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CONVERGENCE OF APPROXIMATION SCHEMES

FOR NONLOCAL FRONT PROPAGATION EQUATIONS

AURÉLIEN MONTEILLET

Abstract. We provide a convergence result for numerical schemes approx-
imating nonlocal front propagation equations. Our schemes are based on a
recently investigated notion of a weak solution for these equations. We also
give examples of such schemes, for a dislocation dynamics equation, and for a
FitzHugh-Nagumo type system.

1. Introduction

We are concerned with numerical approximation for nonlocal equations of the
form {

ut(x, t) = H[1{u≥0}](x, t,Du,D2u) in R
N × (0, T ),

u(·, 0) = u0 in R
N ,

(1.1)

which, in the level-set approach for front propagation (see [19, 18, 12] for a com-
plete overview of this method), describe the movement of a family {K(t)}t∈[0,T ] of

compact subsets of RN such that

K(t) = {x ∈ R
N ; u(x, t) ≥ 0}

for some function u : RN × [0, T ] → R. Here ut, Du and D2u denote, respectively,
the time derivative, space gradient and space Hessian matrix of u, while 1A denotes
the indicator function of any set A.

The function H corresponds to the velocity of the front. In our setting, it
depends not only on local properties of the front, such as its position, the time,
the normal direction and its curvature matrix, but also, at time t, on the family
{K(s)}s∈[0,t] itself. This nonlocal dependence is carried by the notation H[1{u≥0}]:

for any indicator function χ or more generally for any χ ∈ L∞(RN × [0, T ]) with
values in [0, 1], the Hamiltonian H[χ] depends on χ in a nonlocal way; typically in
our examples, it is obtained by a convolution procedure between χ and a physical
kernel (either only in space or in space and time). In particular, H[χ] is continuous
in space but has no particular regularity in time. However, the H[χ] equation is
always well posed.

More precisely, we assume that for any χ ∈ L∞(RN × [0, T ]; [0, 1]) with bounded
support, H[χ](x, t, p, A) defines a measurable function of (x, t, p, A) ∈ R

N × [0, T ]×
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R
N \{0}×SN , while for almost every t ∈ [0, T ], H[χ](x, t, p, A) defines a continuous

function of (x, p, A). Here SN denotes the set of real square symmetric matrices of
size N .

Let us specify the class of equations that we consider: first of all, we are in-
terested in front propagation equations, and therefore we assume that for any χ ∈
L∞(RN×[0, T ]; [0, 1]) with bounded support, the equation ut = H[χ](x, t,Du,D2u)
is geometric, and that the upper and lower semicontinuous envelopes of the Hamil-
tonianH[χ] with respect to (x, p, A) satisfy, for any x ∈ R

N and almost all t ∈ [0, T ],

(1.2) H[χ]∗(x, t, 0, 0) = H[χ]∗(x, t, 0, 0) = 0.

We also assume that this equation is degenerate parabolic, which means that for
any (x, p) ∈ R

N × R
N \ {0}, for almost every t ∈ [0, T ] and for all A,B ∈ SN , we

have
H[χ](x, t, p, A) ≤ H[χ](x, t, p, B) if A ≤ B,

where ≤ stands for the usual partial ordering for symmetric matrices.
The initial datum u0 : RN → R is a bounded and Lipschitz continuous function

on R
N which represents the initial front, i.e. such that

{u0 ≥ 0} = K0 and {u0 = 0} = ∂K0

for some fixed compact set K0 ⊂ R
N . Since in the level-set approach, the fam-

ily {K(t)}t∈[0,T ] only depends on the 0-level set of u0 (see [12]), we assume for
simplicity that there exists R0 > 0 such that

(1.3) u0(x) = −1 if |x| ≥ R0,

where | · | denotes the standard Euclidean norm on R
N . For computational rea-

sons, we ask the equation to preserve this property of compactness of the front.
Essentially, this means that there exists a continuous function R on [0, T ] such that
R(0) = R0 and the solution of ut = H[χ](x, t,Du,D2u) with initial datum u0 has
the following property:

χ(x, t) = 0 for a.e. (x, t) s.t. |x| ≥ R(t) ⇒ u(x, t) = −1 for any (x, t) s.t. |x| ≥ R(t).

Finally, for the same computational reasons, we point out that even though exis-
tence of solutions to (1.1) is known in a more general setting (see [5]), in this article
we consider equations depending on the past, which means thatH[χ](x, t, p, A) only
depends on {χ(·, s)} for 0 ≤ s ≤ t.

The main issue linked with these nonlocal equations is the fact that they do
not satisfy a comparison principle (or, geometrically, an inclusion principle on the
fronts). Indeed, in general, the fact that {u1 ≥ 0} ⊂ {u2 ≥ 0} does not imply that
H[1{u1≥0}] ≤ H[1{u2≥0}]. A consequence of this absence of monotonicity is that
one cannot build viscosity solutions to (1.1) by the classical methods, a comparison
principle being crucial for both existence and uniqueness of a solution.

To overcome these difficulties, a notion of weak solution to (1.1) has therefore
been introduced in [4, 5]. It uses the notion of L1-viscosity solution, a notion of a
solution adapted to Hamiltonians H[χ] which are merely measurable in time. We
refer to [14, 16, 17, 9, 10] for a complete presentation of the theory of L1-viscosity
solutions. Let us only give their definition:

Definition 1.1. Assume that H : (x, t, p, A) ∈ R
N × [0, T ] × R

N \ {0} × SN �→
H(x, t, p, A) is measurable and defines a continuous function of (x, p, A) for almost
all t ∈ [0, T ].
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We say that u : RN × [0, T ] → R is an L1-viscosity subsolution (resp. superso-
lution) of {

ut(x, t) = H(x, t,Du,D2u) in R
N × (0, T ),

u(·, 0) = u0 in R
N ,

(1.4)

if u is upper semicontinuous (resp. lower semicontinuous), u(·, 0) ≤ u0 (resp ≥),
and if

(i) for any φ ∈ C2(RN × (0, T );R) and any b ∈ L1((0, T );R) such that the

function (x, t) �→ u(x, t) − φ(x, t) −
∫ t

0
b(s) ds has a local maximum (resp.

minimum) at some (x0, t0) ∈ R
N × (0, T ),

(ii) and for any continuous function G : RN × [0, T ]×R
N ×SN → R such that

H∗(x, t, p, A)− b(t) ≤ G(x, t, p, A) (resp. H∗(x, t, p, A)− b(t) ≥ G(x, t, p, A))

for all (x, p, A) in a neighborhood of (x0, Dφ(x0, t0), D
2φ(x0, t0)), and al-

most all t in a neighborhood of t0,

we have
φt(x0, t0) ≤ G(x0, t0, Dφ(x0, t0), D

2φ(x0, t0)) (resp. ≥).

We say that u is an L1-viscosity solution of (1.4) if it is both a sub- and supersolution
of this equation.

With this notion, we can now recall the definition of a weak solution to (1.1):

Definition 1.2. Let u : RN × [0, T ] → R be a continuous function. We say that u
is a weak solution of (1.1) if there exists χ ∈ L∞(RN × [0, T ]; [0, 1]) such that:

(1) u is an L1-viscosity solution of{
ut(x, t) = H[χ](x, t,Du,D2u) in R

N × (0, T ),
u(·, 0) = u0 in R

N .
(1.5)

(2) For almost all t ∈ [0, T ],

(1.6) 1{u(·,t)>0} ≤ χ(·, t) ≤ 1{u(·,t)≥0} a.e. in R
N .

Moreover, we say that u is a classical viscosity solution of (1.1) if, in addition, for
almost all t ∈ [0, T ],

1{u(·,t)>0} = 1{u(·,t)≥0} a.e. in R
N .

