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ANALYSIS OF SPECTRAL APPROXIMATIONS

USING PROLATE SPHEROIDAL WAVE FUNCTIONS

LI-LIAN WANG

Abstract. In this paper, the approximation properties of the prolate spher-
oidal wave functions of order zero (PSWFs) are studied, and a set of optimal
error estimates are derived for the PSWF approximation of non-periodic func-
tions in Sobolev spaces. These results serve as an indispensable tool for the
analysis of PSWF spectral methods. A PSWF spectral-Galerkin method is
proposed and analyzed for elliptic-type equations. Illustrative numerical re-
sults consistent with the theoretical analysis are also presented.

1. Introduction

The prolate spheroidal wave functions, originated from the context of separation
of variables for the Helmholtz equation in spheroidal coordinates (see, e.g., [20, 12]),
have been extensively used for a variety of physical and engineering applications,
such as wave scattering, signal processing, and antenna theory (see, for instance, [3,
11, 17]). Most notably, a series of papers by Slepian et al. [25, 19, 26] and the recent
works by Xiao and Rokhlin et al. [33, 32, 24, 22] have shown that the PSWFs are a
natural and optimal apparatus for approximating bandlimited functions. Recently,
there has been a growing interest in developing numerical methods using PSWFs
as basis functions, which include in particular the PSWF wavelets [31, 30, 29] and
the PSWF spectral/spectral-element methods [7, 8, 3, 10, 18, 17, 27].

Boyd [7] and Chen et al. [10] have demonstrated that spectral accuracy can be
achieved when the PSWFs (with a suitable choice of the bandwidth parameter)
are used to approximate non-periodic smooth functions on finite intervals, and
the PSWF spectral methods enjoy modest advantages over their polynomial-based
counterparts: (i) enable fewer points per wavelength to resolve waves; (ii) use quasi-
uniformly distributed collocation points allowing for a larger time step in explicit
time-marching schemes, and (iii) achieve a better resolution near the center of the
computational domain. Moreover, Boyd [8, 7] showed that, by a straightforward
basis and differentiation matrix swamping, the prolate element method, built on
quasi-uniform meshes, promises to outperform the conventional Legendre spectral
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element method. In addition, Moore et al. [21] addressed that the PSWF series is
potentially optimal over more conventional orthogonal expansions for discontinuous
functions such as the square wave, among others. More interestingly, Kovvali et al.
[18] proposed a fast algorithm for performing matrix-vector multiplication involving
prolate spectral differentiation and interpolation with an O(N) complexity.

Although there is an increasing number of papers devoted to analytic properties
and numerical evaluation of the PSWFs (see, e.g., [33, 5, 6, 21, 22, 13, 34] and
the references therein), the approximability of the PSWFs is studied in a limited
number of papers. Some error analysis for approximation of bandlimited functions
by PSWFs was carried out in the note [24] (also see Xiao’s thesis [32]). The first
result on error estimates of the PSWF series expansions for non-periodic functions
in Sobolev spaces was derived in Chen et al. [10] and Boyd [7] (refer to Theorem 3.2
below), which explicitly indicates the feasible choice of the bandwidth parameter
for achieving a spectral accuracy. However, the order of convergence is somehow
suboptimal, in particular for fixed bandwidth parameters, and the underlying anal-
ysis, which is essentially based on a delicate analysis of the decay properties of the
coefficients in Legendre expansions of the PSWFs, is non-trivial to extend to esti-
mates in higher-order Sobolev spaces. In this paper, we take a different approach,
which leads to a set of optimal approximation results with a more concise analysis.
These results serve as a main ingredient for the analysis of PSWF spectral meth-
ods. We also introduce a PSWF spectral-Galerkin method using a modal basis
consisting of compact linear combinations of integration of PSWFs, which results
in an effective PSWF Galerkin approximation to PDEs, and therefore provides a
viable alternative to the PSWF collocation/pseudospectral method.

The rest of the paper is organized as follows. In the next section, we collect and
extend some properties of the PSWFs to be used throughout the paper. In Section
3, we show that a super-geometric convergence can be attained when the PSWFs
are used to approximate bandlimited functions. More importantly, we derive a
set of PSWF approximation results in Sobolev spaces. In Section 4, we analyze
and implement a PSWF spectral-Galerkin method for some model PDEs, and then
provide some numerical results to confirm and support the theoretical analysis. The
final section is for some concluding remarks and discussions.

We now introduce some notation to be used throughout the paper. Let I :=
(−1, 1) and let � be a generic weight function defined in I. The weighted Sobolev
spaces Hs

�(I) (s = 0, 1, 2, . . .) can be defined as usual with inner products, norms
and semi-norms denoted by (·, ·)s,�, ‖ · ‖s,� and | · |s,�, respectively. For real
s > 0, Hs

�(I) is defined by space interpolation as in [1]. In particular, we have
L2
�(I) = H0

�(I), and we use (·, ·)� and ‖ · ‖� to denote the �-weighted L2-inner
produce and norm, respectively. The subscript � will be omitted from the notation
in cases of � ≡ 1.

We will use ∂k
x to denote the ordinary derivative dk

dxk , whenever no confusion may
arise. We denote by C a generic positive constant independent of any function,
bandwidth parameter and discretization parameters. We use the expression A � B
to mean that there exists a generic positive constant C such that A ≤ CB.

2. Prolate spheroidal wave functions

In this section, we review and extend some relevant properties of the PSWFs,
most of which can be founded in, e.g., [20, 12, 25, 19, 26, 33].
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For any real number c ≥ 0, the PSWFs of degree n, denoted by ψc
n(x), are the

eigenfunctions of the Sturm-Liouville equation

(2.1) ∂x
(
(1− x2)∂xψ

c
n

)
+
(
χc
n − c2x2

)
ψc
n = 0, x ∈ I := (−1, 1),

with the corresponding eigenvalues χc
n. Hence, the constant c is called the bandwidth

parameter. In particular, if c = 0, the PSWFs are reduced to the classical Legendre
polynomials with the associated eigenvalues χ0

n = n(n + 1). The PSWFs can be
viewed as a generalization of the Legendre polynomials, but oscillate more uniformly
as c increases (cf. Boyd [7]). Indeed, the PSWFs share the following important
properties with the Legendre polynomials.

Lemma 2.1. For any c > 0,

(i)
{
ψc
n(x)

}∞
n=0

are all real, smooth and form a complete orthonormal system

in L2(I), namely,

(2.2)

∫ 1

−1

ψc
n(x)ψ

c
m(x)dx = δmn,

where δmn is the Kronecker symbol.
(ii)

{
χc
n

}∞
n=0

are all real, positive, simple and ordered as

(2.3) 0 < χc
0 < χc

1 < · · · < χc
n < · · · .

(iii)
{
ψc
n(x)

}∞
n=0

with even n are even functions of x, and those with odd n are
odd functions.

