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THE FIFTEEN THEOREM FOR UNIVERSAL HERMITIAN

LATTICES OVER IMAGINARY QUADRATIC FIELDS

BYEONG MOON KIM, JI YOUNG KIM, AND POO-SUNG PARK

Abstract. We will introduce a method to get all universal Hermitian lat-
tices over imaginary quadratic fields Q(

√
−m) for all m. For each imaginary

quadratic field Q(
√
−m), we obtain a criterion on universality of Hermitian

lattices: if a Hermitian lattice L represents 1, 2, 3, 5, 6, 7, 10, 13, 14 and 15,
then L is universal. We call this the fifteen theorem for universal Hermitian
lattices. Note that the difference between Conway-Schneeberger’s fifteen the-
orem and ours is the number 13. In addition, we determine the minimal rank
of universal Hermitian lattices for all imaginary quadratic fields.

1. Introduction

The research on positive definite rational quadratic forms for which the repre-
sented integer set is as large as possible has its origins at the beginning of modern
number theory. In 1770, Lagrange [19] found the famous four square theorem: the
positive definite quadratic form x2

1 + x2
2 + x2

3 + x2
4 represents all positive integers.

Since then, his theorem has been generalized in many directions. One of the gener-
alizations is to find all positive definite quadratic forms that represent all positive
integers, which we call universal quadratic forms. The first breakthrough in this
direction was made by Ramanujan [23]. In 1917, he discovered all 55 quaternary
diagonal universal forms, up to isometry. In 1927, Dickson [5] confirmed Ramanu-
jan’s list except for one form which was not universal and extended Ramanujan’s
results to nondiagonal forms. It was Dickson who called those forms universal. In
1948, Willerding [26] found 124 quaternary classical nondiagonal universal forms,
up to isometry, and claimed that the list was complete. But her list was incomplete
with some mistakes.

More generally, a positive definite quadratic form over a totally real number field
is said to be universal if every totally positive integer of the field is represented by
it. In 1928, Götzky [7] proved that x2

1 + x2
2 + x2

3 + x2
4 is universal over Q(

√
5). In

1941, Maass [20] proved the three square theorem, which states: the quadratic form

x2
1 + x2

2 + x2
3 is universal over Q(

√
5). All positive definite ternary universal forms

over real quadratic fields were determined in [3]. Further developments on universal
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forms over totally real number fields were established by B. M. Kim (see [12], [13]
and [14]).

If a positive definite Hermitian lattice over the ring of integers of an imaginary
quadratic field represents all positive integers, we call it universal. In 1997, Earnest
and Khosravani [6] found 13 universal binary Hermitian forms over imaginary qua-
dratic fields of class number 1. If the quadratic field over Q has a class number
greater than 1, Iwabuchi [10] determined all universal binary Hermitian lattices over
this field. After that, J.-H. Kim and P.-S. Park [17] added three binary Hermit-
ian forms to the Earnest-Khosravani-Iwabuchi list and completed the list. Further
generalizations of these results were made by P.-S. Park [22] and A. Rokicki [24].

In 1993, Conway and Schneeberger announced the fifteen theorem for classical
universal quadratic forms, which characterizes the universality by representability
of a finite set of numbers, namely, 1, 2, 3, 5, 6, 7, 10, 14, and 15. Using the fifteen
theorem, they corrected several mistakes in Willerding’s list and announced the
new and complete list of 204 quaternary classical universal forms up to isometry.
They never published the original proof of this theorem, but we can find a sketch
of their proof in [25]. B. M. Kim, M.-H. Kim and B.-K. Oh proved a 2-universality
analogy in [15]. Recently, Bhargava and Hanke enunciated that they proved the 290-
conjecture which characterizes the universality of (nonclassical) quadratic forms.
That is, if a (nonclassical) quadratic form represents the 29 numbers, 1, 2, 3, 5,
6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 42, 58, 93, 110,
145, 203, 290, then it is universal (see [9]). One can use this theorem to prove the
universality of a Hermitian lattice. But we succeeded in proving the universality
of a Hermitian lattice without this big theorem. Moreover, our methods lead to a
minimal set of critical numbers for each imaginary quadratic field.

In [4], Bhargava’s generalization of the fifteen theorem was announced: for any
infinite set S of positive integers, there is a finite subset S0 of S such that any
positive definite quadratic form that represents every element of S0 represents all
elements of S. Also, he found S0 for some interesting sets S. In [16], B. M.
Kim, M.-H. Kim and B.-K. Oh proved the finiteness theorem as a generalization
of Bhargava’s result: for any infinite set S of positive definite quadratic forms
of bounded rank, there is a finite subset S0 of S such that any positive definite
quadratic form that represents every element of S0 represents all of S. Nice survey
papers related to these subjects are [18] and [8].

In this paper, first, we will suggest a matrix representation for nonfree Hermitian
lattices. Due to this matrix representation, we can do escalation to find candidates
of universal Hermitian lattices, including nonfree lattices over imaginary quadratic
fields Q(

√
−m). Second, we obtain a Conway-Schneeberger-Bhargava type criterion

on universality of Hermitian lattices: if a Hermitian lattice L represents 1, 2, 3,
5, 6, 7, 10, 13, 14 and 15, then L is universal. Hence we call this theorem the
fifteen theorem for universal Hermitian lattices. Following the language of the
finiteness theorem for representability, S is the set of all positive integers and S0 =
{1, 2, 3, 5, 6, 7, 10, 13, 14, 15}. We will call the set S0 a set of critical numbers. Even
though the fifteen theorem and 290-theorem gives us the rough upper bound for
the critical numbers that lie in between 15 to 290, it is hard to figure out the set
of critical numbers for each field. For each imaginary quadratic field Q(

√
−m), we

will give an optimal set of critical numbers by arithmetic calculation. For example,
a Hermitian lattice L over Q(

√
−39) is universal if and only if L represents 1,
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2, 3, 5, 6, 7, 13. In addition, we define the minimal rank um as an invariant
for each imaginary quadratic field Q(

√
−m). It is the minimal rank of positive

definite universal Hermitian lattices over Q(
√
−m). In this paper, we determine

um completely for all imaginary quadratic fields Q(
√
−m).

2. Preliminaries

The notation and terminology of O’Meara’s book [21] will be adopted here. For
the terminology specific to the Hermitian case, the paper [11] can be referred to. We
begin by setting some additional notation that will remain in effect throughout this
paper. Let F denote the imaginary quadratic field Q(

√
−m) for a positive square-

free integer m with nontrivial Q-involution and let O be the ring of integers of F .
It is well known that O is generated by {1, ω = ωm} over Z, where ωm =

√
−m

if m ≡ 1, 2 (mod 4) or ωm = 1+
√
−m

2 if m ≡ 3 (mod 4). By the term O-lattice
L (or integral lattice L over F ), we will mean a finitely generated O-module on
the Hermitian space (V,H) over F , where V is an n-dimensional vector space over
F with the nondegenerate Hermitian form H. All lattices considered here will be
assumed to be integral and positive definite in the sense that H(x, y) ∈ O for all
x, y ∈ L and H(x) := H(x, x) > 0 for all x �= 0. It follows from these assumptions
that H(x), called a (Hermitian) norm, is in Z for all x ∈ L.

As the ring of integers of an imaginary quadratic field is not generally a principal
ideal domain, lattices do not need to be free. Let {v1, . . . , vn} be anO-basis for L. In
the case thatO is a principal ideal domain, every Hermitian lattice is free. Therefore
L = Ov1+· · ·+Ovn and there is a function f : On −→ Z defined by f(x1, . . . , xn) =
H(

∑
xivi) =

∑
H(vi, vj)xixj . Such a function will be referred to as a Hermitian

form associated to L, and we can obtain an associated Hermitian matrix for L
by taking the n × n matrix whose entry is H(vi, vj). If a basis {v1, . . . , vn} for L
is orthogonal, then the associated matrix of L is denoted by 〈H(v1), . . . , H(vn)〉.
Similarly, in the case that O is not a principal ideal domain, there is a fractional
ideal A such that L = Ov1+ · · ·+Ovn−1+Avn by [21, 81:5]. Since any ideal in O is
generated by at most two elements, we can write L = Ov1+· · ·+Ovn−1+(α, β)Ovn
for some α, β ∈ O. Therefore, we have a Hermitian form f : On−1 × O −→ Z

associated to L such that f(x1, . . . , xn) = H(
∑n−1

i=1 xivi + xnαvn + xnβvn). Also,
we have a Hermitian (n+ 1)× (n+ 1) matrix associated to L as follows:⎛⎜⎜⎜⎝

H(v1, v1) . . . H(v1, αvn) H(v1, βvn)
...

