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ON INTERPOLATION BY PLANAR CUBIC G2

PYTHAGOREAN-HODOGRAPH SPLINE CURVES

GAŠPER JAKLIČ, JERNEJ KOZAK, MARJETA KRAJNC, VITO VITRIH,
AND EMIL ŽAGAR

Abstract. In this paper, the geometric interpolation of planar data points
and boundary tangent directions by a cubic G2 Pythagorean-hodograph (PH)
spline curve is studied. It is shown that such an interpolant exists under some
natural assumptions on the data. The construction of the spline is based upon
the solution of a tridiagonal system of nonlinear equations. The asymptotic
approximation order 4 is confirmed.

1. Introduction

Pythagorean-hodograph (PH) curves ([4]) form a special subclass of planar poly-
nomial parametric curves. They are distinguished by having an exact representa-
tion of an arc-length and a rational offset. This makes them very useful in practical
applications, such as CAGD, CAD/CAM systems, robotics, animation, etc. Al-
though they have fewer degrees of freedom than general parametric curves, they
still admit nice shape properties, which makes them interesting in shape-preserving
techniques. The parametric and the geometric Hermite interpolation are nowadays
well-established approaches for an approximation of discrete data by polynomial
parametric objects. In the last decade a lot of results on a Hermite-type inter-
polation have been obtained (see [7], [1], [13], [11], [5], [6] [15], [14], e.g.). It is
well known that regular PH curves must be of odd degrees. This clearly reduces
spline interpolants to the cubic and the quintic case, perhaps even up to degree
seven. Higher degrees are rarely used since PH characterization equations become
too complicated.

In [13], a G1 continuous Hermite interpolation by PH cubics was considered.
The interpolating cubic PH curve is determined by the local data only and the
construction is based upon data points and tangent directions at these points.
However, tangent directions are often hard to obtain. So why not to look for a
cubic PH interpolant based upon data points only (except at the boundary) as is
shown in Fig. 1. But at the same time the approximation order achieved should
stay optimal and the obtained interpolant should preserve some shape properties
of the data. It should preserve convexity (formally defined in Section 2), and it
should not have any loops, cusps, etc.

This suggests a natural interpolation problem to be considered, i.e., an inter-
polation of planar data points and tangent directions at the boundary by a cubic
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Figure 1. A cubic G2 PH curve.

G2 PH spline. This kind of problem was somehow overlooked in the past. One of
the reasons might have been the fact that cubic PH curves are restricted to basi-
cally only one curve (up to translation, rotation, scaling and reparameterization),
namely the Tschirnhausen cubic [8]. As is well known, it has no inflection points,
which restricts the interpolation flexibility. Nevertheless, a cubic interpolatory G2

PH spline is a simple tool that preserves convexity of the data. Also, it offers the
arc-length reparameterization of the spline curve in a closed form. On the other
hand, since a cubic PH curve is without inflection points, a cubic G2 PH spline must
possess the same property. Thus this scheme is not appropriate for interpolation of
free-form data in its basic form. To overcome this obstacle, a simple preprocessing
algorithm is suggested that breaks down the general data to convex segments.

In this paper, an interpolation of convex planar data points and tangent direc-
tions at the boundary by a cubic G2 PH spline is considered. Under some natural
assumptions on the data, the existence of the interpolating cubic G2 PH spline is
shown and the approximation order 4 is confirmed. As a special case and a basis for
the induction step, the cubic Hermite PH interpolation is studied in detail, and the
results in [12] are enhanced. The obtained results naturally extend to the closed
curve interpolation.

If the data points fail to be convex, a preprocessing algorithm for point insertion
is proposed in the last section of the paper. In this case a tangent direction at a
new breakpoint is prescribed which reduces the G2 to G1 continuity at that point.

The outline of the paper is as follows. In Section 2 the interpolation problem
considered is presented, and the main results of the paper are given. In the next
section, the single segment, a cornerstone of a PH cubic spline interpolation, is
analysed. In Section 4, a proof of the main result is outlined, and in the next
section, an asymptotic approximation order is studied. The paper is concluded by
some numerical examples and a preprocessing algorithm for point insertion.
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2. Interpolation problem

Let us introduce the interpolation problem considered. Suppose that data

(2.1) ddddddddd0, PPPPPPPPP 0, PPPPPPPPP 1, . . . , PPPPPPPPPm, dddddddddm, PPPPPPPPP � �= PPPPPPPPP �+1,

are prescribed, where PPPPPPPPP � denotes a point in R
2 to be interpolated, and ddddddddd�, ‖ddddddddd�‖ = 1,

is the tangent direction at the boundary point PPPPPPPPP �, � = 0,m. Our goal is to construct
an interpolating G2 cubic PH spline curve BBBBBBBBB. In order to overcome the problem of
inflections, we will assume throughout the paper that the data (2.1) are convex. In
the last section of the paper, this restriction will be surmounted by a preprocessing
algorithm for dealing with general data. In this case the resulting spline curve will
not be globally G2, but nonetheless it will be loop-free.

Before we introduce convexity, some additional notation is needed. The norm ‖.‖
will denote the Euclidean norm, implied by the scalar product uuuuuuuuu·vvvvvvvvv, and uuuuuuuuu×vvvvvvvvv will be
the planar vector product. Furthermore, ∠ (uuuuuuuuu, vvvvvvvvv) will be the angle between vectors
uuuuuuuuu and vvvvvvvvv, and ∆PPPPPPPPP � := PPPPPPPPP �+1 − PPPPPPPPP �. The term convex refers to the requirement that
∆PPPPPPPPP �×∆PPPPPPPPP �+1 is of the same sign for any two consecutive ∆PPPPPPPPP �, � = 0, 1, . . . ,m− 1,
and for the appropriate vector products at the boundary. Without loss of generality,
we may assume throughout the paper that this sign is positive, i.e.,

ddddddddd0 ×∆PPPPPPPPP 0 > 0,

∆PPPPPPPPP � ×∆PPPPPPPPP �+1 > 0, � = 0, 1, . . . ,m− 2,(2.2)

∆PPPPPPPPPm−1 × dddddddddm > 0.

Now let us consider the smoothness and PH conditions of the G2 cubic PH
interpolating spline BBBBBBBBB. A natural approach is to express segments BBBBBBBBB� of the spline
curve BBBBBBBBB as cubic Bézier curves

(2.3) BBBBBBBBB� :=

3∑
i=0

bbbbbbbbb3�−3+iB3,i.

Here, Bn,i are the cubic Bernstein basis polynomials of degree n, and

bbbbbbbbbi ∈ R
2, i = 0, 1, . . . , 3m,

are the control points of the spline curve that satisfy the end-point interpolation
property of Bézier curves, i.e.,

bbbbbbbbb3� = PPPPPPPPP �, � = 0, 1, . . . ,m.

