) η = ι and V ≡ 3 (mod 4), or
(ii) η �= ι and V ≡ 1 (mod 4),

then output E and terminate.
Step 4b. Otherwise, find a non-square ν ∈ F×

p and output E(ν).

For completeness we include the cases d = 1 and 3 below, which are essentially
due to Gauss.

Algorithm 3.4. Suppose d = 1. For a ∈ F×
p , let Ea be y2 = x3 − ax.

Step 1. If U is odd and U − 1 ≡ V (mod 4), output E1 and terminate.
Step 2. If U is odd and U−1 �≡ V (mod 4), output Ea, where a ∈ Fp is any square

that is not a fourth power (i.e., a(p−1)/4 = −1 in Fp), and terminate.
Step 3. If U is even, replace V by −V if necessary to ensure that V − 1 ≡ U

(mod 4). Output Ea, for any a ∈ Fp satisfying a(p−1)/4 ≡ U/V (mod p).

Algorithm 3.5. Suppose d = 3. For b ∈ F×
p , let E(b) be y2 = x3 + b.

Step 1. If 2V ≡ 0 (mod 3) and 2U ≡ 2 (mod 3), output E(16) and terminate.
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Step 2. If 2V ≡ 0 (mod 3) and 2U ≡ 1 (mod 3), output E(16b), where b ∈ F×
p is

any cube that is not a square (i.e., b(p−1)/6 = −1 in Fp), and terminate.
Step 3. If 2V �≡ 0 (mod 3), replace V by −V if necessary to ensure that 2V ≡ 1

(mod 3). If 2U ≡ 2 (mod 3), output E(16b) for any b ∈ Fp satisfying

b(p−1)/6 ≡ 2U/(3V − U) (mod p) and terminate.
Step 4. Otherwise, output E(16b) for any b ∈ Fp satisfying b(p−1)/6 ≡ 2U/(3V +U)

(mod p).

Remark 3.6. While the CM method always has versions of Steps 1 and 2 of the
algorithms above, the curves we define in Step 2 are different from those considered
by others; this choice is one reason we are able to cover all (squarefree) d.

Remark 3.7. In Algorithms 3.1 and 3.2, determining the sign ε ∈ {±1} such that
|E(Fp)| = p + 1 − 2εU is a simple matter of checking the congruence classes of U
and V (mod 4). This easy check replaces the elliptic curve point multiplication or
point counting that would otherwise be used to determine ε. In Algorithm 3.3, a
small amount of additional computation is required.

Remark 3.8. In Algorithms 3.1′ and 3.2′ we replace the congruence conditions on
U and V (mod 4) by a Jacobi symbol modulo d or d/2. This seems less efficient
than Algorithms 3.1 and 3.2, but still better than point counting or elliptic curve
multiplication. The algorithms in [34] and [1] are special cases of Algorithm 3.1′.

The following two algorithms compute the minimal polynomial of the appropriate
class invariant in Algorithms 3.1 through 3.3. These are modifications of standard
algorithms (see [1]).

Algorithm 3.9. The input is a squarefree positive integer d ≡ 2 or 3 (mod 4).
The output is the monic irreducible polynomial f(w) ∈ Z[w] that has γ3(zd)

√
−d or

γ3(zd)
√
d, respectively, as a root, when d ≡ 3 or 2 (mod 4), respectively.

Step 1. Define integers D,B,N depending on d (mod 8), by the following table:

d (mod 8) 2 3 6 7

D −4d −d −4d −d

B 0 −3 −6 3

N 4 2 4 2

and use Algorithm 5.3.5 of [6] to compute a list Q1, Q2, . . . , Qh of all re-
duced binary quadratic forms of discriminant D.