In [5], Barles, Cardaliaguet, Ley and the author proved a general result of exis-
tence of weak solutions for these nonlocal equations. In the framework described
above, the essential assumptions under which existence is known are the following;
they concern the local equation (1.5), where the nonlocal dependence is frozen, that
is to say, 1{u≥0} is replaced by a fixed function χ ∈ L∞(RN × [0, T ]; [0, 1]):

(A1) If χn ⇀ χ weak-∗ in L∞(RN × [0, T ]; [0, 1]), and if Supp(χn) is uniformly
bounded, then for all (x, t, p, A) ∈ R

N × [0, T ]× R
N \ {0} × SN ,∫ t

0

H[χn](x, s, p, A)ds −→
n→+∞

∫ t

0

H[χ](x, s, p, A)ds

locally uniformly in x, t, p, A.
(A2) A comparison principle holds for (1.5): for any fixed χ ∈ L∞(RN ×

[0, T ]; [0, 1]) with bounded support, if u is a bounded L1-viscosity subsolution
of (1.5) and v is a bounded L1-viscosity supersolution of (1.5), then u ≤ v in
R

N × [0, T ).
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These assumptions are the classical ingredients to carry out a stability argument:
assumption (A1) provides stability for L1-viscosity solutions under very weak con-
vergence of the Hamiltonians, thanks to a new stability result of Barles [3], while
assumption (A2) enables us to identify the limit by a comparison principle. This
is the idea of the proof of the existence result of [5]. We assume throughout the
paper that these assumptions hold, and we refer to [9, 17] for conditions on H[χ]
under which (A2) holds.

We also point out that assumption (A2) implies that for any fixed χ ∈ L∞(RN×
[0, T ]; [0, 1]) with bounded support, (1.5) has a unique continuous L1-viscosity so-
lution u : RN × [0, T ] → R. Combined with (1.2), which shows that constants are
solutions of (1.5), it also implies the existence of uniform bounds on the solutions
of (1.5), independent of χ.

Considering this existence result, our motivation is to provide numerical schemes,
and a general convergence result, for these nonlocal and nonmonotone front prop-
agation equations with L1 dependence in time. This work is inspired by [8] where
Barles and Souganidis proved a general convergence result for monotone, stable
and consistent schemes in the local framework. We also refer to the works of
Cardaliaguet and Pasquignon [11] and Slepčev [21] on the approximation of mov-
ing fronts in the nonlocal but monotone case.

This paper is organized as follows: in Section 2, we define a class of approxi-
mation schemes and prove the general convergence result. In Section 3, we give
two explicit examples of such schemes, for a dislocation dynamics equation and
FitzHugh-Nagumo type system (see (3.1) and (3.3)).

Notation. In what follows, | · | denotes the standard Euclidean norm on R
N or

SN , B(x,R) (resp. B̄(x,R)) is the open (resp. closed) ball of radius R centered at
x ∈ R

N . We denote the essential supremum of f ∈ L∞(RN ) with values in R, RN

or SN , f ∈ L∞(R;R) or f ∈ L∞(RN × [0, T ];R), by ‖f‖∞.

2. Convergence of approximation schemes

Let h = T/n for some n ∈ N
∗, and ∆1, . . . ,∆N ∈ (0, 1) be our respective time

and space steps: a choice of h determines fixed ∆i’s by the relation ∆i = λi h for
λi > 0 fixed. We define for (i1, . . . , iN ) ∈ Z

N , xi1,...,iN = (i1∆1, . . . , iN∆N ) and

Qi1,...,iN =
N∏

k=1

[(ik − 1/2)∆k, (ik + 1/2)∆k).

Let us also define the space grid

Πh =
⋃

(i1,...,iN )∈ZN

{xi1,...,iN },

and for x = (x1, . . . , xN ) ∈ R
N , its projection on this grid,

xh := ([x1/∆1 + 1/2]∆1, . . . , [xN/∆N + 1/2]∆N ) ∈ Πh,

where [·] denotes the integer part, so that if x ∈ Qi1,...,iN , then xh = xi1,...,iN .
For x ∈ Πh, k ∈ N such that kh ≤ T , u : Πh → R and χ : Πh × [0, T ] → [0, 1]

with bounded support, we define an approximate HamiltonianHh[χ](x, kh, u) which
depends on

{χ(xi1,...,iN , lh)}(i1,...,iN )∈ZN , 0≤l≤k and {u(xi1,...,iN )}(i1,...,iN )∈ZN .
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We keep in mind that Hh[χ](x, kh, u) possibly depends on the entire history
{χ(·, lh)} for l up to k.

We consider approximation schemes of the following form: for any k ∈ N such
that (k + 1)h ≤ T , and for any x ∈ Πh, we set

(2.1)

{
uh(x, (k + 1)h) = uh(x, kh) + hHh[1{uh≥0}](x, kh, uh(·, kh)),
uh(x, 0) = u0(x).

We finally extend uh to a piecewise constant function on R
N × [0, T ] by setting for

any (x, t),

uh(x, t) = uh(xh, [t/h]h).

In particular we have for any x ∈ R
N ,

uh(x, 0) = u0(xh).

Let us now state our assumptions on Hh; in what follows, C2
b (R

N ;R) denotes
the set of C2 functions on R

N such that the norm
(2.2)
‖φ‖ = ‖φ‖∞ + ‖Dφ‖∞ + ‖D2φ‖∞ = sup

x∈RN

|φ(x)|+ sup
x∈RN

|Dφ(x)|+ sup
x∈RN

|D2φ(x)|

is finite. Let us first state an assumption on the behavior of Hh with respect to its
last variable, which represents space derivatives. It is a trivial assumption which
is linked to the fact that the equation ut = H[χ](x, t,Du,D2u) is geometric for
any fixed χ; it will be satisfied for all reasonable schemes at no cost, so we state it
separately:

(H0) Consistency with respect to derivatives : (i) For any x ∈ Πh, k, h with
kh ≤ T , u : Πh → R, λ ∈ R, and any function χ : Πh × [0, T ] → [0, 1] with bounded
support,

Hh[χ](x, kh, u+ λ) = Hh[χ](x, kh, u) and Hh[χ](x, kh, 0) = 0.

(ii) There exists r ∈ N
∗ such that for any x ∈ Πh, k, h with kh ≤ T , for any

χ : Πh × [0, T ] → [0, 1] with bounded support, and for all u, v : Πh → R,

if u(y) = v(y) ∀ y ∈ Πh s.t. ∀i, |xi − yi| ≤ r∆i,

then Hh[χ](x, kh, u) = Hh[χ](x, kh, v).

We easily deduce from this and (1.3) that there exists R = R0+rT
√
N maxλi such

that if uh is defined by the scheme (2.1), then uh(x, t) = −1 if x ∈ R
N \B(0, R), for

all t ∈ [0, T ]; hence we only need to consider functions χ with uniformly bounded
support. This shows in addition that the domain of space computation is uniformly
bounded. In particular we set Bh(R

N × [0, T ]; [0, 1]) to be the set of functions χ
defined on R

N × [0, T ] with values in [0, 1] such that Supp(χ) ⊂ B̄(0, R) × [0, T ]
and χ is constant on each of the sets Qi1,...,iN × [kh, (k + 1)h).

Our assumptions are the following:
(H1) Hh is conditionally monotone: For any x ∈ Πh, k, h with kh ≤ T , for any

χ ∈ Bh(R
N × [0, T ]; [0, 1]), and for all u, v : Πh → R,

u ≤ v ⇒ u(x) + hHh[χ](x, kh, u) ≤ v(x) + hHh[χ](x, kh, v).

(H2) Hh is stable: There exists L > 0 such that for any x ∈ Πh, k, h with
kh ≤ T , and χ ∈ Bh(R

N × [0, T ]; [0, 1]), the solution uh of (2.1) satisfies

|uh(x, kh)| ≤ L.