(iv) ψc
n(x) has exactly n real distinct roots in the interval (−1, 1).

Next, we have from Theorem 12 of Rokhlin and Xiao [22] that for any c > 0,

(2.4) |ψc
n(1)| <

√
n+

1

2
, ∀n ≥ 0,

and by Formula (11) of Shkolnisky et al. [24],

(2.5) max
0≤j≤n

max
|x|≤1

|ψc
j(x)| ≤ 2

√
n, ∀n ≥ 1, ∀c > 0.

We now examine the behaviors of the eigenvalues {χc
n}. The following estimate

is found useful in the sequel (see Appendix A for the proof).

Lemma 2.2. For any c > 0,

(2.6) n(n+ 1) < χc
n < n(n+ 1) + c2, ∀n ≥ 0.

For large n, we deduce from Formula (64) of Rokhlin and Xiao [22] that

(2.7) χc
n = n(n+ 1) +

c2

2
+

c2(4 + c2)

32n2

(
1− 1

n
+O(n−2)

)
, ∀n � 1.

As a numerical illustration, we plot in Figure 1 the error log10
(
|χc

n − χ̃c
n|
)
with

χ̃c
n := n(n+ 1) + c2

2 + c2(4+c2)
32n2

(
1 − n−1

)
, for various n and c (see the caption). It

shows that χ̃c
n provides a fairly reasonable approximation to χc

n for n > c.
For large c, the eigenvalues behave like (see, e.g., Formula (18) of Boyd [7])

(2.8) χc
n = c(2n+ 1)−

n2 + n+ 3
2

2
+O(c−1), ∀c � 1.
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Figure 1. log10
(
|χc

n − χ̃c
n|
)
for various n ∈ [32, 256] and c ∈

[16, 32] (left), and for c = αn with various n ∈ [16, 168] and α =
0.5, 0.6, 0.7, 0.8 (right).

It is remarkable that the PSWFs are also the eigenfunctions of the compact
integral operator Fc : L2(I) → L2(I), defined by

(2.9) Fc[φ](x) =

∫ 1

−1

eicxtφ(t)dt, ∀x ∈ (−1, 1), ∀c > 0;

namely,

(2.10) inλc
nψ

c
n(x) =

∫ 1

−1

eicxtψc
n(t)dt, ∀x ∈ (−1, 1).

The corresponding eigenvalues {λc
n} (modulo the factor in) are all real, positive,

simple and can be ordered as 1

(2.11) λc
0 > λc

1 > · · · > λc
n > · · · > 0, ∀c > 0.

One verifies readily that the PSWFs satisfy

(2.12) µc
nψ

c
n(x) =

∫ 1

−1

sin(c(x− t))

x− t
ψc
n(t)dt := Qc[ψ

c
n](x) with µc

n =
c

2
|λc

n|2,

and one also notices that Qc =
c
2F

∗
c ◦ Fc.

It is worthwhile to have a quantitative study of the eigenvalues {λc
n} and {µc

n}.
An explicit expression for λc

n in terms of ψc
n(1) is given by Theorem 9 of Rokhlin

and Xiao [22]:

(2.13) λc
n =

√
πcn(n!)2

(2n)!Γ(n+ 3/2)
· exp

(∫ c

0

(2(ψτ
n(1))

2 − 1

2τ
− n

τ

)
dτ

)
, ∀c > 0.

We deduce from (2.4) that the value of the integral within the exponential is neg-
ative, which implies that

(2.14) λc
n <

√
πcn(n!)2

(2n)!Γ(n+ 3/2)
:= νcn, ∀c > 0.

1Notice that the eigenvalues χc
n and λc

n belong to the same PSWF ψc
n(x), and the coexistence

of the ordering (2.3) and (2.11) was proved in Slepian and Pollak [25].
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We next show that λc
n decays exponentially with respect to n, and we illustrate

that the upper bound νcn provides a good approximation to λc
n for modest large n.

Indeed, by Stirling’s formula:

(2.15) Γ(x) =
√
2πxx−1/2e−x

{
1 +

1

12x
+O(x−3)

}
, x � 1,

and the identity Γ(n+ 1) = n!, we have that for n � 1,

λc
n ∼ 1

e

√
π

2

(ec
4

)n(
n+

1

2

)−n− 1
2

=
1

e

√
2π

ec

( 4

ec

(
n+

1

2

))−n− 1
2

.(2.16)

Therefore, λc
n decays super-geometrically as n grows; namely,

(2.17) λc
n ∼ exp

(
ñ(κ− log ñ)

)
, κ = log

ec

4
, ñ = n+

1

2
� 1.

The above result confirms in particular Conjecture 1 in Boyd [5]. We also notice
that for all c > 0,

∑∞
n=0(λ

c
n)

2 = 4 (see Formula (143) of [33]).
To visualize the behavior of the eigenvalues {λc

n}, we plot in Figure 2 (left) the
profiles of log10(λ

c
n) with various n ∈ (0, 100] and c ∈ (0, 80], computed by the

formulas (2.21)–(2.22) below. We see that the eigenvalues begin to decay (super-)
geometrically, when n > ec

4 − 1
2 . On the right of Figure 2, we depict the graphs of

log10(λ
c
n) against log10(ν

c
n) for n ≥ ec

4 − 1
2 with c = 20, 30, . . . , 90 (from bottom to

top), where the vertical dotted lines indicate the position of the smallest integer
greater than ec

4 − 1
2 .
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Figure 2. Profiles of log10(λ
c
n) for various n and c (left), and

graph of log10(λ
c
n) (marked by “◦”) vs log10(νcn) (marked by “+”)

for various n and c = 20, 30, . . . , 90 (right).

So far, intensive work has been devoted to developing efficient methods for com-
puting the PSWFs and their eigenvalues (see, e.g., [4, 29, 8, 13, 16]). A package
of Matlab programs for manipulating PSWFs is also available (cf. Boyd [8]). Fol-
lowing Bouwkamp [4] (also see, e.g., [33]), we expand ψc

n(x) in terms of normalized

Legendre polynomials: ψc
n(x) =

∑∞
k=0 β

n
k L̃k(x), and substitute the expansion into

(2.1), which leads to the equivalent eigenproblem:

(2.18)
(
A− χc

n · I
)
�βn = 0, n = 0, 1, . . . ,
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where �βn =
(
βn
0 , β

n
1 , β

n
2 , . . .

)t ∈ l2 and A is a symmetric five-diagonal matrix with
three non-zero diagonals given by

Ak,k = k(k + 1) +
2k(k + 1)− 1

(2k − 1)(2k + 3)
· c2,

Ak,k+2 = Ak+2,k =
(k + 1)(k + 2)

(2k + 3)
√
(2k + 1)(2k + 5)

· c2,
(2.19)

for all k = 0, 1, 2, . . . . It is clear that the eigensystem (2.18) involves infinitely
many unknowns, so a suitable truncation is needed. Boyd [8] suggested a safe and
conservative cutoff number M = 2N + 30, which guarantees a very high degree of
accuracy (close to machine zero) calculation of all the first N +1 PSWFs {ψc

n}Nn=0

and eigenvalues {χc
n}Nn=0 for all

(2.20) 0 ≤ c ≤ c∗N =
π

2

(
N +

1

2

)
.

