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CONVERGENCE ANALYSIS

OF THE JACOBI SPECTRAL-COLLOCATION METHODS

FOR VOLTERRA INTEGRAL EQUATIONS

WITH A WEAKLY SINGULAR KERNEL

YANPING CHEN AND TAO TANG

Abstract. In this paper, a Jacobi-collocation spectral method is developed

for Volterra integral equations of the second kind with a weakly singular ker-
nel. We use some function transformations and variable transformations to
change the equation into a new Volterra integral equation defined on the stan-
dard interval [−1, 1], so that the solution of the new equation possesses bet-
ter regularity and the Jacobi orthogonal polynomial theory can be applied
conveniently. In order to obtain high-order accuracy for the approximation,
the integral term in the resulting equation is approximated by using Jacobi
spectral quadrature rules. The convergence analysis of this novel method is
based on the Lebesgue constants corresponding to the Lagrange interpolation
polynomials, polynomial approximation theory for orthogonal polynomials and
operator theory. The spectral rate of convergence for the proposed method is
established in the L∞-norm and the weighted L2-norm. Numerical results are
presented to demonstrate the effectiveness of the proposed method.

1. Introduction

In practical applications one frequently encounters the Volterra integral equa-
tions of the second kind with a weakly singular kernel of the form

(1.1) y(t) = g(t) +

∫ t

0

(t− s)−µK(t, s)y(s)ds, 0 < µ < 1, 0 ≤ t ≤ T,

where the unknown function y(t) is defined in 0 ≤ t ≤ T < ∞, g(t) is a given source
function and K(t, s) is a given kernel.

For any positive integer m, if g and K have continuous derivatives of order m,
then from [5] there exists a function Z = Z(t, v) possessing continuous derivatives
of order m, such that the solution of (1.1) can be written as y(t) = Z(t, t1−µ). As
this will be the starting point of this paper, the detailed regularity result of (1.1)
is given below.
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Lemma 1.1 ([5]). Assume that g ∈ Cm(I) and K ∈ Cm(I× I) with K(t, t) �= 0 on
I = [0, T ]. Then, the regularity of the unique solution of the weakly singular VIE
(1.1) can be described by

y ∈ Cm(0, T ] ∩ C(I), with |y′(t)| ≤ Cµt
−µ for t ∈ (0, T ];(1.2)

y(t) =
∑
(j,k)µ

γj,k(µ)t
j+k(1−µ) + Ym(t;µ), t ∈ I,(1.3)

where (j, k)µ := {(j, k) : j, k are nonnegative integers, j + k(1 − µ) < m}, γj,k(µ)
are some constants, and Ym(·;µ) ∈ Cm(I).

The above result implies that near t = 0 the first derivative of the solution
y(t) behaves like y(m)(t) ∼ t1−m−µ, which indicates that y �∈ Cm ([0, T ]). Several
methods have been proposed to recover high-order convergence properties for (1.1)
using collocation-type methods; see, e.g., [3, 4, 9, 15, 26, 27] and for the multi-step
method, see, e.g., [17].

It is known that the singular behavior of the exact solution makes the direct
application of the spectral methods difficult. To overcome this difficulty, we first
apply the transformation

(1.4) ỹ(t) = tµ+m−1 [y(t)− y(0)] = tµ+m−1 [y(t)− g(0)]

to change (1.1) to the equation

(1.5) ỹ(t) = g̃(t) + tµ+m−1

∫ t

0

s1−m−µ(t− s)−µK(t, s)ỹ(s)ds, 0 ≤ t ≤ T,

where

(1.6) g̃(t) = g(0) · tµ+m−1

∫ t

0

(t− s)−µK(t, s)ds.

It is easy to see that the solution of (1.5) satisfies

(1.7) ỹ(t) ∈ Cm ([0, T ]) .

To use the theory of orthogonal polynomials, we make the change of variables

(1.8) t =
T

2
(1 + x), x =

2

T
t− 1,

to rewrite problem (1.5) as follows:

(1.9) u(x) = f(x) +

∫ T
2 (1+x)

0

s−µ

(
T

2
(1 + x)− s

)−µ

K̂(x, s)ỹ(s)ds,

where x ∈ [−1, 1],

(1.10) u(x) = ỹ (T (1 + x)/2) , f(x) = g̃ (T (1 + x)/2) ,

and

K̂(x, s) = s1−m ·
[
T

2
(1 + x)

]µ+m−1

·K
(
T

2
(1 + x), s

)
.

By using a linear transformation:

(1.11) s =
T

2
(1 + τ ), τ ∈ [−1, x],
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the equation (1.9) becomes

(1.12) u(x) = f(x) +

∫ x

−1

(1 + τ )−µ(x− τ )−µK̃(x, τ )u(τ )dτ,

for x ∈ [−1, 1], where

K̃(x, τ ) = (1 + τ )1−m(1 + x)µ+m−1K(x, τ ),(1.13)

K(x, τ ) =

(
T

2

)1−µ

K

(
T

2
(1 + x),

T

2
(1 + τ )

)
∈ Cm([−1, 1]× [−1, 1]).(1.14)

Recently, in [28], a Legendre-collocation method was proposed to solve the Volterra
integral equations of the second kind whose kernel and solutions are sufficiently
smooth. Then, in [7], a Chebyshev-collocation method was proposed and analyzed
for the special case µ = 1

2 for (1.1). The main purpose of this work is to use Jacobi-
collocation methods to numerically solve the Volterra integral equations (1.12). We
will provide a rigorous error analysis, which theoretically justifies the spectral rate
of convergence of the proposed method.

The paper is organized as follows. In Section 2, we introduce the Jacobi-
collocation spectral approaches for the Volterra integral equations (1.12). Some
preliminaries and useful lemmas are provided in Section 3. The convergence anal-
ysis is given in Section 4. We prove the error estimates in the L∞-norm and the
weighted L2-norm. The numerical experiments are carried out in Section 5, which
will be used to verify the theoretical results obtained in Section 4. The final section
contains conclusions and remarks.

Throughout the paper, C will denote a generic positive constant that is indepen-
dent of N but which will depend on T and on the bounds for the given functions g
and K.