130 AURÉLIEN MONTEILLET

(H3) Hh is consistent with H: For any x ∈ R
N and φ ∈ C2

b (R
N ;R) such

that Dφ(x) �= 0, if χh ∈ Bh(R
N × [0, T ]; [0, 1]) is such that χh ⇀ χ weak-∗ in

L∞(RN × [0, T ]; [0, 1]) as h → 0, then

h

[t/h]−1∑
l=0

Hh[χh](xh, lh, φ) −→
h→0

∫ t

0

H[χ](x, s,Dφ(x), D2φ(x)) ds

locally uniformly for t ∈ [0, T ] (the sum is set to 0 if t < h).
(H4) Regularity : For any compact subset K of RN × C2

b (R
N ;R), there exist

uniformly bounded moduli of continuity mh such that for any h > 0, (x, φ), (y, ψ) ∈
K with x, y ∈ Πh, for any k, h with kh ≤ T , and any χ ∈ Bh(R

N × [0, T ]; [0, 1]),

|Hh[χ](x, kh, φ)−Hh[χ](y, kh, ψ)|
≤ mh(|x− y|+ |Dφ(x)−Dψ(y)|+ |D2φ(x)−D2ψ(y)|),

and such that mh(η) → 0 as h, η → 0.
Assumptions (H1) to (H3) are the classical assumptions introduced by Barles

and Souganidis in [8]. Moreover (H3) is the discrete equivalent of (A1) on the weak
convergence of the Hamiltonians. As a matter of fact, the proof of our convergence
theorem is based on the proof of the stability result of [3], the key assumption of
which is (A1). Finally assumption (H4) appears naturally alongside (H3), just
as in the continuous case (see [3]).

Remark 2.1. Under assumption (H0) (ii), if (H1) holds, then it also holds for all
functions u and v such that u(y) ≤ v(y) for any y ∈ Πh with |xi − yi| ≤ r∆i for all
i = 1, . . . , N , that is, also for functions that are comparable only locally. Indeed in
this case, we can change u and v to 0 out of the set {y ∈ Πh | |xi − yi| ≤ r∆i ∀i =
1, . . . , N}. This provides new functions ũ and ṽ such that ũ ≤ ṽ in Πh, whence,
using (H1),

ũ(x) + hHh[χ](x, kh, ũ) ≤ ṽ(x) + hHh[χ](x, kh, ṽ).

But ũ(x) = u(x), Hh[χ](x, kh, ũ) = Hh[χ](x, kh, u) thanks to (H0) (ii), and the
same holds for v. This proves our assertion.

In the same spirit, we notice that assumption (H4) also holds for two functions φ
and ψ in C2(RN ;R), because one can always modify φ and ψ to obtain new functions
in C2

b (R
N ;R) without changing the values of Hh[χ](x, kh, φ) or Hh[χ](y, kh, ψ).

Let us now state our main result:

Theorem 2.2. Assume that assumption (A2) holds. Let u0 be a bounded and
Lipschitz continuous function which satisfies (1.3). Let (uh)h be defined by the
scheme (2.1) satisfying assumptions (H0) to (H4).

Then there exist hn → 0, u ∈ C0(RN × [0, T ];R) and χ ∈ L∞(RN × [0, T ]; [0, 1])
such that uhn

→ u locally uniformly in R
N × [0, T ], 1{uhn≥0} ⇀ χ weak-∗ in

L∞(RN × [0, T ]; [0, 1]) and (u, χ) satisfies (1.5).
Moreover, any such (u, χ) satisfies (1.6), so that u is a weak solution of (1.1).

If in addition (1.1) has a unique weak solution u, then the whole sequence (uh)
converges locally uniformly to u in R

N × [0, T ].

Proof. By compactness of L∞(RN × [0, T ]; [0, 1]) for the weak-∗ topology, we can
find χ ∈ L∞(RN × [0, T ]; [0, 1]) and (hn) converging to 0 such that

1{uhn≥0} ⇀ χ weak- ∗ in L∞(RN × [0, T ]; [0, 1]).
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By the stability assumption (H2), there exists L > 0 such that ‖uh‖∞ ≤ L for any
h. We can therefore set

u(x, t) = lim sup∗(uhn
)(x, t)

= lim sup{uh′
n
(xn, knh

′
n) | (h′

n) ⊂ (hn), xn → x with xn ∈ Πhn
,

knh
′
n → t with kn → +∞},

which defines a bounded upper semi-continuous function on R
N × [0, T ]. Let us

prove that u is an L1-viscosity subsolution of (1.5). We could prove in the same
way that u(x, t) = lim inf{uh′

n
(xn, knh

′
n) | (h′

n) ⊂ (hn), xn → x, knh
′
n → t} is a

bounded L1-viscosity supersolution of (1.5).
Step 1. We first prove that for any x ∈ R

N , u(x, 0) ≤ u0(x). To do this we adapt
the proof of the same statement in the proof of Theorem 3.1 of [5]. First of all, u0

is Lipschitz continuous, so that for any fixed 0 < ε ≤ 1, we have, for any x, y ∈ R
N ,

u0(y) ≤ u0(x) + ‖Du0‖∞|x− y| ≤ u0(x) +
|x− y|2
2ε2

+
‖Du0‖∞ε2

2
.

We fix x and set φ(y) = |x − y|2/(2ε2). Using the above inequality, the function
defined by

ψε(y, khn) = u0(x) + φ(y) +
‖Du0‖∞ε2

2
+ Cε khn

satisfies uhn
(y, 0) = u0(y) ≤ ψε(y, 0) for all y ∈ Πh. Moreover, using (H0) (i),

we see that ψε is a supersolution of (2.1) associated to Hhn
[1{uhn≥0}] in the ball

B(x, ε+ rT
√
N maxλi), provided that Cε is large enough, namely as soon as

Hhn
[1{uhn≥0}](y, khn,φ) ≤ Cε

for all y with |x− y| < ε+ rT
√
N maxλi and khn ≤ T.

This condition can be fulfilled using (H4) and the fact thatHhn
[1{uhn≥0}](y, khn, 0)

= 0 (assumption (H0) (i)). Indeed, for some uniformly bounded moduli of conti-
nuity, we have

Hhn
[1{uhn≥0}](y, khn, φ) ≤ mhn

(|Dφ(y)|+ |D2φ(y)|)

for any n ∈ N, y ∈ Πhn
such that |x − y| < ε + rT

√
N maxλi and khn ≤ T .

The function φ does not belong to C2
b (R

N ;R), but using Remark 2.1, we recall
that (H4) can also be applied to two functions in C2(RN ;R). By the conditional
monotonicity assumption (H1) (using again Remark 2.1), we obtain that for any

y ∈ Πhn
satisfying |y − x| < ε+ r(T − hn)

√
N maxλi,

uhn
(y, hn) ≤ ψε(y, hn).

Reproducing the argument, we get that for any y ∈ Πhn
with |y− x| < ε and k, hn

with khn ≤ T ,
uhn

(y, khn) ≤ ψε(y, khn),

and in particular

u(x, 0) ≤ lim sup∗ψε(x, 0) = u0(x) +
‖Du0‖∞ε2

2
.

Sending ε to 0 proves the claim.
Step 2. Now let φ ∈ C2(RN × (0, T );R) and b ∈ L1((0, T );R) be such that

(x, t) �→ u(x, t)− φ(x, t)−
∫ t

0

b(s) ds
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has a local maximum at some (x0, t0) ∈ R
N×(0, T ). Let G be a continuous function

such that for almost all t in a neighborhood of t0, for all (x, p, A) in a neighborhood
of (x0, Dφ(x0, t0), D

2φ(x0, t0)),

H[χ]∗(x, t, p, A)− b(t) ≤ G(x, t, p, A).

To check the L1-viscosity subsolution property, we have to prove that

φt(x0, t0) ≤ G(x0, t0, Dφ(x0, t0), D
2φ(x0, t0)).

We can assume without loss of generality that the maximum is strict and global and
that supt∈[0,T ] ‖φ(·, t)‖ < +∞. Let us set for simplicity xh = (x0)h and introduce
the functions

fh : t �→ h

[t/h]−1∑
l=0

Hh[1{uh≥0}](xh, lh, φ(·, t0))

−
∫ t

0

H[χ]∗(x0, s,Dφ(x0, t0), D
2φ(x0, t0)) ds.

