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A POSTERIORI ERROR ESTIMATION FOR hp-ADAPTIVITY

FOR FOURTH-ORDER EQUATIONS

PETER K. MOORE AND MARINA RANGELOVA

Abstract. A posteriori error estimates developed to drive hp-adaptivity for
second-order reaction-diffusion equations are extended to fourth-order equa-
tions. A C1 hierarchical finite element basis is constructed from Hermite-
Lobatto polynomials. A priori estimates of the error in several norms for
both the interpolant and finite element solution are derived. In the latter
case this requires a generalization of the well-known Aubin-Nitsche technique
to time-dependent fourth-order equations. We show that the finite element
solution and corresponding Hermite-Lobatto interpolant are asymptotically
equivalent. A posteriori error estimators based on this equivalence for solu-
tions at two orders are presented. Both are shown to be asymptotically exact
on grids of uniform order. These estimators can be used to control various
adaptive strategies. Computational results for linear steady-state and time-
dependent equations corroborate the theory and demonstrate the effectiveness
of the estimators in adaptive settings.

1. Introduction

A significant effort has been made in developing adaptive finite element methods
for the solution of second-order parabolic and elliptic partial differential equations
[2, 5]. Less attention has been devoted to fourth-order problems. Nevertheless,
many important physical systems are modeled by fourth-order equations. These
include the biharmonic equation, the Cahn-Hilliard equation [9, 16] and multi-
component Cahn-Hillard system [14], the Extended Fisher-Kolmogorov equation
[6, 12], the Kuramoto-Sivashinsky equation [11, 18, 30, 32] and the Generalized
Swift-Hohenberg equation [8, 17]. In these examples the solutions are smooth,
suggesting that high-order approaches are advantageous.

One approach to solving fourth-order equations is to reduce them to a second-
order system and utilize well-established adaptive methods for second-order equa-
tions. Adaptive finite element methods for second-order systems come in several
varieties. Two of the most common are grid-refinement (h-refinement) and order
variation (p-refinement) [5]. A combination of these, i.e., hp-refinement has been
shown to be very effective in several settings [13, 20].

Potential drawbacks of this strategy include measuring errors in less natural
norms and a doubling of the number of unknowns. One approach to reducing the
number of unknowns is by using discontinuous Galerkin [10] or interior penalty
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methods [33]. Alternatively the fourth-order problems can be solved directly en-
abling us to compute solutions in H2. To that end we consider the basis proposed
by Adjerid [1] constructed from Hermite-Lobatto polynomials. This basis has sev-
eral desirable properties. It involves less than half the number of unknowns of the
second-order system. The finite element solution is in C1. The basis is hierarchical
in that increasing the order on an element involves one additional basis function.
Most importantly the Hermite-Lobatto interpolant possesses the asymptotic equiv-
alence property, that is, the finite element and interpolant errors converge at the
same rate with the same constant in the H2 norm. Asymptotic equivalence guar-
antees that error estimates that converge to the true error as the grid is refined can
be constructed [3, 23, 24, 38, 39].

These estimates are global in the sense that they approximate the error over the
domain. They are used to decide when to adapt the grid. How to adapt the grid,
on the other hand, depends on estimates of the local error. Error indicators on each
element are typically computed as the elemental contributions to the global error
estimator. In the approach taken by Adjerid for even-order elements in two space
dimensions [1] and followed here, error indicators are obtained by solving a local
problem on each element. These suffice for determining h- and p-refinement. The
order selection algorithm for hp-adaptivity adopted by us also requires estimates of
the error one order higher than the current order. This is accomplished by solving a
second local problem on each element. These two indicators are natural extensions
of effective techniques developed for second-order equations [25].

The error estimator and element error indicators proposed, in conjunction with
h-, p- or hp-adaptivity can be utilized to solve both steady-state and time-dependent
problems. To that end consider fourth-order steady-state equations of the form

d2

dx2
(ρ(x)

d2u

dx2
)− d

dx
(µ(x)

du

dx
) + κ(x)u = f(x), x ∈ Ω ≡ (a, b),(1)

u(a) = u(b) = 0,
du

dx
(a) =

du

dx
(b) = 0,(2)

and comparable time-dependent equations

ut + (ρ(x)uxx)xx − (µ(x)ux)x + κ(x)u = f(x, t), x ∈ Ω ≡ (a, b), t ∈ (0, T ],(3)

u(a, t) = u(b, t) = 0,
du

dx
(a, t) =

du

dx
(b, t) = 0,(4)

u(x, 0) = u0(x), x ∈ Ω,(5)

where

(6) ρ(x) > 0, µ(x) ≥ 0, κ(x) ≥ 0.

Throughout we assume that (1)-(2) and (3)-(5) have unique solutions. In the former

case we also assume u ∈ Hp+5
0 (Ω) while in the latter u ∈ Hp+5

0 (Ω) × C∞
0 [0, T ] for

some time T . These regularity assumptions are needed in our proofs but are not the
primary focus of this paper. Our main concern is in developing estimators that will
result in reliable and efficient codes for problems with smooth solutions. Equations
(1)-(2) and (3)-(5) are discretized in space using the finite element method. For
(3)-(5) the resulting system of ordinary differential equations is integrated in time
using the differential-algebraic code dassl [7]. This corresponds to a method-of-lines
(MOL) approach.
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In section 2 the Hermite-Lobatto polynomials are introduced and important
properties are derived. A priori estimates for the Hermite-Lobatto interpolant on
a canonical element ∆ = [m − h/2,m + h/2] and on Ω are obtained in section 3.
Comparable results for the associated finite element solutions and relations between
these a priori error estimates are also proved. This requires an extension of the
Aubin-Nitsche technique [15] to fourth-order time-dependent problems. In section
4 a posteriori error estimates for the finite element solutions of both fourth-order
problems are presented. Estimates for a finite element solution one order higher are
also obtained in this section. In both cases convergence of the estimates to the true
error is proved for grids of uniform order. This represents an important first step
in obtaining proofs in a more general setting. Finally a brief description of how
the theory is applied to guide the three adaptive strategies is presented. Section 5
contains the computational results. Estimator accuracy is confirmed for a model
linear steady-state problem. We also provide numerical evidence that the error
estimator and indicators can effectively drive the adaptive strategies along with
some comparisons between them for steady-state and time-dependent equations.
Some conclusions are presented in section 6.

2. Preliminaries

Throughout this paper the Hermite-Lobatto polynomials on ∆ = [m− h/2,m+
h/2] are given by

(7) Φp(x;h;m) =

√
2p− 3

2

∫ 2(x−m)/h

−1

∫ r

−1

Pp−2(s)dsdr, p ≥ 4,

and in monic form by

(8) ψp(x;h;m) =

p∏
i=1

(x− Γi) =

[ p2 ]∑
i=0

âpp−2ix
p−2i, p ≥ 4,

where Pp−2(x) is the Legendre polynomial of degree p−2 and the Γi, i = 1, . . . , p, are
the roots of Φp(x;h;m). To form a basis for the space of polynomials of degree p on
∆ the functions Φp(x;h;m), p ≥ 4, of (7) are augmented by the cubic polynomials,

Φ0(x;h;m) =
2

h3
(x− (m+

h

2
))2(x− (m− h)),(9)

Φ1(x;h;m) =
1

h2
(x− (m+

h

2
))2(x− (m− h

2
)),(10)

Φ2(x;h;m) =
2

h3
(x− (m− h

2
))2(m+ h− x),(11)

Φ3(x;h;m) =
1

h2
(x− (m− h

2
))2(x− (m+

h

2
)).(12)

We will need the following properties of ψp(x;h;m) and its derivatives:
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Lemma 1. On ∆,

ψp(x;h;m) =
hp(p− 3)!p!

8(2p− 5)!

√
2

2p− 3
Φp(x;h;m),(13)

ψp(x;h;m) =
hpp!(p− 1)!

2(2p− 1)!

(
Pp(2(x−m)/h)− 2(2p− 3)

2p− 5
Pp−2(2(x−m)/h)(14)

+
2p− 1

2p− 5
Pp−4(2(x−m)/h)

)
,

ψ′
p(x;h;m) =

hp−1p!(p− 2)!

2(2p− 3)!
(Pp−1(2(x−m)/h)− Pp−3(2(x−m)/h)),(15)

ψ′′
p (x;h;m) =

hp−2p!(p− 1)!

(2p− 4)!
Pp−2(2(x−m)/h),(16)

∫ m+h/2

m−h/2

ψ2
p(x;h;m)dx =

3h2p+1(2p− 3)

8(2p+ 1)(2p− 1)(2p− 5)(2p− 7)

(
p!(p− 2)!

(2p− 2)!

)2

,(17)

∫ m+h/2

m−h/2

(ψ′
p(x;h;m))2dx =

h2p−1(2p− 3)

2(2p− 1)(2p− 5)

(
p!(p− 2)!

(2p− 3)!

)2

,(18)

∫ m+h/2

m−h/2

(ψ′′
p (x;h;m))2dx =

h2p−3

2p− 3

(
p!(p− 2)!

(2p− 4)!

)2

,(19)

ψp+1(x) = (x−m)ψp(x)−
h2p(p− 4)

4(2p− 3)(2p− 5)
ψp−1(x),(20)

max
x∈∆

|ψ′′
p (x;h;m)| ≤ C(p)hp−2.(21)

Proof. The first equality is obtained from (7) and the properties of Legendre poly-
nomials [28]

(22) Pp−2(x) =
2p−2

(
1
2

)
p−2

xp−2

(p− 2)!
+Rp−4(x),

where Rp−4(x) is a polynomial of degree p− 4 and the factorial function (1/2)p−2

is defined in [28]. From [22] the Lobatto polynomial Bp(x) satisfies

(23) B′
p(x) = −2p(p− 1)

h
Pp−1(2(x−m)/h).