Step 2. For 1 ≤ k ≤ h, modify the quadratic form Qk = AkX
2 + BkXY + CkY

2

sequentially as follows.
Step 2a. If Ak is even and BkCk is odd, replace (Ak, Bk, Ck) by (Ak, Bk +

2Ak, Ck + Bk +Ak).
Step 2b. If Ak is even, replace the triple (Ak, Bk, Ck) by (Ak +Bk +Ck, Bk +

2Ck, Ck).
Step 2c. Let µ be the remainder of (the integer) Ak(B −Bk)/2 on division by

N and replace the triple (Ak, Bk, Ck) by (Ak, Bk +2µAk, Ck +µBk +
µ2Ak).
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Step 3. With the modified triple (Ak, Bk, Ck), let τk be the unique root of AkX
2 +

BkX + Ck in H and let

f(w) =

⎧⎨
⎩

∏h
k=1

(
w − γ3(τk)

√
−d

)
if d ≡ 3 (mod 4),∏h

k=1

(
w − (−1)(Ak−1)/2γ3(τk)

√
d
)

if d ≡ 2 (mod 4).

Algorithm 3.10. The input is a squarefree positive integer d ≡ 1 (mod 4) such

that d �= 1. The output is f1, f2 ∈ 1
2Z[w] such that f1(w) + f2(w)

√
d is the monic

irreducible polynomial in Q(
√
d)[w] that has j(zd) as a root.

Step 1. Let D = −4d. Use Algorithm 5.3.5 of [6] to compute a list Q1, Q2, . . . , Qh

of all reduced binary quadratic forms of discriminant D.
Step 2. For 1 ≤ k ≤ h, modify the quadratic form Qk = AkX

2 + BkXY + CkY
2

sequentially as follows.
Step 2a. If Ak is even and BkCk is odd, replace (Ak, Bk, Ck) by (Ak, Bk +

2Ak, Ck + Bk +Ak).
Step 2b. Choose µ ∈ Z so that Ak + µBk + µ2Ck is relatively prime to D and

replace the triple (Ak, Bk, Ck) by (Ak +µBk +µ2Ck, Bk +2µCk, Ck).
Step 3. With the modified (Ak, Bk, Ck), let τk be the unique root of AkX

2+BkX+
Ck in H, let

g1(w) =
∏

(
d
Ak

)
= 1

(
w − j(τk)

)
and g2(w) =

∏
(

d
Ak

)
= −1

(
w − j(τk)

)
,

where
(

d
Ak

)
is the Jacobi symbol, and let f1 = (g1 + g2)/2 and f2 = (g1 −

g2)/(2
√
d).

4. Counting points on CM elliptic curves

Next we state the results we need from [26], in the special cases in which we use
them.

Throughout this section, suppose d is a squarefree positive integer and d �= 1, 3.
Let K = Q(

√
−d) and let H be its Hilbert class field. If F is a number field, let

OF denote its ring of integers. Note that OK = Z+Zzd; furthermore, O×
K = {±1}

since d �= 1, 3. Since OK = Z + Zzd, we have H = K(j(zd)) (see Theorem 5.7(iv)
of [32]).

In the next result, (i) follows from (1) and the well-known fact that j(zd) ∈ R,
(ii) and (iii) are Theorems 2 and 3 of [30], (iv) and (v) follow from the end of §6 of
[3], and i is the square root of −1 in H.

Lemma 4.1. (i) γ2(zd)
3, γ3(zd)

2 ∈ Q(j(zd)) = H ∩ R.
(ii) If 3 � d, then γ2(zd) ∈ Q(j(zd)) ⊂ H.
(iii) If d ≡ 3(mod 4), then Q(γ3(zd)

√
−d) = Q(j(zd)) and γ3(zd) ∈ H.

(iv) If d ≡ 2 (mod 4), then Q(γ3(zd)
√
d) = Q(j(zd)) ⊂ H and iγ3(zd) ∈ H.

(v) If d ≡ 1 (mod 4), then i ∈ OH .

Let µ4 denote the set of fourth roots of unity in C.
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Definition 4.2. Define a function εd : (OK/4OK)× → µ4 by the following tables.