Two cases arise: if Dφ(x0, t0) �= 0, then for almost every s ∈ [0, T ],

H[χ]∗(x0, s,Dφ(x0, t0), D
2φ(x0, t0)) = H[χ](x0, s,Dφ(x0, t0), D

2φ(x0, t0)),

and by the consistency assumption (H3), we know that fhn
(t) → 0 as n → +∞,

locally uniformly for t ∈ [0, T ].
IfDφ(x0, t0) = 0, then a result by Barles and Georgelin [7] shows that we can also

assume that D2φ(x0, t0) = 0. In this case, H[χ]∗(x0, s,Dφ(x0, t0), D
2φ(x0, t0)) = 0

for almost every s ∈ [0, T ], thanks to (1.2). Assumption (H4) and the fact that
Hh[1{uh≥0}](xh, lh, 0) = 0 (assumption (H0) (i)) imply that for some moduli of
continuity mh,∣∣∣∣∣∣h

[t/h]−1∑
l=0

Hh[1{uh≥0}](xh, lh, φ(·, t0))

∣∣∣∣∣∣ ≤ T mh(|Dφ(xh, t0)|+ |D2φ(xh, t0)|) −→
h→0

0,

because xh → x0, Dφ(xh, t0) → Dφ(x0, t0) = 0 andD2φ(xh, t0) → D2φ(x0, t0) = 0.
In particular, fhn

(t) → 0 as n → +∞, locally uniformly for t ∈ [0, T ].
In both cases, the functions

vhn
: (x, t) �→ uhn

(x, t)− φ(x, t)−
∫ t

0

b(s) ds− fhn
(t)

satisfy

lim sup∗(vhn
)(x, t) = u(x, t)− φ(x, t)−

∫ t

0

b(s) ds.

By a standard stability argument, there exists a subsequence of (hn), still denoted
(hn) for simplicity, and a sequence (xn, knhn) → (x0, t0) of global maximum points
of vhn

with xn ∈ Πhn
. We set

ξn = vhn
(xn, knhn),

so that

(2.3) uhn
(x, t) ≤ φ(x, t) +

∫ t

0

b(s) ds+ fhn
(t) + ξn
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for every (x, t) ∈ Πhn
× {0, . . . , [T/hn]hn}, with equality at (xn, knhn). Now the

definition of the scheme (2.1) shows that if kn ≥ 1, then

uhn
(xn, knhn) = uhn

(xn, (kn − 1)hn)

+ hn Hhn
[1{uhn≥0}](xn, (kn − 1)hn, uhn

(·, (kn − 1)hn)).

Replacing uhn
in this expression thanks to (2.3), and using the assumption (H1)

of conditional monotonicity of the scheme, we therefore have

φ(xn, knhn) +

∫ knhn

0

b(s) ds+ fhn
(knhn) + ξn

≤φ(xn, (kn − 1)hn) +

∫ (kn−1)hn

0

b(s) ds+ fhn
((kn − 1)hn) + ξn

+hn Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn) +

∫ (kn−1)hn

0

b(s)ds

+ fhn
((kn − 1)hn) + ξn),

which, using assumption (H0) (i), reduces to

φ(xn, knhn) +

∫ knhn

0

b(s) ds+ fhn
(knhn)

≤φ(xn, (kn − 1)hn) +

∫ (kn−1)hn

0

b(s) ds+ fhn
((kn − 1)hn)

+hn Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn)).

Replacing fhn
by its value, this transforms into

φ(xn, knhn)− φ(xn, (kn − 1)hn)

hn

≤ 1

hn

∫ knhn

(kn−1)hn

{
H[χ]∗(x0, s,Dφ(x0, t0), D

2φ(x0, t0))− b(s)
}
ds

+Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn))

−Hhn
[1{uhn≥0}](xhn

, (kn − 1)hn, φ(·, t0)).

We now use the definition of G to deduce that

φ(xn, knhn)− φ(xn, (kn − 1)hn)

hn

≤ 1

hn

∫ knhn

(kn−1)hn

G(x0, s,Dφ(x0, t0), D
2φ(x0, t0)) ds

+Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn))

−Hhn
[1{uhn≥0}](xhn

, (kn − 1)hn, φ(·, t0)).

Since φ and G are sufficiently regular, we have

φ(xn, knhn)− φ(xn, (kn − 1)hn)

hn
− 1

hn

∫ knhn

(kn−1)hn

G(x0, s,Dφ(x0, t0), D
2φ(x0, t0)) ds

−→
n→+∞

φt(x0, t0)−G(x0, t0, Dφ(x0, t0), D
2φ(x0, t0)).
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To conclude, it therefore suffices to prove that

Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn))

−Hhn
[1{uhn≥0}](xhn

, (kn − 1)hn, φ(·, t0))
has a nonpositive upper limit as n → +∞. But as n goes to +∞, xn → x0,
xhn

→ x0, and φ(·, (kn − 1)hn) → φ(·, t0), so that thanks to assumption (H4), we
have for some moduli of continuity mhn

,

|Hhn
[1{uhn≥0}](xn, (kn − 1)hn, φ(·, (kn − 1)hn))

−Hhn
[1{uhn≥0}](xhn

, (kn − 1)hn, φ(·, t0))|
≤ mhn

(|xn − xhn
|+ |Dφ(xn, (kn − 1)hn)−Dφ(xhn

, t0)|
+ |D2φ(xn, (kn − 1)hn)−D2φ(xhn

, t0)|),
which converges to 0 as n → +∞, and the result follows.

Step 3. We just proved that u is a bounded L1-viscosity subsolution of (1.5),
while u is a bounded L1-viscosity supersolution of (1.5). The comparison principle
(A2) for this equation then implies that u ≤ u in R

N × [0, T ), while the converse
inequality is a direct consequence of their definition. This shows that in R

N×[0, T ),
u = u coincide with the unique continuous L1-viscosity solution u of (1.5), and
that (uhn

) converges locally uniformly in R
N × [0, T ) to u. Since of course we can

extend H[χ] by 0 after time T , and use the previous argument on the extended time
interval, we deduce that the convergence of (uhn

) to u is in fact locally uniform in
R

N × [0, T ]. This finally proves the convergence of (uhn
,1{uhn≥0}) to a couple (u, χ)

which satisfies (1.5).
Moreover, χ being taken as the weak-∗ limit of (1{uhn≥0}), we can prove as in

[5] that for almost all t ∈ [0, T ],

1{u(·,t)>0} ≤ χ(·, t) ≤ 1{u(·,t)≥0},

which means that (u, χ) also satisfies (1.6). In particular u is a weak solution of
(1.1).

In fact, this proof shows that any sequence (uhn
) of solutions of the scheme

(2.1) admits a subsequence which converges locally uniformly to a weak solution of
(1.1). As a consequence, if this equation has a unique weak solution, then the whole
sequence (uh) converges locally uniformly to the weak solution u of (1.1). �

3. Applications

3.1. Dislocation dynamics. We are interested in particular in the dislocation
dynamics equation (see [20, 2, 4] and the references therein), namely

(3.1)

{
ut = [c0(·, t) 
 1{u(·,t)≥0}(x) + c1(x, t)]|Du| in R

N × (0, T ),

u(·, 0) = u0 in R
N ,

where the nonlocal part of the velocity is defined by the space convolution

c0(·, t) 
 1{u(·,t)≥0}(x) =

∫
RN

c0(x− y, t)1{u(·,t)≥0}(y) dy.

We assume that c0 and c1 satisfy the following assumptions, under which (A1) and
(A2) are satisfied (see [4, 5]):

(D)(i) c0 ∈ C0([0, T ];L1
(
R

N
)
), c1 ∈ C0(RN × [0, T ];R).
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(ii) For any t ∈ [0, T ], c0(·, t) is locally Lipschitz continuous and there exists a
constant C > 0 such that ‖Dc0‖L∞([0,T ];L1(RN )) ≤ C.