2. Jacobi-collocation methods

Let ωα,β(x) = (1 − x)α(1 + x)β be a weight function in the usual sense, for
α, β > −1. As defined in [6, 12, 13, 14, 25, 30], the set of Jacobi polynomials
{Jα,β

n (x)}∞n=0 forms a complete L2
ωα,β (−1, 1)-orthogonal system, where L2

ωα,β (−1, 1)
is a weighted space defined by

L2
ωα,β (−1, 1) = {v : v is measurable and ||v||ωα,β < ∞} ,

equipped with the norm

||v||ωα,β =

(∫ 1

−1

|v(x)|2ωα,β(x)dx

) 1
2

and the inner product

(u, v)ωα,β =

∫ 1

−1

u(x)v(x)ωα,β(x)dx, ∀ u, v ∈ L2
ωα,β (−1, 1).

For a given positive integer N , we denote the collocation points by {xi}Ni=0, which
is the set of (N+1) Jacobi Gauss, or Jacobi Gauss-Radau, or Jacobi Gauss-Lobatto
points, and by {wi}Ni=0 the corresponding weights. Let PN denote the space of all
polynomials of degree not exceeding N . For any v ∈ C[−1, 1], see, e.g., [6, 13, 14,

25], we can define the Lagrange interpolating polynomial Iα,βN v ∈ PN , satisfying

Iα,βN v(xi) = v(xi), 0 ≤ i ≤ N.
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It can be written as an expression of the form

Iα,βN v(x) =
N∑
i=0

v(xi)Fi(x),

where Fi(x) is the Lagrange interpolation basis function associated with the Jacobi-
collocation points {xi}Ni=0.

Firstly, assume that the equation (1.12) holds at the collocation points {xi}Ni=0

on [−1, 1], namely,

(2.1) u(xi) = f(xi) +

∫ xi

−1

(1 + τ )−µ(xi − τ )−µK̃(xi, τ )u(τ )dτ,

for 0 ≤ i ≤ N . In order to obtain high-order accuracy of the approximated solution,
we use the Gauss-type quadrature formula relative to the Jacobi weight with α =
β = −µ to compute the integral term in (2.1). Based on this idea, we need to
transfer the integral interval [−1, xi] to the unit interval [−1, 1],
(2.2)∫ xi

−1

(1 + τ )−µ(xi − τ )−µK̃(xi, τ )u(τ )dτ =

∫ 1

−1

(1− θ2)−µK1(xi, τi(θ))u(τi(θ))dθ,

by using the transformation

(2.3) τ = τi(θ) =
1 + xi

2
θ +

xi − 1

2
, θ ∈ [−1, 1].

Here,

(2.4) K1(xi, τi(θ)) =

(
1 + xi

2

)1−2µ

K̃(xi, τi(θ)).

Next, using an (N+1)-point Gauss quadrature formula relative to the Jacobi weight
{wi}Ni=0, the integration term in (2.2) can be approximated by∫ 1

−1

(1− θ2)−µK1(xi, τi(θ))u(τi(θ)))dθ ∼
N∑

k=0

K1(xi, τi(θk))u(τi(θk))wk,

where the set {θk}Nk=0 coincides with the collocation points {xi}Ni=0 on [−1, 1]. We
use ui, 0 ≤ i ≤ N , to indicate the approximate value for u(xi), 0 ≤ i ≤ N , and use

(2.5) uN (x) =

N∑
j=0

ujFj(x)

to approximate the function u(x), namely,

u(xi) ∼ ui, u(x) ∼ uN (x), u(τi(θk)) ∼
N∑
j=0

ujFj(τi(θk)).

The Jacobi-collocation method is to seek uN (x) such that {ui}Ni=0 satisfies the
following collocation equations:

(2.6) ui = f(xi) +
N∑
j=0

uj

(
N∑

k=0

K1(xi, τi(θk))Fj(τi(θk))wk

)
,

for 0 ≤ i ≤ N . We denote the error function by

(2.7) e(x) := (u− uN )(x), x ∈ [−1, 1].
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It follows from (1.4) and (1.10) that

(2.8) y(t) = y(0) +

[
T

2
(1 + x)

]1−m−µ

u(x).

Consequently, the approximate solution to (1.1) is given by

(2.9) yN (t) = y(0) +

[
T

2
(1 + x)

]1−m−µ

uN (x).

Then the corresponding error functions satisfy

(2.10) ε(t) := (y − yN )(t) =

[
T

2
(1 + x)

]1−m−µ

e(x) = t1−m−µe(x).

3. Some preliminaries and useful lemmas

We first introduce some weighted Hilbert spaces. For simplicity, denote ∂xv(x) =
(∂/∂x)v(x), etc. For a nonnegative integer m, define

Hm
ωα,β (−1, 1) :=

{
v : ∂k

xv ∈ L2
ωα,β (−1, 1), 0 ≤ k ≤ m

}
,

with the semi-norm and the norm as

|v|m,ωα,β = ||∂m
x v||ωα,β , ||v||m,ωα,β =

(
m∑

k=0

||∂k
xv||2ωα,β

)1/2

,

respectively. Let ω(x) = ω− 1
2 ,−

1
2 (x) denote the Chebyshev weight function. In

bounding some approximation error of Chebyshev polynomials, only some of the
L2-norms appearing on the right-hand side of the above norm enter into play. Thus,
it is convenient to introduce the semi-norms

|v|Hm;N
ω (−1,1) =

⎛⎝ m∑
k=min(m,N+1)

|∂k
xv|2L2

ω(−1,1)

⎞⎠
1
2

.

For bounding some approximation error of Jacobi polynomials, we need the follow-
ing nonuniformly-weighted Sobolev spaces:

Hm
ωα,β ,∗(−1, 1) :=

{
v : ∂k

xv ∈ L2
ωα+k,β+k(−1, 1), 0 ≤ k ≤ m

}
,

equipped with the inner product and the norm as

(u, v)m,ωα,β,∗ =

m∑
k=0

(∂k
xu, ∂

k
xv)ωα+k,β+k , ||v||m,ωα,β ,∗ =

√
(v, v)m,ωα,β ,∗.

Furthermore, we introduce the orthogonal projection πN,ωα,β : L2
ωα,β (−1, 1) → PN ,

which is a mapping such that for any v ∈ L2
ωα,β (−1, 1),

(v − πN,ωα,βv, φ)ωα,β = 0, ∀ φ ∈ PN .