The remaining 4m unknowns bbbbbbbbb3�−2, bbbbbbbbb3�−1, � = 1, 2, . . . ,m, need to be determined
by the fact that the interpolating curve is G2 continuous and piecewise PH.

As can be seen in Fig. 3, not every PH interpolatory cubic spline preserves the
shape of the data (2.2). Although it is a convex curve, it can have undesired loops
(see [12, 10], e.g.). In order to avoid this, we will require that the control polygon
of every spline segment satisfies

∆bbbbbbbbb3�−3×∆bbbbbbbbb3�−2 > 0, ∆bbbbbbbbb3�−2×∆bbbbbbbbb3�−1 > 0, � = 1, 2, . . . ,m.

Such an interpolatory cubic spline curve will be called admissible.
The G1 continuity requires collinearity of the tangents at PPPPPPPPP � [9, e.g.], i.e.,

(2.4)
ddddddddd0 ×∆bbbbbbbbb0 = 0,

∆bbbbbbbbb3�−1 ×∆bbbbbbbbb3� = 0, � = 1, 2, . . . ,m− 1,
∆bbbbbbbbb3m−1 × dddddddddm = 0,
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and the curvature continuity conditions at PPPPPPPPP �, � = 1, 2, . . . ,m− 1, are

(2.5)
∆bbbbbbbbb3�−1 × (−∆PPPPPPPPP �−1 +∆bbbbbbbbb3�−3)

‖∆bbbbbbbbb3�−1‖3
=

∆bbbbbbbbb3� × (∆PPPPPPPPP � −∆bbbbbbbbb3�+2)

‖∆bbbbbbbbb3�‖3
.

Note that the closed curve interpolation problem can be stated in a similar way;
thus its analysis will be omitted.

By (2.4) the directions of ∆bbbbbbbbb3�−1 and ∆bbbbbbbbb3� should agree. Thus it is natural to
introduce

ddddddddd�, ‖ddddddddd�‖ = 1, � = 1, 2, . . . ,m− 1,

as unknown tangent directions at PPPPPPPPP �. Recall that ddddddddd0 and dddddddddm are prescribed. The
unknown differences of control points can be expressed as

(2.6) ∆bbbbbbbbb3� = λ2�ddddddddd�, ∆bbbbbbbbb3�+2 = λ2�+1ddddddddd�+1, � = 0, 1, . . . ,m− 1.

Provided the tangent directions ddddddddd� and ddddddddd�+1 are known, the lengths λ2� = ‖∆bbbbbbbbb3�‖
and λ2�+1 = ‖∆bbbbbbbbb3�+2‖ are determined from a PH characterization (see [12]). Thus,
λ2� = λ2� (ddddddddd�, ddddddddd�+1), λ2�+1 = λ2�+1 (ddddddddd�, ddddddddd�+1), and with the help of (2.6) the curva-
ture continuity conditions (2.5) simplify to m− 1 equations

ddddddddd� ×
(

1

λ2
2�

(∆PPPPPPPPP � − λ2�+1 ddddddddd�+1) +
1

λ2
2�−1

(∆PPPPPPPPP �−1 − λ2�−2 ddddddddd�−1)

)
= 0,

� = 1, 2, . . . ,m− 1,(2.7)

for m− 1 unknown directions ddddddddd�. The main results of the paper can now be stated
as follows.

Theorem 2.1. Suppose that the data (2.1) are convex as explained in (2.2). The
system of nonlinear equations (2.7) has an admissible solution if and only if the
angles

ϕ0 := ∠ (ddddddddd0,∆PPPPPPPPP 0) ,

ϕ� := ∠ (∆PPPPPPPPP �−1,∆PPPPPPPPP �) , � = 1, 2, . . . ,m− 1,

ϕm := ∠ (∆PPPPPPPPPm−1, dddddddddm)

satisfy ϕi + ϕi+1 < 4π/3 for i = 0, 1, . . . ,m− 1. If the upper bound is decreased to
Kπ,

K := 1 +
1

π
arccos

(√
3

3

)
≈ 1.304087 < 4/3,

the solution is unique.

Theorem 2.2. The asymptotic approximation order of the solution, obtained by
the assertions of Theorem 2.1, is 4.

3. Single segment

In order to prove Theorem 2.1, we have to consider the single segment case first.
So let us assume m = 1 through the rest of this section. The cubic Hermite PH
interpolation has already been analysed in [12], but here some additional facts will
be outlined. In particular, not all tangent directions that form convex data give
admissible solutions, a fact that was overlooked in [12]. As stated in Theorem 2.1,
an additional angle restriction is necessary in order for the solution to exist. Fur-
thermore, besides the unique admissible solution, a solution with a loop may exist.
Explicit formulae for both solutions will be given.
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P0
P1

d0 d1

Figure 2. Inappropriate data which lead to a cubic PH inter-
polant with a loop.

For a single segment, the prescribed data are

ddddddddd0, PPPPPPPPP 0, PPPPPPPPP 1, ddddddddd1,

and the convexity requirements become

(3.1) ddddddddd0×∆PPPPPPPPP 0 > 0, ∆PPPPPPPPP 0×ddddddddd1 > 0.

Note that a solution may still exist if the suppositions (3.1) are violated, but it
usually has a loop since no inflection points are possible (see Fig. 2). This is
undesirable for a shape-preserving spline interpolation.

The cubic interpolatory Bézier curve BBBBBBBBB is determined by control points bbbbbbbbbi,

(3.2) bbbbbbbbb0 = PPPPPPPPP 0, bbbbbbbbb1 = PPPPPPPPP 0 + λ0ddddddddd0, bbbbbbbbb2 = PPPPPPPPP 1 − λ1ddddddddd1, bbbbbbbbb3 = PPPPPPPPP 1.

Our goal is to obtain the parameters λi > 0, i = 0, 1. A well-known characterization
of cubic PH curves in Bézier form [8] will be used. First, the equality of angles ([8])

∠ (∆bbbbbbbbb0,∆bbbbbbbbb1) = ∠ (∆bbbbbbbbb1,∆bbbbbbbbb2)

can be by (3.1) simplified to

cos (∠ (∆bbbbbbbbb0,∆bbbbbbbbb1)) = cos (∠ (∆bbbbbbbbb1,∆bbbbbbbbb2)) ,

or equivalently

(3.3) (ddddddddd0 − ddddddddd1)·∆bbbbbbbbb1 = 0.