(iii) There exists a constant C > 0 such that, for any x, y ∈ R
N and t ∈ [0, T ],

|c1(x, t)| ≤ C and |c1(x, t)− c1(y, t)| ≤ C|x− y|.
Under these assumptions, there exists a weak solution of (3.1), as proved by Barles,
Cardaliaguet, Ley and Monneau [4, Theorem 1.2] or Barles, Cardaliaguet, Ley and
the author [5, Theorem 3.3]. We are going to study the convergence of the following
approximation algorithm proposed by Alvarez, Carlini, Monneau and Rouy [1] for
N = 2, which is a particular case of (2.1). In [1], the authors prove short time
existence of a classical viscosity solution to (3.1) and provide a convergence rate for
their scheme. We do not obtain such a rate but prove convergence of this scheme
to a weak solution of (3.1) for long times. We set, if x = xi1,...,iN ∈ Πh,

Hh[χ](x, kh, φ)

=

⎧⎨
⎩

∑
j1,...,jN∈Z

c0(i1 − j1, . . . , iN − jN , k)χ(j1∆1, . . . , jN∆N , kh)

⎫⎬
⎭ |Dh|(φ)(x)

+ c1(x, kh) |Dh|(φ)(x),
where

c0(m1, . . . ,mN , k) =

∫
Qm1,...,mN

c0(y, kh) dy,

and |Dh|(φ)(x) is a monotone approximation of |Dφ(x)| adapted to the sign of the
velocity, such as the one proposed by Osher and Sethian [19] and used in [1]: let
(e1, . . . , eN ) denote the canonical basis of RN ; then for x ∈ Πh,

|Dh|(φ)(x) =
{

N∑
i=1

max

(
φ(x+ ei)− φ(x)

∆i
, 0

)2

+min

(
φ(x)− φ(x− ei)

∆i
, 0

)2
}1/2

if the sum of the nonlocal term and c1(x, kh) is nonnegative, and

|Dh|(φ)(x) =
{

N∑
i=1

min

(
φ(x+ ei)− φ(x)

∆i
, 0

)2

+max

(
φ(x)− φ(x− ei)

∆i
, 0

)2
}1/2

otherwise. In particular, Hh satisfies (H0) with r = 1. Let M > 0 be such that

‖c0(·, t)‖L1(RN ) + |c1(x, t)| ≤ M for any (x, t) ∈ R
N × [0, T ].

The CFL condition to ensure the conditional monotonicity (H1) of the scheme is

(3.2)
√
2N M

h

∆i
≤ 1 for any i = 1, . . . , N.

The discrete convolution in the definition of Hh is efficiently computed using the
Fast Fourier Transform; see [1]. We now state our convergence result:

Theorem 3.1. Let c0 and c1 satisfy (D), and let u0 be a bounded and Lipschitz
continuous function which satisfies (1.3). Let us fix space steps ∆i = λi h for any
i = 1, . . . , N , for some constants λi > 0 such that (3.2) holds.

Then there exists hn → 0 such that (uhn
) converges locally uniformly to a weak

solution of (3.1) in R
N × [0, T ].
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If in addition we have
(D′) There exist c, c > 0 such that, for any x ∈ R

N and t ∈ [0, T ],

|c0(x, t)| ≤ c,

0 < c ≤ −‖c0(·, t)‖L1(RN ) + c1(x, t) ≤ ‖c0(·, t)‖L1(RN ) + c1(x, t) ≤ c,

then the whole sequence (uh) converges locally uniformly in R
N×[0, T ] to the unique

weak solution of (3.1).

Proof. We check the assumptions of Theorem 2.2, but will assume to avoid rep-
etition that c1 = 0; the treatment of the term c1 is similar to, but easier than,
the treatment of the convolution term involving c0. To check assumptions (H2) to
(H4), we first notice as in [1] that for x ∈ Πh and χ ∈ Bh(R

N × [0, T ]; [0, 1]),

Hh[χ](x, kh, φ) = {c0(·, kh) 
 χ(·, kh)(x)} |Dh|(φ)(x).
Assumption (H2) is satisfied with L = ‖u0‖∞, by a simple comparison with the
constant solutions ±‖u0‖∞. It only remains to prove assumptions (H3) and (H4).
Let us pick x ∈ R

N , φ ∈ C2
b (R

N ;R), χh ∈ Bh(R
N × [0, T ]; [0, 1]) such that χh ⇀ χ

weak-∗ in L∞(RN × [0, T ]; [0, 1]), and let us prove that

h

[t/h]−1∑
l=0

{c0(·, lh)
 χh(·, lh)(xh)} |Dh|(φ)(xh) ds

−→
h→0

∫ t

0

{c0(·, s) 
 χ(·, s)(x)} |Dφ(x)| ds

locally uniformly for t ∈ [0, T ]. We decompose the difference of the two above terms
as ∫ [t/h]h

t

{c0(·, [s/h]h) 
 χh(·, s)(xh)} |Dh|(φ)(xh) ds

+

∫ t

0

{c0(·, [s/h]h) 
 χh(·, s)(xh)} (|Dh|(φ)(xh)− |Dφ(x)|) ds

+|Dφ(x)|
∫ t

0

{c0(·, [s/h]h) 
 χh(·, s)(xh)− c0(·, s) 
 χh(·, s)(xh)} ds

+|Dφ(x)|
∫ t

0

{c0(·, s) 
 χh(·, s)(xh)− c0(·, s) 
 χh(·, s)(x)} ds

+|Dφ(x)|
∫ t

0

{c0(·, s) 
 χh(·, s)(x)− c0(·, s) 
 χ(·, s)(x)} ds.

By definition of |Dh| and regularity of φ, the first term of this expression satisfies∣∣∣∣∣
∫ [t/h]h

t

{c0(·, [s/h]h) 
 χh(·, s)(xh)} |Dh|(φ)(xh) ds

∣∣∣∣∣
≤ |t− [t/h]h|M

√
2N ‖Dφ‖∞ ≤ M

√
2N ‖Dφ‖∞ h,

while the second is estimated by∣∣∣∣
∫ t

0

{c0(·, [s/h]h) 
 χh(·, s)(xh)} (|Dh|(φ)(xh)− |Dφ(x)|) ds
∣∣∣∣

≤ T M | |Dh|(φ)(xh)− |Dφ(x)| | −→
h→0

0.
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The third term is, in absolute value, less than

|Dφ(x)|
∫ t

0

‖c0(·, [s/h]h)− c0(·, s)‖L1(RN ) ds ≤ |Dφ(x)|T m(h),

where m is a modulus of continuity for c0 ∈ C0([0, T ];L1(RN )). We estimate the
fourth term by

|Dφ(x)|T C |xh − x| ≤
√
N

2
T C |Dφ(x)| (maxλi)h

using the facts that ‖Dc0‖L∞([0,T ];L1(RN )) ≤ C and

|xh − x|2 ≤
N∑
i=1

(
∆i

2

)2

=
1

4

N∑
i=1

λ2
i h

2 ≤ N

4
(maxλi)

2 h2.

Finally, the last term is equal to

|Dφ(x)|
∫ t

0

∫
RN

c0(x− y, s) {χh(y, s)− χ(y, s)} dyds,

which converges to 0 as h → 0 by definition of the weak-∗ convergence of (χh) to
χ. This convergence is a priori merely pointwise in time but we notice as in [4,
Remark 5.2] that the bound

∣∣∣∣
∫
RN

c0(x− y, s)χh(y, s) dy

∣∣∣∣ ≤ M

valid for any (x, s) ∈ R
N × [0, T ] and h > 0 implies that the convergence is in fact

uniform, by Ascoli’s theorem.
To check (H4), let K be a compact set of RN and let R be a positive constant,

and let us fix x, y ∈ K∩Πh, k ∈ N with kh ≤ T , φ, ψ ∈ C2
b (R

N ;R) with ‖φ−ψ‖ ≤ R
(‖ · ‖ is defined by (2.2)) and χ ∈ Bh(R

N × [0, T ]; [0, 1]). We want to prove that

|Hh[χ](x, kh, φ)−Hh[χ](y, kh, ψ)|
≤ mh(|x− y|+ |Dφ(x)−Dψ(y)|+ |D2φ(x)−D2ψ(y)|),

for some uniformly bounded moduli of continuity mh. To do this we write

Hh[χ](x, kh, φ)−Hh[χ](y, kh, ψ)

