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GENERALIZING CIRCLES OVER ALGEBRAIC EXTENSIONS

T. RECIO, J. R. SENDRA, L. F. TABERA, AND C. VILLARINO

Abstract. This paper deals with a family of spatial rational curves that were
introduced in 1999 by Andradas, Recio, and Sendra, under the name of hy-
percircles, as an algorithmic cornerstone tool in the context of improving the
rational parametrization (simplifying the coefficients of the rational functions,
when possible) of algebraic varieties. A real circle can be defined as the image
of the real axis under a Moebius transformation in the complex field. Like-
wise, and roughly speaking, a hypercircle can be defined as the image of a line
(“the K-axis”) in an n-degree finite algebraic extension K(α) ≈ Kn under the

transformation at+b
ct+d

: K(α) → K(α).

The aim of this article is to extend, to the case of hypercircles, some of
the specific properties of circles. We show that hypercircles are precisely, via
K-projective transformations, the rational normal curve of a suitable degree.
We also obtain a complete description of the points at infinity of these curves
(generalizing the cyclic structure at infinity of circles). We characterize hyper-
circles as those curves of degree equal to the dimension of the ambient affine
space and with infinitely many K-rational points, passing through these points
at infinity. Moreover, we give explicit formulae for the parametrization and

implicitation of hypercircles. Besides the intrinsic interest of this very special
family of curves, the understanding of its properties has a direct application
to the simplification of parametrizations problem, as shown in the last section.

1. Introduction

The problem of obtaining a real parametrization of a rational planar curve given
by a complex parametrization has been studied, from an algorithmic point of view,
in [10]. There, the problem is reduced to determining that a certain curve obtained
after manipulating the given parametrization is a real line or a real circle. From a
real parametrization of this circle (or line), a real parametrization of the original
curve is then achieved. This auxiliary circle is found by an analogous to Weil de-
scente’s method [19] applied to the complex parametrization of the curve originally
given. In [4], the same approach has been extended to the general case of planar
or spatial rational curves C given by a parametrization over K(α), where α is an
algebraic element over K. In order to obtain, whenever possible, a parametrization
over K of C, another rational curve, with remarkable properties, is associated to C.
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In [4] it is shown that this associated curve is, in the relevant cases, a generalization
of a circle, in the sense we will discuss below, deserving to be named hypercircle.

The simplest hypercircles should be the circles themselves. We can think of the
real plane as the field of complex numbers C, an algebraic extension of the reals R
of degree 2. Analogously, we can consider a characteristic zero base field K and an
algebraic extension of degree n, K(α). Let us identify K(α) as the vector space Kn,
via the choice of a suitable base, such as the one given by the powers of α. This is
the framework in which hypercircles are defined.

Now let us look at the different, equivalent, ways of defining a common circle on
the real plane, with the purpose of taking the most convenient one for generalization.
The first definition of a circle is the set of points in the real plane that are equidistant
from a fixed point. This approach does not extend well to more general algebraic
extensions, because we do not have an immediate notion of metric over Kn. On the
other hand, algebraically, a real planar circle is a conic such that its homogeneous
degree two form is x2 + y2 and such that it contains an infinite number of real
points. Even if we will prove in Section 6 that we can show an analogous definition
for a hypercircle, this is not an operative way to start defining them.

Finally, from another point of view, we see that circles are real rational curves.
This means that there are two real rational functions (φ1(t), φ2(t)) whose images
cover almost all the points of the circle. For instance, the circle x2 + y2 = 1

is parametrized by φ(t) = ( t
2−1
t2+1 ,

2t
t2+1 ). Every proper (almost one-to-one [15])

rational parametrization of a circle verifies that φ1(t) + iφ2(t) =
at+b
ct+d ∈ C(t) \ C,

which defines a conformal mapping u : C → C. Moreover, if we identify C with
R2, the image of the real axis (t, 0) under u is exactly the circle parametrized by
φ(t). Conversely, let u(t) = at+b

ct+d ∈ C(t) be a unit of the near-ring C(t) under the

composition operator (see [20]). If c �= 0 and d/c /∈ R, then the closure of the image
by u of the real axis is a circle; otherwise, it is a line. This method to construct
circles generalizes easily to algebraic extensions. Namely, let u(t) = at+b

ct+d be a unit

of K(α)(t) (i.e. verifying that ad − bc �= 0). Let us identify K(α) with Kn and let
u be the map

u : K(α) ≈ Kn → K(α) ≈ Kn

t �→ u(t).

Then, the Zariski-closure of the image of the axis (t, 0, . . . , 0) under the map u is a
rational curve in Kn. These curves are, by definition, our hypercircles.

Roughly speaking, it happens (see [4]) that a parametrization over K of the
hypercircle associated to a given rational curve C (whose parametrization we want
to simplify) can be used to get, in a straightforward manner, a parametrization of
C over K. As pointed out in [4], it seems that, due to the geometric properties of
hypercircles, it is algorithmically simpler to obtain such a parametrization for this
type of curve than it is for C. In fact, it is shown in [12] how to get this in some
cases. Therefore, the reparametrization problem is behind our increasing interest
in the study of hypercircles on its own.

The structure of this paper is as follows. In Section 2 we formally introduce the
notion of hypercircle. We study the influence on a hypercircle when adding and
multiplying the defining unit u(t) by elements of K(α), reducing the affine classifi-
cation of hypercircles to those defined by some simpler units. Next we characterize
the units associated to lines. In Section 3 we show how to transform, projectively,
a hypercircle into the rational normal curve (see [6]). From this, we derive the
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main geometric properties of hypercircles (smoothness, degree, affine equivalence,
etc.) and we reduce the study of hypercircles to the subclass of primitive hyper-
circles (See Definition 3.5). In Section 4 the behavior of hypercircles at infinity is
analyzed, showing its precise and rich structure. In Section 5, exploiting the stated
geometric features, we present ad hoc parametrization and implicitization methods
for hypercircles. In Section 6 we characterize hypercircles among curves of degree
equal to the dimension of the ambient affine space, passing through the prescribed
points of infinity described in Section 4 and having infinitely many rational points.
Finally, Section 7 is devoted to showing how the insight gained throughout this
paper can be applied to derive heuristics for solving the problem of simplifying the
parametrization of curves with coefficients involving algebraic elements.

Throughout this paper the following notation and terminology will be used.

• K will be a field of characteristic zero, K ⊆ L a finite algebraic extension
of degree n and F the algebraic closure of K.

• α will be a primitive element of L over K.
• u(t) will be a unit under composition of L(t). That is, u(t) = at+b

ct+d with

ad− bc �= 0. Its inverse −dt+b
ct−a is denoted by v(t).

• For u(t) = at+b
ct+d and c �= 0, M(t) = tr + kr−1t

r−1 + · · ·+ k0 ∈ K[t] denotes

the minimal polynomial of −d/c over K.
• We will denote as m(t) the polynomial obtained by dividing M(t) by ct+d.

That is, m(t) =
M(t)

ct+ d
= lr−1t

r−1 + lr−2t
r−2 + · · ·+ l0 ∈ L[t].

• Sometimes we will represent u(t) as

u(t) =
(at+ b)m(t)

M(t)
=

p0(t) + p1(t)α+ · · ·+ pn−1(t)α
n−1

M(t)
,

where pi(t) ∈ K[t].
• By {σ1 = Id, σ2, . . . , σs}, s ≥ n we will denote the group of K automor-
phisms of the normal closure of K ⊆ L.

• We will represent by {α1 = α, . . . , αn} the conjugates of α. We assume,
without loss of generality, that σi(α) = αi for i = 1, . . . , n.

2. Definition and first properties

In this section we begin with the formal definition of a hypercircle.

Definition 2.1. Let u(t) be a unit in L(t), where L = K(α). Let

u(t) =

n−1∑
i=0

φi(t)α
i

where φi(t) ∈ K(t), for i = 0, . . . , n − 1. The α-hypercircle U generated by u(t) is
the rational curve in Fn parametrized by φ(t) = (φ0(t), . . . , φn−1(t)).

Observe that the expansion of u(t) in powers of α is unique, because {1, α,
. . . , αn−1} is a basis of K(α)(t) as a K(t) vector space. The parametrization can
be obtained by rationalizing the denominator as follows: suppose given the unit
u(t) = at+b

ct+d , c �= 0 (note that, if c = 0, it is straightforward to obtain φ(t)), and

the extension K ⊆ K(α). Let M(t) be the minimal polynomial of −d/c over K.
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Figure 1. A hypercircle in R3

Compute the quotient m(t) = M(t)
ct+d ∈ K(α)[t] and develop the unit as

at+ b

ct+ d
=

(at+ b)m(t)

M(t)
=

p0(t) + p1(t)α+ · · ·+ pn−1(t)α
n−1

M(t)

where pi(t) ∈ K[t]. From this, φ(t) =
(

p0(t)
M(t) , . . . ,

pn−1(t)
M(t)

)
is the parametrization

associated to u(t). Note that gcd(p0(t), . . . , pn−1(t),M(t)) = 1. Moreover, it is
clear that F(φ0(t), . . . , φn−1(t)) = F(t). So this parametrization is proper in F, and
it follows from the results in [1] that K(φ0(t), . . . , φn−1(t)) = K(t) also.