. . .
...

...
H(αvn, v1) . . . H(αvn, αvn) H(αvn, βvn)
H(βvn, v1) . . . H(βvn, αvn) H(βvn, βvn)

⎞⎟⎟⎟⎠ .

Note that this matrix is positive semi-definite, but this represents an n-ary positive
definite Hermitian lattice.

Considering a 2n-dimensional vector space Ṽ over Q corresponding to V as de-
fined in [11], we can regard (V,H) over F as a 2n-dimensional quadratic space

(Ṽ , BH) such that BH(x, y) = 1
2 [H(x, y) + H(y, x)] = 1

2 TrF/Q(H(x, y)). Analo-

gously, by viewing L as a Z-lattice on (Ṽ , BH) we can obtain a quadratic Z-lattice

L̃ on Ṽ associated to a Hermitian O-lattice L on V , and also f̃(x1, y1, . . . , xn, yn) =
f(x1+ωy1, . . . , xn+ωyn) is an associated quadratic form in 2n-variables correspond-

ing to this lattice L̃. For convenience, we say that f̃ is an associated quadratic form
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of L. For example, the associated quadratic form of the Hermitian lattice 〈1〉 over
Q(

√
−m) is {

x2
1 +my21 if m ≡ 1, 2 (mod 4),

x2
1 + x1y1 +

1+m
4 y21 if m ≡ 3 (mod 4).

To distinguish the matrix of a quadratic Z-lattice L̃ from the matrix of a Hermitian

lattice L, we will add the subscript Z to the matrix of the quadratic Z-lattice L̃.
Also, a Hermitian O-lattice L represents a Z-lattice M if and only if the associated
quadratic form of L represents M .

If L is a universal lattice of rank n, then there are infinitely many universal
lattices of rank k (k > n) which contain L. Thus in order to obtain any meaningful
finiteness result for such lattices, we should consider a new universal lattice. A
universal lattice is called new when it does not contain any universal lattice of
smaller rank.

For m ≡ 1, 2 (mod 4), the associated quadratic lattice of a Hermitian lattice
over Q(

√
−m) is a classical Z-lattice. Thus we can determine the universality of a

Hermitian lattice over Q(
√
−m) via applying the fifteen theorem. On the contrary,

for m ≡ 3 (mod 4), the associated quadratic lattice of a Hermitian lattice over
Q(

√
−m) is a nonclassical Z-lattice. Therefore, the recent big result of Bhargava

and Hanke, the 290-conjecture, can be applied to prove the universality.
We adopt some notation from Conway-Sloane [4]. The notation pd (resp. pe)

denotes an odd (resp. even) power of p; if p = 2, uk denotes a unit of the form
8n + k (k = 1, 3, 5, 7) and if p is odd, u+ (resp. u−) denotes a unit which is a
quadratic residue (resp. nonresidue) modulo p.

3. Main results

Theorem 1. For all positive square-free integers m, if a Hermitian lattice over
Q(

√
−m) represents the following critical numbers, then it is universal.

critical numbers m
1, 2 3, 11
1, 3 1, 7
1, 5 2
1, 2, 3 5, 19
1, 2, 3, 5 6
1, 2, 3, 5, 7 15, 23
1, 2, 3, 5, 6, 7 10, 31
1, 2, 3, 5, 6, 7, 10 13, 14
1, 2, 3, 5, 6, 7, 13 39
1, 2, 3, 5, 6, 7, 10, 14 35, 43, 51, 59
1, 2, 3, 5, 6, 7, 10, 15 55
1, 2, 3, 5, 6, 7, 10, 14, 15 otherwise

From this theorem, we have the criterion on the universality of Hermitian lattices.

Corollary 1 (The fifteen theorem for universal Hermitian lattices). If a positive
definite Hermitian lattice represents 1, 2, 3, 5, 6, 7, 10, 13, 14, and 15, then it is
universal.

Unlike the fifteen theorem for universal quadratic forms, this theorem involves
the number 13 for the case of Q(

√
−39).



THE 15-THEOREM FOR UNIVERSAL HERMITIAN LATTICES 1127

On the other hand, in the process of constructing universal Hermitian lattices
over Q(

√
−m), we can completely determine the minimal rank um which is a kind

of invariant for the imaginary quadratic field Q(
√
−m). It is clear that um ≤ 4 for

all m.

Theorem 2. If we set the minimal rank

um := min
{
rankL : L is a universal Hermitian lattice over Q(

√
−m)

}
for each positive square-free integer m, then

um m
2 1, 2, 3, 5, 6, 7, 10, 11, 15, 19, 23, 31,
3 13, 14, 17, 21, 22, 26, 29, 30, 34, 35, 39, 41,

43, 46, 47, 51, 55, 59, 71, 79, 83, 87, 91, 95,
103, 107, 111, 115, 119, 127, 131, 135, 139, 143, 147, 151,
155, 159, 167, 171, 175, 179, 183, 187, 191, 199, 207, 215,
223,

4 33, 37, 38, 42, 53, 57, 58, 61, 62, 65, 66, 67,
69, 70, 73, 74, 77, 78, 82, 85, 86, 89, 93, 94,
97, 101, 102, 105, 106, 109, 110, 113, 114, 118, 122, 123,
129, 130, 133, 134, 137, 138, 141, 142, 145, 146, 149, 154,
157, 158, 161, 163, 165, 166, 170, 173, 174, 177, 178, 181,
182, 185, 186, 190, 193, 194, 195, 197, 201, 202, 203, 205,
206, 209, 210, 211, 213, 214, 217, 218, 219, 221, 222, 226,
227, 229, 230, 231 or m ≥ 235.

Throughout the remainder of this paper, we will describe long proofs for these
theorems. We will explain some notions preparatory to the proofs and then we will
construct universal Hermitian lattices.

Note that xx+yy+zz+uu represents all positive integers even when all variables
take values in Z. Thus it is obviously a quaternary universal Hermitian lattice over
all imaginary quadratic fields. Since classical universal quadratic forms over Z were
already classified, we do not need to investigate lattices of this kind. A Hermitian
lattice is called inherited if its coefficients are all rational integers. If a Hermitian
lattice is not inherited, we call it uninherited. We will mainly consider uninherited
universal Hermitian lattices.

If a lattice L is not universal, define the truant of L to be the smallest positive
integer not represented by L. An escalation of a nontrivial lattice L is defined
to be any lattice which is generated by L and a vector whose norm is equal to
the truant of L. Conway, Schneeberger and Bhargava suggested this escalation
method for free lattices (see [25], [1]). In this article, we suggested the method for
a matrix representation for nonfree Hermitian lattices (see section 2) and we use
the escalation method to find candidates of universal Hermitian lattices including
nonfree Hermitian lattices.

Let L be a universal Hermitian lattice over Q(
√
−m). Since L represents 1,

L ∼= 〈1〉 ⊥ M for some lattice M . Since 2 → L, there are three incompatible cases:
2 → 〈1〉, 1 → M , or 2 → M .
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Case I. 2 → 〈1〉: In this case, αα = 2 has a solution for some α ∈ O. Let
α = x1 + x2ωm. If m ≡ 1, 2 (mod 4), then αα = x2

1 + mx2
2 = 2. So m = 1 or

2. If m ≡ 3 (mod 4), then αα = x2
1 + x1x2 +

m+1
4 x2

2 = 2. So m = 7. Therefore
all possible m’s are 1, 2; 7. We use a semicolon to distinguish m ≡ 1, 2 (mod 4)
and m ≡ 3 (mod 4). To represent from 1 through 5, L should have the following
sublattices:

Q(
√
−1): 〈1, 1〉, 〈1, 2〉, 〈1, 3〉,

Q(
√
−2): 〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉,

Q(
√
−7): 〈1, 1〉, 〈1, 2〉, 〈1, 3〉.