The following result follows from Theorem 1.8.1 in [25] and (3.18) in [13]; also see
[12].

Lemma 3.1. Let α, β > −1. Then for any function v ∈ Hm
ωα,β ,∗(−1, 1) and any

nonnegative integer m, we have

(3.1) ||∂k
x(v − πN,ωα,βv)||ωα+k,β+k ≤ CNk−m||∂m

x v||ωα+m,β+m , 0 ≤ k ≤ m.
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In particular,

(3.2) ||v − πN,ωα,βv||ωα,β ≤ CN−1||v||1,ωα+1,β+1 .

Applying Theorem 1.8.4 in [25] and Theorems 4.3, 4.7, 4.10 in [14], we have
the following optimal error estimate for the interpolation polynomials based on the
Jacobi Gauss points, Jacobi Gauss-Radau points, and Gauss-Lobatto points.

Lemma 3.2. For any function v satisfying v ∈ Hm
ωα,β ,∗(−1, 1), with −1 < α, β < 1,

we have

(3.3) ||v − Iα,βN v||ωα,β ≤ CN−m||∂m
x v||ωα+m,β+m ,

for the Jacobi Gauss points and Jacobi Gauss-Radau points;

(3.4) ||v − Iα,βN v||ωα,β ≤ CN−m||∂m
x v||ωα+m−1,β+m−1 ,

for the Jacobi Gauss-Lobatto points.

Define a discrete inner product, for any continuous functions u, v on [−1, 1], by

(3.5) (u, v)N =
N∑
j=0

u(xj)v(xj)wj .

By Lemmas 3.1 and 3.2, we can obtain an estimate for the integration error pro-
duced by a Gauss-type quadrature formula relative to the Jacobi weight.

Lemma 3.3. If v ∈ Hm
ωα,β ,∗(−1, 1) for some m ≥ 1 and φ ∈ PN , then for the

Jacobi Gauss and Jacobi Gauss-Radau integration we have

|(v, φ)ωα,β − (v, φ)N | ≤ ||v − Iα,βN v||ωα,β ||φ||ωα,β

≤ CN−m||∂m
x v||ωα+m,β+m ||φ||ωα,β ,(3.6)

and for the Jacobi Gauss-Lobatto integration, we have

|(v, φ)ωα,β − (v, φ)N |

≤ C
(
||v − πN−1,ωα,βv||ωα,β + ||v − Iα,βN v||ωα,β

)
||φ||ωα,β

≤ CN−m||∂m
x v||ωα+m−1,β+m−1 ||φ||ωα,β .(3.7)

We have the following result on the Lebesgue constant for the Lagrange inter-
polation polynomials associated with the zeros of the Jacobi polynomials; see, e.g.,
[18].

Lemma 3.4. Let {Fj(x)}Nj=0 be the N-th Lagrange interpolation polynomials as-
sociated with the Gauss, or Gauss-Radau, or Gauss-Lobatto points of the Jacobi
polynomials. Then
(3.8)

||Iα,βN ||∞ := max
x∈[−1,1]

N∑
j=0

|Fj(x)| =
{

O (logN) , −1 < α, β ≤ − 1
2 ,

O
(
Nγ+ 1

2

)
, γ = max(α, β), otherwise.

We now introduce some notation. For r ≥ 0 and κ ∈ [0, 1], Cr,κ([0, T ]) will
denote the space of functions whose r-th derivatives are Hölder continuous with
exponent κ, endowed with the usual norm || · ||r,κ. When κ = 0, Cr,0([0, T ])
denotes the space of functions with r continuous derivatives on [0, T ], also denoted
by Cr([0, T ]), and with norm || · ||r.
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We will make use of a result of Ragozin [21, 22] (see also [11]), which states that,
for each nonnegative integer r and κ ∈ [0, 1], there exists a constant Cr,κ > 0 such
that for any function v ∈ Cr,κ([0, T ]), there exists a polynomial function TNv ∈ PN

such that

(3.9) ||v − TNv||∞ ≤ Cr,κN
−(r+κ)||v||r,κ,

where ||·||∞ is the norm of the space L∞([0, T ]), and when the function v ∈ C([0, T ])
we also denote ||v||∞ = ||v||C([0,T ]). Actually, as stated in [21, 22], TN is a linear
operator from Cr,κ([0, T ]) to PN .

For convenience, we define a linear operator with a weakly singular integral
kernel:

(3.10) (Mv)(t) = tµ+m−1

∫ t

0

s1−m−µ(t− s)−µK(t, s)v(s)ds, t ∈ [0, T ].

We will need the fact thatM is compact as an operator from C([0, T ]) to C0,κ([0, T ])
for any 0 < κ < 1− µ.

Lemma 3.5. Let m ≥ 2 and κ ∈ (0, 1− µ) and let M be defined by (3.10). Then,
for any function v(x) ∈ C([0, T ]), there exists a positive constant C such that

(3.11) ||Mv||0,κ ≤ C||v||∞.

Proof. We only need to prove that M is Hölder continuous, namely,

(3.12)
|Mv(t̂)−Mv(ť)|

|t̂− ť|κ
≤ C||v||∞ 0 ≤ t̂ < ť ≤ T,

for 0 < ť− t̂ < 1 and κ ∈ (0, 1− µ). Let

(3.13) k(t, s) = s1−m−µ(t− s)−µK(t, s).

We then have

|Mv(t̂)−Mv(ť)|
(ť− t̂)κ

= (ť− t̂)−κ

∣∣∣∣∣t̂µ+m−1

∫ t̂

0

k(t̂, s)v(s)ds− ťµ+m−1

∫ ť

0

k(ť, s)v(s)ds

∣∣∣∣∣
≤ E1 + E2 + E3,(3.14)

where

E1 = (ť− t̂)−κt̂µ+m−1

∫ t̂

0

∣∣k(t̂, s)− k(ť, s)
∣∣ |v(s)|ds,

E2 = (ť− t̂)−κ(ťµ+m−1 − t̂µ+m−1)

∫ ť

0

|k(ť, s)||v(s)|ds,

E3 = (ť− t̂)−κt̂µ+m−1

∫ ť

t̂

|k(ť, s)||v(s)|ds.