Example 2.2. Let us consider the algebraic extension Q ⊆ Q(α), where α3+2α+
2 = 0. The unit t−α

t+α has an associated hypercircle parametrized by

φ(t) =

(
t3 + 2t+ 2

t3 + 2t− 2
,

−2t2

t3 + 2t− 2
,

2t

t3 + 2t− 2

)
A picture of the spatial real curve is shown in Figure 1

As it stands, the definition of a hypercircle U depends on a given unit u(t) ∈ L(t)
and on a primitive generator α of an algebraic extension L. In what follows we will
analyze the effect on U when varying some of these items, searching for a simple
representation of a hypercircle to make it easier to study its geometry.

First notice that, given a unit u(t) ∈ L(t) and two different primitive elements
α and β of the extension K ⊆ L, we can expand the unit in two different ways as
u(t) =

∑n−1
i=0 αiφi(t) =

∑n−1
i=0 βiψi(t). The hypercircles Uα � (φ0(t), . . . , φn−1(t))

and Uβ � (ψ0(t), . . . , ψn−1(t)) generated by u(t) are different curves in Fn; see
Example 2.3. Nevertheless, let A ∈ Mn×n(K) be the matrix of a change of
basis from {1, α, . . . , αn−1} to {1, β, . . . , βn−1}. Then, A(φ0(t), . . . , φn−1(t))

t =
(ψ0(t), . . . , ψn−1(t))

t. That is, it carries one curve onto the other. Thus, Uα and
Uβ are related by the affine transformation induced by the change of basis and, so,
they share many important geometric properties.

In the sequel, if there is no confusion about the algebraic extension and the
primitive element, we will simply call U a hypercircle.

Example 2.3. Let us consider the algebraic extension Q ⊆ Q(α), where α4+1 = 0.
Let us take the unit u(t) = t−α

t+α . By normalizing u(t), we obtain the parametrization

φ(t) associated to u(t):

φ(t) =

(
t4 − 1

t4 + 1
,
−2t3

t4 + 1
,

2t2

t4 + 1
,

−2t

t4 + 1

)
.
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This hypercircle Uα is the zero set of {X1X2−X3X0−X3, X
2
1 +X2

3 −2X2, X1X0+
X2X3 − X1, X

2
0 + X3X1 − 1}. Now, we take β = α3 + 1, instead of α, as the

primitive element of Q(α) = Q(β). The same unit u(t) generates the β-hypercircle
Uβ parametrized by

ψ(t) =

(
t4 + 2t3 − 2t2 + 2t− 1

t4 + 1
,
−6t3 + 4t2 − 2t

t4 + 1
,
6t3 − 2t2

t4 + 1
,
−2t3

t4 + 1

)
,

which is different than Uα; note that ψ(1) = (1,−2, 2,−1) does not satisfy the
equation X2

0 +X3X1 − 1 = 0 of Uα.

On the other hand, it is well known that a given parametric curve can be
parametrized over a given field S by different proper parametrizations, precisely,
those obtained by composing to the right a given proper parametrization by a unit
in S(t). In this way, we have a bijection between α-hypercircles and the equivalence
classes of units of K(α)(t) under the equivalence relation “u ∼ v iff u(t) = v(τ (t))
for a unit τ (t) ∈ K(t)” (fixing the correspondence, between a unit in K(α)(t) and
a hypercircle, by means of the expansion of the unit in terms of powers of α).

More interesting is to analyze, on a hypercircle defined by a unit u(t), the effect
of composing it to the left with another unit τ (t) ∈ K(α)(t), that is, of getting
τ (u(t)). For instance, τ (t) could be τ (t) = t + λ or τ (t) = λt, or τ (t) = 1/t, with
λ ∈ K(α)∗. Every unit is a sequence of compositions of these three simpler cases;
for instance, when c �= 0, we have

t �−→ ct �−→ ct+ d �−→ 1

ct+ d
�−→ bc− ad

c

1

ct+ d

�−→ a

c
+

bc− ad

c

1

ct+ d
=

at+ b

ct+ d
= u(t).

Therefore, studying their independent effect is all we need to understand completely
the behavior of a hypercircle under left composition by units.

For circles, adding a complex number to the unit that defines the circle corre-
sponds to a translation of the circle. Multiplying it by a complex number acts as
the composition of a rotation and a dilation. And the application τ (t) = 1/t gives
an inversion. The following lemma analyzes what happens in the general case.

Lemma 2.4. Let U be the α-hypercircle generated by u(t), and λ =
∑n−1

i=0 λiα
i ∈

K(α)∗, where λi ∈ K. Then,

(1) λ + u(t) is a unit generating the hypercircle obtained from U by the trans-
lation of vector (λ0, . . . , λn−1).

(2) λu(t) is a unit generating the hypercircle obtained from U by the affine
transformation over K given by the matrix of a change of basis from B� =
{λ, λα, . . . , λαn−1} to B = {1, α, . . . , αn−1}.

Proof. To prove (1), let φ(t) = (φ0(t), . . . , φn−1(t)) ∈ K(t)n be the parametrization

of U obtained from u(t). Then, λ + u(t) =
∑n−1

i=0 (λi + φi(t))α
i generates the

hypercircle parametrized by (λ0 + φ0(t), . . . , λn−1 + φn−1(t)) ∈ K(t)n, which is the
translation of U of vector (λ0, . . . , λn−1). For the second assertion, let φ�(t) ∈ K(t)n

be the parametrization of the hypercircle associated to the unit λu(t). The rational
coordinates φ�

i (t) of φ
�(t) are obtained from the matrix A = (ai,j) ∈ Mn×n(K) of
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a change of basis from B� to B, for i, j = 0, . . . , n− 1. Indeed,

λu(t) =
n−1∑
i=0

φi(t)λα
i =

n−1∑
i=0

φi(t)

⎛⎝n−1∑
j=0

ajiα
j

⎞⎠ =
n−1∑
j=0

(
n−1∑
i=0

ajiφi(t)

)
αj .

Then φ�(t)t = Aφ(t)t. �
Finally, the following lemma uses the previous results to transform affinely one

hypercircle into another one whose unit is simpler.

Lemma 2.5. Let u(t) = at+b
ct+d be a unit and U its associated hypercircle.

(1) If c = 0, then U is affinely equivalent over K to the line generated by
u�(t) = t.

(2) If c �= 0, then U is affinely equivalent over K to the hypercircle U� generated
by u�(t) = 1

t+d/c .

Proof. This lemma follows from Lemma 2.4, taking into account that u(t) is ob-
tained from u�(t) by the composition

u�(t) �→ λ1u
�(t) �→ λ1u

�(t) + λ2 = u(t)

with suitable λ1, λ2, u
�. If c = 0, then λ1 = a

d �= 0 and λ2 = b
d for u�(t) = t.

Analogously, if c �= 0, then u(t) is obtained from u�(t) = 1
t+d/c taking λ1 = bc−ad

c2 �=
0 and λ2 = a

c . �
Therefore the (affine) geometry of hypercircles can be reduced to those generated

by a unit of type 1
t+d (then we say the unit is in reduced form). The simplest

hypercircle of this kind is given by 1
t+d , when d ∈ K. It is the line parametrized

by ( 1
t+d , 0, . . . , 0). In the complex case, Moebius transformations defining lines are

precisely those given either by a polynomial unit in t (i.e. a unit without t at the
denominator) or by a unit such that the root of the denominator is in R. The same
property holds for hypercircles.

Theorem 2.6. Let U be the α-hypercircle associated to u(t). Then, the following
statements are equivalent:

(1) U is a line.
(2) U is associated to a polynomial unit.
(3) The root of the denominator of every nonpolynomial unit generating U be-

longs to K.
(4) U is polynomially parametrizable (over F).
(5) U has one and only one branch (over F) at infinity.
(6) U is polynomially parametrizable over K.
(7) U has one and only one branch (over K) at infinity.

Proof. (1) ⇔ (2). By definition, we know that hypercircles have a parametrization
over K. Thus, if U is a line, it can be parametrized as (a0t + b0, . . . , an−1t +

bn−1), where ai , bi ∈ K. Therefore, u(t) =
(∑n−1

i=0 aiα
i
)
t +

∑n−1
i=0 biα

i is a

polynomial unit associated to U . Conversely, let u(t) = at + b ∈ L(t), a �= 0, be
a polynomial unit associated to U . Then U is the line parametrized by P(t) =

(a0t+ b0, . . . , an−1t+ bn−1) ∈ K[t]n, where a =
∑n−1

i=0 ai α
i and b =

∑n−1
i=0 bi α

i.
(2) ⇔ (3). Let u(t) = at+ b be a polynomial unit associated to U , and let u�(t)

be another nonpolynomial unit associated to U . Then, u�(t) = u(τ (t)), where τ (t)
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is a unit of K (t). Therefore, the root of u�(t) belongs to K. Conversely, by Lemma
2.5, (3) implies (1), and we know that (1) implies (2).