Here, c∗N is referred to as the “transition bandwidth” (the feasible c should be in
the range (2.20) to ensure the approximability (see [7])).

We now describe an algorithm for computing the eigenvalues {λc
n} in (2.10).

Taking x = 0 in (2.10) leads to

inλc
nψ

c
n(0) =

∫ 1

−1

ψc
n(t)dt.

The parity of the PSWFs and the fact that ψc
n(x) has exactly n real roots in (−1, 1)

imply that ψc
n(0) �= 0 for even n, while ψc

n(0) = 0 for odd n. Therefore, we have

(2.21) λc
n =

1

inψc
n(0)

∫ 1

−1

ψc
n(t)dt =

√
2βn

0

inψc
n(0)

, for even n,

where we have used the fact that
∫ 1

−1
ψc
n(t)dt =

∫ 1

−1

∑∞
k=0 β

n
k L̃k(t)dt =

√
2βn

0 in

the last step. To calculate λc
n with odd n, we differentiate (2.10) with respect to x

and then take x = 0, which gives

(2.22) λc
n =

c

in−1∂xψc
n(0)

∫ 1

−1

tψc
n(t)dt =

√
2

3

cβn
1

in−1∂xψc
n(0)

, for odd n.

It should be pointed out that although the magnitude of λc
n is exponentially small

for large n, its evaluation through (2.21)–(2.22) is stable since the values of |ψc
n(0)|

(for even n) and |∂xψc
n(0)| (for odd n) are bounded below away from zero for all n.

Remark 1. As a consequence of (2.21), we have |βn
0 | = 1√

2
λc
n|ψc

n(0)|. Hence, for

even n � 1, we have from (2.5) and (2.17) that

(2.23) |βn
0 | ∼

√
n exp

(
ñ(κ− log ñ)

)
, κ = log

ec

4
, ñ = n+

1

2
.

For odd n, we have from Stirling’s formula that

|L̃′
n(0)| =

√
2n+ 1

2

(n+ 1)!

2n
(
n−1
2

)
!
(
n+1
2

)
!

(2.15)∼ n,

and therefore, by Theorem 11 in [22], |∂xψc
n(0)| ∼ n. Consequently, |βn

1 | shares the
same asymptotic behavior with |βn

0 | as in (2.23). Notice that these estimates are
more precise than those in Lemma A.2 of [10], which played an important role in
the derivations of the main approximation result stated in Theorem 3.2.
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3. Approximation by PSWFs

A series of papers by Slepian et al. [25, 19, 26] and some recent works by Xiao
and Rokhlin et al. [33, 32, 24, 22] have demonstrated that the PSWFs are an
optimal tool for approximating bandlimited functions. Some error estimates were
reported in [22, 32]. Firstly, we will show that a super-geometric convergence can
be achieved for a PSWF series approximation of bandlimited functions. However,
our main concerns are with the approximation of general non-periodic functions in
Sobolev spaces.

Define the finite-dimensional space

(3.1) Xc
N = span

{
ψc
k : 0 ≤ k ≤ N

}
,

and denote by(
πc
Nu

)
(x) =

N∑
k=0

ûkψ
c
k(x) ∈ Xc

N with ûk =

∫ 1

−1

u(x)ψc
k(x)dx,(3.2)

the L2-orthogonal projection πc
N : L2(I) → Xc

N satisfying(
πc
Nu− u, vN

)
= 0, ∀vN ∈ Xc

N .(3.3)

Theorem 3.1. Let f(x) be a bandlimited function with a bandwidth c > 0, defined
by

(3.4) f(x) =

∫ 1

−1

eicxtφ(t)dt with φ ∈ L2(I),

and let fN = πc
Nf =

∑N
k=0 f̂kψ

c
k. Then,

(3.5) ‖f − fN‖ ≤ λc
N+1‖φ‖ � exp

(
N̂(κ− log N̂)

)
‖φ‖,

where κ = log ec
4 and N̂ = N + 3

2 .

Proof. It is clear that by (2.10) and (3.4),

f̂k =

∫ 1

−1

f(x)ψc
k(x)dx

(3.4)
=

∫ 1

−1

[ ∫ 1

−1

eicxtφ(t)dt
]
ψc
k(x)dx

=

∫ 1

−1

[ ∫ 1

−1

eicxtψc
k(x)dx

]
φ(t)dt = ikλc

k

∫ 1

−1

ψc
k(t)φ(t)dt

(2.10)
= ikλc

kφ̂k,

(3.6)

where φ̂k is the (k+1)th coefficient in the PSWF expansion of φ. Therefore, by the
orthogonality condition (2.2), (2.11) and (3.6),

‖f − fN‖2 =

∞∑
k=N+1

f̂2
k =

∞∑
k=N+1

|λc
k|2φ̂2

k ≤ |λc
N+1|2‖φ‖2.(3.7)

Finally, the desired result follows from (2.17). �

It is interesting to study the approximation of non-periodic functions by the
PSWFs. The first result was derived in [10, 7] as stated below, whose proof was
based on a delicate analysis of the decay property of the coefficients {βn

k } in (2.18).

Theorem 3.2. (Theorem 3.1 in [10]). Let u ∈ Hs(I) with s ≥ 0 and write

(3.8) u(x) =
∞∑
k=0

ûkψ
c
k(x) with ûk =

∫ 1

−1

u(x)ψc
k(x)dx.
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Then, for

(3.9) qN =

√
c2

χc
N

< 1,

we have

(3.10) |ûN | ≤ C
(
N− 2

3 s‖u‖Hs(I) +
(
q
N

)δN‖u‖L2(I)

)
,

where C and δ are positive constants independent of u,N and c. Boyd [7] stated a
similar result with

(3.11) ρN =
c

c∗N
< 1 with c∗N =

π

2

(
N +

1

2

)
,

in place of qN .

Remark 2. We see that if c satisfies (3.9) or (3.11), the spectral accuracy can be
achieved for sufficiently smooth u. In practice, we oftentimes choose c = O(N)
so as to obtain quasi-uniform computational grids. We also point out that the
estimate (3.10) is suboptimal in terms of the order O(N− 2

3 s) (which is expected to
be O(N−s) at least for a fixed bandwidth parameter c). As an example, we take
u(x) = eicxt, and derive from (2.10), (2.4) and (2.16) (also refer to Theorem 3.1)
that

(3.12) ûN = iNλc
Nψc

N (1) ⇒ |ûN | ∼ exp
(
Ñ(κ− log Ñ)

)
,

with κ = log ec
4 and Ñ = N + 1

2 . Therefore, |ûN | decays super-geometrically, when

N > e
4c −

1
2 . This behavior was also numerically confirmed by Figure 4 in Boyd

[7]. However, the estimate (3.10) only yields that |ûN | ≤ C
(
c3/2

N

) 2s
3 , so |ûN | decays

exponentially when N > c3/2. Hence, the estimate (3.10) is a little conservative.