Thus

(24) −
B′

p(x)

p(p− 1)
+

B′
p−2(x)

(p− 2)(p− 3)
=

2

h
(Pp−1(2(x−m)/h)− Pp−3(2(x−m)/h)).

The properties of Legendre polynomials and (23) imply that

(25) (Pp−1(2(x−m)/h)− Pp−3(2(x−m)/h)) = − (2p− 3)

(p− 1)(p− 2)
Bp−1(x).

Combining (24) and (25) and integrating over [m− h/2, x] yields
(26)

Φp(x;h;m)=−
√

2p− 3

2

(
1

p(p− 1)(2p− 3)
Bp(x)−

1

(p− 2)(p− 3)(2p− 3)
Bp−2(x)

)
.
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Then (14) follows from (26) together with (13) and

(27) Bp(x) = −p(p− 1)

2p− 1
(Pp(2(x−m)/h)− Pp−2(2(x−m)/h)),

from [22]. Differentiating (14) and using the properties of Legendre polynomials
gives (15). Equation (16) follows similarly by differentiating (15). Formulas (17)-
(19) are obtained by integrating (14)-(16) and using the properties of Legendre
polynomials.

Integrating (23) twice and using (7) yields

(28)

∫ x

m−h/2

Bp(s)ds = −p(p− 1)h

2

√
2

2p− 1
Φp+1(x;h;m).

From [22] we obtain

(29) Bp(x) =
(2p− 3)

(p− 2)

2(x−m)

h
Bp−1(x)−

p− 1

p− 2
Bp−2(x).

Integrating (29) gives∫ x

m−h/2

Bp(s)ds =
2(2p− 3)

h(p− 2)

(
(x−m)

∫ x

m−h/2

Bp−1(s)ds

+
h

2

√
2

2p− 3
(p− 1)(p− 2)

∫ x

m−h/2

Φp(s;h;m)ds

)

− p− 1

p− 2

∫ x

m−h/2

Bp−2(s)ds,

(30)

where we have integrated the second term by parts and then used (28). Substitut-
ing (26) into the second term on the right in (30) and applying (28) followed by
(13) yields (20). Equation (21) follows from (16) and the properties of Legendre
polynomials. �

3. A priori error estimates

Two interpolants of u are constructed in this section, one on the interval ∆ and
the other on the domain Ω. Consider first a function u ∈ C∞(∆) and corresponding
Hermite-Lobatto interpolant UI,∆ of the form

(31) UI,∆(x) =

p∑
i=0

ŪiΦi(x;h;m).

The coefficients Ūi, i = 0, . . . , p, are determined by requiring that

(32) UI,∆(Γj) = u(Γj), i = 2, . . . , p, U ′
I,∆(Γi) = u′(Γi), i = 1, p+ 1,

with Γ1 = Γ2 = m − h/2 and Γp = Γp+1 = m + h/2. Additionally let π∆ be the
linear operator that projects functions in C∞(∆) onto the space of polynomials
of degree p on ∆ according to (32). The next lemma provides a basis for the
Hermite-Lobatto interpolant on ∆.

Lemma 2. Let

(33) Γ0 = m− h

2
+

(
− 2

h
+

p−1∑
i=3

1

−h
2
− Γi

)−1

, Γp+2 = m+
h

2
+

(
2

h
+

p−1∑
i=3

1
h
2
− Γi

)−1

,
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and

L1(x) =

∏p+1
j=2(x− Γj)∏p+1

j=3(m− h
2
− Γj)

, L2(x) =
(x− Γ0)

∏p+1
j=3(x− Γj)

(m− h
2
− Γ0)

∏p+1
j=3(m− h

2
− Γj)

,(34)

Li(x) =

p+1∏
j=1,j �=i

x− Γj

Γi − Γj
, i = 3, . . . p− 1,(35)

Lp+1(x) =

∏p
j=1(x− Γj)∏p−1

j=1 (m+ h
2
− Γj)

, Lp(x) =
(x− Γp+2)

∏p−1
j=1 (x− Γj)

(m+ h
2
− Γp+2)

∏p−1
j=1 (m+ h

2
− Γj)

.(36)

Then

(37) UI,∆(x) =

p∑
i=2

u(Γi)Li(x) + u′(m− h/2)L1(x) + u′(m+ h/2)Lp+1(x).

Remark. Γ0 ∈ [m− h,m− h/2) and Γp+2 ∈ (m+ h/2,m+ h] with Γ0 = m− h and
Γ1 = m+ h only when p = 3.

Proof. The result follows from (31)-(32) since Li(Γj) = δij , i, j = 2, . . . , p, L′
i(Γ1) =

L′
i(Γp+1) = 0, i = 2, . . . , p, L1(Γj) = Lp+1(Γj) = 0, j = 2, . . . , p, L′

1(Γ1) =
L′
p+1(Γp+1) = 1 and L′

1(Γp+1) = L′
p+1(Γ1) = 0. �

The derivation of the a priori and a posteriori error estimates depends on the se-
ries expansion of the error in the Hermite-Lobatto interpolant given in the following
theorem.

Theorem 3. Let u ∈ C∞(∆) and UI,∆ be defined by (31)-(32). Then if

v(x) =

p+q+1∑
i=0

(x−m)i

i!
u(i)(m),(38)

u(x)− UI,∆(x) = ψp+1(x;h;m)

q∑
i=0

u(p+i+1)(m)

(p+ i+ 1)!
Ψi(x;h;m)(39)

+
∞∑

i=p+q+2

u(i)(m)

i!
(x−m)i + (v′(Γ1)− u′(Γ1))L1(x)

+ (v′(Γp+1)− u′(Γp+1))Lp+1(x) +

p∑
i=2

(v(Γi)− u(Γi))Li(x),

where

(40)

Ψi(x;h;m) =
xp+i+1 − π∆xp+i+1

ψp+1(x;h;m)

=

[i/2]∑
k=0

ai−2k,i(x−m)i−2k, i = 0, . . . , q,

with

(41) ai,i = 1, ai−2k,i = −
min(k,[ p+1

2 ])∑
l=1

ai−2(k−l),iâ
p+1
p+1−2l, k = 1, . . . , [

i

2
].
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Remark. From (8) and (40)-(41) we obtain

(42) Ψ0(x;h;m) = 1, Ψ1(x;h;m) = x−m, Ψ2(x;h;m) = (x−m)2+h2 p(p+ 1)

8(2p− 3)
.

Proof. Consider the expansion

(43) u(x)− UI,∆(x) = u(x)− v(x) + v(x)− π∆v(x) + π∆v(x)− UI,∆(x).

From (38) it follows that

(44) u(x)− v(x) =

∞∑
i=p+q+2

u(i)(m)

i!
(x−m)i.

Since π∆v(x) is a polynomial of degree p, Lemma 2 and the definition of π∆ imply
that

π∆v(x)− UI,∆(x) = (v′(Γ1)− u′(Γ1))L1(x) + (v′(Γp+1)− u′(Γp+1))Lp+1(x)

+

p∑
i=2

(v(Γi)− u(Γi))Li(x).(45)

The remainder of the proof follows exactly the proof in [22] for the Lobatto inter-
polant. �

Several a priori estimates can be derived from Theorem 3 [29]. Throughout
the remainder of the paper C denotes a generic constant that may depend on the
smoothness of u, ρ, µ and κ but not on h. In addition we will also need the H1

and H2 seminorms |u|1 and |u|2, respectively. Finally L2, H1 and H2 norms and
seminorms over ∆ are denoted by ‖u‖i,∆ and |u|i,∆ for i = 0, 1, 2.

Corollary 4. Under the hypotheses of Theorem 3 with u ∈ Hp+4(∆),

‖u− UI,∆‖20,∆ =

(
(p− 1)!

(2p− 1)!

)2
3(2p− 1)h2p+3

8(2p+ 3)(2p+ 1)(2p− 3)(2p− 5)
(u(p+1)(m))2(46)

+O(h2p+4),

|u− UI,∆|21,∆ =

(
(p− 1)!

(2p− 1)!

)2
(2p− 1)h2p+1

2(2p+ 1)(2p− 3)
(u(p+1)(m))2 +O(h2p+2),(47)

|u− UI,∆|22,∆ =

(
(p− 1)!

(2p− 2)!

)2
h2p−1

2p− 1
(u(p+1)(m))2 +O(h2p).(48)

Proof. From Theorem 3 with q = 1 it follows that

u(s) − U
(s)
I,∆ = ψ

(s)
p+1(x;h;m)

u(p+1)(m)

(p+ 1)!

+ ((x−m)ψp+1(x;h;m))(s)
u(p+2)(m)

(p+ 2)!

+
u(p+3)(νs)

(p+ 3)!
(x−m)p+3−s + (v′(Γ1)− u′(Γ1))L

(s)
1 (x)

+ (v′(Γp+1)− u′(Γp+1))L
(s)
p+1(x) +

p∑
i=2

(v(Γi)− u(Γi))L
(s)
i (x),

(49)
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where νs ∈ ∆, s = 0, 1, 2. From (49) we obtain

‖u(s) − U
(s)
I,∆‖0,∆ ≤ ‖ψ(s)

p+1(x;h;m)
u(p+1)(m)

(p+ 1)!