(3)⇔ (4). Indeed, (3) implies (2) and therefore (4). Conversely, let u(t) be a non-
polynomial unit generating U , and let φ(t) = (φi)i=1,...,n ∈ K(t)n be the associated

parametrization of U . Then, φ(t) is proper, φi(t) =
pi(t)
M(t) with deg(pi) ≤ deg(M)

and gcd(p0(t) . . . pn−1(t),M(t)) = 1. Thus, the fact that U admits a polynomial
parametrization, implies, by Abhyankar-Manocha-Canny’s criterion of polynomial-
ity (see [9]), that the denominator M(t) is either constant or has only one root.
Now, M(t) cannot be constant, since it is a minimal polynomial. Thus, M has only
one root, and since it is irreducible, it must be linear. Moreover, since M ∈ K[t],
its root is an element in K.

(4) ⇔ (5). This is, again, the geometric version of Abhyankar-Manocha-Canny’s
criterion. The same for (6) ⇔ (7).

(4) ⇔ (6). Obviously (6) implies (4). Conversely, if we have a polynomial
parametrization over F, it happens [2] that any proper parametrization must be
either polynomial or in all its components the degree of the numerator must be
smaller or equal than the degree of the denominator and, then, this denominator has
only one single root over F. So, since the parametrization φ(t) induced by the unit
is proper, and by hypothesis U is polynomial, then φ(t) must be either polynomial
(in which case we are done because φ(t) is over K) or its denominator M(t) has a
single root a ∈ F. Now, by reasoning as above one gets that a ∈ K. So, a change of
parameter, such as t �→ 1+as

s turns φ(t) into a K-polynomial parametrization. �
As a corollary of this theorem, we observe that a parabola can never be a hyper-

circle, since it is polynomially parametrizable, but it is not a line. Nevertheless, it
is easy to check that the other irreducible conics are indeed hypercircles for certain
algebraic extensions of degree 2.

3. Main geometric properties

This section is devoted to the analysis of the main geometric properties of hy-
percircles. The key idea, when not dealing with lines, will be to use the reduction
to units of the form u(t) = 1

t+d , where d /∈ K (see Lemma 2.5).

Theorem 3.1. Let U be the α-hypercircle associated to the unit u(t) = at+b
t+d ∈

K(α)(t) and let r = [K(−d) : K]. Then:

(1) There exists an affine transformation χ : Fn −→ Fn defined over K such
that the curve χ(U) is parametrized by

χ̃(t) =

(
1

M(t)
,

t

M(t)
, . . . ,

tr−1

M(t)
, 0, . . . , 0

)
.

(2) There exists a projective transformation ρ : P(F)n −→ P(F)n, defined over
K such that the curve ρ(U) is the rational normal curve of degree r in P(F)

n

parametrized by

ρ̃(t : s) = [sr : sr−1t : · · · : str−1 : tr : 0 : · · · : 0].
Proof. For the case of lines the result is trivial. By Lemma 2.5, we can consider that
U is the hypercircle associated to u(t) = 1

t+d and r ≥ 2. Let M(t) = tr+kr−1t
k−1+

· · · + k0 ∈ K[t],m(t) =
∑r−1

i=0 lit
i ∈ L[t], as indicated in Section 1 and, since the

numerator of u(t) is 1, it holds that m(t) =
∑n−1

i=0 pi(t)α
i, pi(t) ∈ K[t]. Also, note
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that both M(t) and the denominator of u(t) are monic, and hence lr−1 = 1. First of
all, we prove that there are exactly r polynomials in {pi(t), i = 0, . . . , n−1} ⊂ K[t]
which are linearly independent. For this purpose we observe that the coefficients
of m(t), {1, lr−2, . . . , l0} ⊂ L are linearly independent over K. Indeed, from the
equality M(t) = (t + d)m(t), one has that lr−i = (−d)i−1 + (−d)i−2kr−1 + · · · +
kr−i+1, for i = 2, . . . , r. So, {1, lr−2, . . . , l0} ⊂ L are K–linearly independent, since
otherwise one would find a non-zero polynomial of degree smaller than r vanishing

at −d. Now, let 
li = (li,0, . . . , li,n−1)
t be the vector of coordinates of li in the

base {1, α, . . . , αn−1}. Then, {
1,
lr−2, . . . ,
l0} ⊂ Kn are K–linearly independent.

Moreover, since (p0(t), . . . , pn−1(t))
t = 
1tr−1 + 
lr−2t

r−2 + · · · + 
l0, there are r
polynomials pij , 0 ≤ i1 < · · · < ir ≤ n − 1, linearly independent. By simplicity,
we assume w.l.o.g. that the first r polynomials are linearly independent. Observe
that this is always possible through a permutation matrix. The new curve, that we
will continue denoting by U , is not, in general, a hypercircle. In this situation, we
proceed to prove (1) and (2).

In order to prove (1), let A ∈ Mn−r×r(K) be the matrix providing the lin-
ear combinations of the n − r last polynomials in terms of the first r polyno-
mials; i.e., (pr(t), . . . , pn−1(t))

t = A(p0(t), . . . , pr−1(t))
t. Now, given the bases

B = {1, . . . , tr−1} and B� = {p0(t), . . . , pr−1(t)}, let M ∈ Mr×r(K) be the trans-
pose matrix of change of bases from B to B�. Finally, the n× n matrix

Q =

(
M Or,n−r

−A In−r

)
defines, under the previous assumptions, the affine transformation χ. Note that if
r = n, then Q = M.

The proof of (2) is analogous to (1). Now let us consider the bases
B= {1, . . . , tr−1, tr} and B� = {p0(t), . . . , pr−1(t),M(t)}. Let A ∈ Mn−r×r+1(K)
be the matrix providing the linear combinations of the n − r last polynomials in
terms of basis B�; i.e., (pr(t), . . . , pn−1(t))

t = A(p0(t), . . . , pr−1(t),M(t))t. Let
M ∈ Mr+1×r+1(K) be the transpose matrix of change of basis from B to B�.
Finally, the n+ 1× n+ 1 matrix

Q =

(
M Or+1,n−r

−A In−r

)
defines, under the previous assumptions, the projective transformation ρ. Note that
if r = n, then Q = M. �

As a direct consequence, we derive the following geometric properties of hyper-
circles.

Corollary 3.2. In the hypothesis of Theorem 3.1:

(1) U defines a curve of degree r.
(2) U is contained in a linear variety of dimension r and it is not contained in

a variety of dimension r − 1.
(3) U is a regular curve in P(F)

n.
(4) The Hilbert function of U is equal to its Hilbert polynomial and hU (m) =

mr + 1.

Proof. All of these properties are well known to hold for the rational normal curve
of degree r (e.g. [6], [7], [18]). �
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In the following theorem, we classify the hypercircles that are affinely equivalent
over K. We will assume that the denominator of the generating units are not
constant. The case where the units are polynomials are described in Theorem 2.6.

Theorem 3.3. Let Ui, i = 1, 2, be α-hypercircles associated to ui(t) =
ait+bi
t+di

, and

let Mi(t) be the minimal polynomial of −di over K. Then, the following statements
are equivalent:

(1) U1 and U2 are affinely equivalent over K.
(2) There exists a unit τ (t) ∈ K(t) such that it maps a root (and hence all

roots) of M1(t) onto a root (resp. all roots) of M2(t).

Proof. First of all, note that, because of Theorem 2.6, the result for lines is trivial.
For dealing with the general case, we observe that, by Lemma 2.5, we can assume
that ui(t) = 1/(t + di). Next, suppose that U1 and U2 are affinely equivalent over
K. By Theorem 3.1, statement (1), [K(d1) : K] = [K(d2) : K] = r and the curves

U�
1 := χ(U1) and U�

2 := χ(U2) parametrized by χ̃1(t) = ( 1
M1(t)

, . . . , tr−1

M1(t)
) and

χ̃2(t) = ( 1
M2(t)

, . . . , tr−1

M2(t)
), respectively, are affinely equivalent over K; note that,

for simplicity we have omitted the last zero components in these parametrizations.
Therefore, there exists A = (ai,j) ∈ GL(r,K) and 
v ∈ Mr×1(K), such that ϕ(t) :=
A χ̃1(t)

t + 
v parametrizes U�
2 . In consequence, since ϕ(t) and χ̃2(t) are proper

parametrizations of the same curve, there exists a unit τ (t) ∈ K(t) such that ϕ(t) =
χ̃2(τ (t)). Then, considering the first component in the above equality, one gets that

(a1,1 + · · ·+ a1,rt
r−1 + v1M1(t))M2(τ (t)) = M1(t).

Now, substituting t by −d1, we obtain

(a1,1 + · · ·+ a1,r(−d1)
r−1 + v1M1(−d1))M2(τ (−d1)) = M1(−d1) = 0.

Note that a1,1 + · · · + a1,r(−d1)
r−1 �= 0, because [K(d1) : K] = r. Also, note

that τ (−d1) is well defined, because −d1 does not belong to K. This implies that
M2(τ (−d1)) = 0. So, τ (−d1) is a root of M2(t).