Thus, with new unknowns ξi, introduced as

(3.4) ξ0 :=
λ0 − λ1

2‖∆PPPPPPPPP 0‖
, ξ1 :=

λ0 + λ1

2‖∆PPPPPPPPP 0‖
,

and

vvvvvvvvv :=
1

‖∆PPPPPPPPP 0‖
∆PPPPPPPPP 0,

the equation (3.3) simplifies to

(3.5) ξ0 = Ξ0 (ddddddddd0, vvvvvvvvv, ddddddddd1) :=
1

2

(ddddddddd0 − ddddddddd1)·vvvvvvvvv
1− ddddddddd0 ·ddddddddd1

.

The second characteristic equation of cubic PH curves ([8]) is

‖∆bbbbbbbbb1‖ =
√
‖∆bbbbbbbbb0‖ ‖∆bbbbbbbbb2‖.
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By (3.2), (3.4) and (3.5) it can be written as a quadratic equation for ξ1,

(1 + 2 ddddddddd0 ·ddddddddd1) ξ21 − 2 (ddddddddd0 + ddddddddd1)·vvvvvvvvv ξ1 + 1− (1− 2 ddddddddd0 ·ddddddddd1) ξ20 = 0.(3.6)

Its solutions are

ξ±1 = Ξ±
1 (ddddddddd0, vvvvvvvvv, ddddddddd1)(3.7)

:=
1− (1− 2ddddddddd0 ·ddddddddd1)ξ20

(ddddddddd0 + ddddddddd1)·vvvvvvvvv ±
√
((ddddddddd0 + ddddddddd1)·vvvvvvvvv)2 − (1− (1− 2ddddddddd0 ·ddddddddd1)ξ20) (1 + 2 ddddddddd0 ·ddddddddd1)

,

where ξ0 satisfies (3.5). From (3.4), (3.5), and (3.7) we obtain solutions of the
interpolation problem

λ±
0 = Λ±

0 (ddddddddd0,∆PPPPPPPPP 0, ddddddddd1)

:= ‖∆PPPPPPPPP 0‖
(
Ξ±
1

(
ddddddddd0,

∆PPPPPPPPP 0

‖∆PPPPPPPPP 0‖
, ddddddddd1

)
+ Ξ0

(
ddddddddd0,

∆PPPPPPPPP 0

‖∆PPPPPPPPP 0‖
, ddddddddd1

))
,(3.8)

λ±
1 = Λ±

1 (ddddddddd0,∆PPPPPPPPP 0, ddddddddd1)

:= ‖∆PPPPPPPPP 0‖
(
Ξ±
1

(
ddddddddd0,

∆PPPPPPPPP 0

‖∆PPPPPPPPP 0‖
, ddddddddd1

)
− Ξ0

(
ddddddddd0,

∆PPPPPPPPP 0

‖∆PPPPPPPPP 0‖
, ddddddddd1

))
,

and (3.2) yields the control points bbbbbbbbbi of the interpolant BBBBBBBBB.
Note that a translation or a rotation of the coordinate system does not change

the values of ξ0 in (3.5), and ξ±1 in (3.7). Thus let us assume from now on until the
end of this section that PPPPPPPPP 0 and PPPPPPPPP 1 lie on the x-axis, and that the tangent directions
are given by the angles ϕ0 = ∠ (ddddddddd0,∆PPPPPPPPP 0) and ϕ1 = ∠ (∆PPPPPPPPP 0, ddddddddd1). Further discussion
will be simplified by introducing new parameters β0 and β1, satisfying ϕ0 = β1−β0,
ϕ1 = β1 + β0. Now,

(3.9) ddddddddd0 =

[
cos (β1 − β0)
− sin (β1 − β0)

]
, vvvvvvvvv =

[
1
0

]
, ddddddddd1 =

[
cos (β1 + β0)
sin (β1 + β0)

]
.

To fulfill the convexity requirements (3.1), the angles βi are restricted to

(3.10) I := {(β0, β1) : 0 < β1 ≤ π, |β0| < min {β1, π − β1}} .
The assumption (3.9) simplifies ξ0 in (3.5) to

(3.11) ξ0 =
1

2

sin β0

sin β1
,

and ξ±1 in (3.7) to

(3.12) ξ±1 =
A1(β0, β1)

A2(β0, β1)±
√
A3(β0, β1)

,

where

A1(β0, β1) := cos2 β0 +
1

4

sin2 β0

sin2 β1

, A3(β0, β1) := 1− 3

4

sin2 β0

sin2 β1

,

and A2(β0, β1) := 2 cosβ0 cosβ1. It is clear that − 1
2 < ξ0 < 1

2 . Since λi must be

positive, this must also be true for ξ±1 .

Lemma 3.1. Let ξ±1 be given by (3.12). Then ξ+1 is positive iff

(β0, β1) ∈ I+ :=

{
(β0, β1) ∈ I, 0 < β1 <

2π

3

}
,
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and ξ−1 is positive iff

(β0, β1) ∈ I− :=
{
(β0, β1) ∈ I, 0 < β1 <

π

3

}
.

Proof. Since A3(β0, β1) > 1/4, ξ±1 is real. The numerator in (3.12) is clearly pos-
itive, but the denominator may vanish. It is straightforward to verify that this
happens only if β1 = π/3 or β1 = 2π/3. Since cosβ0 cosβ1 ≥ 0 for 0 < β1 ≤ π

2 and

cosβ0 cosβ1 < 0 for π
2 < β1 < π, the denominator in ξ+1 is zero iff β1 = 2

3π, and

the denominator in ξ−1 is zero iff β1 = 1
3π. Since(

A2(β0, β1)±
√
A3(β0, β1)

) ∣∣
β0=0

= 2 cosβ1 ± 1 > 0

for (β0, β1) ∈ I±, the assertion follows. �

Lemma 3.2. Suppose that (β0, β1) ∈ I±. Then λ±
i > 0, i = 0, 1.

Proof. Note that ξ0 defined by (3.11) and ξ±1 defined by (3.12) are continuous
functions of βi. Furthermore, by (3.8), λ±

0 = 0 or λ±
1 = 0 iff ξ±1 = ±ξ0. But, by

using (3.11), the equation (3.6) for ξ±1 = ±ξ0 simplifies to

sin2 (β0 ∓ β1)

sin2 β1

= 0,

which clearly does not have any solution in the domain I±. Since for (0, β1) ∈ I±,

λ±
0 = λ±

1 =
‖∆PPPPPPPPP 0‖

2 cosβ1 ± 1
> 0,

λ±
i > 0, i = 0, 1, for all (β0, β1) ∈ I±. �

Now it remains to see whether the solution of the interpolation problem is ad-
missible as far as the shape preservation is concerned. It is enough to consider the
sign of the planar vector product ∆bbbbbbbbb0 ×∆bbbbbbbbb1 only. A simple calculation shows that

(∆bbbbbbbbb0 ×∆bbbbbbbbb1)
± : = λ±

0 (ddddddddd0 ×∆PPPPPPPPP 0 − λ±
1 ddddddddd0 × ddddddddd1)

= ±‖∆PPPPPPPPP 0‖λ±
0 ξ±1 cosβ0 sin β1

A4(β0, β1) + 2
√
A3(β0, β1)

2A1(β0, β1)
,

where A4(β0, β1) := ∓cosβ1

cosβ0

sin2 β0

sin2 β1

. It is straightforward to verify that (∆bbbbbbbbb0 ×

∆bbbbbbbbb1)
+ > 0 for all (β0, β1) ∈ I+, and (∆bbbbbbbbb0 ×∆bbbbbbbbb1)

− < 0 for all (β0, β1) ∈ I−. Thus
the first curve is admissible, but the second one has a loop.