+ ((x−m)ψp+1(x;h;m))(s)
u(p+2)(m)

(p+ 2)!
‖0,∆

+
maxx∈∆ |u(p+3)(x)|

(p+ 3)!
‖(x−m)p+3−s‖0,∆ + |v′(Γ1)− u′(Γ1)|‖L(s)

1 (x)‖0,∆

+ |v′(Γp+1)− u′(Γp+1)|‖L(s)
p+1(x)‖0,∆ +

p∑
i=2

|v(Γi)− u(Γi)|‖L(s)
i (x)‖0,∆,

s = 0, 1, 2.

(50)

Using (44) yields the bounds

(51) |v′(Γi)−u′(Γi)| ≤ Chp+2, i = 1, p+1, |v(Γi)−u(Γi)| ≤ Chp+3, i = 2, . . . , p.

A direct computation shows that

(52) ‖(x−m)j‖0,∆ ≤ Chj+1/2.

From (34)-(36) it follows that

‖L(s)
i (x)‖0,∆ ≤ Ch3/2−s, i = 1, p+ 1,(53)

‖L(s)
i (x)‖0,∆ ≤ Ch1/2−s, i = 2, . . . , p, s = 0, 1, 2.

Now

‖ψ(s)
p+1(x;h;m)

u(p+1)(m)

(p+ 1)!
+ ((x−m)ψp+1(x;h;m))(s)

u(p+2)(m)

(p+ 2)!
‖20,∆

=

(
u(p+1)(m)

(p+ 1)!

)2

‖ψ(s)
p+1(x;h;m)‖20,∆

+

(
u(p+2)(m)

(p+ 2)!

)2

‖((x−m)ψp+1(x;h;m))(s)‖20,∆, s = 0, 1, 2,

(54)

since the polynomial ψ
(s)
p+1(x;h;m)((x−m)ψ2

p+1(x;h;m))(s) is odd so that the inner

product term in (54) is zero. Applying (14) and (17) to (54) with s = 0 and the
properties of Legendre polynomials gives
(55)

‖ψp+1(x;h;m)
u(p+1)(m)

(p+ 1)!
+ (x−m)ψp+1(x;h;m)

u(p+2)(m)

(p+ 2)!
‖20,∆

≤ h2p+3

8

(
(p− 1)!

(2p− 1)!

)2
3(2p− 1)

(2p+ 3)(2p+ 1)(2p− 3)(2p− 5)
(u(p+1)(m))2 + Ch2p+5.

Combining (50)-(53) with s = 0 and (55) produces
(56)

‖u− UI,∆‖20,∆≤
(
(p− 1)!

(2p− 1)!

)
2 3(2p− 1)h2p+3

8(2p+ 3)(2p+ 1)(2p− 3)(2p− 5)
(u(p+1)(m))2 + Ch2p+4.

Similarly we can use (49) with s = 0 to show that
(57)(

(p− 1)!

(2p− 1)!

)2
3(2p− 1)h2p+3

8(2p+ 3)(2p+ 1)(2p− 3)(2p− 5)
(u(p+1)(m))2 − Ch2p+4≤‖u− UI,∆‖20,∆,
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and, thus (56)-(57) yield (46).
Using (14), (15), (18) and (54) with s = 1 and the properties of Legendre poly-

nomials yields

(58)

‖ψ′
p+1(x;h;m)

u(p+1)(m)

(p+ 1)!
+ (ψp+1(x;h;m) + (x−m)ψ′

p+1(x;h;m))
u(p+2)(m)

(p+ 2)!
‖20,∆

≤ h2p+1

2

(
(p− 1)!

(2p− 1)!

)2
(2p− 1)

(2p+ 1)(2p− 3)
(u(p+1)(m))2 + Ch2p+3.

Combining (50)-(53) with s = 1 and (58) gives

|u− UI,∆|21,∆ ≤
(

(p− 1)!

(2p− 1)!

)2
(2p− 1)h2p+1

2(2p+ 1)(2p− 3)
(u(p+1)(m))2 + Ch2p+2,(59)

with (47) following equivalently to (46).
Finally from (15), (16), (19) and (54) with s = 2 and the properties of Legendre

polynomials we obtain
(60)

‖ψ′′
p+1(x;h;m)

u(p+1)(m)

(p+ 1)!
+ (2ψ′

p+1(x;h;m) + (x−m)ψ′′
p+1(x;h;m))

u(p+2)(m)

(p+ 2)!
‖0,∆

≤ h2p−1

(2p− 1)

(
(p− 1)!

(2p− 2)!

)2

(u(p+1)(m))2 + Ch2p.

Then using (50)-(53) with s = 2 and (60) in an analogous manner produces

(61) |u− UI,∆|22,∆ ≤
(

(p− 1)!

(2p− 2)!

)2
h2p−1

(2p− 1)
(u(p+1)(m))2 +O(h2p),

and thus, following the earlier results, (48). �

The second interpolant approximates u ∈ Hp+4(Ω). Let

(62) ∆Ω := {a = x0 < x1 < · · · < xN = b}
be a partition of Ω into N subintervals Ωk = (xk−1, xk), k = 1, . . . , N , and let S∆Ω

be the corresponding vector space of piecewise differentiable polynomials whose
restriction to Ω̄k is polynomials of degree pk. Additionally let S∆Ω,+ be the space
of piecewise differentiable polynomials whose restriction to Ω̄k is polynomials of
degree pk +1. Let hk = xk − xk−1 and mk = (xk + xk−1)/2 be the interval lengths
and midpoints of Ωk, k = 1, . . . , N , respectively. In typical h- and hp-adaptive
codes that use binary refinement [20] the hk satisfy

(63)
hk

hk−1
∈ H ≡ {1

2
, 1, 2},

and this assumption will be made throughout. For p- and hp-adaptive codes we
also require that the pk satisfy the order smoothness condition [20] (see Example
5.1)

(64) |pk − pk−1| ≤ 1.

Let H ≡ hmax = max1≤k≤Nhk, hmin = min1≤k≤Nhk. In the convergence proofs of
sections 3 and 4 the grid ∆Ω is refined in such a way that H → 0 and λ ≡ hmax/hmin

is kept constant. Thus H/λ ≤ hk ≤ H, k = 1, . . . , N . With a slight abuse of
notation ∆Ω and its associated vector space S∆Ω are referred to as the grid. A grid
is said to be spatially uniform if hk = h, k = 1, . . . , N . It is of uniform order p if
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pk = p, k = 1, . . . , N . In this case the vector space is designated as S∆Ω,p. If a grid
is both spatially uniform and of uniform order p, it is said to be uniform.

Consider an interpolant on ∆Ω, UI(x) ∈ S∆Ω of u(x) having the form

(65) UI(x) =

N∑
k=0

3∑
i=2

Ūi,kφi,k(x) +

N∑
k=1

pk∑
i=4

Ūi,kφi,k(x).

The functions

φ2,k(x) =

⎧⎨
⎩

Φ2(x;hk;mk) xk−1 ≤ x ≤ xk,
Φ0(x;hk+1;mk+1) xk ≤ x ≤ xk+1, k = 0, 1, . . . , N,
0 otherwise,

(66)

φ3,k(x) =

⎧⎨
⎩

Φ3(x;hk;mk) xk−1 ≤ x ≤ xk,
Φ1(x;hk+1;mk+1) xk ≤ x ≤ xk+1, k = 0, 1, . . . , N,
0 otherwise,

(67)

and
(68)

φi,k(x) =

{
Φi(x;hk;mk) xk−1 ≤ x < xk,
0 otherwise,

, i = 4, 5, . . . , pk, k = 1, 2, . . . , N,

comprise a hierarchical basis for S∆Ω . As on ∆ the coefficients Ūi,k are defined by
requiring

UI(xi,k)|Ωk
= u(xi,k), i = 3, . . . , pk − 1, k = 1, . . . , N,(69)

U ′
I(xi,k) = u′(xi,k), UI(xi,k) = u(xi,k), i = 1, 2, pk, pk + 1, k = 0, . . . , N,(70)

where x1,k = x2,k = xk−1, xp,k = xp+1,k = xk and xk−1 < xi,k < xk i = 3, . . . ,
pk − 1, are the distinct roots of Φpk+1(x;hk;mk). Let π be the linear operator
that projects functions in Hp+4(Ω) onto the space S∆Ω according to (69)-(70). The
a priori estimates of Corollary 4 extend naturally to Ω [29] as described in the
following corollary.

Corollary 5. Let u ∈ Hp+4(Ω) and let UI ∈ S∆Ω,p be its Hermite-Lobatto inter-
polant (65)-(70). Then

‖u− UI‖22 =
1

2p− 1

(
(p− 1)!

(2p− 2)!

)2 N∑
k=1

h2p−1
k (u(p+1)(mk))

2(71)

+O(H2p) ≤ CH2(p−1),

‖u− UI‖2s ≤ CH2(p+1−s), s = 0, 1.(72)

Proof. The proof follows directly from Corollary 4. �

The Galerkin form of (1)-(2) consists in finding u ∈ H2
0 (Ω) such that

A(u, v) = (f, v), ∀ v ∈ H2
0 (Ω),(73)

A(u, v) =

∫ b

a

(ρ(x)u′′(x)v′′(x) + µ(x)u′(x)v′(x) + κ(x)u(x)v(x))dx,(74)

(f, v) =

∫ b

a

f(x)v(x)dx.(75)

The bilinear form A(u, v) is both continuous (bounded) and coercive as shown in
the next lemma.
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Lemma 6. For A(u, v) defined in (74) with ρ(x), µ(x) and κ(x) satisfying (6),
∃α, β such that

(76) α‖u‖22 ≤ A(u, u) ≤ β‖u‖22.
Proof. The proof is a straightforward extension of the result for second-order equa-
tions [29, 31]. �

The finite element solution U ∈ S∆Ω
0 has the same form as UI ,

(77) U(x) =
N∑

k=0

3∑
i=2

Ui,kφi,k(x) +
N∑

k=1

pk∑
i=4

Ui,kφi,k(x),

where the subscript 0 indicates that U satisfies (2). Then U is the solution of

(78) A(U, V ) = (f, V ), ∀ V ∈ S∆Ω
0 .