Conversely, let τ (t) = k1t+k2

k3t+k4
∈ K(t) be a unit that maps the root γ of M1(t)

onto the root β of M2(t), i.e., τ (γ) = β. This relation implies that K(γ) = K(β)
and that deg (M1(t)) = deg (M2(t)) = r. Therefore, because of Theorem 3.1, it is
enough to prove that the curves U�

1 := χ(U1) and U�
2 := χ(U2) are affinely equivalent

over K. Recall that U�
i is parametrized by ϕi(t) := χ̃(t) =

(
1

Mi(t)
, . . . , tr−1

Mi(t)

)
; here

again, we omit the last zero components of the parametrization. In order to prove
the result, we find an invertible matrix A ∈ GL(r,K) and a vector 
v ∈ Mr×1(K),
such that Aϕt

1(t) + 
v = ϕt
2(τ (t)). For this purpose, we consider the polynomial

M(t) = M2(τ (t))(k3t+ k4)
r ∈ K[t]. Now, since τ (t) is a unit of K(t), and the roots

of M2(t) are not in K, one gets that deg(M) = deg(M2) = r. Moreover, since γ is
a root of M(t), and taking into account that M1(t) is the minimal polynomial of
γ over K and that deg(M) = r = deg(M1), one has that there exists c ∈ K∗ such
that M(t) = cM1(t). Now, in order to determine A and 
v, let us substitute τ (t) in
the i-th component of ϕ2(t):

τ (t)i

M2(τ (t))
=

τ (t)i(k3t+ k4)
r

M2(τ (t))(k3t+ k4)r
=

(k1t+ k2)
i(k3t+ k4)

r−i

cM1(t)
.
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Since the numerator and the denominator in the above rational function have the
same degree, taking quotients and remainders, ϕ2(t) can be expressed as

(ϕ2(τ (t)))i=1,...,r =

(
vi +

ai,1 + · · ·+ ai,rt
r−1

M1(t)

)
i=1,...,r

,

for some vi, ai,j ∈ K. Take A = (ai,j) and 
v = (vi). Then, A(ϕ1(t))
t + 
v =

(ϕ2(τ (t))
t. Finally, let us see that A is regular. Indeed, suppose that A is singular

and that there exists a nontrivial linear relation λ1F1 + · · · + λrFr = 
0, where

Fi denotes the i-th row of A. This implies that (λ1
1

M2(t)
+ · · ·+ λr

tr−1

M2(t)
) ◦ τ (t) =

λ1v1+· · ·+λrvr is constant, which is impossible because λ1+···+λrt
r−1

M2(t)
is not constant

and τ (t) is a unit of K(t). �

For two true circles, there is always a real affine transformation relating them.
Note that this is not the case for hypercircles. For example, consider K = Q and α
a root of x4+x3+1, then the hypercircles associated to the units 1

t+α and 1
t+α2 are

not affinely equivalent over Q. However, for algebraic extensions of degree 2 (where
the circle case fits) and of degree 3, we recover this property for hypercircles that
are not lines.

Corollary 3.4. Let K(α) be an extension of degree 2 or 3. Then all α-hypercircles,
that are not lines, are affinely equivalent over K.

Proof. By Lemma 2.5, we may assume that the hypercircles are associated to units
of the form 1

t+d . Now, we consider two α-hypercircles not being lines, namely, let

Ui be the α-hypercircle associated to 1
t+di

for i = 1, 2, and di �∈ K.
If the extension is of degree 2, let di = λi + µiα, with λi, µi ∈ K and µi �= 0.

Then, the unit τ (t) = τ0 + τ1t ∈ K[t] where τ0 = µ2λ1−µ1λ2

µ1
and τ1 = µ2

µ1
, verifies

that τ (−d1) = −d2. By Theorem 3.3, U1 and U2 are affinely equivalent over K.
If the extension is of degree 3, let x3 +mx2 + nx+ r be the minimal polynomial

of α, and let di = λi+µiα+ηiα
2, if ηi = 0, then di is trivially the image of α by the

unit λi+µit. If ηi �= 0, then di is the image of α by the unit τi(t) =
τi,1t+τi,0
ηit+τi,2t

, where

τi,0 = −λiµi + λimηi − rη2i , τi,1 = −nηi,2 + λiηi − µ2
i + µiηim, τi,2 = −µi +mηi.

This is indeed a unit, since, if not, di would belong to K. Hence di is the image of
α by the unit τi. It follows that d2 is the image of d1 by the unit τ2 ◦ τ1 and both
hypercircles are affinely equivalent over K. �

In Corollary 3.2 we have seen that the degree of a hypercircle is given by the
degree of the field extension provided by the pole of any nonpolynomial generating
unit. Lines are curves of degree one, a particular case of this phenomenon. Now,
we consider other kind of hypercircles of degree smaller than n. This motivates the
following concept.

Definition 3.5. Let U be an α-hypercircle. If the degree of U is [K(α) : K], we
say that it is a primitive hypercircle. Otherwise, we say that U is a nonprimitive
hypercircle.

Regarding the complex numbers as an extension of the reals, lines may be con-
sidered as circles when we define them through a Moebius transformation. Lines
are the only one curves among these such that its degree is not [C : R]. The situ-
ation is more complicated in the general case. Apart from lines, which have been
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thoroughly studied in Theorem 2.6, there are other nonprimitive hypercircles. This
is not a big challenge because, as we will see, nonprimitive hypercircles are primi-
tive on another extension. Moreover, these cases reflect some algebraic aspects of
the extension K ⊆ K(α) = L in the geometry of the hypercircles. Actually, we
will see that there is a correspondence between nonprimitive hypercircles and the
intermediate fields of K ⊆ L. More precisely, let U be a nonprimitive hypercircle
associated to u(t) = 1

t+d , where r = [K(d) : K] < [L : K] = n. In this case, we have

the algebraic extensions K ⊆ K(d) � L. We may consider u(t) as a unit either in
the extension K ⊆ K(d) with primitive element d or in K(d) � L with primitive
element α. In the first case, u(t) defines a primitive hypercircle in Fr. In the second
case, as u(t) is a K(d) unit, it defines a line. The analysis of U can be reduced to
the case of the primitive hypercircle associated to u(t) in the extension K ⊆ K(d).

Theorem 3.6. Let U be the nonprimitive hypercircle associated to u(t) = at+b
t+d ∈

K(α)(t). Let V be the hypercircle generated by the unit 1
t+d in the extension K ⊆

K(d). Then, there is an affine inclusion from Fr to Fn, defined over K, that maps
the hypercircle V onto U .
Proof. Taking into account Lemma 2.5, we may assume that u(t) = 1

t+d . Let

φ(t) = (φ0(t), . . . , φn−1(t)) ∈ K(t)n be the parametrization of U , obtained from
u(t), with respect to the basis B = {1, α, . . . , αn−1}. Similarly, let ψ(t) = (ψ0(t),
. . . , ψr−1(t)) ∈ Kr(t) be the parametrization of the hypercircle V , associated to
u(t), with respect to the basis B� = {1, d, . . . , dr−1}, where r = [K(d) : K]. The
matrix D = (dji) ∈ Mn×r(K) whose columns are the coordinates of di with respect
to B induces a K-linear transformation χ : Fr �→ Fn that maps V onto U . Indeed,

as u(t) =
∑r−1

i=0 ψi(t)d
i =

∑n−1
j=0 φj(t)α

j , one has that

r−1∑
i=0

ψi(t)d
i =

r−1∑
i=0

ψi(t)

⎛⎝n−1∑
j=0

dj,iα
j

⎞⎠ =

n−1∑
j=0

(
r−1∑
i=0

dj,iψi(t)

)
αj =

n−1∑
j=0

φj(t)α
j .

Then φ(t)t = Dψ(t)t. Moreover, χ is one-to-one, because rank(D) = r. �
As a consequence of this theorem, every hypercircle is affinely equivalent, over

K, to a primitive hypercircle. Therefore, the study of hypercircles can be reduced
to the study of primitives hypercircles.

4. Properties at infinity of a hypercircle

Circles have a very particular structure at infinity, namely, they pass through
the cyclic points, i.e., [±i : 1 : 0], which are related to the minimal polynomial
defining the circle as a hypercircle as remarked in the introduction. In this section,
we will see that a similar situation occurs for more general primitive hypercircles.
More precisely, let U be the primitive hypercircle defined by the unit u(t) = at+b

t+d .
By Corollary 3.2, U is a parametric affine curve of degree n. So, there are at most n
different points in the hyperplane at infinity. Let φ(t) = (φ0(t), . . . , φn−1(t)) be the

parametrization of U generated by u(t); recall that φi(t) =
pi(t)
M(t) . Thus, projective

coordinates of the points attained by φ(t) are given by [p0(t) : · · · : pn−1(t) : M(t)].
Now, substituting t by every conjugate σ(−d) of −d, we obtain

[p0(σ(−d)) : · · · : pn−1(σ(−d)) : 0] = [σ(p0(−d)) : · · · : σ(pn−1(−d)) : 0].