In the sequel, we analyze the approximation properties of PSWFs using a differ-
ent approach. For this purpose, we define the Sturm-Liouville operator associated
with (2.1):

(3.13) Dcu = −∂x
(
(1− x2)∂xu

)
+ c2x2u = −(1− x2)u′′(x) + 2xu′(x) + c2x2u.

One verifies readily that Dc is a compact, strictly positive and selfadjoint operator.
Indeed, for any u and v in the domain of Dc, applying integration by parts leads to

(3.14)
(
Dcu, v

)
=

(
u,Dcv

)
= ac(u, v);

(
Dcu, u

)
= ac(u, u) > 0, if u �= 0,

where the bilinear form

(3.15) ac(φ, ψ) = (φ′, ψ′)ω + c2(xφ, xψ) with ω = 1− x2.

Since Dcψ
c
n = χc

nψ
c
n, the following orthogonality follows from (3.14):

(3.16) ac(ψ
c
n, ψ

c
m) = (Dcψ

c
n, ψ

c
m) = χc

n(ψ
c
n, ψ

c
m) = χc

nδmn.

To measure the truncation error u−πc
Nu, we introduce a Hilbert space associated

with the Sturm-Liouville operator Dc in (3.13). Since Dc is a compact, symmetric

and (strictly) positive selfadjoint operator, the fractional power D1/2
c is well defined,

and the associated norms can be characterized by (see, e.g., Chapter II of [28]):

(3.17) ‖D1/2
c u‖2 = ac(u, u) ⇒ ‖Dm+1/2

c u‖2 = ac
(
Dm

c u,Dm
c u

)
, ∀m ∈ N.



PROLATE SPHEROIDAL WAVE FUNCTIONS 815

For any integer r ≥ 0, we introduce the Hilbert space:

H̃r
c (I) =

{
u ∈ L2(I) : ‖u‖2

H̃r
c

= ‖Dr/2
c u‖2 =

(
Dr/2

c u,Dr/2
c u

)
< ∞

}
,(3.18)

while for real r ≥ 0, H̃r
c (I) is defined by space interpolation as in [1]. Formally, we

derive from the orthogonality (2.2) and (3.16) that for any m ∈ N,

∥∥Dm
c u

∥∥2 =

∞∑
k=0

(
χc
k

)2m|ûk|2,
∥∥Dm+1/2

c u
∥∥2 = ac(Dm

c ,Dm
c ) =

∞∑
k=0

(
χc
k

)2m+1|ûk|2.

(3.19)

Therefore, the norm of the space H̃r
c (I) with real r ≥ 0 can be characterized in the

frequency space as

(3.20) ‖u‖
H̃r

c
= ‖Dr/2

c u‖ =
( ∞∑

k=0

(
χc
k

)r|ûk|2
)1/2

, c > 0.

An equivalent norm expressed in terms of derivatives of u with explicit dependence
on c will be presented later.

The fundamental approximation result is stated below.

Theorem 3.3. For any u ∈ H̃r
c (I) with r ≥ 0,

‖πc
Nu− u‖ ≤

(
χc
N+1

)− r
2 ‖u‖

H̃r
c
≤ N−r‖u‖

H̃r
c
;(3.21)

in general, for 0 ≤ µ ≤ r,
(3.22)

‖πc
Nu− u‖

H̃µ
c
≤

(
χc
N+1

)−µ−r
2 ‖πc

Nu− u‖
H̃r

c
≤

(
χc
N+1

)−µ−r
2 ‖u‖

H̃r
c
≤ Nµ−r‖u‖

H̃r
c
.

Proof. We first assume that r = 2m. Since Dcψ
c
n = λc

nψ
c
n, we derive from (3.14)

that

ûk =

∫ 1

−1

u(x)ψc
k(x)dx =

1

(χc
k)

m

∫ 1

−1

u(x)Dm
c ψc

k(x)dx

=
1

(χc
k)

m

∫ 1

−1

ψc
k(x)Dm

c u(x)dx =
1

(χc
k)

m
(̂Dm

c u)k,

(3.23)

where (̂Dm
c u)k is the (k + 1)th coefficient of the prolate spheroidal expansion of

Dm
c u. Therefore, by (2.2), (2.3) and (3.23),

‖πc
Nu− u‖2 =

∞∑
k=N+1

|ûk|2 =

∞∑
k=N+1

(χc
k)

−2m
∣∣(̂Dm

c u)k
∣∣2

≤ max
k>N

{
(χc

k)
−2m

}
‖Dm

c u‖2 ≤ (χc
N+1)

−2m‖u‖2
H̃2m

c

,

which, together with (2.6), yields (3.21) with r = 2m.
We now prove (3.21) with r = 2m+ 1. By (2.3) and (3.20),

‖πc
Nu− u‖2 =

∞∑
k=N+1

|ûk|2 ≤ max
k>N

{
(χc

k)
−(2m+1)

} ∞∑
k=N+1

(χc
k)

2m+1|ûk|2

≤ (χc
N+1)

−(2m+1)ac(Dm
c u,Dm

c u) = (χc
N+1)

−(2m+1)‖u‖2
H̃2m+1

c
.

The above two estimates, together with a space interpolation, lead to (3.21).



816 LI-LIAN WANG

Next, by (2.3), (2.6) and (3.20), we have that for 0 ≤ µ ≤ r,

‖πc
Nu− u‖2

H̃µ
c
=

∞∑
k=N+1

(χc
k)

µ|ûk|2 ≤ max
k>N

{
(χc

k)
µ−r

} ∞∑
k=N+1

(χc
k)

r|ûk|2

= (χc
N+1)

µ−r‖πc
Nu− u‖2

H̃r
c

≤ (χc
N+1)

µ−r
∞∑
k=0

(χc
k)

r|ûk|2

= (χc
N+1)

µ−r‖u‖2
H̃r

c

≤ N2(µ−r)‖u‖2
H̃r

c

.

This completes the proof. �

The norm in the upper bounds of the above estimates is expressed in the fre-
quency space and implicitly depends on the bandwidth parameter c. To extract
more explicit information from (3.21) and (3.22), it is necessary to express the
norm in terms of derivatives of u featured with an explicit dependence on c. Notice
that setting c = 0 in Theorem 3.3, we recover the Legendre polynomial approxima-
tion (see [14]), and we are able to show that

(3.24) ‖u‖2
H̃r

0

≤ C

r∑
k=0

∫ 1

−1

|∂k
xu|2(1− x2)kdx,

where C is a positive constant independent of u. A natural question is whether
such a sharp upper bound, with the weight functions varying with the order of the
derivatives and with explicitly depending on the bandwidth parameter c, is also
available for c > 0. That is,

(3.25) ‖u‖2
H̃r

c

≤ C

r∑
k=0

∫ 1

−1

c2(r−k)|∂k
xu|2(1− x2)kdx.