In the next lemma and corollary we present several a priori error estimates and a
superconvergence result needed to prove asymptotic equivalence in the subsequent
lemma.

Lemma 7. Let u ∈ Hp+4(Ω) be the solution of (73), UI ∈ S∆Ω,p
0 be its Hermite-

Lobatto interpolant (65)-(70) and U ∈ S∆Ω,p
0 be the solution of (78). Then

‖u− U‖s ≤ CHp+1−s, s = 0, 1, 2,(79)

‖UI − U‖2 ≤ CHp.(80)

Proof. [1, 27]. �
Corollary 8. Under the hypotheses of Lemma 7,

(81) ‖UI − U‖s ≤ CHp+1−s, s = 0, 1.

Proof. The result follows from Corollary 5 and Lemma 7. �
Lemma 9. Let the hypotheses of Lemma 7 hold. If

(82) ‖u− UI‖2 ≥ CHp−1,

then

(83)
‖u− U‖2
‖u− UI‖2

= 1 +O(H).

Remarks. Equation (83) is a statement of asymptotic equivalence. Condition (82)
is slightly stronger than the more typical saturation assumption [4, 34] but is ap-
propriate in the case of smooth solutions. Corollary 5 and Lemma 9 suggest that
a posteriori error estimates can be obtained if u(p+1)(mk), k = 1, . . . , N , can be
computed. This is described in section 4.

Proof. The proof follows directly from (80), (82) and the triangle inequality. �
In the time-dependent case (3)-(5), the Galerkin form consists in finding u ∈

H2
0 (Ω)× C∞[0, T ] such that

(84) (ut, v) +A(u, v) = (f, v), ∀ v ∈ H2
0 (Ω), t ∈ (0, T ].

The finite element solution U ∈ S∆Ω
0 × C∞[0, T ] has the form

(85) U(x, t) =
N∑

k=0

3∑
i=2

Ui,k(t)φi,k(x) +
N∑

k=1

pk∑
i=4

Ui,k(t)φi,k(x)
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and is the solution of

(86) (Ut, V ) +A(U, V ) = (f, V ), ∀ V ∈ S∆Ω
0 , t ∈ (0, T ], U(x, 0) = πu0(x).

In the remainder of this section, UI ∈ S∆Ω
0 ×C∞[0, T ] corresponds to the Hermite-

Lobatto interpolant computed according to (65)-(70) for each fixed time t.
The next several lemmas and corollary describe a priori error estimates and

asymptotic convergence in the time-dependent case.

Lemma 10. Let u ∈ Hp+4(Ω) be the solution of (84), UI ∈ S∆Ω,p
0 × C∞[0, T ]

its Hermite-Lobatto interpolant (65)-(70) for each fixed time t and U ∈ S∆Ω,p
0 ×

C∞[0, T ] be the solution of (86). Then

‖ut − Ut‖0 ≤ CHp+1,(87)

‖u− U‖s ≤ CHp+1−s, s = 0, 1, 2,(88)

‖UI − U‖2 ≤ CHp.(89)

Before proving Lemma 10 we need the following two lemmas.

Lemma 11. Let u ∈ Hp+4(Ω) and let UI ∈ S∆Ω,p be its Hermite-Lobatto inter-
polant (65)-(70) for each fixed time t. Then

(90) |a(u− UI ,W )| ≤ CHp‖u‖p+2‖W‖2, ∀W ∈ S∆Ω,p
0 .

Proof. [1]. �

Lemma 12. Let Û ∈ S∆Ω,p
0 , and let the elliptic projection of u satisfy

(91) A(Û , V ) = A(u, V ), ∀ V ∈ S∆Ω,p
0 ,

where u ∈ Hp+4(Ω) is the solution of (84) and UI ∈ S∆Ω,p its Hermite-Lobatto
interpolant (65)-(70) for each fixed time t. Then

‖ut − Ût‖0 ≤ CHp+1,(92)

‖u− Û‖s ≤ CHp+1−s, s = 0, 1, 2,(93)

‖UI − Û‖2 ≤ CHp.(94)

Proof. Following [35] for second-order equations, differentiate (91) with respect to
t and use the proof of (79) with s = 0 to obtain (92). The proof of (93), s = 0, 1, 2,
follows the proof of (79), s = 0, 1, 2, in [27]. Equation (94) is obtained from Lemma

11 following the proof of (80) in [1] by choosing W = Û − UI . �
Proof of Lemma 10. The proofs of (87) and (89) follow the approach in [35]. From
(84) and (86) it follows that

(95) (ut − Ut, V ) +A(u− U, V ) = 0, ∀ V ∈ S∆Ω,p
0 , t ∈ (0, T ].

Equations (91) and (95) imply

(96) (Ût − Ut, V ) +A(Û − U, V ) = (Ût − ut, V ), ∀ V ∈ S∆Ω,p
0 , t ∈ (0, T ].

Letting V = Ût − Ut in (96) and using the Cauchy-Schwarz inequality yields

(97) ‖Ût − Ut‖20 +
1

2

d

dt
A(Û − U, Û − U) ≤ ‖Ût − ut‖20 + ‖Ût − Ut‖20,

and thus

(98)
1

2

d

dt
A(Û − U, Û − U) ≤ ‖Ût − ut‖20.
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Integrating (98) over [0, t] results in

A(Û(·, t)− U(·, t), Û(·, t)− U(·, t)) ≤ A(Û(·, 0)− U(·, 0), Û(·, 0)− U(·, 0))

+ C

∫ t

0

‖Ût(·, s)− ut(·, s)‖20ds,(99)

or applying (76) and (92),

(100) α‖Û(t)− U(t)‖22 ≤ C‖Û(0)− U(0)‖22 + CH2(p+1).

Since U(0) = UI(0), (94) implies that

(101) ‖Û(0)− U(0)‖22 ≤ CH2p,

and (89) follows from (94), (100) and (101).
From (98) we obtain

(102)
1

2

d

dt
A(Û − U, Û − U) ≤ CH2(p+1),

where we have used (92). Then (96) with V = Ût − Ut also implies that

(103) ‖Ût − Ut‖20 +
1

2

d

dt
A(Û − U, Û − U) ≤ 1

2
‖Ût − ut‖20 +

1

2
‖Ût − Ut‖20.

Therefore (92), (102) and (103) imply that

(104) ‖Ût − Ut‖0 ≤ CHp+1,

which yields (87) by using (92) and the triangle inequality.
We obtain (88) with s = 2 from (89), (93) with s = 2, (94) and the triangle

inequality. The proofs of (88) with s = 0, 1, follow closely the proofs in [15, 27] in
the time-independent case using the Aubin-Nitsche technique. Let w ∈ Hs

0(Ω) and
let uw ∈ Hp+4(Ω)×H2

0 (Ω) be the solution of

(105) A(v, uw) = 〈w, v〉s, ∀ v ∈ H2
0 (Ω), s = 0, 1,

where

(106) 〈w, v〉s =
∫ b

a

w(s)(x)v(s)(x)dx.

Then [15, 27] imply that

(107) ‖uw‖4−s ≤ C|w|s, ‖uw − πuw‖2 ≤ CH2−s‖uw‖4−s.

If for each fixed time t, e = u− U , then

(108) |e|s = sup
w∈Hs

0 (Ω)

〈w, e〉s
|w|s

= sup
w∈Hs

0 (Ω)

A(e, uw)

|w|s
.

The Cauchy-Schwarz inequality together with (87), (95) and (107) imply that

A(e, uw) = A(e, uw − πuw)− (et, πuw)

≤ C(‖e‖2‖uw − πuw‖2 + ‖et‖0‖πuw‖0)
≤ C(Hp−1‖uw − πuw‖2 +Hp+1(‖uw‖0 + ‖πuw − uw‖0)
≤ C(Hp+1−s‖uw‖4−s + CHp+1(‖uw‖4−s +H2−s‖uw‖4−s))

≤ CHp+1−s|w|s.(109)

Equations (88) with s = 0, 1 are obtained from (109) and (108) with s = 0 and
s = 1, respectively. �
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Corollary 13. Under the hypotheses of Lemma 10,

(110) ‖UI − U‖s ≤ CHp+1−s, s = 0, 1.

Proof. The result follows from Corollary 5 and Lemma 10. �
The next lemma proves asymptotic equivalence in the time-dependent case.

Lemma 14. Let the hypotheses of Lemma 10 hold. If

(111) ‖u− UI‖2 ≥ CHp−1,

then

(112)
‖u− U‖2
‖u− UI‖2

= 1 +O(H).