We now estimate the three terms one by one. Observe

(3.15) E1 ≤ E
(1)
1 + E

(2)
1 ,
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where

E
(1)
1 = (ť− t̂)−κt̂µ+m−1

∫ t̂

0

s1−m−µ
[
(t̂− s)−µ − (ť− s)−µ

] ∣∣K(t̂, s)
∣∣ |v(s)|ds,

E
(2)
1 = (ť− t̂)−κt̂µ+m−1

∫ t̂

0

s1−m−µ(ť− s)−µ
∣∣K(t̂, s)−K(ť, s)

∣∣ |v(s)|ds.

(3.16)

Recall the definition of the Beta function

(3.17)

∫ 1

0

xa−1(1− x)b−1dx = B(a, b), a, b > 0.

This gives that

(3.18)

∫ z

0

τa−1(z − τ )b−1dτ = za+b−1B(a, b).

Observe that∫ t̂

0

s1−m−µ
[
(t̂− s)−µ − (ť− s)−µ

]
ds

= B1t̂
2(1−µ)−m −

∫ t̂

0

s1−m−µ(ť− s)−µds

= B1

(
t̂2(1−µ)−m − ť2(1−µ)−m

)
+

∫ ť

t̂

s1−m−µ(ť− s)−µds,(3.19)

where
B1 = B(2−m− µ, 1− µ).

When m ≥ 2, m− 2(1− µ) ≥ 0, we have

t̂µ+m−1
(
t̂2(1−µ)−m − ť2(1−µ)−m

)
= t̂µ+m−1 · (m− 2(1− µ))ξ1−2µ−m(ť− t̂) ξ ∈ (t̂, ť)

= (m− 2(1− µ))(ť− t̂) ·
(
t̂

ξ

)µ+m−1

· ξ−µ

≤ (m− 2(1− µ))(ť− t̂) ·
(
t̂

ξ

)µ+m−1

· t̂−µ

≤ (m− 2(1− µ))(ť− t̂)1−µ(3.20)

if t̂ ≥ ť− t̂, and

(3.21) t̂µ+m−1
(
t̂2(1−µ)−m − ť2(1−µ)−m

)
= t̂1−µ

[
1−

(
t̂

ť

)m−2(1−µ)
]
≤ (ť− t̂)1−µ

if t̂ < ť− t̂. The above observation, together with (3.16), yields

E
(1)
1 ≤ C‖v‖∞(ť− t̂)−κ

[
(ť− t̂)1−µ +

∫ ť

t̂

(
t̂

s

)µ+m−1

(ť− s)−µds

]

≤ C‖v‖∞(ť− t̂)−κ

[
(ť− t̂)1−µ +

∫ ť

t̂

(ť− s)−µds

]
≤ C‖v‖∞(ť− t̂)1−µ−κ ≤ C‖v‖∞,(3.22)
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for κ ∈ (0, 1− µ). Furthermore, we have

E
(2)
1 ≤ C||v||∞ t̂µ+m−1

∫ t̂

0

s1−m−µ(ť− s)−µ |K(t̂, s)−K(ť, s)|
(ť− t̂)κ

ds

≤ C||v||∞ max
s∈[0,T ]

||K(·, s)||0,κt̂µ+m−1

∫ t̂

0

s1−m−µ(ť− s)−µds

≤ C||v||∞ t̂µ+m−1

∫ ť

0

s1−m−µ(ť− s)−µds

≤ C||v||∞ t̂µ+m−1 · ť2(1−µ)−mB1

≤ C||v||∞
(
t̂

ť

)µ+m−1

· ť1−µ ≤ C||v||∞,(3.23)

where we have used (3.18) and the fact that t̂ < ť. Under the following condition:

0 < ť− t̂ < 1,

we have for κ ∈ (0, 1− µ),

E2 ≤ C||v||∞(ť− t̂)−κ(ťµ+m−1 − t̂µ+m−1)

∫ ť

0

s1−m−µ(ť− s)−µds

= C||v||∞(ť− t̂)1−κ · (µ+m− 1)ξµ+m−2 · ť2(1−µ)−mB1 ξ ∈ (t̂, ť)

≤ C||v||∞(ť− t̂)1−κ ·
(
ξ

ť

)µ+m−2

· ť−µ

≤ C||v||∞(ť− t̂)µ · ť−µ ≤ C||v||∞,(3.24)

due to ξ ≤ ť, ť− t̂ < 1, 1− κ > µ, and t̂ < ť. Finally, we have

E3 ≤ C||v||∞(ť− t̂)−κt̂µ+m−1

∫ ť

t̂

s1−m−µ(ť− s)−µds

≤ C||v||∞(ť− t̂)−κ

∫ ť

t̂

(
t̂

s

)µ+m−1

(ť− s)−µds

≤ C||v||∞(ť− t̂)−κ

∫ ť

t̂

(ť− s)−µds

≤ C||v||∞(ť− t̂)1−µ−κ ≤ C||v||∞,(3.25)

where we have used the estimate for E
(1)
1 , i.e., (3.22). The desired result (3.11) is

established by combining (3.14) with the estimates for E1, E2, and E3 above. �

In our analysis, we shall apply the generalization of Gronwall’s Lemma. We call
such a function v = v(t) locally integrable on the interval [0, T ] if for each t ∈ [0, T ],

its Lebesgue integral
∫ t

0
v(s)ds is finite. The following result can be found in [31].

Lemma 3.6. Suppose that

v(t) ≤ w∗(t) + w(t)

∫ t

0

ϕ(t, s)v(s)ds, t ∈ [0, T ],
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where ϕw, ϕw∗, and ϕv are locally integrable on the interval [0, T ]. Here, all the
functions are assumed to be nonnegative. Then

v(t) ≤ w∗(t) + w(t)

(
exp

∫ t

0

ϕ(t, s)w(s)ds

)(∫ t

0

ϕ(t, s)w∗(s)ds

)
, t ∈ [0, T ].

From Lemma 3.6, we can directly obtain the following result.

Lemma 3.7. Assume that v(t) is a nonnegative, locally integrable function defined
on ([0, T ] and satisfying

v(t) ≤ w∗(t) +K0t
µ+m−1

∫ t

0

s1−m−µ(t− s)−µv(s)ds, t ∈ [0, T ],

where K0 is a positive constant and w∗(t) is a nonnegative and continuous function
defined on ([0, T ]. Then, there exists a constant C such that

v(t) ≤ w∗(t) + Ctµ+m−1

∫ t

0

s1−m−µ(t− s)−µw∗(s)ds, t ∈ [0, T ].