Indeed, one derives by using integration by parts that

‖u‖2
H̃1

c

= ac(u, u) =

∫ 1

−1

|∂xu|2(1− x2)dx+ c2
∫ 1

−1

x2u2(x)dx,

‖u‖2
H̃2

c

=
∥∥Dcu

∥∥2 =

∫ 1

−1

|∂2
xu|2(1− x2)2dx+ 2

∫ 1

−1

(1 + c2x2)|∂xu|2(1− x2)dx

+ c2
∫ 1

−1

(
c2x4 + 6x2 − 2

)
|u|2dx,

‖u‖2
H̃3

c

= ac(Dcu,Dcu) =

∫ 1

−1

|∂3
xu|2(1− x2)3dx+

∫ 1

−1

(8 + 3c2x2)|∂2
xu|2(1− x2)2dx

+

∫ 1

−1

P (x; c)|∂xu|2(1− x2)dx+ c2
∫ 1

−1

Q(x; c)|u|2dx,

(3.26)

where

P (x; c) = 3c4x4+34c2x2− 8c2 +4; Q(x; c) = c4x6+26c2x4− 14c2x2+36x2 − 12.

However, the verification process appears to be very tedious and lengthy for general
r > 3, although we believe (3.25) is still valid.
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We next present a considerably rough upper bound for the norm ‖ ·‖
H̃r

c
. Indeed,

by the definition (3.13) and an induction,

Dm
c u =

2m∑
k=0

(1− x2)(m−k)+c2[k/2]pj(x; c
−2)∂2m−k

x u,(3.27)

where (m − k)+ = max{m − k, 0}, [a] denotes the maximum integer ≤ a, and
pj(x; c

−2) are some generic polynomials of degree ≤ 2m with coefficients involving
c−2l with 0 ≤ l ≤ m. Without loss of generality, we assume that the bandwidth is
bounded away from zero, i.e, c ≥ c0 > 0 for some positive constant c0. Thus, by
(3.18) and (3.27),

‖u‖
H̃2m

c
= ‖Dm

c u‖ ≤ C
2m∑
k=0

c2[k/2]
∥∥(1− x2)(m−k)+∂2m−k

x u
∥∥,(3.28)

where C is a positive constant independent of c, u (but depends on c0). We now
consider the case with r = 2m+ 1. It is clear that

(3.29)
√
1− x2∂xDm

c u =

2m+1∑
k=0

(1− x2)
1
2+(m+1−k)+c2[(k−1)/2]qj(x; c

−2)∂2m+1−k
x u,

where {qj(x; c−2)} are generic (uniformly bounded) polynomials as {pj(x; c−2)} as
in (3.27). Hence, by the definitions (3.15) and (3.18),

‖u‖
H̃2m+1

c
=

(∫ 1

−1

|∂xDm
c u|2(1− x2)dx+ c2

∫ 1

−1

x2|Dm
c u|2dx

)1/2

≤
∥∥(1− x2)m+1/2∂2m+1

x u
∥∥+ C

2m+1∑
k=1

c2[(k−1)/2]+ 1
2

∥∥(1− x2)(m+1−k)+∂2m+1−k
x u

∥∥.

(3.30)

As a consequence of (3.28) and (3.30), the imbedding relation holds for the usual

Sobolev space Hr(I) ⊆ H̃r
c (I), and

‖u‖
H̃r

c
≤ C(1 + c2)r/2‖u‖Hr .(3.31)

We derived above some upper bounds of the norm of the space in (3.18) and
Theorem 3.3 characterized by the Sturm-Liouville operator. It is important to
notice that the powers of the bandwidth parameter c (and likewise for the weight
function (1−x2)k) for derivatives of different orders are different (cf. (3.25)–(3.30)),
which turns out to be crucial for the convergence of PSWF expansions when we
choose c = O(N).

Before further establishing some estimates in higher-order Sobolev spaces, we
first numerically illustrate that the estimate in Theorem 3.3 is optimal. For this
purpose, we consider the approximation of a function with finite regularity by the
truncated PSWF series. Consider

(3.32) u(x) = (x− a)αesinx with a = 0, 1, and α = 5/3.

It is clear that u ∈ Hr(I) for any r < α+ 1
2 . Theorem 3.2 implies that if c satisfies

(3.9) or (3.11), then for a = 0 or 1,

(3.33) |ûc
N+1| ∼ Ec

N := ‖πc
Nu− u‖ = O

(
Nε− 2

3 (α+
1
2 )
)
, ∀ε > 0.
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We now examine the estimate in Theorem 3.3. A direct calculation shows that
Dcu = u1 + c2u2, where for a = 0, we have u1 ∈ Hα− 3

2+ε(I) and u2 ∈ Hα+ 1
2+ε(I)

with r < α+ 1
2 . Therefore, as in the proof of Theorem 3.3,

ûc
N+1 =

∫ 1

−1

uψc
N+1 dx =

1

χc
N+1

∫ 1

−1

Dcuψ
c
N+1 dx =

1

χc
N+1

∫ 1

−1

u1 ψ
c
N+1 dx

+
c2(

χc
N+1

)2 ∫ 1

−1

Dcu2 ψ
c
N+1 dx.

(3.34)

We see that the error is dominated by the highest derivative term (where c is not
involved) even when c2 = O

(
χc
N+1

)
. This process can be continued if u2 enjoys

more regularity. Based on this observation, we conclude from Theorem 3.3 that for
any ε > 0,

(3.35) |ûc
N+1| ∼ Ec

N = ‖πc
Nu− u‖ =

{
O
(
Nε−(α+ 1

2 )
)
, if a = 0,

O
(
Nε−(2α+1)

)
, if a = 1.

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

−9

−8

−7

−6

−5

−4

−3

−2

−1

log10(N)

lo
g 10

(L
2

−e
rr

or
) c=4N/e

c=N; slope=4.34

c=0; slope=4.33

c= π N/2

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
−5.4

−5.2

−5

−4.8

−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

log10(N)

lo
g 10

(L
2

−
er

ro
r)

c=0; slope=− 2.142

c=N; slope=− 2.142

Figure 3. The errors Ec
N of the PSWF approximation of (3.32)

in the log-log scale. Left: a = 1; Right: a = 0.