Proof. The proof follows directly from (111), Lemma 10 and the triangle inequality.
�

4. A posteriori error estimates

A posteriori error estimates are essential for guiding the adaptive strategies. In
this section we present estimators for orders pk and pk+1. In particular for the latter

case we estimate the error in the solution of (78) or (86) that lies in S∆Ω,+
0 , referred

to as U+. Since the Hermite-Lobatto interpolant is asymptotically equivalent to
the finite element solution (Lemmas 9 and 14, respectively) these estimators can
be generated by finding approximations of u(pk+1)(mk) and u(pk+2)(mk). To that
end in the steady-state case (78) let

(113) Upk+1(x)|Ωk
= U(x) +Wpk+1,kψpk+1,k(x),

where for notational convenience, ψpk+1,k(x) = ψpk+1(x;hk;mk). The coefficient
Wpk+1,k is determined by requiring that

Â(Upk+1, ψpk+1,k)Ωk
= (f, ψpk+1,k)Ωk

(114)

− (µU ′, ψ′
pk+1,k)Ωk

− (κU, ψpk+1,k)Ωk
, k = 1, . . . , N,

where

(115) Â(u, v)Ωk
=

∫ xk

xk−1

ρ(x)u′′(x)v′′(x)dx,

and the subscript Ωk refers to integration over the element Ωk. To estimate the
error in U+, a second solution,

(116) Upk+2(x)|Ωk
= Upk+1(x) +Wpk+2,kψpk+2,k(x),

is similarly constructed by requiring that

Â(Upk+2, ψpk+2,k)Ωk
= (f, ψpk+2,k)Ωk

− (µU ′, ψ′
pk+2,k)Ωk

(117)

− (κU, ψpk+2,k)Ωk
, k = 1, . . . , N.

For the time-dependent case (86) the equations are

Â(Upk+1, ψpk+1,k)Ωk
= (f, ψpk+1,k)Ωk

− (µU ′, ψ′
pk+1,k)Ωk

(118)

− (κU, ψpk+1,k)Ωk
− (Ut, ψpk+1,k)Ωk

,

Â(Upk+2, ψpk+2,k)Ωk
= (f, ψpk+2,k)Ωk

− (µU ′, ψ′
pk+2,k)Ωk

(119)

− (κU, ψpk+2,k)Ωk
− (Ut, ψpk+2,k)Ωk

,
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k = 1, . . . , N . We will show that on grids with uniform order p, Wp+1,k =
u(p+1)(mk)

(p+1)! +O(H3/2) and Wp+2,k = u(p+2)(mk)
(p+2)! +O(H1/2).

To do so we need two additional interpolants Up+1
I and Up+2

I defined by

(120)
Up+1
I (x)|Ωk

= UI(x) + W̄p+1,kψp+1,k(x),

Up+2
I (x)|Ωk

= Up+1
I (x) + W̄p+2,kψp+2,k(x),

where W̄p+1,k and W̄p+2,k are determined by requiring that

(121) Â(u− Up+1
I , ψp+1,k)Ωk

= 0, Â(u− Up+2
I , ψp+2,k)Ωk

= 0, k = 1, . . . , N,

respectively.
In the remainder of the paper νk denotes the point in Ωk obtained in truncating

the series in Taylor’s Theorem.

Theorem 15. Let u ∈ Hp+4
0 (Ω) be the solution of (73) and let Up+1

I ∈ S∆Ω,p+1
0

be defined by (120)-(121). Then

(122) W̄p+1,k =
u(p+1)(mk)

(p+ 1)!
+O(h2

k), k = 1, . . . , N.

Proof. From (120) and Theorem 3 with q = 1 we obtain on Ωk,

(123)

(u− Up+1
I )′′ = (u− UI + UI − Up+1

I )′′

=

(
u(p+1)(mk)

(p+ 1)!
− W̄p+1,k

)
ψ′′
p+1,k(x)

+
u(p+2)(mk)

(p+ 2)!
((x−mk)ψp+1,k(x))

′′ + u(p+3)(νk)
(x−mk)

p+1

(p+ 1)!

+ (v′(x1,k)− u′(x1,k))L
′′
1(x) + (v′(xp+1,k)− u′(xp+1,k))L

′′
p+1(x)

+

p∑
i=2

(v(xi,k)− u(xi,k))L
′′
i (x).

Substituting (123) into (120) gives∣∣∣∣u(p+1)(mk)

(p+ 1)!
− W̄p+1,k

∣∣∣∣×
∫ xk

xk−1

ρ(x)(ψ′′
p+1,k(x))

2dx

≤
∣∣∣∣u(p+2)(mk)

(p+ 2)!

∣∣∣∣
∣∣∣∣∣
∫ xk

xk−1

ρ(x)((x−mk)ψp+1,k(x))
′′ψ′′

p+1,k(x)dx

∣∣∣∣∣
+

1

(p+ 1)!

∣∣∣∣∣
∫ xk

xk−1

ρ(x)u(p+3)(νk)(x−mk)
p+1ψ′′

p+1,k(x)dx

∣∣∣∣∣
+ |v′(x1,k)− u′(x1,k)|

∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
1(x)ψ

′′
p+1,k(x)dx

∣∣∣∣∣
+ |v′(xp+1,k)− u′(xp+1,k)|

∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
p+1(x)ψ

′′
p+1,k(x)dx

∣∣∣∣∣
+

p∑
i=2

|v(xi,k)− u(xi,k)|
∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
i (x)ψ

′′
p+1,k(x)dx

∣∣∣∣∣ .

(124)
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The following bounds must be computed for all terms in (124). Throughout we
rely on the smoothness of ρ(x) and u(x). Using (19) and (21) in the term on the
left yields

(125)

∫ xk

xk−1

ρ(x)(ψ′′
p+1,k(x))

2dx ≥ ρ(mk)

∫ xk

xk−1

(ψ′′
p+1,k(x))

2dx

− |ρ′(mk)|
∣∣∣∣∣
∫ xk

xk−1

(x−mk)(ψ
′′
p+1,k(x))

2dx

∣∣∣∣∣
− 1

2

∣∣∣∣∣
∫ xk

xk−1

ρ′′(νk)(x−mk)
2(ψ′′

p+1,k(x))
2dx

∣∣∣∣∣
≥ ρ(mk)

h2p−1
k

2p− 1

(
(p+ 1)!(p− 1)!

(2p− 2)!

)2

(1− Ch2
k) ≥ 0,

for hk sufficiently small, where the middle integral on the right is zero since the
integrand is an odd function on Ωk.

The first term on the right of (124) satisfies

∣∣∣∣u(p+2)(mk)

(p+ 2)!

∣∣∣∣×
∣∣∣∣∣
∫ xk

xk−1

ρ(x)((x−mk)ψp+1,k(x))
′′ψ′′

p+1,k(x)dx

∣∣∣∣∣
≤ C

(
ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

((x−mk)ψp+1,k(x))
′′ψ′′

p+1,k(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

xk−1

ρ′(νk)(x−mk)((x−mk)ψp+1,k(x))
′′ψ′′

p+1,k(x)dx

∣∣∣∣∣
)

≤ Ch2p+1
k ,

(126)

where we have used (21), and the first integral on the right of (126) vanishes since
the integrand is an odd function on Ωk. For the second term we have from (21)
that

(127)
1

(p+ 1)!

∣∣∣∣∣
∫ xk

xk−1

ρ(x)u(p+3)(νk)(x−mk)
p+1ψ′′

p+1,k(x)dx

∣∣∣∣∣ ≤ Ch2p+1
k .

Since |L′′
i (x)| ≤ Ch−1

k , i = 1, p+ 1, the next two terms yield

(128) |v′(xi,k)− u′(xi,k)|
∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
i (x)ψ

′′
p+1,k(x)dx

∣∣∣∣∣ ≤ Ch2p+1
k , i = 1, p+ 1,

where we have again used (21) together with (51). Finally

(129) |v(xi,k)− u(xi,k)|
∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
i (x)ψ

′′
p+1,k(x)dx

∣∣∣∣∣ ≤ Ch2p+1
k , i = 2, . . . , p,

using (51) and |L′′
i (x)| ≤ Ch−2

k , i = 2, . . . , p. Combining (124)-(129) we obtain the
result. �
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Theorem 16. Let u ∈ Hp+5
0 (Ω) be the solution of (73) and let Up+2

I ∈ S∆Ω,p+2
0

be defined by (120)-(121). Then

(130) W̄p+2,k =
u(p+2)(mk)

(p+ 2)!
+O(h2

k), k = 1, . . . , N.

Proof. From (20), (120) and Theorem 3 with q = 2 on Ωk it follows that

(131)

(u− Up+2
I )′′ = (u− UI + UI − Up+1

I + Up+1
I − Up+2

I )′′

=

(
u(p+1)(mk)

(p+ 1)!
− W̄p+1,k

)
ψ′′
p+1,k(x)

+

(
u(p+2)(mk)

(p+ 2)!
− W̄p+2,k

)
ψ′′
p+2,k(x)

+
u(p+2)(mk)

(p+ 2)!

h2
k

4

(p+ 1)(p− 3)

(2p− 1)(2p− 3)
ψ′′
p,k(x)

+ u(p+3)(mk)
(x−mk)

p+1

(p+ 1)!
+ u(p+4)(νk)

(x−mk)
p+2

(p+ 2)!

+ (v′(x1,k)− u′(x1,k))L
′′
1(x) + (v′(xp+1,k)− u′(xp+1,k))L

′′
p+1(x)

+

p∑
i=2

(v(xi,k)− u(xi,k))L
′′
i (x).