Proof. Set

w(t) = K0t
µ+m−1, ϕ(t, s) = s1−m−µ(t− s)−µ.

It is obvious to see that the conditions in Lemma 3.6 are satisfied in this case. We
only need to estimate the term:

exp

∫ t

0

ϕ(t, s)w(s)ds.

Clearly, ∣∣∣∣∫ t

0

ϕ(t, s)w(s)ds

∣∣∣∣ =

∣∣∣∣K0

∫ t

0

s1−m−µ(t− s)−µ · sµ+m−1ds

∣∣∣∣
≤ K0

∫ t

0

(t− s)−µds ≤ C.

Thus, the desired result follows from Lemma 3.6. �

To prove the error estimate in the weighted L2-norm, we need the generalized
Hardy’s inequality with weights (see, e.g., [10, 16, 24]).

Lemma 3.8. For all measurable function f ≥ 0, the following generalized Hardy’s
inequality (∫ b

a

|(Kf)(x)|qω1(x)dx

)1/q

≤ C

(∫ b

a

|f(x)|pω2(x)dx

)1/p

holds if and only if

sup
a<x<b

(∫ b

x

ω1(t)dt

)1/q (∫ x

a

ω1−p′

2 (t)dt

)1/p′

< ∞, p′ =
p

p− 1

for the case 1 < p ≤ q < ∞. Here, K is an operator of the form

(Kf)(x) =

∫ x

a

ρ(x, t)f(t)dt

with ρ(x, t) a given kernel, ω1, ω2 weight functions, and −∞ ≤ a < b ≤ ∞.
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Using Theorem 1 in [19], we have the following estimate for the Lagrange inter-
polation associated with the Jacobi Gaussian collocation points.

Lemma 3.9. For every bounded function v(x), there exists a constant C indepen-
dent of v such that

sup
N

∥∥∥∥∥∥
N∑
j=0

v(xj)Fj(x)

∥∥∥∥∥∥
L2

ωα,β (−1,1)

≤ C||v||∞,

where Fi(x) is the Lagrange interpolation basis function associated with the Jacobi-
collocation points {xi}Ni=0.

4. Convergence analysis

The objective of this section is to analyze the approximation scheme (2.6).
Firstly, we derive the error estimate in the L∞-norm of the Jacobi-collocation
method. Before we state the main results, the following regularity result of the
kernel function K1 needs to be proved.

Lemma 4.1. Let {xi}Ni=0 be the set of (N + 1) Jacobi Gauss, or Jacobi Gauss-
Radau, or Jacobi Gauss-Lobatto points, for α = β = −µ. Then, we have that

∂m
θ K1(xi, τi(θ)) ∈ L2

ωm−µ,m−µ(−1, 1),

for the Jacobi Gauss points and Jacobi Gauss-Radau points;

∂m
θ K1(xi, τi(θ)) ∈ L2

ωm−µ−1,m−µ−1(−1, 1),

for the Jacobi Gauss-Lobatto points. Thus, it is reasonable to denote

(4.1) K∗ = max
0≤i≤N

||∂m
θ K1(xi, τi(·))||ωm−µ,m−µ ,

for the Jacobi Gauss points and Jacobi Gauss-Radau points;

(4.2) K∗ = max
0≤i≤N

||∂m
θ K1(xi, τi(·))||ωm−µ−1,m−µ−1,

for the Jacobi Gauss-Lobatto points. Here τi(θ) is given by (2.3) and K1(xi, τi(θ))
is defined by (2.4), (1.13)-(1.14) for any 0 ≤ i ≤ N .

Proof. It follows from (2.4) and (1.13)-(1.14) that

(4.3) ∂m
θ K1(xi, τi(θ)) = (1 + τi(θ))

1−2m(1 + xi)
2m−µv(xi, τi(θ)),

where v(xi, τi(θ)) is a smooth function with respect to θ on the interval [−1, 1].
Now, we use the transformation

θ =
2

ti
s− 1, s ∈ [0, ti]

to derive that

||∂m
θ K1(xi, τi(·))||2ωm−µ,m−µ =

∫ 1

−1

(1− θ2)m−µ|∂m
θ K1(xi, τi(θ))|2dθ

=

∫ ti

0

sm−µ(ti − s)m−µ

(
2

ti

)2(m−µ)+1 (
2

T
s

)2−4m (
2

T
ti

)4m−2µ

|v|2ds

≤ C||v||∞t2m+1
i

∫ ti

0

s2−3m−µ(ti − s)m−µds

≤ C||v||∞t2m+1
i · t3−2m−2µ

i = C||v||∞t4−2µ
i ≤ C,(4.4)
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for the Jacobi Gauss points and Jacobi Gauss-Radau points, where the Beta func-
tion (3.18) was applied. For the Jacobi Gauss-Lobatto points, it is similarly the
case that

(4.5) ||∂m
θ K1(xi, τi(·))||2ωm−µ−1,m−µ−1 ≤ C||v||∞t

2(1−µ)
i ≤ C.

The desired result is now obtained. �

Theorem 4.1. Let u be the exact solution of the Volterra equation (1.12). As-
sume that the approximated solution uN of the form (2.5) is given by the spectral-
collocation scheme (2.6) with the Jacobi Gauss, or Jacobi Gauss-Radau, or Jacobi
Gauss-Lobbatto collocation points. If the given data g(t) and K(t, s) in (1.1) satisfy
g(t) ∈ Cm([0, T ]) and K(t, s) ∈ Cm([0, T ] × [0, T ]) (m ≥ 2), then for sufficiently
large N ,
(4.6)

||u− uN ||∞ ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CN

1
2−m logN

(
|u|Hm;N

ω (−1,1) +N− 1
2K∗||u||∞

)
, 1

2 < µ < 1,

CN
1
2−m

(
|u|Hm;N

ω (−1,1) +N− 1
2 logNK∗||u||∞

)
, µ = 1

2 ,

CN1−µ−m
(
|u|Hm;N

ω (−1,1) +N− 1
2K∗||u||∞

)
, 0 < µ < 1

2 ,

where K∗ is defined by (4.1)-(4.2).