If d ≡ 3 (mod 4):

λ3 (mod 4) 1,−
√
−d −1,

√
−d

εd(λ) 1 −1

If d ≡ 2 (mod 4):

λ (mod 4) 1,−1 + 2
√
−d,±1 +

√
−d −1, 1 + 2

√
−d,±1−

√
−d

εd(λ) 1 −1

If d ≡ 1 (mod 4):

λ (mod 4) 1, 1 + 2
√
−d 2 +

√
−d,

√
−d −1,−1 + 2

√
−d 2−

√
−d,−

√
−d

εd(λ) 1 i −1 −i

Definition 4.3. Suppose P is a prime ideal of H not dividing 2, and a ∈ OH is
prime to P. Let q = NH/Q(P). Define

(
a
P

)
2
to be the unique element of {±1} such

that
(
a
P

)
2
≡ a(q−1)/2 (mod P). If i ∈ H, define

(
a
P

)
4
to be the unique element of

µ4 such that
(
a
P

)
4
≡ a(q−1)/4 (mod P).

If P is a prime ideal of H, let FrP ∈ Gal(Q̄/H) denote a Frobenius of P, i.e.,
a Galois automorphism such that for some prime P̄ of Q̄ above P, αFrP ≡ αq

(mod P̄) for every algebraic integer α ∈ Q̄. If E is an elliptic curve over C and
N ∈ Z+, let E[N ] ⊂ E(C) denote the subgroup of points of order dividing N .

Definition 4.4. Suppose E is an elliptic curve over H with complex multiplication
by OK . Let B be the set of primes of H where E has bad reduction, and let I(B)
be the group of fractional ideals of H supported outside of B. If ω ∈ OK , let
[ω] ∈ End(E) denote the image of ω ∈ OK under the embedding OK ↪→ End(E).
The Hecke character of E over H is the unique character ψ : I(B) → K× such that
for every prime P of H where E has good reduction:

(i) ψ(P)OK = NH/K(P),
(ii) |E(OH/P)| = NH/Q(P) + 1− TrK/Q(ψ(P)), and

(iii) if N ∈ Z+, P � N , and t ∈ E[N ], then tFrP = [ψ(P)]t.

For basic properties of the Hecke character, see for example Chapter II of [33].
Thus to count points on E over the finite field OH/P we need only evaluate the

Hecke character ψ at P. The next theorem, on counting points on reductions of
elliptic curves with complex multiplication, is in Corollary 5.4 of [26]. In [26] we
dealt with elliptic curves with CM by any order in an imaginary quadratic field;
here we care only about maximal orders. (Note that D(τ ) of [26] is −d of this paper
when D(τ ) is odd and is −4d otherwise.)

Theorem 4.5. Suppose c ∈ OH , and suppose P is a prime ideal of H not dividing
6cj(zd)(j(zd)− 1728). Let λ ∈ OK be a generator of the principal ideal NH/K(P),
and let q = NH/Q(P).

(i) If d ≡ 3 (mod 4), then

E : y2 = x3 − c2
j(zd)

3

48
x+ c3

γ3(zd)j(zd)
4

864
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is an elliptic curve over H with good reduction at P, j(E) = j(zd), and

|E(OH/P)| = q + 1−
(

c
P

)
2
εd(λ)TrK/Q(λ).

(ii) If d ≡ 2 (mod 4), then

E : y2 = x3 + c2
j(zd)

3

48
x− c3

iγ3(zd)j(zd)
4

864

is an elliptic curve over H with good reduction at P, j(E) = j(zd), and

|E(OH/P)| = q + 1−
(

c
P

)
2
εd(λ)TrK/Q(λ).

(iii) If d ≡ 1 (mod 4), then

E : y2 = x3 − c2
j(zd)

3(j(zd)− 1728)

48
x+ c3

j(zd)
4(j(zd)− 1728)2

864

is an elliptic curve over H with good reduction at P, j(E) = j(zd), and

|E(OH/P)| = q + 1−
( c2(j(zd)−1728)

P

)
4
εd(λ)TrK/Q(λ).

Sketch of the proof. By Lemma 4.1, E is defined overH. The fact that j(E) = j(zd)
follows directly from the definition of j(E). In particular it follows that E is an
elliptic curve with complex multiplication by OK . The discriminant of E is c6j(zd)

8,
−c6j(zd)

8, and c6j(zd)
8(j(zd)−1728)3, respectively. Since P � cj(zd)(j(zd)−1728),

E has good reduction at P.
Let ψ be the Hecke character of E over H. By Definition 4.4(ii), it suffices to

compute ψ(P). For this computation we use a method of Rumely [28], which in
turn relies on Shimura’s Reciprocity Law (Theorem 6.31 of [32]). By Definition
4.4(iii), it suffices to compute the action of FrP on torsion points of E. We need to
make Theorem 1 of [28] explicit in the case of interest to us.