= {c0(·, kh) 
 χ(·, kh)(x)} |Dh|(φ)(x)− {c0(·, kh) 
 χ(·, kh)(y)} |Dh|(ψ)(y)
= {c0(·, kh) 
 χ(·, kh)(x)} |Dh|(φ)(x)− {c0(·, kh) 
 χ(·, kh)(x)} |Dφ(x)|
+ {c0(·, kh) 
 χ(·, kh)(x)} |Dφ(x)| − {c0(·, kh) 
 χ(·, kh)(x)} |Dφ(y)|
+ {c0(·, kh) 
 χ(·, kh)(x)} |Dφ(y)| − {c0(·, kh) 
 χ(·, kh)(y)} |Dφ(y)|
+ {c0(·, kh) 
 χ(·, kh)(y)} |Dφ(y)| − {c0(·, kh) 
 χ(·, kh)(y)} |Dψ(y)|
+ {c0(·, kh) 
 χ(·, kh)(y)} |Dψ(y)| − {c0(·, kh) 
 χ(·, kh)(y)} |Dh|(ψ)(y).
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By definition of |Dh|, the first and the last terms of this equality are respectively
estimated by

M | |Dh|(φ)(x)− |Dφ(x)| | ≤ M

√
2N

2
‖D2φ‖∞ (maxλi)h

and M | |Dh|(ψ)(y)− |Dψ(y)| | ≤ M

√
2N

2
‖D2ψ‖∞ (maxλi)h

≤ M

√
2N

2
(‖D2φ‖∞ + R) (maxλi)h.

The second term is easily dominated by

M N ‖D2φ‖∞ |x− y|
by regularity of φ, while the third term is, in absolute value, less than

C |x− y| ‖Dφ‖∞,

because ‖Dc0‖L∞([0,T ];L1(RN )) ≤ C. Finally, the fourth term is estimated by

M (|Dφ(y)| − |Dψ(y)|) ≤ M |Dφ(x)−Dψ(y)|+M |Dφ(x)−Dφ(y)|
≤ M |Dφ(x)−Dψ(y)|+M N ‖D2φ‖∞ |x− y|.

This proves (H4) and concludes the proof of the first part of Theorem 3.1.
For the convergence of the entire sequence, we use the result of [6] which states

that under assumptions (D) and (D′), then (3.1) has a unique weak solution. The
convergence of the whole sequence (uh) to this solution then follows from Theorem
2.2. �
3.2. A FitzHugh-Nagumo type system. We are also interested in the following
system:⎧⎪⎨

⎪⎩
ut = α(v)|Du| in R

N × (0, T ),

vt −∆v = g+(v)1{u≥0} + g−(v)(1− 1{u≥0}) in R
N × (0, T ),

u(·, 0) = u0, v(·, 0) = v0 in R
N ,

(3.3)

which is obtained as the asymptotics as ε → 0 of the following FitzHugh-Nagumo
system arising in neural wave propagation or chemical kinetics:

(3.4)

{
uε
t − ε∆uε = ε−1f(uε, vε),

vεt −∆vε = g(uε, vε)

in R
N × (0, T ), where for (u, v) ∈ R

2,{
f(u, v) = u(1− u)(u− a)− v (0 < a < 1),

g(u, v) = u− γv (γ > 0).

The functions α, g+ and g− : R → R appearing in (3.3) are associated with f and
g. This system has been studied in particular by Giga, Goto and Ishii [13] and
Soravia and Souganidis [22]. They proved existence of a weak solution to (3.3).
Moreover in [22], the convergence of the solution of (3.4) to a solution of (3.3) as
ε → 0 is proved.

If for χ ∈ L∞(RN × [0, T ]; [0, 1]), v denotes the solution of

(3.5)

{
vt −∆v = g+(v)χ+ g−(v)(1− χ) inRN × (0, T ),

v(·, 0) = v0 inRN ,
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and if c[χ](x, t) := α(v(x, t)), then Problem (3.3) reduces to

(3.6)

{
ut(x, t) = c[1{u≥0}](x, t)|Du(x, t)| in R

N × (0, T ),

u(·, 0) = u0 in R
N ,

which is a particular case of (1.1), where c[χ] depends on χ in a nonlocal way in
both space and time. In [5], Barles, Cardaliaguet, Ley and the author were therefore
able to recover the existence result of [13, 22], and in [6], they proved uniqueness
in the case where α > δ in R for some δ > 0.

Let us state the assumptions satisfied by the data; they imply that (A1) and
(A2) hold (see [5]):

(F) (i) α is Lipschitz continuous on R,
(ii) g+ and g− are smooth on R

N , and there exist g and g in R such that

g ≤ g−(r) ≤ g+(r) ≤ g for all r in R.

We set γ = max{|g|, |g|}. Moreover we assume that

‖(g+)(i)‖∞ < +∞ and ‖(g−)(i)‖∞ < +∞ for i = 1, 2, 3.

(iii) v0 is of class C5 on R
N with ‖Djv0‖∞ < +∞ for any j = 0, . . . , 5.

Here we want to propose a numerical scheme to compute a weak solution, or the
weak solution if α > δ, of (3.3)-(3.6). To solve the heat equation part

vt −∆v = g+(v)χ+ g−(v)(1− χ),

we use an approximation scheme that we write in the following abstract form: we
build functions vh : RN × [0, T ] → R, such that vh is piecewise constant; i.e., for
any (x, t) ∈ R

N × [0, T ], vh(x, t) = vh(xh, [t/h]h), and such that for any k ∈ N with
(k + 1)h ≤ T , for any x ∈ Πh,

(3.7)

{
vh(x, (k + 1)h) = Sh[χ](x, kh, vh),

vh(x, 0) = v0,h(x),

where Sh[χ](x, kh, v) depends on {χ(xi1,...,iN , lh)}(i1,...,iN )∈ZN for l ∈ N up to k +
1, and on {vh(xi1,...,iN , lh)}(i1,...,iN )∈ZN for l ∈ N up to k. Moreover v0,h is an
approximation of the initial datum v0.

The scheme solving the heat equation being fixed, we then use our scheme (2.1)
in the following form: for any k ∈ N such that (k + 1)h ≤ T , and for any x ∈ Πh,
we set

(3.8)

{
uh(x, (k + 1)h) = uh(x, kh) + hα(vh(x, kh))|Dh|(uh(·, kh)),
vh(x, (k + 1)h) = Sh[1{uh≥0}](x, kh, vh),

with the initial condition {
uh(x, 0) = u0(x),

vh(x, 0) = v0,h(x).

We recall that |Dh|(φ)(x) is the monotone approximation of |Dφ(x)| used in the
previous section. We easily see that this scheme is of the form (2.1), where
H[χ](x, kh, u) depends on χ through all the values χ(·, lh) for 0 ≤ l ≤ k. We
now formulate assumptions on the functions Sh which will guarantee convergence
of (3.8) according to Theorem 2.2:
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(S) (i) There exists M > 0 such that for any fixed χ ∈ Bh(R
N × [0, T ]; [0, 1]),

the solution vh of (3.7) satisfies, for any x ∈ Πh and k ∈ N with kh ≤ T ,

|vh(x, kh)| ≤ M independently of h.

(ii) If χh ∈ Bh(R
N×[0, T ]; [0, 1]) is such that χh ⇀ χ in L∞(RN×[0, T ]; [0, 1])

for the weak-∗ topology as h → 0, then the solution vh of (3.7) associated to χh

converges pointwise to the solution v of (3.5) in B̄(0, R) × [0, T ], where we set

R = R0 + T
√
N max li and R0 is given by (1.3).