Proof. Since the given data g(t) and K(t, s) in (1.1) satisfy g(t) ∈ Cm([0, T ]) and
K(t, s) ∈ Cm([0, T ]×[0, T ]) (m ≥ 2), we have u ∈ Cm([−1, 1]) based on the analysis
in Section 1. Consequently, u ∈ Hm

ω (−1, 1) ∩ L∞(−1, 1). By using (2.1)-(2.2) and
the definition of the weighted inner product, we first observe that the solution u of
(1.12) satisfies

(4.7) u(xi) = f(xi) + (K1(xi, τi(·)), u(τi(·)))ω−µ,−µ

for 0 ≤ i ≤ N . By using the definition of the discrete inner product (3.3), we set

(K1(xi, τi(·)), φ(τi(·)))N =

N∑
k=0

K1(xi, τi(θk))φ(τi(θk))wk.

Then, the numerical scheme (2.6) can be written as

(4.8) ui = f(xi) +
(
K1(xi, τi(·)), uN (τi(·))

)
N
,

for 0 ≤ i ≤ N , where uN is defined by (2.5). We now subtract (4.8) from (4.7) to
get the error equation

u(xi)− ui = (K1(xi, τi(·)), e(τi(·)))ω−µ,−µ + Ii,2

=

∫ xi

−1

(1 + τ )−µ(xi − τ )−µK̃(xi, τ )e(τ )dτ + Ii,2,(4.9)

for 0 ≤ i ≤ N , e(x) = u(x)− uN (x) is the error function, and

Ii,2 =
(
K1(xi, τi(·)), uN(τi(·))

)
ω−µ,−µ −

(
K1(xi, τi(·)), uN (τi(·))

)
N
.

In (4.9), the integral transformation (2.2) was used. Applying again the transfor-
mation (1.8) and (1.11), we change (4.9) to

(4.10) u(xi)− ui = tµ+m−1
i

∫ ti

0

s1−m−µ(ti − s)−µK(ti, s)ẽ(s)ds+ Ii,2,
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where

ẽ(t) = e

(
2

T
t− 1

)
,

ti =
T

2
(1 + xi), for 0 ≤ i ≤ N.

Multiplying Fj(x) on both sides of the error equation (4.10) and summing up from
i = 0 to i = N yield

(4.11) I−µ,−µ
N u− uN =

N∑
i=0

(Mẽ)(ti)Fi(x) +

N∑
i=0

Ii,2Fi(x),

where M was defined in (3.10). Consequently, recalling the relation of the error
function (2.10) gives that

(4.12) ẽ(t) = tµ+m−1

∫ t

0

s1−m−µ(t− s)−µK(t, s)ẽ(s)ds+ I1 + I2 + I3,

where

I1 = u− I−µ,−µ
N u, I2 =

N∑
i=0

Ii,2Fi(x), I3 = I−µ,−µ
N (Mẽ)−Mẽ.

From (4.12), we have

(4.13) |ẽ(t)| ≤ w∗(t) +K0t
µ+m−1

∫ t

0

s1−m−µ(t− s)−µ|ẽ(s)|ds, t ∈ [0, T ],

where

(4.14) w∗(t) = |I1 + I2 + I3|, K0 = max
0≤s<t≤T

|K(t, s)|.

Using the generalized Gronwall inequality, i.e., Lemma 3.7, we have

(4.15) |ẽ(t)| ≤ w∗(t) + Ctµ+m−1

∫ t

0

s1−m−µ(t− s)−µw∗(s)ds, t ∈ [0, T ].

Then, it follows from (4.15) and (3.18) that

(4.16) ||e||∞ = ||ẽ||∞ ≤ C||w∗||∞ ≤ C
(
||I1||∞ + ||I2||∞ + ||I3||∞

)
.

Firstly, let IcNu ∈ PN denote the interpolant of u at any of the three families of
Chebyshev Gauss points. From (5.5.28) in [6], the interpolation error estimate in
the maximum norm is given by

(4.17) ||I1||∞ = ||u− IcNu||∞ ≤ CN1/2−m|u|Hm;N
ω (−1,1), when µ =

1

2
.

Note that

(4.18) I−µ,−µ
N p(x) = p(x), i.e., (I−µ,−µ

N − I)p(x) = 0, ∀ p(x) ∈ PN ,
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where I denotes the identity operator. By using (4.18), Lemma 3.4, and (4.17), we
obtain that

||I1||∞ = ||u− I−µ,−µ
N u||∞

= ||u− IcNu+ I−µ,−µ
N (IcNu)− I−µ,−µ

N u||∞
≤ ||u− IcNu||∞ + ||I−µ,−µ

N (IcNu− u)||∞
≤

(
1 + ||I−µ,−µ

N ||∞
)
||u− IcNu||∞

≤
{

CN
1
2−m logN |u|Hm;N

ω (−1,1),
1
2 < µ < 1,

CN1−µ−m|u|Hm;N
ω (−1,1), 0 < µ < 1

2 .
(4.19)

Next, it follows from Lemma 3.3 that

(4.20) |Ii,2| ≤ CN−m||∂m
θ K1(xi, τi(·))||ωm−µ−l,m−µ−l ||uN (τi(·))||ω−µ,−µ ,

so that

max
0≤i≤N

|Ii,2|

≤ CN−m max
0≤i≤N

||∂m
θ K1(xi, τi(·))||ωm−µ−l,m−µ−l max

0≤i≤N
||uN (τi(·))||ω−µ,−µ

≤ CN−mK∗||uN ||∞ ≤ CN−mK∗ (||e||∞ + ||u||∞) ,

(4.21)

where K∗ is defined by (4.1)–(4.2), l = 0 for the Jacobi Gauss points and Jacobi
Gauss-Radau points, and l = 1 for the Jacobi Gauss-Lobatto points. Hence, by
using Lemma 3.4 and (4.21), we have

||I2||∞ =

∥∥∥∥∥
N∑
i=0

Ii,2Fi(x)

∥∥∥∥∥
∞

≤ C max
0≤i≤N

|Ii,2| max
x∈[−1,1]