We prove next that these points are the points of the hypercircle at infinity.
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Lemma 4.1. Let U be a primitive hypercircle associated to the unit u(t) = at+b
t+d .

The n points at infinity are

Pj = [σj(p0(−d)) : · · · : σj(pn−1(−d)) : 0], 1 ≤ j ≤ n

where σj are the K-automorphisms of the normal closure of L = K(α) over K.

Proof. First of all, observe that gcd(p0, . . . , pn−1,M) = 1, and hence Pj are well
defined. Moreover, pi(−d) �= 0, for every i ∈ {0, . . . , n− 1}, since pi(t) ∈ K[t] is of

degree at most n and, thus, if pi(−d) = 0, then pi(t)
M(t) = c ∈ K and the hypercircle

would be contained in a hyperplane. But this is impossible since U is primitive
(see Corollary 3.2). It remains to prove that they are different points. Suppose
that two different tuples define the same projective point. We may suppose that
P1 = Pj . P1 verifies that

∑n−1
i=0 pi(−d)αi = (−ad + b)m(−d) �= 0 and Pj verifies

that
∑n−1

i=0 pi(σj(−d))αi = (aσj(−d) + b)m(σj(−d)) = 0. Thus, Pj is contained in

the projective hyperplane
∑n−1

i=0 αiXi = 0, but not in P1. Hence, P1 �= Pj . �

Let us check that, as in the case of circles, the points at infinity of primitive
α-hypercircles do not depend on a particular hypercircle.

Theorem 4.2. For a fixed extension K ⊆ K(α) of degree n, the set of points at
the infinity P = {P1, . . . , Pn} of any primitive hypercircle does not depend on the
particular α-hypercircle U , but only on the algebraic extension and on the primitive
element α. Moreover, the set P is characterized by the following property:

{X0 + αjX1 + · · ·+ αn−1
j Xn−1 = 0} ∩ U ∩ {Xn = 0} = P \ {Pj},

where αj = σj(α) are the conjugates of α in F, 1 ≤ j ≤ n, U is the projective
closure of U and {Xn = 0} is the hyperplane at infinity.

Proof. Let U be the primitive α-hypercircle generated by a unit u(t) = at+b
t+d . U has

the projective parametrization [p0(t) : · · · : pn−1(t) : M(t)]. Let Pj = [σj(p0(−d)) :
· · · : σj(pn−1(−d)) : 0]. Its evaluation in the equation of hyperplane X0 + αkX1 +

. . .+ αn−1
k Xn−1, yields:

n−1∑
i=0

σj(pi(−d))αi
k = σk

(
n−1∑
i=0

σ−1
k ◦ σj(pi(−d))αi

)
= σk

(
(a(σ−1

k ◦ σj(−d)) + b)m(σ−1
k ◦ σj(−d))

)
.

If j = k, the previous expression equals σk ((−ad+ b)m(−d)) �= 0. If j �= k, then
σ−1
k ◦ σj(−d) is a conjugate of −d, different from −d, because −d is a primitive

element. So m(σ−1
k ◦ σj(−d)) = 0.

In order to show that this point does not depend on a particular hypercircle,
take the n hyperplanes X0 + αkX1 + · · · + αn−1

k Xn−1 = 0, k = 1 . . . n. Every
point at infinity of a hypercircle is contained in exactly n− 1 of those hyperplanes.
Also, any of these hyperplanes contains exactly n − 1 points at infinity of the
hypercircle. One point at infinity may be computed by solving the linear system
given by any combination of n− 1 hyperplanes. The matrix of the linear system is
a Vandermonde matrix, each row depending on the corresponding αk, so there is
only one solution. �

Remark 4.3. Notice that this theorem provides an n-simplex combinatorial struc-
ture of the points at infinity of any primitive hypercircle.
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The following result shows that the points at infinity can be read directly from
the minimal polynomial of α.

Proposition 4.4. Let Mα(t) be the minimal polynomial of α over K. Let mα(t) =
Mα(t)
t−α =

∑n−1
i=0 lit

i ∈ K(α)[t], where ln−1 = 1. Then, the points at infinity of every

primitive α-hypercircle are [l0 : l1 : · · · : ln−2 : ln−1 : 0] and its conjugates.

Proof. We consider the symmetric polynomial r(x, y) = Mα(x)−Mα(y)
x−y . Substituting

(x, y) by (t, α) we obtain that

r(t, α) =
Mα(t)−Mα(α)

t− α
=

Mα(t)

t− α
= mα(t).

That is,mα(t) is symmetric in t and α. Now take the hypercircle induced by the unit
1

t−α = mα(t)
Mα(t)

. By Lemma 4.1, we already know that one point at infinity is [p0(α) :

· · · : pn−1(α) : 0], where mα(t) =
∑n−1

i=0 pi(t)α
i. By symmetry,

∑n−1
i=0 pi(t)α

i =∑n−1
i=0 pi(α)t

i. That is, pi(α) = li. Thus, the points at infinity are [l0 : l1 : · · · :
ln−2 : 1 : 0] and its conjugates. �

The next result deals with the tangents of a hypercircle at infinity, and it explains
again why parabolas cannot be hypercircles.

Proposition 4.5. The tangents to a primitive hypercircle at the points at infinity
are not contained in the hyperplane at infinity.

Proof. Let U be the primitive α-hypercircle generated by at+b
t+d , and [p0(t) : · · · :

pn−1(t) : M(t)] the projective parametrization generated by the unit. In the proof
of Lemma 4.1, we have seen that pn−1(t) is not identically 0, because pn−1(−d) �= 0.
So, we can dehomogenize w.r.t. the variableXn−1, obtaining the affine parametriza-

tion ( p0(t)
pn−1(t)

, . . . , pn−2(t)
pn−1(t)

, M(t)
pn−1(t)

) of U on another affine chart. We have to check

that the tangents to the curve at the intersection points with the hyperplane
Xn−1 = 0 are not contained in this hyperplane. The points of C in the hyper-
plane Xn−1 = 0 are obtained by substituting t by σ(−d). The last coordinate of
the tangent vector is

M ′(t)pn−1(t)−M(t)p′n−1(t)

pn−1(t)2
.

We evaluate this expression at σ(−d). M(σ(−d)) = 0 and, as all of its roots are
different in F, M ′(σ(−d)) �= 0. We also know that σ(pn−1(−d)) �= 0. Hence, the
last coordinate of the tangent vector is nonzero. Thus, the tangent line is not
contained in the hyperplane at infinity. �

Finally, we present a property of hypercircles that can be derived from the knowl-
edge of its behavior at infinity. We recall a property of circles stating that given
three different points in the plane, there is exactly one circle passing through them
(which is a line if they are collinear). The result is straightforward if we recall that
there is only one conic passing throught five points. In the case of circles, we have
the two points at infinity already fixed, so, given three points in the affine plane
there will only be a conic (indeed a circle if it passes through the cyclic points at
infinity) through them. Even if hypercircles are curves in n-space, surprisingly, the
same occurs for hypercircles.

We are going to prove that, given 3 different points in Kn, there is exactly one
hypercircle passing through them. If the points are not in general position, the
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resulting hypercircle need not be a primitive one. First, we need a lemma that
states what the points over K are of the hypercircle that are reachable by the
parametrization.

Lemma 4.6. Let U be the α-hypercircle, not necessarily primitive, associated to
u(t) = at+b

t+d with induced parametrization Φ(t). Φ(K) = U ∩ Kn \ {ā} with a =∑n−1
i=0 aiα

i, ā = (a0, . . . , an−1).

Proof. We already know that Φ(t) is proper and, obviously, Φ(K) ⊆ U ∩Kn, also, ā
is not reachable by Φ(t), since otherwise one would have that a = u(λ) for some λ,
and this implies that ad−b = 0, which is impossible since u(t) is a unit. In order to

prove the other inclusion, write as before φi(t) =
pi(t)
M(t) , where M(t) is the minimal

polynomial of −d over K. Then, we consider the ideal I over F[t, X̄] generated
by (p0(t) − X0M(t), . . . , pn−1(t) − Xn−1M(t)), where X̄ = (X0, . . . , Xn−1), and
the ideal J = I + (ZM(t) − 1) ⊆ F[Z, t, X̄]. Let I1 be the first elimination ideal
of I; i.e., I1 = I ∩ F[X̄] and let J2 be the second elimination ideal of J ; i.e.,
J2 = J ∩ F[X̄ ]. Observe that I ⊆ J and therefore I1 ⊆ J2. Note that U = V (J2);
i.e., U is the variety defined by J2 over F. Thus U ⊆ V (I1). Now, let us take
x̄ ∈ (U ∩ Kn) \ {ā}. Then x̄ ∈ V (I1). Observe that, by construction, the leading
coefficient of pi(t) − XiM(t) w.r.t. t is ai − Xi. Therefore, since x̄ �= ā one has
that at least one of the leading coefficients of the polynomials in I w.r.t. t does not
vanish at x̄. Thus, applying the Extension Theorem (see Theorem 3, p. 117 in [5]),
there exists t0 ∈ F such that (t0, x̄) ∈ V (I). This implies that pi(t0)− xiM(t0) = 0
for i = 1 . . . n − 1. Let us see that M(t0) �= 0. Indeed, if M(t0) = 0, then pi(t0) is
also zero for every index and therefore gcd(p0(t), . . . , pn−1(t),M(t)) �= 1, which is
impossible. Hence Φ is defined at t0 and Φ(t0) = x̄. To conclude, we only need to
show that t0 ∈ K. For this purpose, we note that the inverse of Φ(t) is given by

P (X̄) =
−d

∑
Xiα

i + b∑
Xiαi − a

.