This discussion proves a variation of the theorem found in [12] and adds the
angle range considerations that have been there omitted.

Theorem 3.3. Suppose that ddddddddd0, PPPPPPPPP 0, PPPPPPPPP 1, ddddddddd1, PPPPPPPPP 0 �= PPPPPPPPP 1, are given convex data and

ϕ0 = ∠ (ddddddddd0,∆PPPPPPPPP 0) , ϕ1 = ∠ (∆PPPPPPPPP 0, ddddddddd1) .

A unique admissible Hermite interpolating PH cubic curve exists iff the angles ϕi

satisfy

(3.13) ϕ0 + ϕ1 <
4

3
π.

The interpolating curve in the Bézier form is determined by

(3.14) λ0 = Λ+
0 (ddddddddd0,∆PPPPPPPPP 0, ddddddddd1) , λ1 = Λ+

1 (ddddddddd0,∆PPPPPPPPP 0, ddddddddd1) ,
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with Λ+
i given by (3.8).

Remark 3.4. Suppose that the suppositions of Theorem 3.3 hold true. If ϕ0+ϕ1 <
2
3π, then besides (3.14) there exists an another Hermite interpolating PH cubic
curve, determined by

λ0 = Λ−
0 (ddddddddd0,∆PPPPPPPPP 0, ddddddddd1) , λ1 = Λ−

1 (ddddddddd0,∆PPPPPPPPP 0, ddddddddd1) ,

with Λ−
i given by (3.8). This solution is not shape-preserving, since it has a loop

(see Fig. 3).

Remark 3.5. Note that the necessity of (3.13) follows from [10].

P0

d0

P1
d1

Figure 3. The data where two Hermite interpolating PH cubic
curves exist.

By using the introduced notation it is easy to give an explicit form of the square
root of the hodograph. Furthermore, a nice explicit formula for a reparameterization
by a natural parameter can be obtained.

Theorem 3.6. Suppose that the suppositions of Theorem 3.3 hold, and let the
Hermite interpolating PH cubic curve BBBBBBBBB be determined by (3.14). The square root
of its hodograph is√

BBBBBBBBB′(t)·BBBBBBBBB′(t) = C1B2,0(t) + C2B2,1(t) + C3B2,2(t),(3.15)

where

C1 := 3λ0, C2 :=
3

2
((ddddddddd0 + ddddddddd1)·∆PPPPPPPPP 0 − (λ0 + λ1) (1 + ddddddddd0 ·ddddddddd1)) , C3 := 3λ1.

The arc-length reparameterization

Φ := Φ(ddddddddd0,∆PPPPPPPPP 0, ddddddddd1) : [0, L] → [0, 1],

where L := 1
3 (C1 + C2 + C3) is the length of BBBBBBBBB, is given by

Φ(s) =
C1 − C2 + 3

√
2

c1(s)

(
C1C3 − C2

2

)
− 3

√
c1(s)
2

C1 − 2C2 + C3
,(3.16)
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where

c1(s) := c2(s) +

√
4 (C1C3 − C2

2 )
3
+ c22(s),

c2(s) := (C1 − C2)
(
(C1 − C2)

2 + 3
(
C1C3 − C2

2

))
− 3 (C1 − 2C2 + C3)

2 s.

Proof. With some algebraic computations and the use of (3.4), (3.5) and (3.6),
one can verify that (3.15) holds. Then the arc-length s of the Bézier curve BBBBBBBBB is
computed as

s = s(t) =

∫ t

0

√
BBBBBBBBB′(u)·BBBBBBBBB′(u) du, t ∈ [0, 1].

Since by [3],

(3.17)

√
BBBBBBBBB′(t)·BBBBBBBBB′(t) > 0,

s is a monotone function of t and thus invertible. The inverse t = t(s) = Φ(s),
given by (3.16), is computed as a solution of a cubic equation

1

3
(C1 − 2C2 + C3)t

3 + (C2 − C1)t
2 + C1t = s.

Since there is only one real solution, we need to check that (3.16) is real. The
inequality (3.17) and the fact that a circle cannot be parameterized by polynomials
imply C1 − 2C2 + C3 > 0 and C1C3 − C2

2 > 0. Therefore it is clear that c1(s) > 0
and the assertion follows. �

4. Inductive step of the proof

In this section, an inductive proof of Theorem 2.1 will be given. The first step of
the induction, the single segment case, has already been confirmed by Theorem 3.3.
So, let us assume that there exist cubic PH G2-continuous splines which interpolate
the data

ddddddddd0, PPPPPPPPP 0, PPPPPPPPP 1, . . . , PPPPPPPPP �, ddddddddd�

and

ddddddddd�, PPPPPPPPP �, PPPPPPPPP �+1, . . . , PPPPPPPPPm, dddddddddm,

respectively, for any direction ddddddddd� in the cone, determined by ∆PPPPPPPPP �−1 and ∆PPPPPPPPP �. We
have to show that there exists a unique direction ddddddddd� for which the splines have a
G2 joint. Consider the equation (2.7) at PPPPPPPPP �. Since a rotation preserves it, we may
choose the coordinate system in such a way that

(4.1) ddddddddd� =

[
1
0

]
.

Furthermore, as shown in Fig. 4,

1

‖∆PPPPPPPPP �−1‖
∆PPPPPPPPP �−1 =

[
cos (ϕ� − α�)
− sin (ϕ� − α�)

]
,

1

‖∆PPPPPPPPP �‖
∆PPPPPPPPP � =

[
cosα�

sinα�

]
,

and

ddddddddd�−1 =

[
cos (ϕ� − α� + α�−1)
− sin (ϕ� − α� + α�−1)

]
, ddddddddd�+1 =

[
cos (α� + ϕ�+1 − α�+1)
sin (α� + ϕ�+1 − α�+1)

]
.
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Figure 4. Joining two G2-continuous cubic PH splines at PPPPPPPPP �.