(iii) For any compact subset K of RN , there exist uniformly bounded moduli
of continuity mh such that for any h > 0, x, y ∈ K ∩Πh, any k, h > 0 with kh ≤ T
and χ ∈ Bh(R

N × [0, T ]; [0, 1]), the solution vh of (3.7) satisfies

|vh(x, kh)− vh(y, kh)| ≤ mh(|x− y|),

and such that mh(η) → 0 as h, η → 0.
Our convergence result is the following:

Theorem 3.2. Assume that α, g+, g− and v0 satisfy (F), while u0 is a bounded
and Lipschitz continuous function which satisfies (1.3). Let uh be defined by the
scheme (3.8) such that (S) holds and the ∆i’s satisfy

(3.9)
√
2N max{|α(r)|, |r| ≤ M} h

∆i
≤ 1 for any i = 1, . . . , N,

where M is the constant given by assumption (S) (i). Then there exists hn → 0
such that (uhn

) converges locally uniformly in R
N × [0, T ] to a weak solution of

(3.6).
If in addition there exists δ > 0 such that α(r) ≥ δ for any r ∈ R, then the

whole sequence (uh) converges locally uniformly in R
N × [0, T ] to the weak solution

of (3.6).

Proof. Assumption (S) (i) guarantees the existence of a constant M such that
for any fixed χ ∈ Bh(R

N × [0, T ]; [0, 1]), the solution vh of (3.7) satisfies, for any
x, y ∈ Πh and k ∈ N with kh ≤ T ,

|vh(x, kh)| ≤ M independently of h.

The CFL condition to ensure the conditional monotonicity of the first part of the
scheme (3.8) is exactly (3.9), while the stability of this scheme follows as in the
dislocation case. It only remains to check assumptions (H3) and (H4) of Theorem
2.2. This verification is very similar to the above proof in the dislocation case: it
uses assumption (S) and the Lipschitz continuity of α. As a consequence, Theorem
2.2 guarantees the existence of a subsequence (uhn

) converging locally uniformly in
R

N × [0, T ] to a weak solution of (3.6).
If in addition there exists δ > 0 such that α(r) ≥ δ for any r ∈ R, then (3.6)

has a unique weak solution (see [6]). The convergence of the whole sequence (uh)
to this solution follows once more from Theorem 2.2. �

Let us now give an example of scheme (3.7) which satisfies (S). Due to the lack
of regularity of the function χ, we will solve an approximate equation in which the
term χ is regularized by convolution: for ε ∈ (0, 1), let (ρε) be a mollifier on R

N ×R

such that Supp(ρε) ⊂ [−ε, ε]N+1, ρε(−x,−t) = ρε(x, t) ≥ 0 for all (x, t) ∈ R
N ×R,
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‖ρε‖1 = 1 and

(3.10)

∥∥∥∥ ∂i

∂ti
◦Djρε

∥∥∥∥
1

≤ A

ε(i+j)(N+1)
for (i, j) = (2, 0) or (i = 0, 1 and i+ j ≤ 3),

for some constant A > 0. To ensure that our scheme is nonanticipative, we shift ρε

in time by ε and set

χε(x, t) =

∫ T

0

∫
RN

ρε(x− y, t− s− ε)χ(y, s) dyds.

We are going to solve (3.5) by the standard forward Euler scheme, with the regular-
ization χε of χ. This regularization is essential to obtain estimates on the solution
vεh, and we can pass to the limit thanks to a good choice of balance between ε and
h.

Let us fix the space steps ∆i by the relation ∆i = λi h for some fixed constants
λi > 0 to be made precise later. Recall that these conditions are essential to
guarantee compactness of the front {uh(·, t) ≥ 0} for any time t ∈ [0, T ], when uh

satisfies (2.1). However, for the forward Euler scheme to be stable and monotone,
these conditions are not adapted.

For this reason, we need to solve (3.5) on a refined time grid: let h′ be another
time step such that h/h′ =: p ∈ N

∗; the integer p may depend on h. We define the

operator T kh′

h′ [χ] corresponding to the k-th step of the forward Euler scheme for (3.5)
on this refined grid; that is, for any function v : Πh → R, χ ∈ Bh(R

N × [0, T ]; [0, 1]),
for any x ∈ Πh and k, h′ such that (k + 1)h′ ≤ T ,

T kh′

h′ [χ](v)(x) = v(x) + h′
N∑
i=1

v(x+∆iei)− 2v(x) + v(x−∆iei)

∆2
i

+ h′ g+(v(x))χε(x, kh′) + h g−(v(x))(1− χε(x, kh′)),(3.11)

where (e1, . . . , eN ) is the canonical basis of RN .
Then we set for any v : Πh → R, χ ∈ Bh(R

N × [0, T ]; [0, 1]), for any x ∈ Πh and
k, h such that (k + 1)h ≤ T ,

(3.12) Sh[χ](x, kh, v) = T
kh+(p−1)h′

h′ [χ] ◦ · · · ◦ T kh+h′

h′ [χ] ◦ T kh
h′ [χ](v)(x),

and we denote by vεh the solution of (3.7) with initial condition

(3.13) v0,h(x) = vε0(x)

for some regularization vε0 of v0 of class C∞ with ‖Djvε0‖∞ ≤ ‖Djv0‖∞ for any
j = 0, . . . , 5, and such that vε0 → v0 uniformly as ε → 0.

This means that, to define vεh(x, (k + 1)h) knowing vεh(x, kh), we split the time
interval [kh, (k+1)h] in p = p(h) intervals of length h′ and make p iterations of the
operator Th′ , starting from vεh(x, kh).

To explain the choice of h′, we notice that the linear part of (3.11), which is
represented by the operator

G(h′) : v = (v(x))x∈Πh
�→

(
v(x) + h′

N∑
i=1

v(x+∆iei)− 2v(x) + v(x−∆iei)

∆2
i

)
x∈Πh

,

is monotone and satisfies

‖G(h′)v‖∞ ≤ ‖v‖∞
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under the CFL condition

(3.14) max
h′

∆2
i

≤ 1

2N
.

Since in addition we have for any k, h′ such that kh′ ≤ T ,

|h′ g+(vεh(x, kh
′))χε(x, kh′) + h′ g−(vεh(x, kh

′))(1− χε(x, kh′))| ≤ γ h′,

it is easy to see that under condition (3.14), for any h and ε we have

‖vεh‖∞ ≤ ‖v0‖∞ + γ T = M.

We therefore choose our time step h′ by the relation ∆i = µi

√
h′ for some constant

µi > 0 such that h/h′ ∈ N
∗ and (3.14) holds: more precisely, we fix constants

µi ≥
√
2N independent of h such that λi/µi =: ν does not depend on i, and set

(3.15) h′ = (νh)2, where h =
1

ν2p

for some p ∈ N
∗. For this particular scheme, we have the following convergence

result:

Proposition 3.3. Assume that α, g+, g− and v0 satisfy (F), while u0 is a bounded
and Lipschitz continuous function which satisfies (1.3). Let us fix ∆i = λi h for
some fixed constants λi > 0 such that (3.9) holds with

M = ‖v0‖∞ + γ T,

and let us define h′ by (3.15). We also assume that ε is linked to h by the relation

(3.16) ε3(N+1) = h2β

for some fixed β ∈ (0, 1).
Let us define the scheme (3.7) with Sh and v0,h defined by (3.11), (3.12), and

(3.13). Then the assumptions of Theorem 3.2 are satisfied.

Proof. First of all, as explained above, (S) (i) is satisfied with M = ‖v0‖∞ + γ T ,
and the ∆i’s were chosen so as to satisfy (3.9) with this M .

To check (S) (ii), let us fix a sequence of functions χh ∈ Bh(R
N × [0, T ]; [0, 1])

such that χh ⇀ χ weak-∗ in L∞(RN×[0, T ]; [0, 1]) as h → 0. We want to prove that
for the choice of ε(h) given by (3.16), the solution vεh of (3.7) associated to χh with
initial condition vε0 converges pointwise to the solution v of (3.5) in B̄(0, R)× [0, T ]
as h → 0. To do so, we set χε

h := (χh)
ε and write

vεh − v = (vεh − wε
h) + (wε

h − wh) + (wh − v),

where wh (resp. wε
h) denotes the solution of (3.5) associated to χh (resp. χε

h) with
initial condition v0 (resp. vε0). That is, we split the error into three parts, the first
part concerning the approximation error coming from the scheme, but with regular
source terms χε

h, the second part taking into account the error on exact solutions
of (3.5), but as we relax the regularity of χε by letting χε

h → χh, and the third part
dealing with the weak convergence of χh to χ.