These Hermitian lattices are all universal by [6] and [17], and we know that there
are no other new Hermitian universal lattices over Q(

√
−m) for m = 1, 2; 7. Hence

we assume that m �= 1, 2; 7.
Case II. 2 �→ 〈1〉 and 1 → M : Then L ∼= 〈1, 1〉 ⊥ K for some lattice K. Since 3 is
a truant of the Z-lattice 〈1, 1〉Z and L should represent 3, we have four cases.
Case II-1. 3 → 〈1, 1〉: In this case, αα+ββ = 3 has a solution for some α, β ∈ O,
the possible m’s are 3 or 11. The universalities of 〈1, 1〉 over Q(

√
−3) and Q(

√
−11)

were shown in [6]. Assume that m �= 3, 11 for the following subcases.
Case II-2. 1 → K: Then L ∼= 〈1, 1, 1〉 ⊥ N for some lattice N . Note that the
truant of 〈1, 1, 1〉Z is 7.

If 7 → 〈1, 1, 1〉 over Q(
√
−m), then we have m = 5, 6; 15, 19, 23. Since the

sublattice 〈1, 2〉 of 〈1, 1, 1〉 is universal over Q(
√
−m) with m = 5; 19 by [6] and

[10], we do not need to consider the cases m = 5; 19.
Case II-2(1). When m = 6, the lattice 〈1, 1, 1〉 represents a universal quadratic
form 〈1, 1, 1, 6〉Z, i.e., the associated quadratic form 〈1, 1, 1, 6, 6, 6〉Z of 〈1, 1, 1〉 rep-
resents a universal quadratic form 〈1, 1, 1, 6〉Z. Thus the Hermitian lattice 〈1, 1, 1〉
is also universal.
Case II-2(2). When m = 15, 23, 〈1, 1, 1〉 can be written as an associated quadratic
form over Z:

x2
1 + x1x2 +

1 +m

4
x2
2 + y21 + y1y2 +

1 +m

4
y22 + z21 + z1z2 +

1 +m

4
z22 .

This quadratic form has a sublattice 〈1, 1, 1〉Z. It represents all positive integers
except the form 2eu7. If we set x2 = 2 and y2 = z2 = 0, then the quadratic form
becomes

(x1 + 1)2 + y21 + z21 +m,

and if we set x2 = y2 = 2 and z2 = 0, then the quadratic form becomes

(x1 + 1)2 + (y1 + 1)2 + z21 + 2m.

Let n = 2eu7. If n ≥ 2m, then at least one of n −m and n − 2m is not of the
form 2eu7. Thus one of n−m or n− 2m can be represented by 〈1, 1, 1〉Z. That is,
n → 〈1, 1, 1〉 over Q(

√
−m). It is easy to verify that n → 〈1, 1, 1〉 for n < 2m.

Hence we obtain new universal Hermitian lattices 〈1, 1, 1〉 over Q(
√
−m) with

m = 6; 15, 23.
If m �= 5, 6; 15, 19, 23, 〈1, 1, 1〉 cannot represent 7 over Q(

√
−m) and thus N

should represent 1, 2, 3, 4, 5, 6 or 7. But the quadratic form 〈1, 1, 1, a〉Z is universal
for a = 1, 2, . . . , 7 by [23]. That is, these lattices 〈1, 1, 1, a〉 are inheritedly universal
when a = 1, 2, . . . , 7.
Case II-3. 1 �→ K and 2 → K: Then L contains a ternary lattice 〈1, 1, 2〉. Note
that the truant of 〈1, 1, 2〉Z is 14.
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Case II-3 a. 14 → 〈1, 1, 2〉: Then we have

m = 5, 6, 10, 13, 14; 15, 19, 23, 31, 35, 39, 43, 47, 51, 55.

Since the sublattice 〈1, 2〉 of 〈1, 1, 2〉 is universal over Q(
√
−5) and Q(

√
−19),

〈1, 1, 2〉 is not a new universal Hermitian form over Q(
√
−5) and Q(

√
−19).

Case II-3 a(1). m �≡ 3 (mod 4): Since m = 6, 10, 13, 14, the Hermitian lattice
〈1, 1, 2〉 over Q(

√
−m) represents a universal quadratic lattice 〈1, 1, 2,m〉Z. There-

fore 〈1, 1, 2〉 is universal over Q(
√
−m).

Case II-3 a(2). m ≡ 3 (mod 4): m = 15, 23, 31, 35, 39, 43, 47, 51, 55. For these
cases we can write 〈1, 1, 2〉 as an associated quadratic form over Z:

x2
1 + x1x2 +

1 +m

4
x2
2 + y21 + y1y2 +

1 +m

4
y22 + 2

(
z21 + z1z2 +

1 +m

4
z22

)
.

This form has a sublattice 〈1, 1, 2〉Z and it represents all positive integers except
the form 2du7. If we set x2 = 2 and y2 = z2 = 0, then the quadratic form becomes

(x1 + 1)2 + y21 + 2z21 +m.

Let n = 2du7. If n ≥ m, then n − m is not of the form 2du7 since m is odd.
Thus n → 〈1, 1, 2〉 over Q(

√
−m), and we can show that n → 〈1, 1, 2〉 for n < m by

direct calculation.
Hence 〈1, 1, 2〉 is a new universal Hermitian lattice over Q(

√
−m) for

m = 6, 10, 13, 14; 15, 23, 31, 35, 39, 43, 47, 51, 55.

Case II-3 b. 14 �→ 〈1, 1, 2〉: From 14 �→ 〈1, 1, 2〉, we have{
m ≥ 17 if m �≡ 3 (mod 4),

m ≥ 59 if m ≡ 3 (mod 4).

Since 14 → L, L should contain an escalation lattice � of 〈1, 1, 2〉 as follows:

� ∼=

⎛⎜⎜⎝
1 0 0 α
0 1 0 β
0 0 2 γ

α β γ 14

⎞⎟⎟⎠ ∼=

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 2 γ

0 0 γ 14− αα− ββ

⎞⎟⎟⎠
for some α, β, γ. Note that 14 − αα − ββ = 4, 5, 6, 9, 10, 12, 13, 14. The above

lattice � can be reduced once more to 〈1, 1〉 ⊥
(
2 a
a b

)
with a = 0, 1, ω,−1+ω and

suitable b. If a = 0 or 1, then � is one of the following:

〈1, 1〉 ⊥
(
2 0
0 b

)
with b = 2, . . . , 14,

〈1, 1〉 ⊥
(
2 1
1 b

)
with b = 2, 4, 5, 6, 8, 9, 10, 12, 13, 14.

These are all inherited universal lattices for all the above m’s. Now consider the
case of a = ω or −1 + ω.
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Case II-3 b(1). m �≡ 3 (mod 4): From the positive semi-definiteness of �, we have
m = 17, 21, 22, 26. In addition,

if a = ω, then b =

⎧⎪⎨⎪⎩
9, 10, 12, 13, 14, when m = 17,

12, 13, 14, when m = 21, 22,

13, 14, when m = 26,

and if a = −1 + ω, then b =

⎧⎪⎨⎪⎩
9, 10, 12, 13, 14, when m = 17,

12, 13, 14, when m = 21, 22,

14, when m = 26.

Since each � represents a universal quaternary quadratic lattice 〈1, 1, 2, b〉Z or

〈1, 1〉Z ⊥
(
2 1
1 b

)
Z

for each b, it is universal.

Case II-3 b(2). m ≡ 3 (mod 4): From the positive semi-definiteness of �, we have
m = 59, 67, 71, 79, 83, 87, 91, 95, 103, 107, 111. If � represents all positive integers
smaller than m, then � is universal, because � contains 〈1, 1, 2〉. We can easily check
it by direct calculation.
Case II-4. 1, 2 �→ K and 3 → K: Then L contains a ternary lattice 〈1, 1, 3〉. Note
that the truant of 〈1, 1, 3〉Z is 6.
Case II-4 a. 6 → 〈1, 1, 3〉: Then we have

m = 5, 6; 15, 19, 23.