The assumption (4.1) reduces the curvature condition (2.7) to the requirement that
the last components of the vectors

1

λ2
2�

∆PPPPPPPPP � −
λ2�+1

λ2
2�

ddddddddd�+1 =
1

‖∆PPPPPPPPP �‖

(
‖∆PPPPPPPPP �‖
λ2�

)2 (
∆PPPPPPPPP �

‖∆PPPPPPPPP �‖
− λ2�+1

‖∆PPPPPPPPP �‖
ddddddddd�+1

)
(4.2)

and

− 1

λ2
2�−1

∆PPPPPPPPP �−1 +
λ2�−2

λ2
2�−1

ddddddddd�−1(4.3)

=
1

‖∆PPPPPPPPP �−1‖

(
‖∆PPPPPPPPP �−1‖
λ2�−1

)2 (
− ∆PPPPPPPPP �−1

‖∆PPPPPPPPP �−1‖
+

λ2�−2

‖∆PPPPPPPPP �−1‖
ddddddddd�−1

)

are equal. A straightforward algebraic simplification, with the help of (3.8) and the
functions

η(γ, δ) :=

√
1 + 6

sin γ sin δ

1− cos (γ + δ)
,

χ(γ, δ) :=
(cos(γ − δ)− 1) sin(γ + δ) + (1− cos(γ + δ))(sin γ + sin δ)η(γ, δ)

2(1− cos(γ + δ))(2(cos γ + cos δ) + η(γ, δ))
,

ρ(γ, δ) :=
3− cos γ cos δ − 2 cos (2δ) + 3 sin γ sin δ + (cos γ − cos δ)η(γ, δ)

2(1− cos(γ + δ))(2(cos γ + cos δ) + η(γ, δ))

reveals the G2-continuity condition expressed by (4.2) and (4.3) as

(4.4)
1

‖∆PPPPPPPPP �‖
χ(α�, ϕ�+1 − α�+1)

ρ2(α�, ϕ�+1 − α�+1)
=

1

‖∆PPPPPPPPP �−1‖
χ(ϕ� − α�, α�−1)

ρ2(ϕ� − α�, α�−1)
.
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Note that ρ(α�, ϕ�+1−α�+1) = Λ+
0 (ddddddddd�,∆PPPPPPPPP �, ddddddddd�+1) /‖∆PPPPPPPPP �‖, and χ(α�, ϕ�+1−α�+1)

corresponds to the last component of

∆PPPPPPPPP �

‖∆PPPPPPPPP �‖
− Λ+

1 (ddddddddd�,∆PPPPPPPPP �, ddddddddd�+1)

‖∆PPPPPPPPP �‖
ddddddddd�+1,

and similarly for the right-hand side of (4.4). Let

ω(α, β, γ, δ) :=
χ(α, γ)

ρ2(α, γ)

ρ2(β, δ)

χ(β, δ)
.

We are looking for α� ∈ (0, ϕ�) that satisfies

(4.5) ω(α�) := ω(α�, ϕ� − α�, ϕ�+1 − α�+1, α�−1) =
‖∆PPPPPPPPP �‖

‖∆PPPPPPPPP �−1‖
,

with the following requirements met by the data and the neighbouring tangent
directions:

0 < ϕ�−1 < π, 0 < ϕ� < π, 0 < ϕ�+1 < π,

ϕ�−1 + ϕ� <
4

3
π, ϕ� + ϕ�+1 <

4

3
π,(4.6)

0 < α�−1 < ϕ�−1, 0 < α�+1 < ϕ�+1.

By Theorem 3.3, the conditions (4.6) imply

ρ(α�, ϕ�+1 − α�+1) > 0, ρ(ϕ� − α�, α�−1) > 0, 0 < α� < ϕ�,

and

χ(α�, ϕ�+1 − α�+1) > 0, 0 < α� < ϕ�, χ(ϕ� − α�, α�−1) > 0, 0 < α� < ϕ�.

So, ω is a continuous, even smooth function in (4.6). Furthermore, from the expan-
sions

ω(α�) = α�
ρ2(ϕ�, α�−1)

χ(ϕ�, α�−1)
+O

(
α2
�

)
,

ω(α�) =
1

ϕ� − α�

χ(ϕ�, ϕ�+1 − α�+1)

ρ2(ϕ�, ϕ�+1 − α�+1)
+O

(
(ϕ� − α�)

0
)
,

we conclude that the equation (4.5) has a solution α� ∈ (0, ϕ�). In order to show
that this solution is unique, it is enough to prove monotonicity too. In general,
there may be multiple solutions. For example, the data

ϕ� =
π

2
, ϕ�+1 − α�+1 = α�−1 =

41

50
π

clearly give three solutions if ‖∆PPPPPPPPP �‖ = ‖∆PPPPPPPPP �−1‖ = 1 (Fig. 5 and Fig. 6),

α1
� = 0.326428, α2

� = 0.785398, α3
� = 1.24437.

Thus an additional restriction as assumed in Theorem 2.1 is necessary, which
strengthens the bounds (4.6) imposed on the data by

(4.7) 0 < ϕ�−1 + ϕ� < Kπ, 0 < ϕ� + ϕ�+1 < Kπ.
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Figure 5. An example of ω = ω(α�) that admits three solutions.
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Figure 6. Three admissible solutions (α� = 0.326428, 0.785398, 1.24437).

It is enough to consider the monotonicity of lnω only. Its derivative is given as

d

dα�
lnω(α�) = τ (α�, ϕ�+1 − α�+1) + τ (ϕ� − α�, α�−1),

where

τ (γ, δ) :=

∂

∂γ
χ(γ, δ)

χ(γ, δ)
− 2

∂

∂γ
ρ(γ, δ)

ρ(γ, δ)
.

The complete expression τ is rather long,
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τ (γ, δ) = cot
γ + δ

2

+
3 sin(γ − δ) sin δ+

η(γ, δ)((1− cos(γ − δ)) sin(γ + δ) + (cos(γ + δ)− 1)(sin γ + sin δ)η(γ, δ))

+ η(γ, δ)
(
−2(2 cos γ + cos δ)η(γ, δ) sin2 γ+δ

2 − cos 2γ + cos(γ + δ)
)

·

+

3
(cos γ − cos δ) sin δ

(cos(γ + δ)− 1)2η(γ, δ)
− 2 sin(γ)

2(cos γ + cos δ) + η(γ, δ)
+

+ 2

3
sin δ (cos γ − cos δ)2

(cos(γ + δ)− 1)2η(γ, δ)
+ cos δ sin γ + 3 cos γ sin δ − sin γ η(γ, δ)

2 cos 2δ − 3 sin γ sin δ − cos γ η(γ, δ) + cos δ (cos γ + η(γ, δ))− 3
,

but one can establish that it is decreasing in the variable δ if both parameters
belong to the domain

Dτ =
{
(γ, δ) : 0 < γ ≤ π

3
, 0 < δ < π

}
∪
{
(γ, δ) :

π

3
< γ < π, 0 < δ <

4π

3
− γ

}
.