Now, since x̄ �= ā, one deduces that P (x̄) is well defined, and the only parameter
value generating x̄ is t0 = P (x̄). Hence, the gcd of the polynomials pi(t)− xiM(t)
is a power of (t− t0). Thus, taking into account that pi,M ∈ K[t], one deduces that
t0 ∈ K. Finally, it only remains to state that ā is generated when t takes the value
of the infinity of K. But this follows taking Φ(1/t) and substituting by t = 0. �

Proposition 4.7. Let Xi = (Xi0, . . . , Xi,n−1) ∈ Kn ⊆ Fn, 1 ≤ i ≤ 3 be three
different points. Then, there exists only one α–hypercircle passing through them.

Proof. Let Yi =
∑n−1

j=0 Xijα
j ∈ K(α), 1 ≤ i ≤ 3. Consider the following linear

homogeneous system in a, b, c, d:

b = Y1d, a+ b = Y2(c+ d), a = Y3c.

Observe that, if the three points are different, there is only one projective solution,
namely [a : b : c : d] where a = Y1Y3 − Y3Y2, b = Y1Y2 − Y1Y3, c = Y1 − Y2,
d = Y2 − Y3.

Take the unit u(t) = at+b
ct+d . It verifies that u(0) = Y1, u(1) = Y2, u(∞) = Y3.

Then, the hypercircle associated to u passes through X1, X2, X3. In order to prove
that this hypercircle is unique, let v be the unit associated to a hypercircle passing
through the three points and ψ(t) the parametrization induced by v(t). By Lemma
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4.6, as Xi ∈ Kn, the point Xi is reached for a parameter value ti in K ∪ {∞}. So,
there are three values t1, t2, t3 ∈ K ∪ {∞} such that v(ti) = Yi. Let τ (t) ∈ K(t)
be the unique unit associated to the transformation of the projective line P(F) into
itself given by τ (0) = t1, τ (1) = t2, τ (∞) = t3. Then v(τ (t)) = u(t) and both units
represent the same hypercircle. �

5. Parametrization and implicitation of a hypercircle

In this section, we will provide specific methods to parametrize and implicitate
hypercircles. These methods show the power of the rich structure of hypercircles,
simplifying problems that are usually much harder in general.

Given a unit u(t) defining U , it is immediate to obtain a parametrization of U
(see Section 2). If U is given by implicit equations (as is usually the case in Weil’s
descente method), the next proposition shows how to parametrize it.

Proposition 5.1. The pencil of hyperplanes X0 + X1α + · · · + Xn−1α
n−1 = t

parametrizes the primitive α–hypercircle U .

Proof. Let I be the implicit ideal of U . Note that, since U is K-rational it is K-
definable, and hence a set of generators of I can be taken in K[X0, . . . , Xn−1]. Let
u(t) be any unit associated with U and (φ0(t), . . . , φn−1(t)) the induced parametriza-
tion. Let v(t) be the inverse unit of u(t), u(v(t)) = v(u(t)) = t. Then (φ0(v(t)), . . . ,
φn−1(v(t))) = (ψ0(t), . . . , ψn−1(t)) = Ψ(t) is another parametrization of U which is
no longer defined over K but over K(α). The later parametrization is in standard
form [12], that is,

n−1∑
i=0

ψi(t)α
i =

(
n−1∑
i=0

φi(t)α
i

)
◦ v(t) = u ◦ v(t) = t.

This implies that the pencil of hyperplanes Ht ≡ X0 +X1α+ · · ·+Xn−1α
n−1 − t

parametrizes U . Indeed, if Ψ(t) is defined, Ht ∩ U consists in n − 1 points at
infinity of U (Theorem 4.2) and Ψ(t) itself. We deduce that ψi(t)−Xi belongs to
the ideal I + Ht, which has a set of generators in K(α)(t)[X0, . . . , Xn−1]. So, the
parametrization Ψ(t) can be computed from I. �

Notice that the obtained parametrization Ψ(t) has coefficients over K(α). Thus,
it is not the parametrization induced by any associated unit u(t). The interest of
obtaining a unit associated to a hypercircle is that it helps us to solve the problem
of reparametrizing a curve over an optimal field extension of K; see [4]. There, it is
shown that given a parametrization Ψ(t) ∈ K(α)r of a curve there is a hypercircle
associated to it. Any unit associated to the hypercircle reparametrizes the original
curve over K. To get a parametrization φ(t) over K or, equivalently, a unit u(t)
associated to U , we refer to [12]. In addition, note that the proof of Proposition
4.7 shows how to construct a unit associated to a hypercircle, when points over K
are known, and therefore a parametrization of it.

The inverse problem, computing implicit equations of a hypercircle from the
parametrization induced by an associated unit, can be performed using classic im-
plicitation methods. However, the special structure of hypercircles provides specific
methods that might be more convenient.



1082 T. RECIO, J. R. SENDRA, L. F. TABERA, AND C. VILLARINO

Proposition 5.2. Let U be a hypercircle associated to the unit u(t), and let v(t)
be the inverse of u(t). Let

v

(
n−1∑
i=0

αiXi

)
=

n−1∑
i=0

ri(X0, . . . , Xn−1)

s(X0, . . . , Xn−1)
αi,

where ri, s ∈ K[X0, . . . , Xn−1]. Then, the ideal of U is the elimination ideal with
respect to Z:

I(U) = (r1(X̄), . . . , rn(X̄), s(X̄)Z − 1) ∩ F[X0, . . . , Xn−1].

Proof. Let u(t) = at+b
t+d , then v(t) = −dt+b

t−a . Now, consider

u

(
n−1∑
i=0

αiXi

)
=

n−1∑
i=0

ξi(X0, . . . , Xn−1)α
i,

v

(
n−1∑
i=0

αiXi

)
=

n−1∑
i=0

ηi(X0, . . . , Xn−1)α
i,

where ξi, ηj ∈ K(X0, . . . , Xn−1) and ηi =
ri(X0,...,Xn−1)
s(X0,...,Xn−1)

. The map ξ : Fn −→ Fn,

ξ = (ξ0, . . . , ξn−1) is birational and its inverse is η = (η0, . . . , ηn−1). Indeed,

n−1∑
i=0

ηi(ξ0(X̄), . . . , ξn−1(X̄))αi = v

⎛⎝n−1∑
j=0

αjξj(X̄)

⎞⎠
= v

(
u

(
n−1∑
i=0

αiXi

))
=

n−1∑
i=0

αiXi

is an equality in K(α)(X0, . . . , Xn−1). We deduce that

ηi
(
ξ0(X0, . . . , Xn−1), . . . , ξn−1(X0, . . . , Xn−1)

)
= Xi.

It is clear that U is the image of the line L ≡ {X1 = 0, . . . , Xn−1 = 0} under the
map ξ, U = ξ(L). The set of points where ξ is not defined is the union of the

hyperplanes
∑n−1

i=0 σj(α)
iXi + σj(d) = 0, 1 ≤ j ≤ n. The intersection of these

hyperplanes with L is the set of points (−σ(d)j , 0, . . . , 0), 1 ≤ j ≤ n. Thus, for a
generic p ∈ L, ξ(p) is defined and belongs to U . The result is similar for the inverse
map η. The set of points where η is not defined is the union of the hyperplanes∑n−1

i=0 σj(α)
iXi−σj(a) = 0, 1 ≤ j ≤ n. These n hyperplanes intersect U in at most

one affine point; see Proposition 5.1. So, for a generic p ∈ U , η(p) is again defined
and belongs to L. Let us now compute the points X̄ such that η(X̄) is defined, but
it does not belong to the domain of ξ. If X̄ is such a point, then

n−1∑
i=0

σj(α)
iηi(X̄) + σj(d) = 0.

As ηi is defined over K, applying σj to the definition of η, we obtain that

σj(v)

(
n−1∑
i=0

σj(α)
iXi

)
= −σj(d).