We notice that the order of convergence roughly should be the slope of the error
Ec

N against N in the log-log scale. In Figure 3 (left), we plot the L2-error Ec
N in

the log-log scale for a = 1, N ∈ [32, 196] and c = 0, N/2, N, 4N/e, πN/2. We also
calculate the slope (modulo the minus sign) of the error lines for c = 0, N/2, N,
which approximately equals 4.33 and agrees with the predicted convergence order
2α + 1 = 13

4 ≈ 4.333 in (3.35). We visualize from Figure 3 (left) that the PSWFs
with smaller c (c = 0 corresponds to the Legendre polynomials) give better approx-
imations than those with large c, since the singularity of the derivative appears
near the endpoint x = 1, and the points are denser near x = ±1 for small c. We
also notice that as c stretches its limit: c = 4N/e, π

2N (cf. (2.17) and (3.11)), the
accuracy deteriorates significantly.

In Figure 3 (right), we depict the errors for the PSWF approximation of (3.32)
with a = 0 for c = 0, N/2, N . It indicates a convergence rate O(N−2.142) consistent
with the prediction in (3.35) (note: α + 1

2 = 13
6 ≈ −2.167). It is worthwhile

to point out that the PSWF approximation with c = N,N/2 produces a better
accuracy than that with smaller c. This is mainly because the PSWFs oscillate
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more uniformly as c increases, which thereby improves the resolution near the
center x = 0.

We are now in a position to estimate the truncation error: u − πc
Nu in higher-

order Sobolev spaces.

Theorem 3.4. For any v ∈ H̃r
c (I),

(3.36) ‖∂x(πc
Nu− u)‖ω ≤

(
1 + cN−1

)
N1−r‖u‖

H̃r
c
, r ≥ 1,

and ∥∥∂2
x(π

c
Nu− u)

∥∥
ω2 �

(
1 + cN−1 + c2N−2

)
N2−r‖u‖

H̃r
c
, r ≥ 2,(3.37)

where the weight functions ω = 1− x2 and ω2 = (1− x2)2.

Proof. By the first identity of (3.26) and Theorem 3.3,

‖∂x(πc
Nu− u)‖ω ≤ ‖πc

Nu− u‖
H̃1

c
+ c‖πc

Nu− u‖ ≤
(
1 + cN−1

)
N1−r‖u‖

H̃r
c
.

This gives (3.36).
Similarly, by the second identity of (3.26),

‖∂2
x(π

c
Nu− u)‖ω2 ≤ ‖πc

Nu− u‖
H̃2

c
+
√
2(1 + c2)‖∂x(πc

Nu− u)‖ω

+ c
√
4 + c2‖πc

Nu− u‖.
Thus, the result (3.37) follows from Theorem 3.3 and (3.36). �
Remark 3. The estimate ‖∂k

x(π
c
Nu−u)‖ωk = O(Nk−r) for r ≥ k ≥ 3 can be derived

in a similar fashion.

As a consequence of Theorem 3.4, we have the following suboptimal estimate in
the H1-norm.

Corollary 3.1. For any u ∈ H̃r
c (I) with r ≥ 2,

(3.38) ‖∂x(πc
Nu− u)‖ �

(
1 + cN−1 + c2N−2

)
N2−r‖u‖

H̃r
c
.

Proof. We first recall an imbedding inequality (see Formula (13.5) in [2]):

(3.39) ‖∂xu‖ ≤ 2
(
‖∂2

xu‖ω2 + ‖∂xu‖ω2

)
≤ 2

(
‖∂2

xu‖ω2 + ‖∂xu‖ω
)
,

which, together with Theorem 3.4, implies the desired result. �
We now estimate the truncation error u− πc

Nu in the L∞-norm.

Theorem 3.5. For any u ∈ H̃r
c (I) with r > 1,

(3.40) ‖πc
Nu− u‖L∞ ≤

√
2

r − 1
N1−r‖u‖

H̃r
c
.

Proof. By (2.5), the Cauchy-Schwarz inequality and (3.20),

|(πc
Nu− u)(x)| ≤

∞∑
k=N+1

|ûk|max
|x|≤1

|ψc
k(x)| ≤

∞∑
k=N+1

k|ûk|

≤ 2
( ∞∑

k=N+1

k(χc
k)

−r
) 1

2
( ∞∑

k=N+1

(χc
k)

r|ûc
k|2

) 1
2

≤ 2
( ∞∑

k=N+1

k(χc
k)

−r
) 1

2 ‖u‖
H̃r

c
.

(3.41)
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Since
(
χc
k

)−1
< k−2 (cf. (2.6)), we obtain that

∞∑
k=N+1

k(χc
k)

−r ≤
∞∑

k=N+1

k1−2r ≤
∫ ∞

N+1

x1−2rdx ≤ 1

2(r − 1)
N2−2r.

Plugging this into (3.41) yields the desired result. �
As the conclusion of this section, we derive two inverse inequalities, which are

useful for the analysis of non-linear problems.

Theorem 3.6. For any φ ∈ Xc
N ,

(3.42) ‖φ‖
H̃r

c
≤

(
χc
N

) r
2 ‖φ‖ ≤ (N + c+ 1)r‖φ‖, ∀r ≥ 0;

in particular, we have

‖∂xφ‖ω ≤ (N + 2c+ 1)‖φ‖,
‖∂2

xφ‖ω2 ≤
(
N2 + (3c+ 1)N + 3(c+ 1)2

)
‖φ‖,

(3.43)

where the weight functions ω = 1− x2 and ω2 = (1− x2)2.

Proof. For any φ ∈ Xc
N , we write

φ(x) =

N∑
k=0

φ̂kψ
c
k(x) with φ̂k =

∫ 1

−1

φ(x)ψc
k(x)dx.

It is clear that by (3.19), (2.3) and Lemma 2.2,

‖φ‖2
H̃r

c

=
N∑

k=0

(
χc
k

)r|φ̂k|2 ≤
(
χc
N

)r‖φ‖2 ≤
(
N(N + 1) + c2

)r‖φ‖2,
which implies (3.42).

Next, by the first identity of (3.26) and (3.42) with r = 1,

(3.44) ‖∂xφ‖ω ≤ ‖φ‖
H̃1

c
+ c‖φ‖ ≤ (N + 2c+ 1)‖φ‖.

Similarly, by the second identity of (3.42), (3.26) and (3.44),

‖∂2
xφ‖ω2 � ‖φ‖

H̃2
c
+ c‖∂xφ‖ω + c2‖φ‖ ≤

(
N2 + (3c+ 1)N + 3(c+ 1)2

)
‖φ‖.(3.45)

This ends the proof. �
In summary, we have presented a set of PSWF approximation results in Sobolev

spaces, which not only demonstrate the feasibility of using the PSWFs to approxi-
mate non-periodic functions on finite intervals, but also serve as a fundamental tool
for the analysis of PSWF spectral methods for PDEs.