Let A be the following elliptic curve over C:

A : y2 = x3 − 1
4g2(zd)x− 1

4g3(zd).

Classical formulas show that j(A) = j(zd), and for every N ∈ Z+,

(2) A[N ] = {(℘(azd + b; zd),
1
2℘

′(azd + b; zd)) : a, b ∈ N−1Z/Z},
where ℘(u; zd) is the Weierstrass ℘-function for the lattice Lzd = Z + Zzd. Using
(1) we can show that the curve E in the statement of the theorem is the twist of A
by α(2πi)−2η(zd)

−4, where

α :=

⎧⎪⎨
⎪⎩
cγ2(zd)

4 if d ≡ 3 (mod 4),

ciγ2(zd)
4 if d ≡ 2 (mod 4),

cγ2(zd)
4γ3(zd) if d ≡ 1 (mod 4).

Let

xa,b(z) =
℘(az + b; z)

(2πi)2η(z)4
, ya,b(z) =

℘′(az + b; z)

2(2πi)3η(z)6
,

and ta,b = (αxa,b(zd), α
3/2ya,b(zd)). It follows from (2) that

E[N ] = {ta,b : a, b ∈ N−1Z/Z}.
Again using classical formulas (see §2.2 of [32]), for each fixed pair a, b ∈ N−1Z/Z,

the functions xa,b(z) and ya,b(z) are modular functions with Fourier coefficients in

Q(e2πi/N ). Therefore we can use Shimura’s Reciprocity Law (Theorem 6.31 of [32])
to compute xa,b(zd)

FrP and ya,b(zd)
FrP , i.e., to compute the action of FrP on the
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x and y coordinates of torsion points of E. Explicitly, following p. 392 of [28] we
can show that

t
FrP
a,b = [(α9/2)(FrP−1)ε̃d(λ)λ]ta,b,

where

ε̃d(λ) =

{
εd(λ) if d ≡ 1 or 3 (mod 4),

i3(q−1)/2εd(λ) if d ≡ 2 (mod 4).

Since this holds for all a, b as above, and t
FrP
a,b = [ψ(P)]ta,b by Definition 4.4(iii), it

follows that

ψ(P) = (α9/2)(FrP−1)ε̃d(λ)λ.

Finally, one checks using Lemma 4.1 that

(α9/2)(FrP−1) =

⎧⎪⎨
⎪⎩
(

c
P

)
2

if d ≡ 3 (mod 4),(
c
P

)
2
i(q−1)/2 if d ≡ 2 (mod 4),( c2(j(zd)−1728)

P

)
4

if d ≡ 1 (mod 4),

as desired. This completes a sketch of the proof. See [26] for details. �

5. Justifications for the algorithms

Next we prove that our algorithms give the correct result. As in §3, suppose p
is a prime ≥ 5, d is a squarefree positive integer, U, V ∈ 1

2Z, p = U2 + dV 2, and

d �= p. Let K = Q(
√
−d), let H be its Hilbert class field, let λ = U + V

√
−d, and

let p = λOK , a prime ideal of OK above p. Since p is a principal ideal, it splits
completely in the Hilbert class field H = K(j(zd)). Since p = U2 + dV 2, we have
−d = U2/V 2 in Fp.

Justification for Algorithms 3.1 and 3.1′. Suppose d ≡ 3 (mod 4). Let f(w) be the
minimal polynomial of γ3(zd)

√
−d over Q. By Lemma 4.1(iii), Q(γ3(zd)

√
−d) ⊂ H.

Since p splits completely inH, it splits completely inQ(γ3(zd)
√
−d) ∼= Q[w]/(f(w)),

so f(w) ∈ Z[w] factors into linear factors mod p, and we can fix a root β ∈ Fp of f .

Let ρ : OH → Fp be the ring homomorphism that sends γ3(zd)
√
−d to β and√

−d to −U/V (mod p) (note that γ3(zd)
√
−d and

√
−d generate disjoint fields).