Case II-4 a(1). m �≡ 3 (mod 4): Since m = 5 or 6, the Hermitian lattice 〈1, 1, 3〉
represents a universal quadratic form 〈1, 1, 3, 5〉Z or 〈1, 1, 3, 6〉Z. Thus 〈1, 1, 3〉 is
universal over Q(

√
−m).

Case II-4 a(2). m ≡ 3 (mod 4): We have that 〈1, 1, 3〉Z can represent all positive
integers except the form 3du−. Let n = 3du−.

First consider the case of m = 15. The associated quadratic form of 〈1, 1, 3〉 is a
nonclassical quadratic form

x2
1 + x1x2 + 4x2

2 + y21 + y1y2 + 4y22 + 3z21 + 3z1z2 + 12z22 .

Note that if x2 = 2 and y2 = z2 = 0, then the form becomes

(x1 + 1)2 + y21 + 3z21 + 15,

and if x2 = y2 = 2 and z2 = 0, then the form becomes

(x1 + 1)2 + (y1 + 1)2 + 3z21 + 30.

If n ≥ 30, then at least one of n − 15 and n − 30 is not of the form 3du−. That
is, n can be represented by 〈1, 1, 3〉. It is easily verified that 〈1, 1, 3〉 represents all
positive integers less than 30. Thus it is a new universal Hermitian lattice over
Q(

√
−15).

Similarly, it can be shown that 〈1, 1, 3〉 is a new universal Hermitian lattice over
Q(

√
−m) with m = 19, 23 by checking n− 19 and n− 23.

Case II-4 b. 6 �→ 〈1, 1, 3〉: From 6 �→ 〈1, 1, 3〉, we have{
m ≥ 10 if m �≡ 3 (mod 4),

m ≥ 31 if m ≡ 3 (mod 4).
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Since 6 → L, L should contain an escalation lattice � of 〈1, 1, 3〉 as follows:

� ∼=

⎛⎜⎜⎝
1 0 0 α
0 1 0 β
0 0 3 γ

α β γ 6

⎞⎟⎟⎠ ∼=

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 3 γ

0 0 γ 6− αα− ββ

⎞⎟⎟⎠
for some α, β, γ. Note that 6−αα− ββ = 4, 5, 6. Hence the above lattice � can be

reduced to 〈1, 1〉 ⊥
(
3 a
a b

)
with a = 0, 1, ω, 1 + ω,−1 + ω and suitable b. If a = 0

or 1, then b = 3, 4, 5, 6 and � is inherited and universal over Q(
√
−m) for all the

above m. Now assume that a = ω, 1 + ω or −1 + ω.
Case II-4 b(1). m �≡ 3 (mod 4): From the positive semi-definiteness of �, we have

m = 10, 13, 14, 17.

In addition, if a = ω, 1 + ω or −1 + ω, then

b =

⎧⎪⎨⎪⎩
4, 5, 6, when m = 10,

5, 6, when m = 13, 14,

6, when m = 17.

Since each � represents a universal quaternary quadratic lattice 〈1, 1, 3, b〉Z or

〈1, 1〉Z ⊥
(
3 1
1 b

)
Z

for each b, it is a universal Hermitian lattice.

Case II-4 b(2). m ≡ 3 (mod 4): From the positive semi-definiteness of �, we
have m = 31, 35, 39, 43, 47, 51, 55, 59, 67, 71. We will apply the same argument in
Case II-4 a(2) for these m’s. If m = 39, 51, then it is enough to check that each �
represents all positive integers smaller than 2m. If m = 31, 35, 43, 47, 55, 59, 67, 71,
then it is enough to check whether � represents all positive integers smaller than
m. We can easily check this by direct calculation; hence � is a universal Hermitian
lattice.
Case III. 2 �→ 〈1〉, 1 �→ M and 2 → M : Then L contains a binary lattice 〈1, 2〉.
Note that the truant of 〈1, 2〉Z is 5. When m = 5; 3, 11, 19, 〈1, 2〉 represents 5 and
〈1, 2〉 is universal for these m’s by [6] and [10]. Thus through the Case III, we may
assume m �= 5; 3, 11, 19. Since 5 → L, the escalation lattice of 〈1, 2〉 is⎛⎝1 0 α

0 2 β

α β 5

⎞⎠ ∼=

⎛⎝1 0 0
0 2 β

0 β 5− αα

⎞⎠
for some α, β. This lattice can be reduced to 〈1〉 ⊥

(
2 a
a b

)
with a = 0, 1, ω or

−1 + ω and suitable b. If a = 0, 1, then the escalation lattices are

〈1, 2, 2〉, 〈1, 2, 3〉, 〈1, 2, 4〉, 〈1, 2, 5〉, 〈1〉 ⊥
(
2 1
1 4

)
and 〈1〉 ⊥

(
2 1
1 5

)
for all the above m’s. Also, if a = ω or −1 + ω, then the escalation lattice 〈1〉 ⊥(
2 a
a b

)
over Q(

√
−m) satisfies the conditions of Table 1, up to isometry.

Now, we will treat each lattice in Case III-1 to Case III-7.
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Table 1. Conditions for 〈1〉 ⊥
(
2 a
a b

)

Q(
√
−m) a b

Q(
√
−6) ω6 3, 4, 5,

−1 + ω6 4, 5,
Q(

√
−10) ω10 5,

Q(
√
−15) ω15 2, 3, 4, 5,

−1 + ω15 3, 4, 5,
Q(

√
−23) ω23 3, 4, 5,

−1 + ω23 3, 4, 5,
Q(

√
−31) ω31 4, 5,

−1 + ω31 4, 5,
Q(

√
−35) ω35 5,

−1 + ω35 5,
Q(

√
−39) ω39 5,

−1 + ω39 5.

Case III-1. 〈1, 2, 2〉 → L: Note that 〈1, 2, 2〉 represents a quadratic lattice 〈1, 2, 2〉Z
whose truant is 7.
Case III-1 a. 7 → 〈1, 2, 2〉: Then we have m = 6 and 〈1, 2, 2〉 is a new universal
Hermitian lattice as 〈1, 2, 2〉 represents a universal quadratic lattice 〈1, 2, 2, 6〉Z.
Through the Case III-1, we may assume m �= 6.
Case III-1 b. 7 �→ 〈1, 2, 2〉: Then L should contain an escalation lattice � of
〈1, 2, 2〉 as follows:

� ∼=

⎛⎜⎜⎝
1 0 0 α
0 2 0 β
0 0 2 γ

α β γ 7

⎞⎟⎟⎠
for some α, β, γ.
Case III-1 b(1). m �≡ 3 (mod 4): Then � represents a quadratic lattice

�′ =

⎛⎜⎜⎝
1 0 0 Reα
0 2 0 Reβ
0 0 2 Re γ

Reα Re β Re γ 7

⎞⎟⎟⎠
Z

.

There are 16 lattices of the above form up to isometry and they are all universal
by the fifteen theorem.
Case III-1 b(2). m ≡ 3 (mod 4): From the positive semi-definiteness, the �’s are
all inherited for m ≥ 59. Then, since � represents the above quadratic lattice �′,
� is universal. We may assume that m = 15, 23, 31, 35, 39, 43, 47, 51, 55. Note
that 〈1, 2, 2〉Z represents all positive integers only except the form 2eu7 and 〈1, 2, 2〉
represents 〈1, 2, 2,m〉Z.

Let n = 2eu7. If n ≥ 4m, then at least one of n −m and n − 4m is not of the
form 2eu7. Thus n → 〈1, 2, 2〉Z. If n < 4m, then we can show that n is represented
by each � by direct calculation. Hence the universality of � is proved.
Case III-2. 〈1, 2, 3〉 → L: Note that 〈1, 2, 3〉 represents a quadratic lattice 〈1, 2, 3〉Z
whose truant is 10.
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Case III-2 a. 10 → 〈1, 2, 3〉: Then we have m = 6, 10; 15, 23, 31, 39.
Case III-2 a(1). m �≡ 3 (mod 4): Since m = 6 or 10, the Hermitian lattice
〈1, 2, 3〉 represents a universal quadratic lattice 〈1, 2, 3, 6〉Z or 〈1, 2, 3, 10〉Z. Thus
the universality of the Hermitian lattice 〈1, 2, 3〉 over Q(

√
−m) is proved.