But σj(v) =
−σj(d)t+σj(b)

t−σj(a)
. It follows from Lemma 4.6 that the value −σj(d) cannot

be reached, even in F. Thus, the image of η is contained in the domain of ξ.
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We are ready to prove the theorem, by verifying that the set U \ {s = 0}, which
is just eliminating a finite number of points in U , is the set of points X̄ such that
ri(X̄) = 0, i ≥ 1 and s(X̄) �= 0. If X̄ ∈ U \ {s = 0}, then η is defined and
η(X̄) = (η0(X̄), 0, . . . , 0). Hence ηi(X̄) = ri(X̄) = 0. Conversely, if X̄ is a point
such that ri(X̄) = 0 and s(X̄) �= 0, then η(X̄) is defined and belongs to L. It is
proven that ξ is defined in η(X̄), so X̄ = ξ(η(X̄)) ∈ ξ(L) = U . The thesis of the
theorem follows taking the Zariski closure of U \ {s = 0}. �

This method to compute the implicit equations of U is not free from elimi-
nation techniques, as it has to eliminate the variable Z. However, it has the
advantage that it yields already an ideal in F[X0, . . . , Xn−1] defined over K and
such that it describes a nontrivial variety containing the hypercircle. Namely,
(r1(X̄), . . . , rn−1(X̄)) are polynomials over K whose zero set contains the hypercir-
cle. The following example shows that the elimination step is necessary in some
cases.

Example 5.3. Let Q ⊆ Q(α) be the algebraic extension defined by α3 + α2 − 3 =

0. Let us consider the unit u(t) = (2+α)t+α
t+1−α . Its inverse is v(t) = (α−1)t+α

t−2−α . A
parametrization of U is

φ(t) =

(
2t3 + 6t2 + 7t+ 3

t3 + 4t2 + 5t− 1
,
t3 + 6t2 + 9t+ 2

t3 + 4t2 + 5t− 1
,

t2 + 4t+ 1

t3 + 4t2 + 5t− 1

)
.

A Gröbner basis of the ideal of the curve is

I := {x2
1 − x2x0 − x2x1 − x1 + x2, x0x1 − x2x0 − 3x2

2 − 2x1 + 4x2,

x2
0 − 3x2x1 − 2x0 + 2x1 + 3x2 − 2}.

Then, Proposition 5.2 states that this ideal is

I = (r1(x0, x1, x2), r2(x0, x1, x2), s(x0, x1, x2)Z − 1) ∩ F[x0, x1, x2]

where

r1 = 2− 8x2 + 4x2x0 + 6x2
2x0 + 17x2x1 + x2x

2
0 + 3x1 − 3x2

1x2 + x3
0 − x2

0x1

+ 4x0x1 − 12x2
2 − 8x2

1 + 9x3
2 + 3x3

1 − 3x2
0 − 9x0x1x2,

r2 = −2− 7x2 + 4x2x0 − x2x1 + 8x1 − 2x0 − 2x0x1 + 6x2
2 − 2x2

1 + x2
0,

s = 9x3
2 + 6x2

2x0 − 12x2
2 + 5x2x0 − 17x2 − 3x2

1x2 − 9x0x1x2 + x2x
2
0 + 24x2x1

+ 3x3
1 + 8x0 + 4x0x1 − 5x2

0 − x2
0x1 + 5x1 − 9x2

1 − 7 + x3
0.

But, if we take J = (r1, r2), then J � I. The saturation of J with respect to I is

J : I∞ = (x2
1 − x0x2 − x1x2 − 2x1 + 3x2 + 1, x0x1 − x0x2 − 3x2

2 − x0 − 2x1

+ 2x2 + 2, x2
0 − 3x1x2 − 4x0 + 3x2 + 4).

This ideal corresponds to the union of the line{
−αx0 + 3x2 = −2α,

(α+ α2)x0 − 3x1 = −3 + 2α+ 2α2

and its conjugates.



1084 T. RECIO, J. R. SENDRA, L. F. TABERA, AND C. VILLARINO

The next theorem shows an alternative method to implicitate a hypercircle with-
out using any elimination techniques. It is based on properties of the normal ratio-
nal curve of degree n.

Theorem 5.4. Let ϕ(t) = ( q0(t)N(t) , . . . ,
qn−1(t)
N(t) ) be a proper parametrization of a

primitive hypercircle U with coefficients in F. Let I be the homogeneous ideal of
the rational normal curve of degree n in P(F)

n
given by a set of homogeneous

generators h1(Ȳ ), . . . , hr(Ȳ ). Let Q ∈ Mn+1×n+1(F) be the matrix that carries
{q0(t), . . . , qn−1(t), N(t)} onto {1, t, . . . , tn}. Let

fi(X̄) = hi

⎛⎝ n∑
j=0

Q0jXj , . . . ,

n∑
j=0

QnjXj

⎞⎠ , 1 ≤ i ≤ r.

Then {f1, . . . , fr} is a set of generators of the homogeneous ideal of U .

Proof. If the parametrization is proper, then {q0(t), . . . , qn−1(t), N(t)} is a basis of
the polynomials of degree at most n. This follows from the fact shown in Corollary
3.2 that a primitive hypercircle is not contained in any hyperplane. Note that a
projective point X̄ belongs to U if and only if Q(X̄) belongs to the rational normal
curve, if and only if hi(Q(X̄)) = 0, 1 ≤ i ≤ r. �

Remark 5.5.

• It is well known that the set of polynomials {YiYj−1−Yi−1Yj | 1 ≤ i, j ≤ n}
is a generator set of I (see [6]).

• Notice that it is straightforward to compute Q from the parametrization.
Therefore, we have an effective method to compute the implicit ideal of the
projective closure of U . The affine ideal of U can be obtained by dehomog-
enization Xn = 1.

• If the parametrization is given by polynomials over an algebraic extension
K(β) of K, then the coefficients of fi belongs to K(β). Moreover, if we write
fi(X̄) =

∑m
j=0 fij(X̄)βj , with fij ∈ K[X̄], then, {fij} is a set of generators

over K of the hypercircle U .
• In practice, this method is much more suited to compute an implicitation
of a hypercircle than the method presented in Proposition 5.2.

Example 5.6. The implicit equations of a hypercircle can be computed by classical
implicitation methods, for example, the Gröbner basis method or with the two
methods presented in Proposition 5.2 and Theorem 5.4. Here, we present two cases
that show the practical behavior of these methods. The first example considers the

algebraic extension Q ⊆ Q(α), where α4 + α2 − 3 and the unit u = (1−α3)t+α2

t+1+2α−3α2 .
The parametrization of the hypercircle is given by

φ0 =
t4 + 15t3 + 22t2 + 101t− 195

t4 + 10t3 − 17t2 − 366t+ 233
, φ1 =

−11t3 − 73t2 + 65t− 114

t4 + 10t3 − 17t2 − 366t+ 233
,

φ2 =
2t3 + 57t2 − 25t− 59

t4 + 10t3 − 17t2 − 366t+ 233
, φ3 =

−t4 − 6t3 + 4t2 + 17t− 56

t4 + 10t3 − 17t2 − 366t+ 233
.

The second example starts from the extension Q ⊆ Q(β), where β is such that β4+

3β+1 = 0. Here, the unit defining U is u = (1+β−β2)t+1+β3

t+1+β2−β3 and the parametrization
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induced by u(t) is

ψ0 =
t4 + 11t3 + 47t2 + 95t+ 72

t4 + 13t3 + 62t2 + 126t+ 81
, ψ1 =

t4 + 7t3 + 15t2 + 17t+ 9

t4 + 13t3 + 62t2 + 126t+ 81
,

ψ2 =
−t4 − 10t3 − 31t2 − 23t

t4 + 13t3 + 62t2 + 126t+ 81
, ψ3 =

t3 + 13t2 + 42t+ 36

t4 + 13t3 + 62t2 + 126t+ 81
.

The running times for computing the implicit ideal (using a Mac Xserver with 2
processors G5 2.3 GHz, 2 Gb RAM Maple 10) are

Example 1 Example 2
Gröbner basis method 0.411 0.332
Proposition 5.2 2.094 2.142
Theorem 5.4 0.059 0.021

We refer the interested reader to [11] for a brief discussion and comparison of
the running times of these algorithms.

6. Characterization of hypercircles

In the introduction, we defined algebraically a circle as the conic such that its
homogeneous part is x2 + y2 and contains an infinite number of real points. The
condition on the homogeneous part is equivalent to impose that the curve passes
through the points at infinity [±i : 1 : 0]. Analogously, hypercircles are regular
curves of degree n with infinite points over the base field passing through the
points at infinity described in Theorem 4.2. The following result shows that this is
a characterization of these curves.

Theorem 6.1. Let U ⊆ Fn be an algebraic set of degree n such that all those
components are of dimension 1. Then, it is a primitive α-hypercircle if and only if
it has an infinite number of points with coordinates in K and passes through the set
of points at infinity characterized in Theorem 4.2.