Then ρ(γ3(zd)) = −βV/U and ρ(j(zd)) = 1728 + ρ(γ3(zd)
2) = 1728 − β2/d. Let

P = ker(ρ). Then λ ∈ P, so P is a prime ideal of OH above p, and ρ is the
reduction map OH → OH/P ∼= Fp.

Since p splits in K, Corollary 2.5 of [16] implies that

NQ(j(zd))/Q(j(zd)(j(zd)− 1728)) �≡ 0 (mod p).

Since P is a prime of H above p, it follows that j(zd)(j(zd)− 1728) /∈ P = ker(ρ),
i.e., P � j(zd)(j(zd) − 1728). Then α2 = ρ(γ3(zd)

2) = ρ(j(zd) − 1728) �= 0 and
δ = α2 + 1728 = ρ(j(zd)) �= 0. Since p ≥ 5, we have P � 6.

It follows that α, δ ∈ F×
p , and the curve E of Step 2 of Algorithm 3.1 is the

reduction modP of the curve of Theorem 4.5(i) with c = 36 (to clear denominators).
By Theorem 4.5(i),

|E(Fp)| = p+ 1− εd(λ)TrK/Q(λ) = p+ 1− εd(λ)2U.

The conditions on U and V in Step 3 of Algorithm 3.1 are precisely the conditions
under which εd(λ) = 1. Thus Theorem 4.5(i) shows that Algorithm 3.1 is correct.
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Similarly, the E of Step 2 of Algorithm 3.1′ is the reduction mod P of the curve
of Theorem 4.5(i) with c = (−1)(d−3)/4

√
−d. The correctness of Algorithm 3.1′

follows from Theorem 4.5(i) using that(
c
P

)
2
εd(λ) =

(
4U
d

)
,

which can be shown using class field theory (see the proof of Theorem 7.4 of [26]).
�

Justification for Algorithms 3.2 and 3.2′. This is similar to the justification for Al-
gorithms 3.1 and 3.1′ above. Note that for Algorithm 3.2′, since p = U2 + dV 2 ≥ 5
and d ≡ 2 (mod 4), it follows that p ≡ 1 or d + 1 (mod 8) and the exponents in
Step 3 are integers. �

Justification for Algorithm 3.3. Suppose d ≡ 1 (mod 4). Note that since p = U2 +

dV 2, we have p ≡ 1 (mod 4). By Lemma 4.1(i,v) we have i,
√
−d ∈ H, so

√
d ∈

H ∩ R = Q(j(zd)). Let f(w) = f1(w) + f2(w)
√
d be the minimal polynomial of

j(zd) over Q(
√
d), with 2f1, 2f2 ∈ Z[w] (since j(zd) is an algebraic integer). Since

p splits completely in H = K(j(zd)) ⊃ Q(j(zd)), we can fix a square root δ ∈ Fp of
d and a root β ∈ Fp of f1(w) + δf2(w).

Let ρ : OH → Fp be a homomorphism that sends
√
d to δ, j(zd) to β, and

√
−d

to −U/V (mod p). Let P = ker(ρ). Then λ ∈ P, so P is a prime ideal of OH

above p, and ρ is the reduction map OH → OH/P ∼= Fp. Applying Corollary 2.5
of [16] as above gives that P � 6j(zd)(j(zd)− 1728) and α, η ∈ F×

p .
It follows that the E of Step 2 of Algorithm 3.3 is the reduction mod P of the

curve of Theorem 4.5(iii) with c = 36. Thus by Theorem 4.5(iii),

|E(Fp)| = p+ 1−
( j(zd)−1728

P

)
4
εd(λ)2U.

Since ρ(j(zd)− 1728) = α, we have( j(zd)−1728
P

)
4
≡ (j(zd)− 1728)(p−1)/4 ≡ η (mod P).

First suppose V is even. Then by the definition of εd, we have εd(λ) ∈ {±1}.
It follows that

( j(zd)−1728
P

)
4
∈ {±1} and ε =

( j(zd)−1728
P

)
4
. The condition on U in

Step 3a of Algorithm 3.3 is precisely the condition under which ε · εd(λ) = 1.