4. PSWF spectral methods

As the PSWFs continue to enjoy applications in signal processing, wave scatter-
ing and a variety of engineering fields, there has been a growing recent interest in
developing methods using the PSWFs as basis functions, which include in particu-
lar the PSWF collocation/pseudospectral methods and spectral-element methods.
The main advantages of the PSWF approach over the polynomial-based counterpart
are addressed in [7, 10, 3, 17]. In this section, we first briefly introduce the PSWF
pseudospectral method, and then propose and analyze a PSWF spectral-Galerkin
scheme for elliptic-type PDEs. We also provide some illustrative numerical results
to support our analysis.
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4.1. PSWF quadrature and interpolation. In practice, two types of quadra-
ture rules are used. The first one is a direct extension of the Legendre-
Gauss-Lobatto rule, where the quadrature points {ξcN,j}Nj=0 are the roots of

(1− x2)∂xψ
c
N (x), and the corresponding weights {ρcN,j}Nj=0 are determined by

(4.1)

∫ 1

−1

ψc
n(x)dx =

N∑
j=0

ψc
n(ξ

c
N,j)ρ

c
N,j , n = 0, 1, . . . , N.

The second rule uses the quadrature points and weights {ζcN,j , σ
c
N,j}Nn=0 (with

ζcN,0 = −1 and ζcN,N = 1), determined by

(4.2)

∫ 1

−1

ψc
n(x)dx =

N∑
j=0

ψc
n(ζ

c
N,j)σ

c
N,j , n = 0, 1, . . . , 2N − 1.

The Matlab programs for computing the points and weights associated with these
two formulas can be found in [8]. For convenience, we denote by {xc

j , ω
c
j}Nj=0 one

of the above sets of points and weights. Let Xc
N be the finite-dimensional space

defined in (3.1). The Lagrange-like PSWF basis {hc
j}Nj=0 is defined by

(4.3) hc
j(x) =

N∑
k=0

αj
kψ

c
k(x) ∈ Xc

N , j = 0, 1, . . . , N,

where the coefficients {αj
k} are uniquely determined by hc

j(x
c
i ) = δij , 0 ≤ i, j ≤ N.

Hence, for any u ∈ Xc
N , we have that

(4.4) u(x) =

N∑
j=0

u(xj)h
c
j(x).

Equipped with the nodal basis and the associated quadrature rule, the PSWF col-
location and pseudospectral methods can be built up and implemented essentially
in the same fashion as the Legendre or Chebyshev methods (see, e.g., [9, 15]).

4.2. PSWF spectral-Galerkin methods. Next, we propose a viable PSWF
spectral-Galerkin method. To fix the main idea, we focus on the analysis of a
one-dimensional model equation, and we present some numerical results for a two-
dimensional problem later on.

Now consider

(4.5) −u′′(x) + γu(x) = f(x), in I = (−1, 1), u(±1) = 0,

where γ ≥ 0 and f is a given function. We now introduce a modal basis for
H1

0 (I) := {u ∈ H1(I) : u(±1) = 0} using compact combinations of integration of
PSWFs. Define

(4.6) Φc
j(x) = ajΨ

c
j(x) + bjΨ

c
j+2(x), j ≥ 0,

where

Ψc
j(x) =

∫ x

−1

ψc
j(t)dt, j ≥ 0,
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and the coefficients {aj , bj} are chosen such that aj = 1 and bj = 0 for odd j, and
for even j,

(4.7) aj =
Ψc

j+2(1)√
[Ψc

j(1)]
2 + [Ψc

j+2(1)]
2
, bj = −

Ψc
j(1)√

[Ψc
j(1)]

2 + [Ψc
j+2(1)]

2
.

Since Ψc
j(−1) = 0 for all j and Ψc

j(1) = 0 for odd j, we have Φc
j(±1) = 0 for all

j ≥ 0.

Remark 4. This basis can be viewed as an extension of the compact combinations
of the Legendre polynomials used in, e.g., [23].

Define the finite-dimensional approximation space

(4.8) Y c
N = span{Φc

0, Φc
1, . . . ,Φ

c
N−2}.

The PSWF spectral-Galerkin approximation of (4.5) is to find uN ∈ Y c
N such that

(4.9) (u′
N , v′N ) + γ(uN , vN ) = (f, vN ), ∀vN ∈ Y c

N .

One verifies readily from the Lax-Milgram lemma that this problem admits a unique
solution uN ∈ Y c

N if f ∈ L2(I).

4.2.1. Error analysis. Using a standard argument for the analysis of Galerkin meth-
ods leads to

(4.10) ‖u− uN‖1 ≤ inf
vN∈Y c

N

‖u− vN‖1.

Hence, to analyze the error, we have to study the approximation property of the
modal basis defined in (4.6). For any u ∈ H1

0 (I), we write

(4.11) u(x) =

∞∑
n=0

ũnΦ
c
n(x) =

∞∑
n=0

(
anũn + bn−2ũn−2

)
Ψc

n(x),

where we assume that ũ−2 = ũ−1 = 0. Since |an|, |bn| ≤ 1, we have from (3.20) that
for r ≥ 1,

‖∂xu‖H̃r−1
c

=
( ∞∑

n=0

(χc
n)

r−1|anũn + bn−2ũn−2|2
) 1

2

≤
( ∞∑

n=0

(χc
n)

r−1
(
|ũn|2 + |ũn−2|2

)) 1
2 ≤

√
2
( ∞∑

n=0

(χc
n)

r−1|ũn|2
) 1

2

.

(4.12)

For r ≥ 1, we define the space
(4.13)

Ĥr
c (I) :=

{
u ∈ H1

0 (I) : ∂xu ∈ H̃r−1
c (I) and ‖u‖

Ĥr
c
=

( ∞∑
n=0

(χc
n)

r−1|ũn|2
)

1
2 < ∞

}
.

Let (π1
Nu)(x) =

∑N−2
n=0 ũnΦ

c
n(x). The truncation error is characterized by the fol-

lowing theorem.

Theorem 4.1. For any u ∈ Ĥr
c (I) with r ≥ 1, we have

(4.14) ‖∂x(u− π1
Nu)‖ ≤

√
2(χc

N−1)
(1−r)/2‖u‖

Ĥr
c
� N1−r‖u‖

Ĥr
c
.
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Proof. It is clear that

∂x(u− π1
Nu) =

∞∑
n=N−1

ũnΦ
c
n = aN−1ũN−1ψ

c
N−1 + aN ũNψc

N

+
∞∑

n=N+1

(
anũn + bn−2ũn−2

)
ψc
n.

(4.15)

Hence, by the orthogonality (2.2) and the fact |an|, |bn| ≤ 1,

‖∂x(u− π1
Nu)‖2 = |aN−1ũN−1|2 + |aN ũN |2 +

∞∑
n=N+1

∣∣anũn + bn−2ũn−2

∣∣2
≤ 2

∞∑
n=N−1

|ũn|2
(2.3)
≤ 2(χc

N−1)
r−1

∞∑
n=N−1

(χc
n)

1−r|ũn|2
(4.13)
≤ 2(χc

N−1)
1−r‖u‖2

Ĥr
c

(2.6)
� N2(1−r)‖u‖2

Ĥr
c

.