Case III-2 a(2). m ≡ 3 (mod 4): Then the associated quadratic form of 〈1, 2, 3〉
is

x2
1 + x1x2 +

1 +m

4
x2
2 + 2

(
y21 + y1y2 +

1 +m

4
y22

)
+ 3

(
z21 + z1z2 +

1 +m

4
z22

)
.

If we set x2 = 2 and y2 = z2 = 0, then the quadratic form becomes 〈1, 2, 3〉Z +m.
Note that the quadratic lattice 〈1, 2, 3〉Z represents all positive integers except the
form 2du5. If n = 2du5 ≥ m, then n − m is not of the form 2du5 and hence
n − m → 〈1, 2, 3〉Z. It is easily verified that n → 〈1, 2, 3〉 for n < m by direct
calculation. Hence the Hermitian lattice 〈1, 2, 3〉 is universal. From now through
the Case III-2, we may assume that m �= 6, 10; 15, 23, 31, 39.
Case III-2 b. 10 �→ 〈1, 2, 3〉: The next escalation lattice � of 〈1, 2, 3〉 is of the form

� ∼=

⎛⎜⎜⎝
1 0 0 α
0 2 0 β
0 0 3 γ

α β γ 10

⎞⎟⎟⎠
for some α, β, γ.
Case III-2 b(1). m �≡ 3 (mod 4): Then the lattice � represents a quadratic lattice

�′ =

⎛⎜⎜⎝
1 0 0 Reα
0 2 0 Reβ
0 0 3 Re γ

Reα Re β Re γ 10

⎞⎟⎟⎠
Z

.

There are 28 lattices of this type up to isometry, and we know that they are all
universal by the fifteen theorem.
Case III-2 b(2). m ≡ 3 (mod 4): From the condition of positive semi-definiteness,
the escalation lattices � of 〈1, 2, 3〉 are all inherited for m ≥ 123. Then since
� represents the above quadratic lattice �′, � is universal. We may assume that
m = 35, 43, 47, . . . , 119. Note that 〈1, 2, 3〉Z represents all positive integers except
only the form 2du5. If n = 2du5 ≥ m, then n − m is not of the form 2du5. Thus
n → 〈1, 2, 3〉Z. If n < m, then we can show that n is represented by each � by direct
calculation. Hence the universality of � over Q(

√
−m) is proved.

Case III-3. 〈1, 2, 4〉 → L: Note that 〈1, 2, 4〉 represents a quadratic lattice 〈1, 2, 4〉Z
whose truant is 14.
Case III-3 a. 14 → 〈1, 2, 4〉: Then we have m = 6, 10, 13, 14; 15, 23, 31, 39, 47,
55.
Case III-3 a(1). m �≡ 3 (mod 4): Since m = 6, 10, 13, 14, 〈1, 2, 4〉 over Q(

√
−m)

represents a universal quadratic form 〈1, 2, 4,m〉Z. Hence the universality of 〈1, 2, 4〉
over Q(

√
−m) is proved.

Case III-3 a(2). m ≡ 3 (mod 4): The associated quadratic form of 〈1, 2, 4〉 is

x2
1 + x1x2 +

1 +m

4
x2
2 + 2

(
y21 + y1y2 +

1 +m

4
y22

)
+ 4

(
z21 + z1z2 +

1 +m

4
z22

)
.
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If we set x2 = 2 and y2 = z2 = 0, then the quadratic form becomes 〈1, 2, 4〉Z +m.
Note that the quadratic lattice 〈1, 2, 4〉Z represents all positive integers except the
form 2du7. If n = 2du7 ≥ m, then n − m is represented by 〈1, 2, 4〉Z and hence
n → 〈1, 2, 4〉. It is easily verified that 〈1, 2, 4〉 represents n for n < m. Hence
〈1, 2, 4〉 is universal over Q(

√
−m). From now through the Case III-3 b, we may

assume that m �= 6, 10, 13, 14; 15, 23, 31, 39, 47, 55.
Case III-3 b. 14 �→ 〈1, 2, 4〉: The next escalation lattice � of 〈1, 2, 4〉 is of the form

� ∼=

⎛⎜⎜⎝
1 0 0 α
0 2 0 β
0 0 4 γ

α β γ 14

⎞⎟⎟⎠
for some α, β, γ.
Case III-3 b(1). m �≡ 3 (mod 4): Then the lattice � represents a quadratic lattice

�′ =

⎛⎜⎜⎝
1 0 0 Reα
0 2 0 Reβ
0 0 4 Re γ

Reα Re β Re γ 14

⎞⎟⎟⎠
Z

.

There are 54 lattices of this type up to isometry and they are all universal by the
fifteen theorem.
Case III-3 b(2). m ≡ 3 (mod 4): From the positive semi-definiteness, the es-
calation lattices are all inherited for m ≥ 227. Since � represents the above qua-
dratic lattice �′, � is universal. Thus we may assume that m = 35, 43, 51, 59, 67,
71, 79, 83, 87, . . . , 223. Note that 〈1, 2, 4〉Z represents all positive integers except
only the form 2du7. We have that n − m → 〈1, 2, 4〉Z implies n → 〈1, 2, 4〉. If
n = 2du7 ≥ m, then n−m is not of the form 2du7. Thus n → 〈1, 2, 4〉Z. By direct
calculation it can be verified that n → � for n < m. Hence the universality of �
over Q(

√
−m) is proved.

Case III-4. 〈1, 2, 5〉 → L: Note that 〈1, 2, 5〉 represents a quadratic lattice 〈1, 2, 5〉Z
whose truant is 10.
Case III-4 a. 10 → 〈1, 2, 5〉: Then we should have m = 6, 10; 15, 23, 31, 39.
Case III-4 a(1). m �≡ 3 (mod 4): Since m = 6, 10, 〈1, 2, 5〉 over Q(

√
−m) repre-

sents a quaternary universal quadratic lattice 〈1, 2, 5,m〉Z. Hence � is universal.
Case III-4 a(2). m ≡ 3 (mod 4): The associated quadratic form of 〈1, 2, 5〉 is

x2
1 + x1x2 +

1 +m

4
x2
2 + 2

(
y21 + y1y2 +

1 +m

4
y22

)
+ 5

(
z21 + z1z2 +

1 +m

4
z22

)
.

If we set x2 = 2 and y2 = z2 = 0, then the quadratic form becomes 〈1, 2, 5〉Z +m.
Similarly 〈1, 2, 5〉Z+2m and 〈1, 2, 5〉Z+3m are also obtained. The quadratic lattice
〈1, 2, 5〉Z represents all positive integers except the form 5du−. If m = 15 and
n ≥ 3m, then n−m, n−2m, or n−3m is represented by 〈1, 2, 5〉Z. If m = 23, 31, 39
or n = 5du− ≥ 2m, then n −m or n − 2m is represented by 〈1, 2, 5〉Z. It is easily
verified that 〈1, 2, 5〉 represents n for n < 3m or n < 2m. Hence 〈1, 2, 5〉 is universal.
From now through the Case III-4 b, we may assume that m �= 6, 10; 15, 23, 31, 39.
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Case III-4 b. 10 �→ 〈1, 2, 5〉: The next escalation lattice � of 〈1, 2, 5〉 is of the form

� ∼=

⎛⎜⎜⎝
1 0 0 α
0 2 0 β
0 0 5 γ

α β γ 10

⎞⎟⎟⎠
for some α, β, γ.
Case III-4 b(1). m �≡ 3 (mod 4): From the positive semi-definiteness, � is inher-
ited if m ≥ 53. The lattice � represents a quadratic lattice⎛⎜⎜⎝

1 0 0 Reα
0 2 0 Re β
0 0 5 Re γ

Reα Reβ Re γ 10

⎞⎟⎟⎠
Z

.

There are 32 quadratic lattices of this type up to isometry. Among these quadratic
lattices, 28 quadratic lattices are universal by the fifteen theorem, but the following
4 quadratic lattices are not. The truants of the following 4 quaternary quadratic
lattices are all 15:

〈1〉Z ⊥

⎛⎝2 0 0
0 5 0
0 0 5

⎞⎠
Z

, 〈1〉Z ⊥

⎛⎝2 0 1
0 5 1
1 1 5

⎞⎠
Z

, 〈1〉Z ⊥

⎛⎝2 0 1
0 5 2
1 2 8

⎞⎠
Z

, 〈1〉Z ⊥

⎛⎝2 0 1
0 5 1
1 1 9

⎞⎠
Z

.