Now suppose V is odd. Note that ρ(i) = ρ(−
√
d/

√
−d) = δV/U = ι. By the

definition of εd, we have εd(λ) ∈ {±i}, so
( j(zd)−1728

P

)
4
= ±εd(λ) ∈ {±i}. Define

s ∈ {1, 3} by
( j(zd)−1728

P

)
4
= is, and define r ∈ {0, 1, 2, 3} by η = ιr. Then

ιs ≡ is =
( j(zd)−1728

P

)
4
≡ η = ιr (mod P).

Since ι has order 4, we have r = s, so
( j(zd)−1728

P

)
4
εd(λ) = irεd(λ). The conditions

on V and η in Step 4a of the algorithm are precisely the conditions under which
εd(λ) = i−r. It follows that Algorithm 3.3 is correct. �

Algorithms 3.4 and 3.5 can be easily shown to follow from Theorems 5 and 4 on
pp. 305–307 of [18] (see also Exercise 2.33 on p. 185 and Example 10.6 on p. 177 of
[33] or p. 318 of [7]).

Justification for Algorithm 3.9. Step 2 of the algorithm is the method described in
the proof of Proposition 3 of [30] for replacing each quadratic form Qk, 1 ≤ k ≤ h,
by an equivalent (in the sense of Definition 5.2.3 of [6]) form AkX

2+BkXY +CkY
2
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such that Ak is odd and Bk ≡ B (mod 2N). The choice of B in Step 1 allows us
to take

Q1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
X2 + dY 2 if d ≡ 2 (mod 8),

X2 + 3XY + d+9
4 Y 2 if d ≡ 3 (mod 8),

X2 − 6XY + (d+ 9)Y 2 if d ≡ 6 (mod 8),

X2 − 3XY + d+9
4 Y 2 if d ≡ 7 (mod 8)

at the end of Step 2, and then τ1 = zd. Note that B−Bk is even since B2
k−4AkCk =

D = B2 − 4A1C1, so µ in Step 2c makes sense. Define a function g : H → C by

g(z) =

{
γ3(z) if d ≡ 3 (mod 4),

iγ3(z) if d ≡ 2 (mod 4).

Then g is a modular function of level N , with Fourier coefficients in Q(e2πi/N ),
with N = 2 or 4 as in the table in Step 1. The set {τ1, . . . , τh} of Step 3 is an
“N -system mod 1” as in the Definition on p. 329 of [30]. Now apply Theorem 7 of
[30], with g as above and with the N -system {τ1, . . . , τh}.

Case 1 (d ≡ 3 (mod 4)). In this case, Theorem 7 of [30] shows that

F (w) :=
h∏

k=1

(
w − γ3(τk)

)
∈ K[w].

Then f(w) := (
√
−d)hF (w/

√
−d) ∈ K[w] as well, f(w) is monic, and

f(γ3(zd)
√
−d) = (

√
−d)hF (γ3(τ1)) = 0.

Using Lemma 4.1(i,iii),

[K(γ3(zd)
√
−d) : K] = [Q(γ3(zd)

√
−d) : Q] = [Q(j(zd)) : Q] = h = deg(f),

so f must be the monic irreducible polynomial for γ3(zd)
√
−d in Q[w]. Since

γ3(zd)
√
−d is an algebraic integer, f(w) ∈ Z[w].

Case 2 (d ≡ 2 (mod 4)). In this case, since the Fourier coefficients of iγ3 lie in iQ,
Theorem 7 of [30] shows that

F (w) :=

h∏
k=1

(
w − (−1)(Ak−1)/2iγ3(τk)

)
∈ K[w].

Then f(w) := (−
√
−d)hF (−w/

√
−d) ∈ K[w] as well, f(w) is monic, and

f(γ3(zd)
√
d) = (−

√
−d)hF (iγ3(τ1)) = 0.