Substituting (131) into (120) results in

∣∣∣∣u(p+2)(mk)

(p+ 2)!
− W̄p+2,k

∣∣∣∣×
∫ xk

xk−1

ρ(x)(ψ′′
p+2,k(x))

2dx

≤
∣∣∣∣u(p+1)(mk)

(p+ 1)!
− W̄p+1,k

∣∣∣∣
∣∣∣∣∣
∫ xk

xk−1

ρ(x)ψ′′
p+1,k(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
+

∣∣∣∣u(p+2)(mk)

(p+ 2)!

∣∣∣∣ h2
k

4

(p+ 1)(p− 3)

(2p− 1)(2p− 3)

∣∣∣∣∣
∫ xk

xk−1

ρ(x)ψ′′
p,k(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
+

∣∣∣∣u(p+3)(mk)

(p+ 1)!

∣∣∣∣
∣∣∣∣∣
∫ xk

xk−1

ρ(x)(x−mk)
p+1ψ′′

p+2,k(x)dx

∣∣∣∣∣
+

1

(p+ 2)!

∣∣∣∣∣
∫ xk

xk−1

ρ(x)u(p+4)(νk)(x−mk)
p+2ψ′′

p+2,k(x)dx

∣∣∣∣∣
+ |v′(x1,k)− u′(x1,k)|

∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
1(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
+ |v′(xp+1,k)− u′(xp+1,k)|

∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
p+1(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
+

p∑
i=2

|v(xi,k)− u(xi,k)|
∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
i (x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣ .

(132)
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Again bounds must be computed for all terms in (132) and we use the smoothness
of ρ(x) and u(x) throughout. Using equations (19) and (21) in the term on the left
gives

(133)

∫ xk

xk−1

ρ(x)(ψ′′
p+2,k(x))

2dx ≥ ρ(mk)

∫ xk

xk−1

(ψ′′
p+2,k(x))

2dx

− |ρ′(mk)|
∣∣∣∣∣
∫ xk

xk−1

(x−mk)(ψ
′′
p+2,k(x))

2dx

∣∣∣∣∣
− 1

2

∣∣∣∣∣
∫ xk

xk−1

ρ(νk)(x−mk)
2(ψ′′

p+2,k(x))
2dx

∣∣∣∣∣
≥ ρ(mk)

h2p+1
k

2p+ 1

(
(p+ 2)!p!

(2p)!

)2

(1− Ch2
k) ≥ 0,

for hk sufficiently small, where as before the middle integral on the right is zero
since the integrand is an odd function on Ωk.

Theorem 15 and (21) imply that the first term on the right of (132) satisfies

∣∣∣∣u(p+1)(mk)

(p+ 1)!
− W̄p+1,k

∣∣∣∣×
∣∣∣∣∣
∫ xk

xk−1

ρ(x)ψ′′
p+1,k(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
≤ Ch2

k

(
ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

ψ′′
p+1,k(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

xk−1

ρ′(νk)(x−mk)ψ
′′
p+1,k(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
)

≤ Ch2p+3
k ,

(134)

since the first integral on the right is zero. The second term on the right is bounded
by

∣∣∣∣u(p+2)(mk)

(p+ 2)!

∣∣∣∣× h2
k

4

(p+ 1)(p− 3)

(2p− 1)(2p− 3)

∣∣∣∣∣
∫ xk

xk−1

ρ(x)ψ′′
p,k(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
≤ Ch2

k

(
ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

ψ′′
p,k(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
+ |ρ′(mk)|

∣∣∣∣∣
∫ xk

xk−1

(x−mk)ψ
′′
p,k(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
+

1

2

∣∣∣∣∣
∫ xk

xk−1

ρ′′(νk)(x−mk)
2ψ′′

p,k(x)ψ
′′
p+2,k(x)dx

∣∣∣∣∣
)

≤ Ch2p+3
k ,

(135)
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using (21) since the first two integrals on the right are zero due to the orthogonality
of the Legendre polynomials. For the third integral we obtain

∣∣∣∣u(p+3)(mk)

(p+ 1)!

∣∣∣∣×
∣∣∣∣∣
∫ xk

xk−1

ρ(x)(x−mk)
p+1ψ′′

p+2,k(x)dx

∣∣∣∣∣
≤ C

(
ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

(x−mk)
p+1ψ′′

p+2,k(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

xk−1

ρ′(νk)(x−mk)
p+2ψ′′

p+2,k(x)dx

∣∣∣∣∣
)

≤ Ch2p+3
k ,

(136)

where the first integral on the right is zero since the integrand is an odd function
on Ωk and we have used (21). The next integral yields, using (21),

(137)
1

(p+ 2)!

∣∣∣∣∣
∫ xk

xk−1

ρ(x)u(p+4)(νk)(x−mk)
p+2ψ′′

p+2,k(x)dx

∣∣∣∣∣ ≤ Ch2p+3
k .

The next two integrals satisfy

|v′(xi,k)− u′(xi,k)| ×
∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
1(x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
≤ Chp+2

k

(
ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

L′′
i (x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

xk−1

ρ′(νk)(x−mk)L
′′
i (x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
)

≤ Ch2p+3
k ,

(138)

for i = 1, p + 1 using (21), (51) and |L′′
i (x)| ≤ Ch−1

k , i = 1, p + 1. Finally using

(21), (51) and |L′′
i (x)| ≤ Ch−2

k , i = 2, . . . , p, each term in the sum is bounded by

|v(xi,k)− u(xi,k)| ×
∣∣∣∣∣
∫ xk

xk−1

ρ(x)L′′
i (x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
≤ Chp+2

k

(
ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

L′′
i (x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

xk−1

ρ′(νk)(x−mk)L
′′
i (x)ψ

′′
p+2,k(x)dx

∣∣∣∣∣
)

≤ Ch2p+3
k , i = 2, . . . , p,

(139)

where the first integral on the right side vanishes from the orthogonality of Legendre
polynomials. Combining (132)-(139) yields the result. �

We are now in a position to prove the main results.
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Theorem 17. Let u ∈ Hp+4
0 (Ω) be the solution of (73) and let Up+1 ∈ S∆Ω,p+1

0

satisfy (114). Then

(140) Wp+1,k =
u(p+1)(mk)

(p+ 1)!
+O(H3/2), k = 1, . . . , N.

Proof. From (73), (114)-(115) and (121) it follows that

Â(Up+1 − Up+1
I , ψp+1,k)Ωk

=(µ(Up+1 − u)′, ψ′
p+1,k)Ωk

(141)

+ (κ(Up+1 − u), ψp+1,k)Ωk
, k = 1, . . . , N.

This equation implies that on Ωk,

ρ(mk)×
∣∣∣∣∣
∫ xk

xk−1

(Up+1(x)− Up+1
I (x))′′ψ′′

p+1,k(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ xk

xk−1

(ρ(x)− ρ(mk))(U
p+1 − Up+1

I )′′ψ′′
p+1,k(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

xk−1

µ(x)(U(x)− UI(x))
′ψ′

p+1,k(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

xk−1

κ(x)(U(x)− UI(x))ψp+1,k(x)dx

∣∣∣∣∣ .

(142)

Bounds are needed for each of the terms in (142). For the left we have

ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

(Up+1(x) − Up+1
I (x))′′ψ′′

p+1,k(x)dx
∣∣∣

= ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

(U(x)− UI(x))
′′ψ′′

p+1,k(x)dx

+ (Wp+1,k − W̄p+1,k)

∫ xk

xk−1

(ψ′′
p+1,k(x))

2dx

∣∣∣∣∣
= ρ(mk)

h2p−1
k

2p− 1

(
(p+ 1)!(p− 1)!

(2p− 2)!

)2 ∣∣Wp+1,k − W̄p+1,k

∣∣ ,

(143)

where we have used the orthogonality of the Legendre polynomials to show that
the first integral on the right is zero.

The Cauchy-Schwarz inequality, (19), (80), (89) and (113) imply that the first
integral on the right of (142) yields∣∣∣∣∣

∫ xk

xk−1

(ρ(x)− ρ(mk))(U
p+1 − Up+1

I )′′ψ′′
p+1,k(x)dx

∣∣

≤
(∫ xk

xk−1

(ρ(x)− ρ(mk))
2((Up+1 − Up+1

I )′′)2dx)

)1/2 (∫ xk

xk−1

(ψ′′
p+1,k(x))

2dx

)1/2

≤ Ch
p+1/2
k (‖U ′′ − U ′′

I ‖0 + h
p+1/2
k |Wp+1,k − W̄p+1,k|)

≤ CH2p+1/2 + Ch2p
k |Wp+1,k − W̄p+1,k|.

(144)
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The second integral on the right of (142) satisfies

(145)

∣∣∣∣∣
∫ xk

xk−1

µ(x)(U(x)− UI(x))
′ψ′

p+1,k(x)dx

∣∣∣∣∣ ≤ CHph
p+1/2
k ≤ CH2p+1/2,

where we have used the Cauchy-Schwarz inequality, (18) and (81) with s = 1.
Finally again using Cauchy-Schwarz in the third integral gives

(146)

∣∣∣∣∣
∫ xk

xk−1

κ(x)(U(x)− UI(x))ψp+1,k(x)dx

∣∣∣∣∣ ≤ CHp+1h
p+3/2
k ≤ CH2p+5/2,

using (17) and (81) with s = 0. Combining (142)-(146) results in

(147) ρ(mk)
h2p−1
k

2p− 1

(
(p+ 1)!(p− 1)!

(2p− 2)!

)2

(1− Chk)|Wp+1,k − W̄p+1,k| ≤ CH2p+1/2

or

(148) |Wp+1,k − W̄p+1,k| ≤ CH3/2.