Proof. The only if implication is trivial. For the other one, let U ⊆ Fn be an
algebraic set of pure dimension 1 and degree n passing through P = {P1, . . . , Pn},
which are the n points at infinity of a primitive α-hypercircle. Suppose that U
has infinite points with coordinates in K. Then, we are going to prove that U is
irreducible. Let W be an irreducible component of U with infinite points in K. Note
that, since W is irreducible and contains infinitely many points over K, the ideal
I(W) over F is generated by polynomials over K (see Lemma 2 in [3]). Let q be
any point at infinity of W ; then q ∈ P . As W is K-definable, it follows that W also
contains all conjugates of q. Thus, P is contained in the set of points at infinity of
W . It follows that W is of degree at least n; since W ⊆ U , U = W . Therefore, U
is irreducible and I(U) is generated by polynomials with coefficients over K. Now,
consider the pencil of hyperplanes Ht ≡ X0 +X1α + · · ·+Xn−1α

n−1 − t, where t
takes values in F. Notice that Ht ∩P = {P2, . . . , Pn}. Thus, P1 ∈ U \Ht so, for all

t, U �⊆ Ht. Moreover, for every point p = (p0, . . . , pn−1) ∈ U , t(p) =
∑n−1

i=0 piα
i ∈ F

is such that Ht(p) ∩ U = {p, P2, . . . , Pn}. The cardinal of {t(p) | p ∈ U} is infinite,
since otherwise, by the irreducibility of U , it would imply that there is a t0 such
that U ⊆ Ht0 , which is impossible. So, for generic t, the intersection is Ht ∩ U =
{p(t), P2, . . . , Pn}. Let us check that the coordinates of p(t) are rational functions in
K(α)(t). Take the ideal I(U) of U . The ideal of p(t) (as a point in F(t)n) is I +Ht,
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defined over K(α)(t). The reduced Gröbner basis of the radical I + Ht is of this
kind (X0−ψ0, . . . , Xn−1−ψn−1) and it is also defined over K(α)(t)[X0, . . . , Xn−1].
Hence, (ψ0, . . . , ψn−1) is a K(α)-parametrization of U . Thus, since U is irreducible,

it is rational. Moreover
∑n−1

i=0 (ψi(t))α
i = t and the parametrization is proper. As

the curve is rational and has an infinite number of points over K, it is parametrizable
over K (it follows, for example, from the results in [15]). Let u(t) be a unit such
that Ψ◦u(t) = (φ0(t), . . . , φn−1(t)) is a parametrization over K, where φi(t) ∈ K(t)

and
∑n−1

i=0 φi(t)α
i = u(t). We conclude that U is the hypercircle associated to the

unit u(t). �

Remark that a parametric curve, definable over K and with a regular point over
K, is parametrizable over the same field; for this, it is enough to K-birationally
project the curve over a plane, such that the K-regular point stays regular on the
projection, and then apply the results in [15]. Then, a small modification of the
proof above, yields the following:

Theorem 6.2. Let U ⊆ Fn be a 1-dimensional irreducible algebraic set of degree
n, definable over K . Then, it is a primitive α-hypercircle if and only if it has a
regular point with coordinates in K and passes through the set of points at infinity
characterized in Theorem 4.2.

7. An application

As mentioned in the introduction, hypercircles play an important role in the
problem of the optimal-algebraic reparametrization of a rational curve (see [3], [4],
[12] [13], [14] [17] for further details). Roughly speaking, the problem is as follows.
Given a rational K-definable curve C by means of a proper rational parametrization
over K(α), decide whether C can be parametrized over K and, in the affirmative
case, find a change of parameter transforming the original parametrization into
a parametrization over K. In [4], a K-definable algebraic variety in Fn, where
n = [K(α) : K], is associated to C. This variety is called the associated Weil
(descent) parametric variety. In [4], it is proved that this Weil variety has exactly
one one-dimensional component iff C is K-definable (which is our case) and, in this
case, C can be parametrized over K iff this one-dimensional component is a K, α-
hypercircle1. Moreover, if it is a hypercircle a proper rational parametrization over
K of the hypercircle generates the change of parameter one is looking for; namely
its generating unit.

In the following example, we illustrate how to use the knowledge of the geometry
of hypercircles to help solve the problem. Suppose given the parametric curve

C � (η1(t), η2(t))

=

(
(−2t4 − 2t3)α− 2t4

6α2t2 + (4t3 − 2)α+ t4 − 8t
,

−2t4α

6α2t2 + (4t3 − 2)α+ t4 − 8t

)
where α is algebraic over Q with minimal polynomial x3 + 2. We follow Weil’s
descente method presented in [4] to associate a hypercircle to C. The method

1As remarked by a referee, see also [17], this component will always be an α-hypercircle over
some other base field.
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consists of writing ηi(
∑2

j=0 tjα
j) =

∑2
j=0

qij(t0,t1,t2)
N(t0,t1,t2)

. In this situation C is Q-

definable if and only if

V = V (q11, q12, q21, q22) \ V (N)

is of dimension 1. Moreover, C isQ-parametrizable if and only if the one-dimensional
component of V is an α-hypercircle. For this example, the equations of V are:

V = V (2t30t2−4t42+3t20t
2
1+2t31t2+2t0t

2
2+2t21t2−t20t1+6t0t1t

2
2,−6t20t1t2+t40+2t0t

2
1−

8t0t
3
2−2t0t

3
1+2t20t2−4t1t

2
2−12t21t

2
2, 12t

2
2t

3
1−9t0t1t

3
2+6t52−4t0t

3
1−2t20t1t2+4t21t

2
2−

4t0t
3
2, 9t0t

2
1t

2
2−9t20t

3
2−2t30t2−2t31t2+6t0t1t

2
2−2t42+t20t1−2t21t2−2t0t

2
2, 6t

2
0t1t

2
2+12t21t

3
2−

t30t1−2t0t
2
1t2−2t20t

2
2+8t1t

3
2, 6t

3
0t

2
2+9t0t1t

3
2−6t52+2t0t

3
1−2t20t1t2+4t21t

2
2+8t0t

3
2, 18t2t

4
1+

36t42t1+14t30t2 +32t31t2+12t0t1t
2
2− 4t42− 7t20t1+14t21t2+14t0t

2
2, 6t0t

3
1t2 +2t0t

2
1t2 +

t30t1+2t20t
2
2−8t1t

3
2+12t42t0, 9t

3
0t2t1−36t42t1−4t30t2−4t31t2+12t0t1t

2
2−4t42+2t20t1−

4t21t2− 4t0t
2
2, 6t

5
1+48t21t

3
2− 36t42t0− 11t30t1+6t41+14t0t

2
1t2− 22t20t

2
2+64t1t

3
2, 3t

4
1t0+

6t0t1t
3
2+2t0t

3
1+ t20t1t2−2t21t

2
2+2t0t

3
2, 27t

4
2t

2
1−27t0t

5
2−9t20t

3
2+9t42t1−2t30t2−2t31t2+

6t0t1t
2
2 − 2t42 + t20t1 − 2t21t2 − 2t0t

2
2, 6t

4
2t

2
0 + 12t52t1 − 5t0t1t

3
2 + 2t52, t0t

5
2t1 + 2t72).

Thus the main point is to verify that this curve is a K, α-hypercircle. Now,
following Proposition 5.1, we may try to parametrize V by the pencil of hyperplanes
t0 + αt1 + α2t2 − t. Doing so, we obtain the parametrization(

(α2 + 2αt+ t2)t

3αt+ α2 + 3t2
,

−1/2α2t3

3αt+ α2 + 3t2
,
−1/2αt2(t+ α)

3αt+ α2 + 3t2

)
.

Remark that this parametrization can also be computed by means of inverse com-
putation techniques as described in [14]. Then, by direct computation, we observe
that the parametric irreducible curve defined by this parametrization is of degree
3, passes through the point (0, 0, 0) and this point is regular. Moreover, it is Q-
definable, since it is the only 1-dimensional component of V (see [4]), which is, by
construction, a Q-definable variety. It follows from 6.2 that it is a K, α-hypercircle.

Then, from this parametrization, the algorithm presented in [12] computes a unit
u(t) = 2

2t+α2 associated to V . So, V is the hypercircle associated to u(t) and C is

parametrizable over Q. In particular, the parametrization of V associated to u(t)

is
(

2t2

2t3+1 ,
−1

2t3+1 ,
−t

2t3+1

)
. Moreover, the unit u(t) gives the change of parameter we

need to compute a parametrization of C over the base field (see [4]), namely:

η (u(t)) =

(
t+ 1

t4
,
1

t4

)
.

It is plausible to consider there are some advantages on performing the reduction,
from the given simplification problem of the parametrization over K(α) of C to
searching for a K-parametrization of V . In fact:

• Implicit equations for V , and a parametrization of this variety over K(α),
are provided by construction (respectively, by Proposition 5.1).

• The degree of V is always the degree of the algebraic extension (Corollary
3.2). So, the complexity of the geometric object V could be considerably
smaller than that of C (depending on the degree of the latter).

• Thus, searching for K-rational points over V seems simpler than for C be-
cause we have a lot of information on the geometry of V and, also, because
its degree could be much smaller than that of C.
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The well-known theorem of Hilbert and Hurwitz ([8], [16]) is often used in the
reparametrization problem, as it reduces, after performing a series of birational
transformations, the finding of rational points on C to the case of conics or lines.
What we propose here could be regarded as a variant of that procedure, in which the
final search has to be done with hypercircles, curves of higher degree than conics,
but obtained in a much simpler way, and sharing many properties with conics.

In particular, we think that future work should be devoted to continue the study
of the properties of hypercircles, focusing on finding K-rational points.
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