This ends the proof. �

As a consequence of (4.10) and Theorem 4.1, we obtain the convergence of the
PSWF spectral-Galerkin approximation.

Corollary 4.1. Let u and uN be the solutions of (4.5) and (4.9), respectively. If

u ∈ Ĥr
c (I) with r ≥ 1, then

(4.16) ‖u− uN‖1 � N1−r‖u‖
Ĥr

c
.

Proof. Using the Poincaré inequality:

‖u‖ � ‖∂xu‖, ∀u ∈ H1
0 (I),

we derive from (4.10) and Theorem 4.1 that

‖u− uN‖1 ≤ ‖π1
Nu− u‖1 � ‖∂x(π1

Nu− u)‖ � N1−r‖u‖
Ĥr

c
.

This completes the proof. �

4.2.2. Numerical results. We next briefly describe the implementation of the pro-
posed PSWF spectral-Galerkin method and present some illustrative numerical
results.

Let us first examine the matrix of the system (4.9) under the basis (4.6). By
(2.2) and (4.6),

(4.17) scij =
(
∂xΦ

c
j , ∂xΦ

c
i

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if j = i,

ajbi if j = i+ 2,

aibj if j = i− 2,

0 otherwise.

We see that the stiffness matrix Sc = (sij) is symmetric and pentadiagonal with
three non-zero diagonals, while the mass matrix Mc = (mc

ij) with mc
ij = (Φc

j ,Φ
c
i ) is

a full matrix with half zero entries: mij = 0 if i+j is odd. Let uc = (ũ0, . . . , ũN−2)
t

and fc = (f0, . . . , f̃N−2)
t with fi =

(
f,Φc

i

)
. Then the matrix form of (4.9) is

(4.18)
(
Sc + γMc

)
uc = fc.
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In the following test, we consider (4.5) with γ = 1 and the exact solution:
u(x) = sin(20πx). Since the solution is infinitely smooth, the theoretical analysis
predicts that if c < N, the error is expected to decay exponentially. We plot in
Figure 4 the log10(L

2-error) againstN ∈ [8, 96] for various c = 0, 20π,N/2, 2N/3, N,
4N/e, πN/2. It indicates that the PSWF approximation with c = 20π provides the
best result (cf. Theorem 3.1), and a more rapid convergence is observed for c = αN
as α increases from 0 to 1. However, the accuracy deteriorates for c > N. We also
see that the PSWFs with a suitable bandwidth parameter c produce a better result
than the Legendre approximation.

10 20 30 40 50 60 70 80 90 100
−14

−12

−10

−8

−6

−4

−2

0

N

lo
g 10

(L
2 −e

rr
or

)

c=N

c=4N/e

c=πN/2

c=N/2

c=2N/3

c=20π

c=0

Figure 4. log10(L
2-error) against N for various c = 0, 20π,N/2,

2N/3, N, 4N/e, πN/2.

We now apply the PSWF spectral-Galerkin method to the Poisson equation

(4.19) −∆u = f, in Ω = (−1, 1)2, u|∂Ω = 0,

and seek the numerical solution uN (x, y) =
∑N−2

k=0

∑N−2
l=0 ũklΦk(x)Φl(y) such that

(4.20) (∇uN ,∇vN ) = (f, vN ), ∀vN ∈ Y c
N × Y c

N .

It is equivalent to solving the system

(4.21) ScUMc +McUSc = Fc,

where the matrices U = (ũkl) and Fc = (f c
ij) with f c

ij = (f,Φc
iΦ

c
j). We test the

scheme with an exact solution u(x, y) = sin(4πx) sin(3πy)exp(xy). In Figure 5 (left),
we plot the numerical solution u48(x, y) versus the exact solution u(x, y), which
are indistinguishable. We depict in Figure 5 (right) the log10 of the maximum
pointwise errors (marked by circles) and L2-errors (marked by squares) against
N for c = 0, N/2 and N. We observe a convergence behavior similar to the one-
dimensional case. In general, c = N/2 gives a good approximation, which was also
suggested by [10] for the PSWF pseudospectral method.

5. Concluding remarks

The spheroidal wave functions of order zero have been proven to be an optimal
tool for approximating bandlimited functions. In the mean time, as a generalization
of the classical Legendre polynomials, the PSWF grids, with a suitable choice of
the intrinsic bandwidth parameter c = O(N), are more uniformly spaced than the
Legendre points. As a result, the PSWF collocation/pseudospectral methods enjoy
some remarkable advantages over the polynomial-based counterparts. Although
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Figure 5. Numerical solution u48 versus the exact solution u
(left), and log10 of the maximum pointwise errors (marked by cir-
cles) and L2-errors (marked by squares) against N for c = 0, N/2
and N.

there is a growing interest in developing PSWF-based methods, their approxima-
tion properties have only been studied to a limited degree. We presented in this
paper a set of optimal approximation results on the PSWF expansions of non-
periodic functions in Sobolev spaces with norms characterized by the associated
Sturm-Liouville operator. We also derived some upper bounds for these norms fea-
tured with an explicit dependence on c. These results are very similar to those for
the Legendre expansions, and they are basic ingredients for the analysis of PSWF
approximations to PDEs. We proposed a PSWF spectral-Galerkin method using a
modal basis consisting of compact linear combinations of integration of the PSWFs,
which provides a viable alternative to the PSWF pseudospectral/collocation meth-
ods. We also presented some illustrative numerical results and provided some useful
guidelines for the choice of the bandwidth parameter.

Appendix A. Proof of Lemma 2.2

Differentiating the equation (2.1) with respect to c yields

∂x
(
(1− x2)∂x∂cψ

c
n

)
+
(
χc
n − c2x2

)
∂cψ

c
n = (2cx2 − ∂cχ

c
n)ψ

c
n.

Multiplying the above equation by ψc
n, and integrating the resulting equation over

(−1, 1), we derive from the orthogonality (2.2) and integration by parts that

2c

∫ 1

−1

x2
[
ψc
n(x)

]2
dx− ∂χc

n

∂c
=

∫ 1

−1

[
∂x

(
(1− x2)∂x∂cψ

c
n

)
+

(
χc
n − c2x2

)
∂cψ

c
n

]
ψc
ndx

=

∫ 1

−1

∂cψ
c
n

[
∂x

(
(1− x2)∂xψ

c
n

)
+
(
χc
n − c2x2

)
ψc
n

]
dx

= 0.

Thus,

0 <
∂χc

n

∂c
= 2c

∫ 1

−1

x2
[
ψc
n(x)

]2
dx < 2c ⇒ 0 < χc

n − χ0
n < c2.

Since χ0
n = n(n+ 1), the desired result follows.
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