Then (140) follows from (122) and (148). �

Theorem 18. Let u ∈ Hp+5
0 (Ω) be the solution of (73) and let Up+2 ∈ S∆Ω,p+2

0

satisfy (117). Then

(149) Wp+2,k =
u(p+2)(mk)

(p+ 2)!
+O(H1/2), k = 1, . . . , N.

Proof. From (73), (116)-(117) and (121) we obtain

Â(Up+2 − Up+2
I , ψp+2,k)Ωk

= (µ(Up+1 − u)′, ψ′
p+2,k)Ωk

(150)

+ (κ(Up+1 − u), ψp+2,k)Ωk
, k = 1, . . . , N.

Equation (150) implies that

ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

(Up+2(x)− Up+2
I (x))′′ψ′′

p+2,k(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ xk

xk−1

(ρ(x)− ρ(mk))(U
p+2 − Up+2

I )′′ψ′′
p+2,k(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

xk−1

µ(x)(U(x)− UI(x))
′ψ′

p+2,k(x)dx

∣∣∣∣∣
+

∣∣∣∣∣
∫ xk

xk−1

κ(x)(U(x)− UI(x))ψp+2,k(x)dx

∣∣∣∣∣ .

(151)
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As before, bounds are needed for each of the terms in (151). For the term on the
left,

ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

(Up+2(x)− Up+2
I (x))′′ψ′′

p+2,k(x)dx

∣∣∣∣∣
= ρ(mk)

∣∣∣∣∣
∫ xk

xk−1

(U(x)− UI(x))
′′ψ′′

p+2,k(x)dx

+ (Wp+1,k − W̄p+1,k)

∫ xk

xk−1

ψ′′
p+1,k(x)ψ

′′
p+2,k(x)dx

+ (Wp+2,k − W̄p+2,k)

∫ xk

xk−1

(ψ′′
p+2,k(x))

2dx

∣∣∣∣∣
= ρ(mk)

h2p+1
k

2p+ 1

(
(p+ 2)!p!

(2p)!

)2 ∣∣Wp+2,k − W̄p+2,k

∣∣ ,

(152)

where we have used the orthogonality of the Legendre polynomials to show that
the first two integrals on the right vanish.

Equations (19), (80), (89), (116) and (148) together with the Cauchy-Schwarz
inequality imply that the first integral on the right gives

∣∣∣∣∣
∫ xk

xk−1

(ρ(x)− ρ(mk))(U
p+2 − Up+2

I )′′ψ′′
p+2,k(x)dx

∣∣∣∣∣
≤

(∫ xk

xk−1

(ρ(x)− ρ(mk))
2((Up+2 − Up+2

I )′′)2dx)

)1/2 (∫ xk

xk−1

(ψ′′
p+2,k(x))

2dx

)1/2

≤ Ch
p+3/2
k (‖U ′′ − U ′′

I ‖0 + h
p−1/2
k |Wp+1,k − W̄p+1,k|+ h

p+1/2
k |Wp+2,k − W̄p+2,k|)

≤ CH2p+3/2 + Ch2p+1
k |Wp+1,k − W̄p+1,k|+ Ch2p+2

k |Wp+2,k − W̄p+2,k|

≤ CH2p+3/2 + Ch2p+2
k |Wp+2,k − W̄p+2,k|.

(153)

The second integral on the right of (151) yields

(154)

∣∣∣∣∣
∫ xk

xk−1

µ(x)(U(x)− UI(x))
′ψ′

p+2,k(x)dx

∣∣∣∣∣ ≤ CHph
p+3/2
k ≤ CH2p+3/2,

where we have used the Cauchy-Schwarz inequality, (18) and (81) with s = 1.
Finally, again using Cauchy-Schwarz in the third integral, gives

(155)

∣∣∣∣∣
∫ xk

xk−1

κ(x)(U(x)− UI(x))ψp+2,k(x)dx

∣∣∣∣∣ ≤ CHp+1h
p+5/2
k ≤ CH2p+7/2,

using (17) and (81) with s = 0. Combining (151)-(155) results in

(156) ρ(mk)
h2p+1
k

2p+ 1

(
(p+ 2)!p!

(2p)!

)2

(1− Chk)|Wp+2,k − W̄p+2,k| ≤ CH2p+3/2

or

(157) |Wp+2,k − W̄p+2,k| ≤ CH1/2.

Then (149) follows from (130) and (157). �
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Corollary 19. Under the hypotheses of Lemma 7 and letting Up+1 and Up+2 satisfy
(114) and (117), respectively, for k = 1, . . . , N ,

(158)
‖U − Up+1‖2
‖u− U‖2

− 1 ≤ O(H),
‖Up+1 − Up+2‖2

‖u− U+‖2
− 1 ≤ O(H1/2).

Proof. The proof follows from Corollary 5, Lemma 9 and Theorems 17 and 18. �
The same result holds in the time-dependent case.

Corollary 20. Under the hypotheses of Lemma 10 and letting Up+1 and Up+2

satisfy (118) and (119), respectively, for k = 1, . . . , N , then

(159)
‖U − Up+1‖2
‖u− U‖2

− 1 ≤ O(H),
‖Up+1 − Up+2‖2

‖u− U+‖2
− 1 ≤ O(H1/2).

Proof. With slight modifications the proofs of Theorems 17 and 18 can be extended
to the time-dependent case using Lemma 10 and Corollary 13 since the only addi-
tional term in the inequalities (142) and (151) is

(160)

∣∣∣∣∣
∫ xk

xk−1

(ut − Ut)ψl,k(x)dx

∣∣∣∣∣ ,
where l = p+ 1 and p+ 2, respectively. Appropriate bounds on (160) are obtained
via Cauchy-Schwarz, (17) and (87). The proof then follows along the same lines as
the proof of Corollary 19. �

We now explain briefly how the results of this section can be used to guide
adaptivity. On each element Ωk we compute the error indicators E0,k ≡ |U −
Upk+1|2,k and E1,k ≡ |Upk+1 − Upk+2|2,k together with Es,k ≡ |Upk−s,kφpk−s,k|2,k,
s = −1, −2. The latter indicators estimate errors in the next two lower-order finite
element solutions. These indicators can be used to control h-, p- or hp-refinement
strategies. Adaptive codes must first decide whether or not to modify the grid and
in the case of modification what changes to make. For steady-state problems the
grid is modified if

(161) Erms ≡
(
∑N

k=1 E
2
0,k)

1/2

atol + rtol‖U‖2
> 1,

where atol and rtol are user-prescribed absolute and relative error tolerances, re-
spectively. For time-dependent problems this criterion is insufficient as it will not
allow coarsening when the error is below the tolerance. In this case an effective
rule depends on the number of elements to be refined (Nr) or coarsened (Nc). An
element k is marked for refinement or coarsening, respectively, if [26]

(162)
Es,k

atol + rtol‖U‖2
> 0.8/

√
N,

Es,k

atol + rtol‖U‖2
< 0.2/(2pk

√
N).

The grid is modified if Nr > 0 or Erms < 0.1 or Nc/N > 0.6 [26]. The first is a
refinement criterion and the second two promote coarsening.

Decisions on how to adapt the grid also depend on the marking scheme. For
h-adaptivity we use (162) with s = 0; the other indicators are not needed. With
p-adaptivity, (162) with s = 0 is used for refinement (increasing the order by one).
Coarsening (decreasing the order by one) also makes use of the indicator with
s = −1. In addition we constrain the grids by imposing (63) and (64) when using h-
and p-refinement, respectively, as described in section 3. The hp-refinement strategy
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consists of four stages. Stage 1 involves choosing a new order p̂k ∈ {pk−1, pk, pk+1}
on each element depending on trends in the error indicators Es,k with s = −2, . . . , 1
[21]. In the second stage new elements are created if the error estimate on an element
still violates the first equation in (162), where the indicator E0,k is replaced by E−1,k

or E1,k if p̂k is one less or one more than pk, respectively. Simultaneously (63) is
enforced. In Stage 3 elements sharing the same parent are coalesced if the errors on
both satisfy the second equation of (162) and if (63) is not violated. Finally (64)
and other order smoothing operations [26] are imposed. More details can be found
in [20, 21, 26].

5. Computational results

The codes, written in Fortran 90, can be run in either double or quadruple
precision. For both steady-state and time-dependent problems the codes begin
with a uniform base grid containing Nb elements of order pb. The default values of
Nb and pb are 20 and 5, respectively. For uniform grids, N = Nb and p = pb.

Example 5.1. Consider the linear steady-state equation

(163) f(x) = −u+ uxx − uxxxx, 0 ≤ x ≤ 1,

where Dirichlet boundary conditions and f are chosen so that the exact solution is

(164) u(x) = tanh(20(x− 0.55)).

We begin by providing computational evidence of Corollary 19. We solved (163)
on a sequence of uniform grids with p = 3, . . . , 6 and h = 1/N , N = 5, 10, 20, 40
and 80. Estimator accuracy was measured using the effectivity index, the ratio of
the estimated to the true error e = u−U . In particular we computed the effectivity
indexes

(165) θ =
‖U − Up+1‖2
‖u− U‖2

, θ+ =
‖Up+1 − Up+2‖2

‖u− U+‖2
.

Table 1. Finite element errors and effectivity indexes θ and θ+

of order p and p + 1, respectively, obtained in solving (163) on
uniform grids with N elements and order p.