Step 1: the term vεh − wε
h. Let us set

Ek = (Ek(x))x∈Πh
:= (vεh(x, kh

′)− wε
h(x, kh

′))x∈Πh
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to be the approximation error at step k. Let us also set ek = (ek(x))x∈Πh
, where

ek(x) :=
wε

h(x, (k + 1)h′)−G(h′)wε
h(x, kh

′)

h′

− g+(wε
h(x, kh

′))χε
h(x, kh

′)− g−(wε
h(x, kh

′))(1− χε
h(x, kh

′)),

which represents the consistency error of the scheme. Classical error estimates on
the explicit Euler scheme for the heat equation imply that there exists a constant
C > 0 such that for any x ∈ Πh and k, h′ with kh′ ≤ T ,

(3.17) |ek(x)| ≤ C

ε3(N+1)
(h′ +max∆2

i ).

Indeed, the Hölder theory for parabolic equations (see for example [15]) shows that∥∥∥∥∂2wε
h

∂t2

∥∥∥∥
∞

≤ A

ε3(N+1)
and

∥∥D4wε
h

∥∥
∞ ≤ A

ε3(N+1)

for some constant A > 0, thanks to (3.10) and the bounds on the derivatives of g+,
g− and the initial datum v0. Then we remark that

Ek+1(x)

= vεh(x, (k + 1)h′)− wε
h(x, (k + 1)h′)

= G(h′)vεh(·, kh′)(x) + h′ g+(vεh(x, kh
′))χε

h(x, kh
′)

+ h′ g−(vεh(x, kh
′))(1− χε

h(x, kh
′))−G(h′)wε

h(·, kh′)(x)

− h′ g+(wε
h(x, kh

′))χε
h(x, kh

′)− h′ g−(wε
h(x, kh

′))(1− χε
h(x, kh

′))− h′ ek(x),

which we rewrite as

Ek+1(x) = G(h′)[vεh(·, kh′)− wε
h(·, kh′)](x)− h′ ek(x)

+ h′ [g+(vεh(x, kh
′))− g+(wε

h(x, kh
′))]χε

h(x, kh
′)

+ h′ [g−(vεh(x, kh
′))− g−(wε

h(x, kh
′))](1− χε

h(x, kh
′)).

If D denotes a Lipschitz constant for g+ and g−, then we obtain, using the fact
that ‖G(h′)‖ ≤ 1,

‖Ek+1‖∞ ≤ ‖Ek‖∞ + h′‖ek‖∞ +Dh′ ‖Ek‖∞ = (1 +Dh′)‖Ek‖∞ + h′ ‖ek‖∞.

By induction, and using the fact that E0 = 0, we easily deduce that for any k with
kh′ ≤ T ,

‖Ek‖∞ ≤ h′
k∑

i=0

(1 +Dh′)i ‖ek−i‖∞.

Using (3.17), we obtain that for any k with kh′ ≤ T ,

‖Ek‖∞ ≤ TeDT C

ε3(N+1)
(h′ +max∆2

i )

≤ TeDT C

ε3(N+1)
(1 + maxµ2

i ) ν
2 h2,(3.18)

thanks to the choices of ∆i = µi

√
h′ and h′ = (νh)2. We therefore see that if we

choose ε as in (3.16), i.e. ε3(N+1) = h2β for some β ∈ (0, 1), then vεh−wε
h converges

to 0 uniformly on Πh as h → 0. Moreover, an easy consequence of the explicit
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resolution of (3.5) (see Lemma 3.5 in [5]) is that there exists a constant kN > 0
depending only on N such that for any x, y ∈ R

N ,

|wε
h(x, kh)− wε

h(y, kh)| ≤
(
‖Dv0‖∞ + kN γ

√
T
)
|x− y|.

As a consequence, vεh − wε
h also converges to 0 uniformly on R

N as h → 0.
Step 2: the term wε

h − wh. Let us first prove that χε
h − χh ⇀ 0 in L∞(RN ×

[0, T ]; [0, 1]) weak-∗ as h → 0. For any φ ∈ L1(RN × [0, T ];R),∫ T

0

∫
RN

χε
h(x, t)φ(x, t) dxdt−

∫ T

0

∫
RN

χh(x, t)φ(x, t) dxdt

=

∫ T

0

∫
RN

(∫ T

0

∫
RN

χh(y, s) ρ
ε(x− y, t− s− ε) dyds

)
φ(x, t) dxdt

−
∫ T

0

∫
RN

χh(x, t)φ(x, t) dxdt.

Exchanging the variables (x, t) and (y, s) in the first integral, which is permitted
by the facts that χh takes values in [0, 1] and that ρε and φ ∈ L1, we transform
this difference of integrals into∫ T

0

∫
RN

χh(y, s)

(∫ T

0

∫
RN

ρε(x− y, t− s− ε)φ(x, t) dxdt

)
dyds

−
∫ T

0

∫
RN

χh(y, s)φ(y, s) dyds,

which, in absolute value, is less than∫ T

0

∫
RN

∣∣∣∣∣
(∫ T

0

∫
RN

ρε(x− y, t− s− ε)φ(x, t) dxdt

)
− φ(y, s)

∣∣∣∣∣ dyds,
since |χh| ≤ 1. Using the fact that ρε is symmetric, this integral is equal to∫ T

0

∫
RN

∣∣∣∣∣
(∫ T

0

∫
RN

ρε(y − x, s− t+ ε)φ(x, t) dxdt

)
− φ(y, s)

∣∣∣∣∣ dyds,
that is to say,

‖ρε(·, ·+ ε) 
 φ̃− φ̃‖L1(RN×[0,T ]),

where φ̃ is the extension of φ to R
N × R by φ̃(·, t) = 0 if t /∈ [0, T ]. Reproducing

the standard proof on approximation by convolution (using the approximation of

φ̃ by a function of class C1), we see that this term converges to 0 as ε = ε(h) → 0.
This proves the claim.

We deduce from this assertion and the fact that vε0 → v0 uniformly, that wε
h−wh

converges locally uniformly to 0 as h → 0. This verification is similar to the proof
of Theorem 3.4 of [5], based on the explicit resolution of (3.5) in terms of the Green
function of the heat equation.

Step 3: the term wh− v. We prove in the same manner that this term converges
locally uniformly to 0 as h → 0, since χh ⇀ χ weak-∗ in L∞(RN × [0, T ]; [0, 1]).
This concludes the verification of (S) (ii).
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Let us finally check (S) (iii) for the choice of ε given by (3.16): let K be a
compact subset of RN , let x, y ∈ K ∩ Πh, kh ≤ T and χ ∈ Bh(R

N × [0, T ]; [0, 1]).
To estimate vεh(x, kh)− vεh(y, kh), where vεh is the solution of (3.7), we write

vεh(x, kh)− vεh(y, kh) = (vεh(x, kh)− wε
h(x, kh)) + (wε

h(x, kh)− wε
h(y, kh))

+ (wε
h(y, kh)− vεh(y, kh)).

Using the error estimate (3.18), we know that

|vεh(x, kh)−wε
h(x, kh)|+|wε

h(y, kh)−vεh(y, kh)| ≤ 2T eDT C

ε3(N+1)
(1+maxµ2

i ) ν
2 h2.

Moreover, as recalled above, the solution wε
h of (3.5) associated to χε

h satisfies

|wε
h(x, kh)− wε

h(y, kh)| ≤
(
‖Dv0‖∞ + kN γ

√
T
)
|x− y|.

With the previous choice of ε, we therefore obtain that (S) (iii) is satisfied with

mh(η) = 2T eDT C (1 + maxµ2
i ) ν

2 h2(1−β) +
(
‖Dv0‖∞ + kN γ

√
T
)
η.

This concludes the proof of Proposition 3.3 and implies the convergence of our
scheme according to Theorem 3.2. �
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