Now assume that � represents one of the above quadratic lattices. If m = 13 or 14,
the Hermitian lattice � represents 15 and hence they are universal. If m �= 13, 14
and � is uninherited, then � is one of the following:

〈1〉 ⊥

⎛⎝2 0 0
0 5 ωm

0 ωm 5

⎞⎠ if m = 17, 21, 22,

〈1〉 ⊥

⎛⎝2 0 1
0 5 1± ωm

1 1± ωm 5

⎞⎠ if m = 17, 21,

〈1〉 ⊥

⎛⎝2 0 1
0 5 2± ωm

1 2± ωm 8

⎞⎠ if m = 17, 21, 22, 26, 29, 30, 33,

〈1〉 ⊥

⎛⎝2 0 1
0 5 1± ωm

1 1± ωm 9

⎞⎠ if m = 17, 21, 22, 26, 29, 30, 33, 34, 37, 38, 41.

Among the above lattices, only the following lattices represent 15. Hence they are
universal by the fifteen theorem.

〈1〉 ⊥

⎛⎝2 0 0
0 5 ω22

0 ω22 5

⎞⎠ , 〈1〉 ⊥

⎛⎝2 0 1
0 5 1± ω21

1 1± ω21 5

⎞⎠ ,

〈1〉 ⊥

⎛⎝2 0 1
0 5 2± ω33

1 2± ω33 8

⎞⎠ , 〈1〉 ⊥

⎛⎝2 0 1
0 5 1± ω41

1 1± ω41 9

⎞⎠ .

If � does not represent 15, then we can obtain a universal pro forma quinary Her-
mitian lattice by attaching a vector of norm 15 to �. If � is inherited and it is not
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universal, then � is one of the following 4 lattices whose truants are all 15:

〈1〉 ⊥

⎛⎝2 0 0
0 5 0
0 0 5

⎞⎠ , 〈1〉 ⊥

⎛⎝2 0 1
0 5 1
1 1 5

⎞⎠ , 〈1〉 ⊥

⎛⎝2 0 1
0 5 2
1 2 8

⎞⎠ , 〈1〉 ⊥

⎛⎝2 0 1
0 5 1
1 1 9

⎞⎠ .

In this case, we can obtain a universal lattice by attaching a vector of norm 15.
Note that these quinary universal lattices are inherited if m ≥ 129.
Case III-4 b(2). m ≡ 3 (mod 4): From the positive semi-definiteness, the es-
calation lattices � are all inherited for m ≥ 203. We may assume that m =
35, 43, 47, 51, . . . , 199. Note that 〈1, 2, 5〉Z represents all positive integers except
the form 5du−. If n = 5du− ≥ 3m, then at least one of n−m, n− 2m and n− 3m
is not of the form 5du−. Thus n → 〈1, 2, 5〉. If � represents all positive integers
n < 3m, then � is universal. If � is not universal and uninherited, then � is one of
the following and their conjugates:

〈1〉 ⊥

⎛⎝2 0 0
0 5 1 + ω
0 1 + ω 8

⎞⎠ if m = 47, 55, 151, 67 ≤ m ≤ 131,

〈1〉 ⊥

⎛⎝2 0 0
0 5 −2 + ω
0 −2 + ω 8

⎞⎠ if m = 47, 55, 151, 67 ≤ m ≤ 131,

〈1〉 ⊥

⎛⎝2 0 0
0 5 2 + ω
0 2 + ω 8

⎞⎠ if m = 47, 55, 67 ≤ m ≤ 119,

〈1〉 ⊥

⎛⎝2 0 1
0 5 2 + ω
1 2 + ω 9

⎞⎠ if m = 47, 55, 67 ≤ m ≤ 131,

〈1〉 ⊥

⎛⎝2 0 0
0 5 2 + ω
0 2 + ω 10

⎞⎠ if m = 47, 55, 67 ≤ m ≤ 159.

We can check that � represents all positive integers except only 15. Hence we can
obtain a universal lattice by attaching a vector of norm 15 to �. If � is inherited
and � is not universal, then we also obtain a universal lattice by the same process.

Case III-5. 〈1〉 ⊥
(
2 1
1 4

)
→ L: Note that 〈1〉 ⊥

(
2 1
1 4

)
represents a quadratic

lattice 〈1〉Z ⊥
(
2 1
1 4

)
Z

whose truant is 7.

Case III-5 a. 7 → 〈1〉 ⊥
(
2 1
1 4

)
: Then we only have m = 6. Since 〈1〉 ⊥(

2 1
1 4

)
represents a universal quadratic lattice 〈1, 6〉Z ⊥

(
2 1
1 4

)
Z

, 〈1〉 ⊥
(
2 1
1 4

)
is universal. From now through the Case III-5, we may assume that m �= 6.

Case III-5 b. 7 �→ 〈1〉 ⊥
(
2 1
1 4

)
: The next escalation lattice � of 〈1〉 ⊥

(
2 1
1 4

)
is of the form

� ∼=

⎛⎜⎜⎝
1 0 0 α
0 2 1 β
0 1 4 γ

α β γ 7

⎞⎟⎟⎠
for some α, β and γ.
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Case III-5 b(1). m �≡ 3 (mod 4): From the positive semi-definiteness, � is inher-
ited if m ≥ 29, and � represents a quadratic lattice⎛⎜⎜⎝

1 0 0 Reα
0 2 1 Re β
0 1 4 Re γ

Reα Reβ Re γ 7

⎞⎟⎟⎠
Z

.

There are 30 quadratic lattices of this type up to isometry. These quadratic lattices
are universal except for the following lattice:

�′ = 〈1〉Z ⊥

⎛⎝2 1 0
1 4 1
0 1 5

⎞⎠
Z

.

Note that the truant of �′ is 10 and �′ represents all numbers 1 to 15 except 10.
Assume that � represents �′. If m = 10, then the Hermitian lattice � represents
10; hence � is a quaternary universal Hermitian lattice. From the positive semi-
definiteness, if m ≥ 17, then � is inherited. If m = 13, 14 and � is uninherited,
then

� ∼= 〈1〉 ⊥

⎛⎝2 1 0
1 4 1± ωm

0 1± ωm 5

⎞⎠ .

Since � represents all positive integers 1 through 15 except only the truant 10 of �,
the next escalation lattice of � is a pro forma quinary universal Hermitian lattice
which can be obtained by attaching a vector of norm 10. In this case, the universal
Hermitian lattice is inherited if m ≥ 53. If � is inherited and it is not universal,
then � is the following lattice whose truant is 10:

〈1〉 ⊥

⎛⎝2 1 0
1 4 1
0 1 5

⎞⎠ .

Hence we can obtain a universal lattice via attaching a vector of norm 10.
Case III-5 b(2). m ≡ 3 (mod 4): From the positive semi-definiteness, the es-
calation lattices � are all inherited for m ≥ 115. Thus we may assume that

m = 23, 31, 35, . . . , 111. Note that 〈1〉Z ⊥
(
2 1
1 4

)
Z

represents positive integers

n when n �= 7du− and n �≡ 7, 10 (mod 12). The lattice 〈1〉 ⊥
(
2 1
1 4

)
represents

〈1〉Z ⊥
(
2 1
1 4

)
Z

+km with k = 1, 2, 3. If n is not represented by 〈1〉Z ⊥
(
2 1
1 4

)
Z

,

then at least one of n−m, n− 2m and n− 3m is represented by 〈1〉Z ⊥
(
2 1
1 4

)
Z

for n ≥ 3m. It can be verified that � represents all positive integers smaller than
3m. Hence the universality of � is proved. If m ≥ 115, then all �’s are universal

except 〈1〉 ⊥

⎛⎝2 1 0
1 4 1
0 1 5

⎞⎠. We can obtain a universal pro forma quinary lattice by

attaching a vector of norm 10 to this exception.
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Case III-6. 〈1〉 ⊥
(
2 1
1 5

)
→ L: Note that 〈1〉 ⊥

(
2 1
1 5

)
represents a quadratic

lattice 〈1〉Z ⊥
(
2 1
1 5

)
Z

whose truant is 7.