N p ‖e‖2 θ θ+ p ‖e‖2 θ θ+

5 3 11.8× 102 0.767 0.156 4 10.0× 102 0.156 0.549
10 3 2.57× 101 0.416 0.983 4 2.33× 101 0.983 0.985
20 3 1.60× 101 0.998 0.641 4 1.09 0.641 0.987
40 3 3.36 0.993 0.991 4 4.06× 10−1 0.991 0.998
80 3 8.54× 10−1 0.998 0.998 4 5.42× 10−2 0.998 0.999
5 5 5.21× 101 0.549 0.492 6 4.47× 101 0.492 0.0454
10 5 4.29 0.0985 0.989 6 4.27 0.989 0.145
20 5 8.35× 10−1 0.987 0.989 6 1.34× 10−1 0.989 0.935
40 5 5.33× 10−2 0.998 0.983 6 3.77× 10−3 0.983 1.000
80 5 3.12× 10−3 0.999 0.999 6 1.68× 10−4 0.999 0.999
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The results in Table 1 show that the estimators converged to the true error as the
grids were refined as predicted by the theory even before the errors were in the
asymptotic range.

Table 2. Estimates of the error in H2 and the convergence rates
of θ and θ+ to 1, respectively, in solving (163) on four uniform
grids with p = 3, 4 and h = 1/N , N = 40, 80, 160 and 320.

N p ‖e‖2 |θ − 1| |θ+ − 1|
40 3 3.36 7.30× 10−3 8.66× 10−3

80 3 8.54× 10−1 2.02× 10−3 1.65× 10−3

160 3 2.14× 10−1 5.06× 10−4 4.14× 10−4

320 3 2.14× 10−1 1.27× 10−4 1.04× 10−4

40 4 4.06× 10−1 8.66× 10−3 2.50× 10−3

80 4 5.43× 10−2 1.65× 10−3 1.45× 10−3

160 4 6.84× 10−3 4.14× 10−4 3.63× 10−4

320 4 8.56× 10−4 1.04× 10−4 9.09× 10−5

A more detailed analysis for p = 3 and 4 is provided in Table 2. Here we
computed θ − 1 and θ+ − 1 on four grids with h = 1/N and N = 40, 80, 160 and
320. For both θ and θ+ the convergence is O(H2), which is better than the theory
predicts. Comparable results were obtained when ρ(x) = 1+x while modifying f(x)
to maintain (164) as a solution. That the convergence rate is H2 is suggested by a
closer examination of the interpolant error (48). In particular using the properties
of Legendre polynomials it is possible to show that the second term on the right
side of (60) is O(h2p+2).

We also solved (163) using the three adaptive strategies, h- p- and hp-adaptivity
with uniform grids as a benchmark for three tolerances atol = 10−m, m = 3, 5 and
7, rtol = 0. The total number of unknowns Ndof , CPU time and levels of refinement
Nlvl, together with the exact error, effectivity index and number of unknowns on

the final grid Nf
dof are displayed in Table 3.

In all cases the tolerance is met. The uniform grid and p-refinement strategies
required user intervention to achieve this. In the case of uniform grids the results
were obtained by computing on a sequence of grids with increasing Nb until the
tolerance was satisfied. The additional time needed for these trials is not reflected
in the CPU times in Table 3. It is therefore more appropriate to compare Ndof for

the uniform grids with Nf
dof for the adaptive grids. By this measure the adaptive

strategies lead to the use of fewer degrees of freedom than when employing uniform
grids. The times for both p- and hp-adaptivity are also smaller than for the uniform
grid computations. We conclude that adaptivity pays off, even accounting for the
fact that the errors on the final grids are not the same.

P-adaptivity is also superior to h-adaptivity, although the code is limited by
a maximum order, 14. As a result for the smallest tolerance, atol = 10−7, user
intervention was required. Specifically, it was necessary to increase Nb so that the
tolerance could be met. We chose Nb = 30 for this case. This scenario was also used
to demonstrate that (64) is essential to the performance of p-adaptivity. When the
p-adaptive code was run without imposing (64) it generated a solution for which
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Table 3. Total number of unknowns Ndof , CPU time and levels
of refinement Nlvl together with the errors ‖e‖2, effectivity indexes

and number of unknowns on the final grid, (Nf
dof ), in solving (163)

for three tolerances atol = 10−m, m = 3, 5, 7 using, from top to
bottom, uniform, h-, p- and hp-adaptive grids.

uniform grid

atol N = Ndof = Nf
dof time (in sec) Nlvl ‖e‖2 θ

10−3 442 0.0330 1 8.78× 10−4 0.999
10−5 1802 0.0900 1 3.15× 10−6 1.000
10−7 5202 0.3829 1 4.53× 10−8 1.000

h-adaptive grid

atol Ndof (N
f
dof ) time (in sec) Nlvl ‖e‖2 θ

10−3 600(226) 0.0330 4 2.69× 10−4 0.999
10−5 1956(658) 0.1040 6 3.13× 10−6 0.999
10−7 4922(1774) 0.2810 7 5.30× 10−8 1.000

p-adaptive grid

atol Ndof (N
f
dof ) time (in sec) Nlvl ‖e‖2 θ

10−3 490(117) 0.0290 5 3.12× 10−4 0.640
10−5 1033(177) 0.0590 8 4.66× 10−6 0.961
10−7 1747(257) 0.1020 9 5.13× 10−8 0.929

hp-adaptive grid

atol Ndof (N
f
dof ) time (in sec) Nlvl ‖e‖2 θ

10−3 545(179) 0.0290 4 1.77× 10−4 0.998
10−5 1040(316) 0.0550 5 2.83× 10−6 0.998
10−7 1499(531) 0.0820 5 8.28× 10−8 1.000

Erms < 1, i.e., for which the error estimate was smaller than the tolerance, 10−7,
but for which the actual error in H2 was 2.3× 10−2.

The performance of the hp-adaptive code is comparable to the p-adaptive ver-
sion. Hp-refinement required more degrees of freedom overall and significantly more
on the final grid. However, it used less time than the p-adaptive code since it re-
quired fewer refinement levels to meet the tolerance (each refinement level requires
matrix assembly and factorization). It was also more robust than p-adaptivity (as
was h-adaptivity) with effectivity indexes much closer to 1. Additionally no user
intervention was required.

As noted in the introduction we use a method-of-lines approach to solve time-
dependent problems. This familiar strategy [37] first discretizes (3) in space and
solves the resulting system of ordinary differential equations with an appropriate
time integrator. We use the multistep code dassl [7]. The time integrator interfaces
with the spatial discretization in two ways. Separate temporal error tolerances
abs tol and rel tol must be provided to dassl. In MOL codes it is typical that
[19, 36] abs tol = τ × atol and rel tol = τ × rtol. Second, the error indicators Es,k

and estimator Erms are computed and the grid potentially modified after every M
successful steps of dassl. We took τ = 0.002 and M = 5 [26]. The initial grid was
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Figure 1. The effectivity index θ(t) and error index ω(t) (left)
and number of degrees of freedom Ndof (t) (right) in solving (166)
using h- (+), p- (◦), and hp- (
) adaptivity with atol = 10−5 and
rtol = 0.

generated by refining the base grid until the interpolation error in H2 of the initial
conditions satisfies the user tolerances.

Example 5.2. Consider the linear time-dependent equation

(166) ut + f(x, t) = −u+ uxx − uxxxx, 0 ≤ x ≤ 1, t > 0,

where initial, Dirichlet boundary conditions and f are chosen so that the exact
solution is

(167) u(x, t) = tanh(20(x− t)).

We solved (166) for t ∈ (0, 0.8] using the three adaptive strategies and atol = 10−5,
rtol = 0. To examine reliability we computed the effectivity index θ(t) and error

index ω(t) = ‖e‖2

atol . Ideally both should be close to one with ω(t) < 1. The values of
these indexes are shown on the left in Figure 1. As with the steady-state problem the
estimator is quite accurate in conjunction with the h- and hp-adaptive strategies
but is notably poorer with p-adaptivity. For all three methods, the error index
remains below one with the smoothest performance exhibited by the h-refinement
code.

Efficiency was measured by the number of degrees of freedom Ndof (t) and the
total CPU time. As shown on the right of Figure 1 the p-refinement code employs
the fewest unknowns with hp-refinement a close second while h-refinement uses
considerably more. The CPU times for the three codes were 8.93s (h), 4.00s (p)
and 3.41s (hp). Here the hp-adaptive version comes out ahead. One reason the
p-refinement run took longer than the hp-refinement is it required a larger number
of time steps. This is similar to the effect of the number of levels of refinement in
Example 5.1 since it involved additional matrix assembly and factorization.

6. Conclusions

A posteriori error estimators for second-order equations have been successfully
extended to fourth-order problems. This has been done by creating a hierarchical
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basis from Hermite-Lobatto polynomials. On grids of uniform order, the two esti-
mators required by the adaptive strategy are proved to converge to the true errors
at two orders, respectively. Computations show the reliability of the estimators and
their ability to guide h-, p- and hp-adaptive strategies. For problems with smooth
solutions, p- and hp-adaptivity perform well with hp-refinement having the edge in
reliability.

The a posteriori error estimates can be extended in several ways. The proofs in
section 4 can be modified to handle certain classes of nonlinearities following [25].
Second we can generate a family of Lobatto polynomials that can lead to asymp-
totically equivalent interpolants for higher-order equations in one space dimension.
Additionally, following the approach taken by Moore [23], the estimators can be
extended to two and three space dimensions (as opposed to the method of Adjerid
[1], which, for odd order, uses jumps in solution derivatives). Finally supercon-
vergence properties for second-order problems [40] can be extended to fourth-order
and higher starting from the results herein.
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