N∑
j=0

|Fj(x)|

≤
{

CN−m logNK∗ (||e||∞ + ||u||∞) , 1
2 ≤ µ < 1,

CN
1
2−µ−mK∗ (||e||∞ + ||u||∞) , 0 < µ < 1

2 ,
(4.22)

for sufficiently large N . We now estimate the third term I3. It is clear that ẽ ∈
C[0, T ]. Consequently, using (3.9) and Lemma 3.5 it follows that

(4.23) ||Mẽ− TNMẽ||∞ ≤ CN−κ||Mẽ||0,κ ≤ CN−κ||ẽ||∞ = CN−κ||e||∞,

where κ ∈ (0, 1− µ) and TNMẽ ∈ PN . It follows from (4.18), Lemma 3.4, and the
above estimate that

||I3||∞ = ||(I−µ,−µ
N − I)Mẽ||∞

= ||(I−µ,−µ
N − I)(Mẽ− TNMẽ)||∞

≤
(
1 + ||I−µ,−µ

N ||∞
)
||Mẽ− TNMẽ||∞

≤
{

CN−κ logN ||e||∞, 1
2 ≤ µ < 1,

CN
1
2−κ−µ||e||∞, 0 < µ < 1

2 .
(4.24)

The desired estimate (4.6) follows from (4.16)-(4.17), (4.19), (4.22), and (4.24). �

Our next goal is to derive the error estimate in the weighted L2-norm.
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Theorem 4.2. Let u and uN be the same as those in Theorem 4.1. If the given data
g(t) and K(t, s) in (1.1) satisfy g(t) ∈ Cm([0, T ]) and K(t, s) ∈ Cm([0, T ]× [0, T ])
(m ≥ 2), then

||u− uN ||ω−µ,−µ

≤

⎧⎪⎪⎨⎪⎪⎩
CN−m

(
U1 +N

1
2−κ logNU2 +N−1/2 logNU3

)
, 1

2 < µ < 1,

CN−m
(
U1 +N

1
2−κU2 +N−µU3

)
, µ = 1

2 ,

CN−m
(
U1 +N1−µ−κU2 +N−µU3

)
, 0 < µ < 1

2 ,

(4.25)

for sufficiently large N and for any κ ∈ (0, 1− µ), where

U1 = ||∂m
x u||ωm−µ−l,m−µ−l +K∗||u||∞,(4.26)

U2 = |u|Hm;N
ω (−1,1), U3 = K∗|u|H1

ω(−1,1),(4.27)

and K∗ is defined by (4.1)-(4.2), l = 0 for the Jacobi Gauss points and Jacobi
Gauss-Radau points, and l = 1 for the Jacobi Gauss-Lobatto points.

Proof. Using the transformation (1.8) and (1.11), we change (4.15) to

(4.28) |e(x)| ≤ w∗+C(1+x)µ+m−1

∫ x

−1

(1+τ )1−m−µ(x−τ )−µw∗dτ, x ∈ [−1, 1].

where w∗ are defined by (4.14). It follows from the generalized Hardy’s inequality
(Lemma 3.8) that

(4.29) ||e||ω−µ,−µ ≤ C
(
||I1||ω−µ,−µ + ||I2||ω−µ,−µ + ||I3||ω−µ,−µ

)
.

Firstly, by Lemma 3.2, we see that

(4.30) ||I1||ω−µ,−µ = ||u− I−µ,−µ
N u||ω−µ,−µ ≤ CN−m||∂m

x u||ωm−µ−l,m−µ−l .

Next, it follows from Lemma 3.9 and (4.21) that

(4.31) ||I2||ω−µ,−µ =

∥∥∥∥∥
N∑
i=0

Ii,2Fi(x)

∥∥∥∥∥
ω−µ,−µ

≤ C max
0≤i≤N

|Ii,2| ≤ CN−mK∗||uN ||∞.

By the convergence result in Theorem 4.1, we have

||uN ||∞ ≤ ||e||∞ + ||u||∞

≤
{

C
(
N−1/2 logN |u|H1

ω(−1,1) + ||u||∞
)
, 1

2 < µ < 1,
C

(
N−µ|u|H1

ω(−1,1) + ||u||∞
)
, 0 < µ ≤ 1

2 ,
(4.32)

which, together with (4.31), gives
(4.33)

||I2||ω−µ,−µ ≤
{

CN−mK∗ (N−1/2 logN |u|H1
ω(−1,1) + ||u||∞

)
, 1

2 < µ < 1,
CN−mK∗ (N−µ|u|H1

ω(−1,1) + ||u||∞
)
, 0 < µ ≤ 1

2 ,

for sufficiently large N . Moreover, it follows from (4.18), Lemma 3.9, and (3.9) that

||I3||ω−µ,−µ = ||(I−µ,−µ
N − I)Mẽ||ω−µ,−µ

= ||(I−µ,−µ
N − I)(Mẽ− TNMẽ)||ω−µ,−µ

≤ ||I−µ,−µ
N (Mẽ− TNMẽ)||ω−µ,−µ + ||(Mẽ− TNMẽ)||ω−µ,−µ

≤ C||Mẽ− TNMẽ||∞ ≤ CN−κ||Mẽ||0,κ
≤ CN−κ||ẽ||∞ = CN−κ||e||∞,(4.34)
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where, in the last step we used Lemma 3.5 for any κ ∈ (0, 1−µ). By the convergence
result in Theorem 4.1, we obtain that
(4.35)

||I3||ω−µ,−µ ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CN

1
2−κ−m logN

(
|u|Hm;N

ω (−1,1) +N− 1
2K∗||u||∞

)
, 1

2 < µ < 1,

CN
1
2−κ−m

(
|u|Hm;N

ω (−1,1) +N− 1
2 logNK∗||u||∞

)
, µ = 1

2 ,

CN1−µ−κ−m
(
|u|Hm;N

ω (−1,1) +N− 1
2K∗||u||∞

)
, 0 < µ < 1

2 ,

for N sufficiently large and for any κ ∈ (0, 1 − µ). The desired estimate (4.25) is
obtained by combining (4.29)-(4.30), (4.33) and (4.35). �

5. Numerical experiments

Let UN = [u0, . . . , uN ]T and FN = [f(x0), . . . , f(xN )]T . The numerical scheme
(2.6) leads to a system of equations of the form

(5.1) UN = FN +AUN ,

where the entries of the matrix A are given by

aij =

[
T

2
(1 + xi)

]µ N∑
k=0

K1(xi, τi(θk))Fj(τi(θk)))wk.