Case III-6 a. 7 → 〈1〉 ⊥
(
2 1
1 5

)
: We have only m = 6. Since 〈1〉 ⊥

(
2 1
1 5

)
rep-

resents a universal quadratic lattice 〈1, 6〉Z ⊥
(
2 1
1 5

)
Z

, 〈1〉 ⊥
(
2 1
1 5

)
is universal.

From now through the Case III-6, we may assume that m �= 6.

Case III-6 b. 7 �→ 〈1〉 ⊥
(
2 1
1 5

)
: The next escalation lattice � of 〈1〉 ⊥

(
2 1
1 5

)
is of the form

� ∼=

⎛⎜⎜⎝
1 0 0 α
0 2 1 β
0 1 5 γ

α β γ 7

⎞⎟⎟⎠
for some α, β, γ.
Case III-6 b(1). m �≡ 3 (mod 4): From the positive semi-definiteness, � is inher-
ited if m ≥ 37, and � represents a quadratic lattice⎛⎜⎜⎝

1 0 0 Reα
0 2 1 Re β
0 1 5 Re γ

Reα Reβ Re γ 7

⎞⎟⎟⎠
Z

.

There are 16 quadratic lattices of this type up to isometry. These quadratic lattices
are universal except for the following lattice:

�′ = 〈1〉Z ⊥

⎛⎝2 1 0
1 5 1
0 1 5

⎞⎠
Z

.

Note that the truant of �′ is 15 and �′ represents all numbers 1 to 14. Assume �
represents �′. If � is uninherited, then m = 10, 13, 14, 17, 21 and

� ∼= 〈1〉 ⊥

⎛⎝2 1 0
1 5 1± ωm

0 1± ωm 5

⎞⎠ .

Note that if m = 10, 13, 14, 21, then � represents 15. Hence � is a quaternary
universal lattice. If m = 17, then it is isometric to the lattice in the Case III-4 b(1).
If � is inherited, and it is not universal, then � is the following lattice whose truant
is 15:

〈1〉 ⊥

⎛⎝2 1 0
1 5 1
0 1 5

⎞⎠ .

Thus we can obtain a universal lattice via attaching a vector of norm 15.
Case III-6 b(2). m ≡ 3 (mod 4): From the positive semi-definiteness, the es-
calation lattices � are inherited for m ≥ 147. Thus we may assume that m =
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23, 31, 35, . . . , 139. Note that 〈1〉Z ⊥
(
2 1
1 5

)
Z

represents all positive integers n ex-

cept the form 2eu7. The associated (nonclassical) quadratic lattice of 〈1〉 ⊥
(
2 1
1 5

)
represents 〈1〉Z ⊥

(
2 1
1 5

)
Z

⊥ 〈m〉Z. If n = 2eu7 > 4m is not represented

by 〈1〉Z ⊥
(
2 1
1 5

)
Z

, then at least one of n − m and n − 4m is represented by

〈1〉Z ⊥
(
2 1
1 5

)
Z

. It is also verified that each � represents all positive integers

smaller than 4m. Hence the universality of the �’s is proved. If m ≥ 147, then

all the �’s are universal except 〈1〉 ⊥

⎛⎝2 1 0
1 5 1
0 1 5

⎞⎠. We can obtain a universal pro

forma quinary lattice by attaching a vector of norm 15 to this exception.
Case III-7. Now we investigate the lattices

〈1〉 ⊥
(
2 ω
ω b

)
and 〈1〉 ⊥

(
2 −1 + ω

−1 + ω b

)
over Q(

√
−m) in Table 1. It is known that all the binary Hermitian lattices in

Table 1 are universal (see [10]) except for the last two over Q(
√
−39) and they are

listed at the end of this paper (see Table 3). If m �≡ 3 (mod 4), i.e., m = 6, 10, then
the universalities of ternary lattices in Table 1 are checked by the fifteen theorem.
Now assume that m ≡ 3 (mod 4), i.e., m = 15, 23, 31, 35, 39. Since

〈1〉 ⊥
(

2 −1 + ω
−1 + ω b

)
= 〈1〉 ⊥

(
2 ω
ω b

)
,

it is enough to check the universality of � ∼= 〈1〉 ⊥
(
2 ω
ω b

)
. Each associated

quadratic lattice of � has a sublattice �′ of class number 1 (see Table 2). The
universality of each lattice �′ is proved by a method similar to the previous case.

The last exceptional lattice is

� ∼= 〈1〉 ⊥
(
2 ω
ω 5

)
over Q(

√
−39). The associated quadratic form of this lattice is

N : x2
1 + x1x2 + 10x2

2 + 2y21 + y1z1 + 5z21 .

Since 2N → N , we only need to show that N represents all odd positive integers.
If we set x2 = 2t for some t ∈ Z, then N represents

〈1〉Z ⊥
(

2 1/2
1/2 5

)
Z

⊥ 〈39〉Z.

For sufficiently large n, we will show that

n− 39s2 → N ′ = 〈1〉Z ⊥
(

2 1/2
1/2 5

)
Z
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Table 2. Sublattices of class number 1

field lattice subtrahend

Q(
√
−15)

⎛⎝1 0 0
0 2 ω
0 ω 3

⎞⎠ ←

⎛⎝1 0 0
0 2 4
0 4 12

⎞⎠
Z

∼=

⎛⎝1 0 0
0 2 0
0 0 4

⎞⎠
Z

← n �= 2du7 15⎛⎝1 0 0
0 2 ω
0 ω 4

⎞⎠ ←

⎛⎝1 0 0
0 2 4
0 4 16

⎞⎠
Z

∼=

⎛⎝1 0 0
0 2 0
0 0 8

⎞⎠
Z

← n �= u5, 2eu7 15, 2 · 15⎛⎝1 0 0
0 2 ω
0 ω 5

⎞⎠ ←

⎛⎝1 0 0
0 8 4
0 4 5

⎞⎠
Z

∼=

⎛⎝1 0 0
0 5 1
0 1 5

⎞⎠
Z

← n �= 2du5 15

Q(
√
−23)

⎛⎝1 0 0
0 2 ω
0 ω 4

⎞⎠ ←

⎛⎝1 0 0
0 2 6
0 6 24

⎞⎠
Z

∼=

⎛⎝1 0 0
0 2 0
0 0 6

⎞⎠
Z

← n �= 2eu5 23⎛⎝1 0 0
0 2 ω
0 ω 5

⎞⎠ ←

⎛⎝1 0 0
0 12 6
0 6 5

⎞⎠
Z

∼=

⎛⎝1 0 0
0 5 1
0 1 5

⎞⎠
Z

← n �= 2du5 23

Q(
√
−31)

⎛⎝1 0 0
0 2 ω
0 ω 5

⎞⎠ ←

⎛⎝1 0 0
0 2 8
0 8 40

⎞⎠
Z

∼=

⎛⎝1 0 0
0 2 0
0 0 8

⎞⎠
Z

← n �= u5, 2eu7 15, 2 · 15

Q(
√
−35)

⎛⎝1 0 0
0 2 ω

0 ω 5

⎞⎠ ←

⎛⎝1 0 0
0 2 9

0 9 45

⎞⎠
Z

∼=

⎛⎝1 0 0
0 2 1

0 1 5

⎞⎠
Z

← n �= 2eu7 35, 22 · 35

for suitable s. This implies the desired result: n → � over Q(
√
−39). Note that N ′

represents two quadratic sublattices which are in the same genus by the Brandt-
Intrau table [2]: ⎛⎝1 0 0

0 8 2
0 2 20

⎞⎠
Z

,

⎛⎝4 0 2
0 5 1
2 1 9

⎞⎠
Z

.