Let us prove that τδ :=
∂τ

∂δ
is negative on Dτ . At the boundary of Dτ the following

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

1

2

3 0

1

2

3

�10

�5

0

Figure 7. The domain Dτ and the behaviour of the function
τδ(γ, δ) on Dτ .
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hold true:

τδ(γ, δ) = −6 γ
cos δ

2

sin3
δ

2

+O (γ) < 0, 0 < δ < π,

τδ(γ, δ) = − 3

sin2 γ
2

+O (δ) < 0, 0 < γ < π,

τδ(γ, δ) = −18
cos γ sin2 γ

2

cos2 3γ
2

+O (π − δ) < 0, 0 < γ ≤ π

3
,

τδ(γ, δ) = −3

2

((cos δ − 1)2 + cos2 δ + 1)

cos2 3δ
2

+O (π − γ) < 0, 0 < δ <
π

3
.

Furthermore, if δ → 4π
3 − γ and π

3 < γ < π, then τδ(γ, δ) → −∞. This shows
that τδ is negative near the boundary. A direct numerical evaluation confirms this
fact for all (γ, δ) ∈ Dτ . More precisely, the maximum of τδ on Dτ is zero, and it
is attained at the boundary γ = 0 (see Fig. 7). Therefrom for data satisfying (4.7)
we obtain the following estimations. If 0 < ϕ� ≤ π

3 , then

τ (α�, ϕ�+1 − α�+1) + τ (ϕ� − α�, α�−1) ≥ τ (α�, π) + τ (ϕ� − α�, π) =: Ψ1(α�, ϕ�),

and if π
3 < ϕ� < π, then

τ (α�, ϕ�+1 − α�+1) + τ (ϕ� − α�, α�−1) ≥ τ (α�,Kπ − ϕ�) + τ (ϕ� − α�,Kπ − ϕ�)

=: ΨK(α�, ϕ�).

We need to show that Ψ1 and ΨK are nonnegative on D1 and D2, respectively,
where

D1 =
{
(α�, ϕ�) : 0 < α� < ϕ�, 0 < ϕ� ≤

π

3

}
,

D2 =
{
(α�, ϕ�) : 0 < α� < ϕ�,

π

3
< ϕ� < π

}
.

One can verify that the global minimum of Ψ1 is
√
3 − 1, and it is reached on

the boundary in the point (α�, ϕ�) =
(
π
6 ,

π
3

)
. The global minimum of ΨK is

zero, reached in the interior stationary point (α�, ϕ�) = ((K − 1)π, 2(K − 1)π) (see

Fig. 8). It is easy to check that for any K̃, K < K̃ < 4
3 , ΨK̃ attains negative

values in D2. So K is the best constant bound we can get. From the other point
of view, the meaning of K is the following. For ϕ� = 2(K − 1)π, the derivative of
ω(α�, ϕ� − α�,Kπ − ϕ�,Kπ − ϕ�) has a double zero in α� =

ϕ�

2 , and furthermore,
ω(α�, ϕ� − α�, (K + ε1)π − ϕ�, (K + ε2)π − ϕ�) is not a monotone function for any
ε1, ε2 ∈

(
0, 4

3 −K
)
.

5. Approximation order

Let us now consider the asymptotic behaviour of the system (2.7). For this pur-
pose, we assume that data are sampled from a smooth convex curve fffffffff : [0, h] → R

2,
parameterised by the arclength. Furthermore, let the data points be determined
by the partition

0 = µ0 < µ1 < · · · < µm = h,

with a bounded global mesh ratio. Namely,

PPPPPPPPP � = fffffffff(µ�), � = 0, 1, . . . ,m,
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Figure 8. Plots of Ψ1 and ΨK on D1 and D2, respectively, with
a marked global minimum.

and similarly for the derivatives at the boundary. So, with

(5.1) ∆µ� =: ν� h,

for some constant const > 0,

(5.2) sup
i,j

νi
νj

≤ const < ∞.

Let us now show that the unknown directions ddddddddd� that satisfy the system (2.7) can
be looked for as

(5.3) ddddddddd� = Q(−h3 u�)fffffffff
′ (µ�) , � = 1, 2, . . . ,m− 1,

for all h small enough. Here, Q denotes the rotation matrix

Q(ϕ) =

[
cosϕ − sinϕ
sinϕ cosϕ

]
,

and u� are unknowns to be determined by the system (2.7). Let us expand the
equation of this system at a particular index �. Some simplifications can be done
in advance. The equation concerned is obviously independent of a translation of
the coordinate system. Also, in view of Section 3, a rotation does not change the

values of λj . Let Q� denote the rotation matrix that brings ddddddddd� to eeeeeeeee1 := [1, 0]
T
. The

equation eeeeeeeee1 × qqqqqqqqq� = 0, where

(5.4) qqqqqqqqq� :=

(
1

λ2
2�

Q�∆PPPPPPPPP � +
1

λ2
2�−1

Q�∆PPPPPPPPP �−1

)
− λ2�−2

λ2
2�−1

Q�ddddddddd�−1 −
λ2�+1

λ2
2�

Q�ddddddddd�+1,

is equivalent to the original one. But this is the same as requiring that the second
component of the vector qqqqqqqqq� vanishes, i.e.,

(5.5)

(
1

‖qqqqqqqqq�‖
qqqqqqqqq�

)
2

= 0.

The assumption (5.3) implies that Q� can be written as a product of rotations

Q� = Q̃�Q
T (−h3 u�) = Q̃�Q(h3 u�), with Q̃�fffffffff

′ (µ�) = eeeeeeeee1.

Since rotations in R
2 commute, the vectors in (5.4) can be simplified to

(5.6) Q�∆PPPPPPPPP � = Q(h3 u�)
(
Q̃�∆PPPPPPPPP �

)
, Q�∆PPPPPPPPP �−1 = Q(h3 u�)

(
Q̃�∆PPPPPPPPP �−1

)
,
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and

(5.7) Q�ddddddddd�±1 = Q(h3 (u� − u�±1))
(
Q̃�fffffffff

′(µ�±1)
)
.