Here, we simply introduce the computation of Gauss-Jacobi quadrature rule
nodes and weights (see the detailed algorithm and download related codes in [1]).
The Gauss-Jacobi quadrature formula is used to numerically calculate the integral∫ 1

−1

(1− x)−µ(1 + x)−µf(x)dx, f(x) ∈ [−1, 1],

by using the formula∫ 1

−1

(1− x)−µ(1 + x)−µf(x)dx ∼
N∑
i=0

wif(xi).

With the help of a change in the variables (which changes both weights wi and
nodes xi), we can get onto the arbitrary interval [a, b]. If you perform a change
of variables, you should take into account that the formula of the error term is
changed along with the nodes and weights (you can get a new form by changing
the variables in the formula).

The Gauss-Jacobi quadrature formula for a given order N is completely defined
by the set of nodes xi and weights wi (see more details in [13, 14]).

Table 1. Example 5.1: The L∞ and L2
ω errors for ỹ(t).

N 8 10 12 14 16
L∞ Error 9.1871e-002 9.6882e-003 6.6860e-004 3.4915e-005 1.3721e-006
L2
ω Error 2.4140e-002 2.9328e-003 2.2878e-004 1.2547e-005 5.1289e-007
N 18 20 22 24 26

L∞ Error 4.1937e-008 1.0351e-009 2.0807e-011 5.2591e-013 2.1072e-013
L2
ω Error 1.6280e-008 4.1367e-010 8.6156e-012 2.0914e-013 1.3405e-013
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Figure 1. Example 5.1: Numerical and exact solution y(t) =
t−mu sin(t) with T = 4π and µ = 0.6.
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Figure 2. Example 5.1:L∞ and L2
ω errors versus the number

of collocation points with the relationship between t and x, t =
T
2 (x+ 1).
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Example 5.1. Consider the linear Volterra integral equations of the second kind
with a weakly singular kernel:

(5.2) y(t) = b(t)−
∫ t

0

(t− s)−µy(s)ds, 0 ≤ t ≤ T,

with b(t) chosen so that y(t) = t−µ sin t for 0 < µ < 1. By calculation,

b(t) =
sin t

tµ
+
√
π Γ(1− µ) t1/2−µ sin

t

2
B

(
1

2
− µ,

t

2

)
,

where B(ν, z) is the Bessel function defined by

B(ν, z) =
(z
2

)ν ∞∑
k=0

(
− z2

4

)k

k!Γ(ν + k + 1)
.

This problem has the property stated at the beginning of this paper, i.e., y′(t) =
t−µ cos t + t−µ−1 sin t ∼ t−µ at t = 0+, which is singular at t = 0+. In the
theory presented in the previous section, our main concern is the regularity of the
transformed solution. For the present problem, if we multiply the solution by the
factor tµ, then the resulting function ỹ(t) = tµy(t) = sin t is sufficiently smooth.

Table 1 shows the errors for ỹ(t) obtained by using the spectral methods de-
scribed above. It is observed that the desired exponential rate of convergence is
obtained. Figure 1 presents the numerical and exact solutions for y, which are
found to be in excellent agreement.

Table 2. Example 5.2: The L∞ and L2
ω errors for ỹ(t).

N 12 18 24 30 36
L∞ Error 7.2640e-003 1.4138e-003 3.3384e-004 5.9624e-005 9.1527e-006
L2
ω Error 9.1299e-004 2.2357e-004 4.5114e-005 7.1458e-006 9.9153e-007
N 42 48 54 60 66

L∞ Error 1.2507e-006 1.5213e-007 1.5904e-008 1.2551e-009 1.4582e-010
L2
ω Error 1.2435e-007 1.4073e-008 1.3903e-009 1.0726e-010 1.2492e-011

Example 5.2. Consider the following nonlinear Volterra integral equation of the
second kind with weakly singular kernels:

(5.3) y(t) = g(t)−
∫ t

0

(t− s)−µ tan (y(s)) ds, 0 ≤ t ≤ T,

where
g(t) = arctan(t5−µ) + t6−2µB(11− µ, 5− µ).

There are two issues relevant to the above problem. First, it is a nonlinear
Volterra equation. Although the theoretical analysis in this work deals with the
linear case only, the method can be extended to handle the nonlinear case quite
easily. The implementation follows recent work of Tang and Xu [29], which uses a
Gauss-Seidel-type iteration technique. The second issue is about the regularity. It
can be verified that this problem has a unique solution y(t) = arctan(t5−µ). With
simple expansions, it is known that

y(t) ∼ t5−µ − 1

3
t3(5−µ).
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Figure 3. Example 5.2: L∞ and L2
ω errors versus the number

of collocation points with the relationship between t and x, t =
T
2 (x+ 1).

Consequently, a transformation of tµ+m−1y(t) should be used as suggested by the
theoretical analysis in this work. However, the transformation ỹ(t) := tµy(t) leads
to a smooth function ỹ(t) ∈ C13([0, T ]), and this regularity is sufficient in obtaining
spectral accuracy with the double-precision machine epsilon.

In Table 2 we present the errors of ỹ for the numerical approximations obtained
by using the spectral methods, and Figure 3 plots the corresponding errors for the
solutions y of the original equation (5.3).

6. Conclusion and future work

This work has been concerned with the Jacobi-collocation spectral analysis of
the second kind Volterra integral equations which have a weakly singular kernel of
the form (t−s)−µ, where µ ∈ (0, 1). The derivative y′(t) of the solution behaves like
t−µ near the origin, and this is expected to cause a loss in the global convergence
order of collocation methods. To this end, the original equation was changed into a
new Volterra integral equation which possesses better regularity, by applying some
function transformations and variable transformations. Next, we directly presented
a discretization scheme for the new Volterra integral equation. We proved the
convergence of the method and obtained the error estimates in the L∞-norm and
the weighted L2-norm of the approximated solution. These results were confirmed
by some numerical examples. We have also implemented the Jacobi-collocation
method based on the Gauss-Jacobi quadrature formula.

In our future work, the stability will be established for these spectral-collocation
methods, and spectral-Galerkin methods also will be studied for Volterra integral
equations of the second kind, with a weakly singular kernel.
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