Hence if we show that n−39s2 is represented by the genus, then we can say n → �.
We have that the genus represents all positive integers n when n ≡ 0, 1 (mod 4)
and n �= 13du+. For other odd integers n ≥ 39 · 62, here are choices for s as follows:

n u± subtrahend
n ≡ 1 (mod 4), n = 13du+ u+ ≡ 1, 4, 10 (mod 13) 39 · 22

u+ ≡ 3 (mod 13) 39 · 42
u+ ≡ 9, 12 (mod 13) 39 · 62

n ≡ 3 (mod 4), n = 13eu+ u+ ≡ 1, 4, 9, 10, 12 (mod 13) 39 · 12
u+ ≡ 3 (mod 13) 39 · 32

n ≡ 3 (mod 4), n = 13eu− u− ≡ 2, 5, 6, 7, 8, 11 (mod 13) 39 · 12
n ≡ 3 (mod 4), n = 13du+ u+ ≡ 1, 9, 10 (mod 13) 39 · 12

u+ ≡ 3, 12 (mod 13) 39 · 32
u+ ≡ 4 (mod 13) 39 · 52

n ≡ 3 (mod 4), n = 13du− u− ≡ 2 (mod 13) 39 · 52
u− ≡ 5, 8, 11 (mod 13) 39 · 12
u− ≡ 6, 7 (mod 13) 39 · 32
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Table 3. Binary universal Hermitian lattice

Q(
√
−m) binary universal lattices

Q(
√
−1) 〈1, 1〉, 〈1, 2〉, 〈1, 3〉

Q(
√
−2) 〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉

Q(
√
−3) 〈1, 1〉, 〈1, 2〉

Q(
√
−5) 〈1, 2〉, 〈1〉 ⊥

(
2 −1 + ω5

−1 + ω5 3

)
Q(

√
−6) 〈1〉 ⊥

(
2 ω6

ω6 3

)
Q(

√
−7) 〈1, 1〉, 〈1, 2〉, 〈1, 3〉

Q(
√
−10) 〈1〉 ⊥

(
2 ω10

ω10 5

)
Q(

√
−11) 〈1, 1〉, 〈1, 2〉

Q(
√
−15) 〈1〉 ⊥

(
2 ω15

ω15 2

)
Q(

√
−19) 〈1, 2〉

Q(
√
−23) 〈1〉 ⊥

(
2 ω23

ω23 3

)
, 〈1〉 ⊥

(
2 −1 + ω23

−1 + ω23 3

)
Q(

√
−31) 〈1〉 ⊥

(
2 ω31

ω31 4

)
, 〈1〉 ⊥

(
2 −1 + ω31

−1 + ω31 4

)

For n < 39 · 62, we can check that � represents all integers n except 13 and 91
by direct calculation. If we attach a vector of norm 13 to �, the escalation lattices
also represent 91. Hence they are universal Hermitian lattices.

Remark 1. In this article, we computed all new universal Hermitian lattices which
do not contain other universal lattices. For example, over Q(

√
−5), there are 2

binary universal Hermitian lattices as follows, up to isometry [10]:

〈1, 2〉, 〈1〉 ⊥
(

2 −1 + ω
−1 + ω 3

)
.

The first lattice is found in the procedure of escalation in this article, but the
second one is excluded because it contain a universal Hermitian lattice 〈1, 2〉 as a
sublattice.

Remark 2. We computed all quaternary escalation lattices and corresponding tru-
ants (see Table 4). We can obtain pro forma quinary universal Hermitian lattices
by attaching a vector whose norm is its truant to each quaternary escalation lattice.
But these are too numerous to list them all.
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Table 4. Truants of escalation lattices

Escalation lattice Truant m
〈1〉 2 if m �= 1, 2; 7,

3 if m = 1; 7,
5 if m = 2,

〈1, 1〉 3 if m �= 1, 2; 3, 7, 11,
〈1, 1, 1〉 7 if m �= 1,2,5,6;3,7,11,15,19,23,
〈1, 1, 2〉 14 if m �= 1,2,5,6,10,13,14;3,7,11,15,19,23,31,35,39,43,47,51,55,
〈1, 1, 3〉 6 if m �= 1,2,5,6;3,7,11,15,19,23,
〈1, 2〉 5 if m �= 1,2,5;3,7,11,19,
〈1, 2, 2〉 7 if m �= 1,2,5,6;3,7,11,15,19,
〈1, 2, 3〉 10 if m �= 1,2,5,6,10;3,7,11,15,19,23,31,39,
〈1, 2, 4〉 14 if m �= 1,2,5,6,10,13,14;3,7,11,15,19,23,31,39,47,55,
〈1, 2, 5〉 10 if m �= 1,2,5,6,10;3,7,11,15,19,23,31,39,

〈1〉 ⊥

⎛⎝2 0 0
0 5 0
0 0 5

⎞⎠ 15
if m ≡ 1, 2 (mod 4) and m ≥ 22,
if m ≡ 3 (mod 4) and m = 47, 55, m ≥ 67,

〈1〉 ⊥

⎛⎝2 0 1
0 5 1
1 1 5

⎞⎠ 15
if m ≡ 1, 2 (mod 4) and m ≥ 21,
if m ≡ 3 (mod 4) and m = 47, 55, m ≥ 67,

〈1〉 ⊥

⎛⎝2 0 1
0 5 2
1 2 8

⎞⎠ 15
if m ≡ 1, 2 (mod 4) and m ≥ 33,
if m ≡ 3 (mod 4) and m = 47, 55, m ≥ 67,

〈1〉 ⊥

⎛⎝2 0 1
0 5 1
1 1 9

⎞⎠ 15
if m ≡ 1, 2 (mod 4) and m ≥ 41,
if m ≡ 3 (mod 4) and m = 47, 55, m ≥ 67,

〈1〉 ⊥

⎛⎝2 0 0
0 5 ±ω
0 ±ω 5

⎞⎠ 15 if m = 17, 21,

〈1〉 ⊥

⎛⎝2 0 1
0 5 1 ± ω
1 1 ± ω 5

⎞⎠ 15 if m = 17,

〈1〉 ⊥

⎛⎝2 0 1
0 5 2 ± ω
1 2 ± ω 8

⎞⎠ 15 if m = 17, 21, 22,26,29,30,

〈1〉 ⊥

⎛⎝2 0 1
0 5 1 ± ω
1 1 ± ω 9

⎞⎠ 15 if m = 17,21,22,26,29,30,33,34,37,38,

〈1〉 ⊥

⎛⎝2 0 0
0 5 1 + ω
0 1 + ω 8

⎞⎠ 15 if m ≡ 3 (mod 4) and m = 47, 55, 151, 67 ≤ m ≤ 131,

〈1〉 ⊥

⎛⎝2 0 0
0 5 −2 + ω
0 −2 + ω 8

⎞⎠ 15 if m ≡ 3 (mod 4) and m = 47, 55, 151, 67 ≤ m ≤ 131,

〈1〉 ⊥

⎛⎝2 0 0
0 5 2 + ω
0 2 + ω 8

⎞⎠ 15 if m ≡ 3 (mod 4) and m = 47, 55, 67 ≤ m ≤ 119,

〈1〉 ⊥

⎛⎝2 0 1
0 5 2 + ω
1 2 + ω 9

⎞⎠ 15 if m ≡ 3 (mod 4) and m = 47, 55, 67 ≤ m ≤ 131,

〈1〉 ⊥

⎛⎝2 0 0
0 5 2 + ω
0 2 + ω 10

⎞⎠ 15 if m ≡ 3 (mod 4) and m = 47, 55, 67 ≤ m ≤ 159,

〈1〉 ⊥
(
2 1
1 4

)
7 if m �= 1,2,5,6,10;3,7,11,19,

〈1〉 ⊥

⎛⎝2 1 0
1 4 1
0 1 5

⎞⎠ 10
if m ≡ 1, 2 (mod 4) and m ≥ 17,
if m ≡ 3 (mod 4) and m ≥ 115,

〈1〉 ⊥

⎛⎝2 1 0
1 4 1 ± ω
0 1 ± ω 5

⎞⎠ 10 if m = 13,14,

〈1〉 ⊥
(
2 1
1 5

)
7 if m �= 1,2,5,6;3,7,11,19,

〈1〉 ⊥

⎛⎝2 1 0
1 5 1
0 1 5

⎞⎠ 15
if m ≡ 1, 2 (mod 4) and m ≥ 21,
if m ≡ 3 (mod 4) and m ≥ 147,

〈1〉 ⊥

⎛⎝2 1 0
1 5 1 ± ω
0 1 ± ω 5

⎞⎠ 15 if m = 17,

〈1〉 ⊥
(
2 ω
ω 5

)
13 if m = 39.
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