This shows that the asymptotic behaviour of the equation (5.5) can be studied with
fffffffff expanded locally as ggggggggg�,

ggggggggg�(s) := Q̃� (fffffffff(µ� + s)− PPPPPPPPP �) , s ∈ [−ν�−1h, ν�h],

at each � separately. Since the parameter s is the arclength, we may assume that
the tangent direction is given as

ggggggggg′�(s) =

[
cos θ�(s)
sin θ�(s)

]
,

where θ′�(s) > 0 is the curvature of fffffffff . An expansion

θ�(s) = θ�,1s+ θ�,2s
2 + θ�,3s

3 + θ�,4s
4 +O

(
s5
)

yields

ggggggggg� (s) =

⎡
⎢⎣ s− 1

6
θ2�,1s

3 − 1

4
θ�,1θ�,2s

4 +
1

120

(
θ4�,1 − 24θ�,3θ�,1 − 12θ2�,2

)
s5

θ�,1
2

s2 +
θ�,2
3

s3 +
1

24

(
6θ�,3 − θ3�,1

)
s4 +

1

10

(
2θ�,4 − θ2�,1θ�,2

)
s5

⎤
⎥⎦+O

(
s6
)
.

Note that θ�,1 > 0 by the assumption. Since the rotation matrices that are needed
expand as

Q
(
u s3

)
=

[
1− 1

2u
2 s6 −u s3

u s3 1− 1
2u

2 s6

]
+O

(
s8
)
,

it is straightforward to compute the expansions (5.6) and (5.7). Furthermore, by
inserting these expansions in λi, one obtains

λ2�−2 =
ν�−1

3
h+

ν2�−1θ�,2

6θ�,1
h2(5.8)

+

(
θ4�,1 − 18θ�,3θ�,1 + 13θ2�,2

)
ν3�−1 − 36θ�,1(u�−1 + u�)

72θ2�,1
h3 +O

(
h4

)
,

λ2�−1 =
ν�−1

3
h−

ν2�−1θ�,2

6θ�,1
h2(5.9)

+

(
θ4�,1 + 18θ�,3θ�,1 − 11θ2�,2

)
ν3�−1 + 36θ�,1(u�−1 + u�)

72θ2�,1
h3 +O

(
h4

)
,

λ2� =
ν�
3
h+

ν2� θ�,2
6θ�,1

h2

+

(
θ4�,1 + 18θ�,3θ�,1 − 11θ2�,2

)
ν3� − 36θ�,1(u� + u�+1)

72θ2�,1
h3 +O

(
h4

)
,

λ2�+1 =
ν�
3
h− ν2� θ�,2

6θ�,1
h2

+

(
θ4�,1 − 18θ�,3θ�,1 + 13θ2�,2

)
ν3� + 36θ�,1(u� + u�+1)

72θ2�,1
h3 +O

(
h4

)
.
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Let us apply the obtained expansions in (5.5). The system of equations for h small
enough reads

(5.10)

ν�
2 (ν�−1 + ν�)

u�−1 + u� +
ν�−1

2 (ν�−1 + ν�)
u�+1

=
ν�−1 (ν�−1 − ν�) ν�

(
θ4�,1 + 6θ�,3θ�,1 − 7θ2�,2

)
48θ�,1

+O (h) ,

� = 1, 2, . . . ,m− 1.

The matrix involved in the system (5.10) has been around for quite a while, and
it appears in the cubic spline interpolation (see for example [2] and the references
therein). It is strictly diagonally dominant, totally positive, etc. As a consequence,
a unique (and by (5.2) bounded) solution of the system (5.10) exists for all h small
enough. The unknowns that satisfy the system are of the form

u� = const� +O (h) , � = 1, 2, . . . ,m− 1.

We are now ready to prove that the asymptotic approximation order is 4. It is
enough to show that this is true for any segment BBBBBBBBB� of the spline curve. Thus let
BBBBBBBBB� be an �-th segment of the interpolating G2 cubic PH spline defined by (2.3),

and let HHHHHHHHH� be the standard cubic C1 Hermite interpolant of fffffffff |[µ�−1,µ�], i.e.,

HHHHHHHHH�(µi) = fffffffff(µi), i = �− 1, �,

d

ds
HHHHHHHHH�(µi) =

d

ds
fffffffff(µi) =: fffffffff ′(µi), i = �− 1, �.

The distance dist
(
fffffffff |[µ�−1,µ�], BBBBBBBBB

�
)
is clearly bounded as

dist
(
fffffffff |[µ�−1,µ�], BBBBBBBBB

�
)
≤ dist

(
fffffffff |[µ�−1,µ�], HHHHHHHHH

�
)
+ dist

(
HHHHHHHHH�, BBBBBBBBB�

)
≤ max

s∈[µ�−1,µ�]

∥∥∥fffffffff(s)−HHHHHHHHH�(s)
∥∥∥+ max

s∈[µ�−1,µ�]

∥∥∥HHHHHHHHH�(s)−BBBBBBBBB�(φ�(s))
∥∥∥ ,

where, without loss of generality, φ� might be chosen as

φ�(s) :=
1

∆µ�−1
(s− µ�−1).

A very well-known result on Hermite interpolation and (5.1) lead to

max
s∈[µ�−1,µ�]

∥∥∥fffffffff(s)−HHHHHHHHH�(s)
∥∥∥ = O

(
(∆µ�−1)

4
)
= O

(
(ν�−1 h)

4
)
= O

(
h4

)
.

Thus it remains to prove that maxs∈[µ�−1,µ�]

∥∥∥HHHHHHHHH�(s)−BBBBBBBBB�(φ�(s))
∥∥∥ = O

(
h4

)
. It is

well known that HHHHHHHHH� can be written in the Bézier form as

HHHHHHHHH�(s) = fffffffff(µ�−1)B3,0(τ ) +

(
fffffffff(µ�−1) +

∆µ�−1

3
fffffffff ′(µ�−1)

)
B3,1(τ )

+

(
fffffffff(µ�)−

∆µ�−1

3
fffffffff ′(µ�)

)
B3,2(τ ) + fffffffff(µ�)B3,3(τ ), τ =

s− µ�−1

∆µ�−1
, s ∈ [µ�−1, µ�].
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On the other hand, (2.6) implies

BBBBBBBBB�(φ�(s)) = fffffffff(µ�−1)B3,0(τ ) + (fffffffff(µ�−1) + λ2 �−2ddddddddd�−1) B3,1(τ )

+ (fffffffff(µ�)− λ2 �−1ddddddddd�) B3,2(τ ) + fffffffff(µ�)B3,3(τ ), τ =
s− µ�−1

∆µ�−1
, s ∈ [µ�−1, µ�].

Consequently,

HHHHHHHHH�(s)−BBBBBBBBB�(φ�(s))

=

(
∆µ�−1

3
fffffffff ′(µ�−1)− λ2 �−2ddddddddd�−1

)
B3,1(τ ) +

(
λ2 �−1ddddddddd� −

∆µ�−1

3
fffffffff ′(µ�)

)
B3,2(τ ).