Using Lemma 4.1(i,iv),

[K(γ3(zd)
√
d) : K] = [Q(γ3(zd)

√
d) : Q] = [Q(j(zd)) : Q] = h = deg(f),

so f must be the monic irreducible polynomial for γ3(zd)
√
d in Q[w]. Since γ3(zd)

√
d

is an algebraic integer, f(w) ∈ Z[w]. �

Justification for Algorithm 3.10. Step 2 of the algorithm (similar to the method
described in the proof of Proposition 3 of [30]) replaces each quadratic form Qk,
1 ≤ k ≤ h, by an equivalent form AkX

2 +BkXY +CkY
2 such that Ak is prime to

D. We may assume that Q1 = X2 + dY 2, so τ1 =
√
−d = zd.
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For 1 ≤ k ≤ h, let ak be the ideal of K corresponding to Qk, i.e., ak = φFI(Qk)
in the notation on p. 221 of [6], and let σk ∈ Gal(H/K) be the Galois automor-
phism corresponding to the class of ak by class field theory. Then Gal(H/K) =
{σ1, . . . , σh}, and j(τk) = j(τ1)

σk . By the definition of ak (see p. 221 of [6]), the
absolute norm of ak is Ak. By class field theory it follows that σk restricts to the
identity on Q(

√
d) if and only if the Jacobi symbol

(
d
Ak

)
= 1. It follows that the

sets {j(τk) :
(

d
Ak

)
= 1} and {j(τk) :

(
d
Ak

)
= −1} are each stable under the action

of Gal(H/K(
√
d)), so the polynomials g1(w), g2(w) of Step 3 of the algorithm have

coefficients in K(
√
d). Since

[K(j(zd)) : K(
√
d)] = [Q(j(zd)) : Q(

√
d)] =

h

2
= deg(g1) = deg(g2),

we have g1, g2 ∈ Q(
√
d)[w]. Since each j(τk) is an algebraic integer, g1, g2 ∈

Z[ 1+
√
d

2 ][w]. If γ is the non-trivial automorphism of Q(
√
d)/Q, then gγ1 = g2.

If f1 = (g1 + g2)/2 and f2 = (g1 − g2)/(2
√
d), it follows that f1, f2 ∈ 1

2Z[w], and

f1(w) + f2(w)
√
d = g1(w) has j(zd) as a root. �

6. Examples

Since the class number one case is the simplest to state, we begin with such an
example, which already follows from the work of Gross (see Theorem 12.2.1 and
§24 of [14]; see also Theorem 1 of [34]).

Example 6.1. Suppose d ∈ {7, 11, 19, 43, 67, 163}, p is a prime, p �= d, and p =
U2 + dV 2 with 2U, 2V ∈ Z. If 4U is a square modulo d, then the elliptic curve Ed

in Table 1 has p+ 1− 2U points over Fp. Otherwise, its twist does.

Table 1

d curve name Ed

7 49a1 y2 + xy = x3 − x2 − 2x− 1
11 121b1 y2 + y = x3 − x2 − 7x+ 10
19 361a1 y2 + y = x3 − 38x+ 90
43 1849a1 y2 + y = x3 − 860x+ 9707
67 4489a1 y2 + y = x3 − 7370x+ 243528
163 26569a1 y2 + y = x3 − 2174420x+ 1234136692

To deduce this from Algorithm 3.1′, note that in these cases j(zd) ∈ Q, so
γ3(zd)

√
−d ∈ Q by Lemma 4.1(iii). The curve Ed is a minimal model of

y2 = x3 + 27j(zd)
3dx− (−1)(d−3)/454j(zd)

4γ3(zd)
√
−dd.

Reducing this curve mod p gives the curve in Algorithm 3.1′, since the reductions
of γ3(zd)

√
−d and j(zd) are β and δ, respectively. By Algorithm 3.1′, this curve

has the desired number of points.
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The following examples illustrate Algorithms 3.1, 3.1′, 3.2, 3.2′, and 3.3.

Example 6.2. Let d = 339, so d ≡ 3 (mod 4). The class number of Q(
√
−339) is

6. Let U = 31415926, V = 54331845, p = 1001697800600701951 = U2 + 339V 2.

Step 1. Using Algorithm 3.9, the minimal polynomial of γ3(
3+

√
−339
2 )

√
−339 over

Q is

f(w) = w6 + 66913885985328w5 − 18537374891907279936w4

− 111436573117647561873408w3 − 860994151195427800704552960w2

− 1673344106601707095964327411712w

− 1040702350530737949298647648436224.