But by (5.3), dddddddddi = fffffffff ′(µi) + O
(
h3

)
, i = � − 1, �. Using this, together with (5.1),

(5.8), (5.9) and the fact that ui is bounded by a constant, leads to

max
s∈[µ�−1,µ�]

∥∥∥HHHHHHHHH�(s)−BBBBBBBBB�(φ�(s))
∥∥∥ = O

(
h4

)
.

Note that the first and the last segment should be analysed slightly differently, since
tangent directions are prescribed there. But it is easy to see that the same results
hold and we shall skip the details. This completes the proof.

6. Numerical examples and preprocessing algorithm

An efficient and reliable numerical algorithm for convex data, satisfying the
assumptions of Theorem 2.1 with the bound on the angles decreased to Kπ, can
be obtained by using the continuation method. Note that the problem involves
solving a tridiagonal system of nonlinear equations. Although all the examples were
computed using this method, we suggest an alternative, computationally simpler
approach. The algorithm iteratively computes the unknown tangent directions ddddddddd�,
� = 1, 2, . . . ,m− 1, with

ddddddddd
[0]
� =

PPPPPPPPP �+1 − PPPPPPPPP �−1

‖PPPPPPPPP �+1 − PPPPPPPPP �−1‖
, � = 1, 2, . . . ,m− 1,

as the starting values. In the (r + 1)-th iteration we first compute

λ2� := Λ+
0

(
ddddddddd
[r]
� ,∆PPPPPPPPP �, ddddddddd

[r]
�+1

)
, λ2�+1 := Λ+

1

(
ddddddddd
[r]
� ,∆PPPPPPPPP �, ddddddddd

[r]
�+1

)
, � = 0, 1, . . . ,m− 1,

and then for � = 1, 2, . . . ,m− 1,

ddddddddd
[r+1]
� =

(
1

λ2
2�

(
∆PPPPPPPPP � − λ2�+1 ddddddddd

[r]
�+1

)
+

1

λ2
2�−1

(
∆PPPPPPPPP �−1 − λ2�−2 ddddddddd

[r]
�−1

))
.

Here ddddddddd
[r]
0 = ddddddddd0 and ddddddddd[r]m = dddddddddm for each r. Numerical evidence suggests that the

procedure is reliable and convergent, but it seems hard to prove the convergence in
general.

When closed splines are under consideration, all tangent directions are unknown
and the algorithm needs only slight modifications. An example of such an inter-
polant together with its curvature plot is shown in Fig. 9.

But since for general data an interpolating cubic PH G2 spline might not exist,
a preprocessing algorithm must be considered first. Since convexity of the data is
necessary for such a spline, an efficient split of the data into convex segments is
needed. Thus an additional point has to be inserted, whenever an inflection point
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1.0
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Figure 9. A closed cubic PH spline interpolant and its curvature.

in the data polygon occurs (Fig. 10). Let PPPPPPPPP �−2, PPPPPPPPP �−1, PPPPPPPPP �, PPPPPPPPP �+1 be a nonconvex
segment of data points. Then one possibility how to determine a new point PPPPPPPPP ′ and
a new direction ddddddddd′ is to use the cubic polynomial curve which interpolates the given
four data. The point PPPPPPPPP ′ can then be chosen as an intersection of the polynomial
and the line segment PPPPPPPPP �−1PPPPPPPPP �, while an appropriate choice for the direction ddddddddd′ is
to take a normalized tangent vector of the polynomial at PPPPPPPPP ′. If the intersection
is empty, take PPPPPPPPP ′ = (PPPPPPPPP �−1 + PPPPPPPPP �)/2 and choose ddddddddd′ appropriately. Recall that we
have to restrict our requirements to G1 continuity at the newly added points. The

P��2

P��1

P ’

d ’

P�

P��1

Figure 10. An insertion of an additional point in a locally non-
convex segment.

data are now split into convex segments. But if for some convex segment, any of
the angles in Theorem 2.1 is greater than Kπ, the solution may not be unique or
may not even exist on this segment. Thus an insertion of an additional point is
necessary (Fig. 11). The following lemma, which needs no additional proving (see
Fig. 11), and Remark 6.2 show that it suffices to add one additional point on each
such segment and suggest a way to do it.

Lemma 6.1. Let PPPPPPPPP �−2, PPPPPPPPP �−1, PPPPPPPPP �, PPPPPPPPP �+1 be convex data with

ϕ�−1 + ϕ� > Kπ,

and let PPPPPPPPP ′ be any point inside the open domain Ω, bounded by the lines

�1(t) := PPPPPPPPP �−1 + tQ(ϕ� − (K − 1)π)∆PPPPPPPPP �−1, �2(t) := PPPPPPPPP � + tQ(Kπ − ϕ�−1)∆PPPPPPPPP �−1,
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and the half-plane determined by the line �(t) := PPPPPPPPP �−1 + t∆PPPPPPPPP �−1 not containing
PPPPPPPPP �−2 and PPPPPPPPP �+1. Then

∠
(
∆PPPPPPPPP �−2, PPPPPPPPP

′ − PPPPPPPPP �−1

)
+ ∠

(
PPPPPPPPP ′ − PPPPPPPPP �−1, PPPPPPPPP � − PPPPPPPPP ′) < Kπ

and

∠
(
PPPPPPPPP ′ − PPPPPPPPP �−1, PPPPPPPPP � − PPPPPPPPP ′)+ ∠

(
PPPPPPPPP � − PPPPPPPPP ′,∆PPPPPPPPP �

)
< Kπ.

P��2

P��1

K Π���

P ’

T

P�

K Π����1

P��1

�1 �2

P��2

P��1

K Π���

P ’

T

P�

K Π����1

P��1

�1

�2

Figure 11. Two examples of the insertion of an additional point
PPPPPPPPP ′ in a locally convex segment.
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�20
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Figure 12. PH interpolating splines together with corresponding
curvatures. Gray points are additional points determined by the
preprocessing algorithm.
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Figure 13. Cubic G2 PH spline (black) and standard cubic C2

spline (gray) together with the corresponding curvatures.

Remark 6.2. By Bézout’s theorem, the cubic polynomial curve which interpolates
the data given in Lemma 6.1 does not form a loop and has no inflection points. Since
usually the cubic interpolating polynomial intersects the domain Ω, an additional
point PPPPPPPPP ′ can in this case be chosen as the intersection of the polynomial and the
angle bisector at the point TTTTTTTTT := �1 ∩ �2 (see Fig. 11).

In Fig. 12, two examples, obtained by the presented preprocessing algorithm, are
shown. Note that in the first example, there are only two additional points added
by the preprocessing algorithm.

Finally, a comparison between a cubic G2 PH spline and a classical cubic C2

spline is shown in Fig. 13. Both splines have the same end-point tangent vectors.
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