Step 2. Factoring f in Fp[w] gives a root β = 570246892109169272 ∈ Fp, and then

α = −βV/U = 913345758273409607,

δ = 1728 + α2 = 820523299493064878 ∈ Fp.

(Note that 1728 + α2 = 1728− β2/d.) Proceeding as in Algorithm 3.1:

Step 3. We have 339 ≡ 3 (mod 8), U ∈ Z, and U + V ≡ p ≡ 3 (mod 4), so

E : y2 = x3 + 647953552270601199x+ 991648387830183931

has p+ 1− 2U = 1001697800537870100 points over Fp.

Alternatively, proceeding as in Algorithm 3.1′:

Step 3 ′.
(
4U
339

)
= −1.

Step 4 ′. Since
(
3
p

)
= −1, twist E : y2 = x3 + 27δ3dx − (−1)(d−3)/454βδ4d by 3 to

conclude that

E(3) : y2 = x3 + 445170408181393125x+ 757904404913672579

has p+ 1− 2U points over Fp.

Example 6.3. Let d = 142, so d ≡ 14 (mod 16). The class number of Q(
√
−142)

is 4. Let U = 27182845, V = 5433082, p = 4930517024952833 = U2 + 142V 2.

Step 1. Using Algorithm 3.9, the minimal polynomial of γ3(
√
−142)

√
142 is

f(w) = w4 + 216055258840008000w3 + 346672526005250366831626752w2

+ 104075428173999337606699008000w + 17082811813568501666080780517376.

Step 2. Factoring f in Fp[w] gives a root β = 4347457965648780 ∈ Fp, and then

α = βV/U = 286811067969178, δ = 1728− α2 = 1038464359088172 ∈ Fp.

(Note that 1728− α2 = 1728 + β2/d.) Proceeding as in Algorithm 3.2:

Step 3. We have V ≡ 2 (mod 4), U ≡ 1 (mod 4).
Step 4. Since

(
3
p

)
= −1, twist E : y2 = x3 + 27δ3x− 54αδ4 by 3 to conclude that

E(3) : y2 = x3 + 3313493192956667x+ 778757513038160

has p+ 1− 2U = 4930516970587144 points over Fp.

Alternatively, proceeding as in Algorithm 3.2′:

Step 3 ′. d ≡ 6 (mod 8), d/2 = 71,
(
U
71

)
= −1 �= (−1)(p−1)(p+d+11)/16 = 1.
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Step 4 ′. Since
(
3
p

)
= −1, twist E : y2 = x3 − 27δ3dx − 54βδ4d by 3 to conclude

that

E(3) : y2 = x3 + 2813600995625254x+ 3658823747837768

has p+ 1− 2U points over Fp.

Example 6.4. Let d = 33, so d ≡ 1 (mod 4). The class number of Q(
√
−33) is 4.

Let U = 31415926, V = 6951499, p = 2581630571888509 = U2 + 33V 2. We apply
Algorithm 3.3.

Step 1. The minimal polynomial of j(
√
−33) over Q(

√
33) given by Algorithm 3.10

is f1(w) + f2(w)
√
33, where

f1(w) = w2 − 2368431749232000w − 163005261895650240000000,

f2(w) = −412291047168000w − 28375573899239424000000.

Step 2. We compute that δ = 906667748366218 satisfies δ2 ≡ 33 (mod p), and β =
1230386087224503 is a root in Fp of f1(w)+ δf2(w). Then α = β−1728 =

1230386087222775 ∈ Fp, and η = α(p−1)/4 = 1415502600194918 ∈ Fp.
Step 4. Since V is odd, we are in Step 4. We compute

ι = δV/U = 1166127971693591 ∈ F×
p .

Since η = −ι �= ι, and V ≡ 3 (mod 4), we are in Step 4b. Since
(
2
p

)
= −1,

twist E : y2 = x3 − 27β3αx+ 54β4α2 by 2 to conclude that

E(2) : y2 = x3 + 765794649689631x+ 1999640137701174

has p+ 1− 2U = 2581630509056658 points over Fp.
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