
MATHEMATICS OF COMPUTATION
Volume 79, Number 270, April 2010, Pages 1019–1045
S 0025-5718(09)02301-1
Article electronically published on September 24, 2009

DISK-LIKE TILES AND SELF-AFFINE CURVES

WITH NONCOLLINEAR DIGITS

IBRAHIM KIRAT

Abstract. Let A ∈ Mn(Z) be an expanding matrix, D ⊂ Z
n a digit set and

T = T (A,D) the associated self-affine set. It has been asked by Gröchenig
and Haas (1994) that given any expanding matrix A ∈ M2(Z), whether there
exists a digit set such that T is a connected or disk-like (i.e., homeomorphic
to the closed unit disk) tile. With regard to this question, collinear digit sets
have been studied in the literature. In this paper, we consider noncollinear
digit sets and show the existence of a noncollinear digit set corresponding to
each expanding matrix such that T is a connected tile. Moreover, for such
digit sets, we give necessary and sufficient conditions for T to be a disk-like
tile.

1. Introduction

Let Mn(Z) be the set of n×n matrices with entries in Z and let A ∈ Mn(Z) be an
expanding matrix; i.e., all its eigenvalues have moduli > 1. Let D = {d1, · · · , dq} ⊂
R

n be a set of q distinct vectors, called a digit set. The affine maps Sj(x) =
A−1(x + dj), 1 ≤ j ≤ q, are contractions under a suitable norm on R

n [11]; thus
there is a unique nonempty compact set T satisfying T =

⋃q
j=1 Sj(T ) which can be

explicitly given by

T := T (A,D) = {
∞∑
k=1

A−kdjk : djk ∈ D}.

In other words, T is the attractor of the iterated function system {Sj}qj=1, which

is a set of radix expansions, and called a self-affine set. If | det(A)| = q and T
has nonempty interior, then it is called a self-affine tile. A connected self-affine
set is locally connected, and so it is a curve by the Hahn-Mazurkiewicz Theorem.
Therefore, we call a connected self-affine set a self-affine curve. In this paper, we
will be concerned with integer digit sets, i.e., D ⊂ Z

n.
There is a growing literature on the formalization and representation of topo-

logical questions; see [4] for a survey of the field. One of the interesting aspects of
the self-affine sets is the connectedness. This property is important in computer
vision and remote sensing [8, 19]. As explained in [2], there is some motivation
for studying connected self-affine tiles because they are related to number systems,
wavelets, and torus maps. Recently, there have been intensive investigations on the
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topic by Akiyama and Thuswaldner [1, 15], Ngai and Tang [17, 18] and Luo et al.
[15, 16].

Usually, the boundary of a tile has a complicated geometry and is of considerable
interest. We note that once we get a connected tile T for dimensions n ≥ 2, we
automatically have a connected boundary (see [15]), which is a curve for n = 2 (of
course, that is the case if T is disk-like) by the work of Luo in [14]. This is another
aspect of connected tiles.

It was conjectured and partially solved in [6] that for any expanding matrix
A ∈ M2(Z), there exists a digit set D such that T (A,D) is a connected tile. This
problem was solved in [9]. However, in [9, 10], we were mainly interested in collinear
digits (i.e., D ⊂ Z

n is a subset of a straight line). Little is known about the
connectedness of self-affine sets with non-collinear digits.

The study of disklikeness (i.e., being homeomorphic to the closed unit disk) is
interesting partly because, in many cases, “almost all self-affine tiles have holes
or disconnected interiors” as mentioned in [3]. Bandt and Gelbrich studied the
disklikeness problem for the cases | det(A)| = 2, 3 and showed that for det(A) = −3
and tr(A) = ±1 (tr denotes the trace), there is no digit set D such that T (A,D) is
disk-like [2].

Leung and Lau also considered collinear digits [13]. They assumed that D is a
consecutive collinear digit set in Z

2, T (A,D) is a self-affine tile, and showed that
T (A,D) is disk-like if and only if 2|p| ≤ |q + 2|, where f(x) = x2 + px + q is the
characteristic polynomial of A. But collinear digits may not give tiles since for A =
qI, where |q| ≥ 2 and I is the identity matrix, T (A,D) is not a tile for any collinear
digit set D = {0, d1v, · · · , d|q|2−1v} with v ∈ R

2 \ {0}, d1, · · · , d|q|2−1 ∈ N. Hence,
there is no disk-like tile to study in this case, but the analog of the connectedness
criterion in R [9] holds:

T(A,D) is connected if and only if, up to a translation, D = a{0, v, 2v, ..., (|q|2−
1)v} for some a > 0.

Less is known about the disklikeness when the digits are noncollinear. In regard
to this problem, Gmainer and Thuswaldner [5] study the disklikeness of a class of
tiles with noncollinear digits arising from polyominoes. The study of such digits
is more delicate than collinear digits. Our work will show that a small change in
a collinear digit set causes considerable complications in the study of disklikeness.
Clearly, if D consists of two digits, D is a collinear digit set. Hence we only need
to study D with more than two digits. The work presented here is inspired by the
results in the papers [9, 13]. In this paper, we will be concerned with self-affine sets
with noncollinear digit sets and prove the following existence and characterization
results.

Theorem 1.1. For any expanding matrix A ∈ M2(Z) with irreducible characteristic
polynomial x2 + px + q, |q| ≥ 3, there is a noncollinear digit set D (in fact, there
exist infinitely many) so that T (A,D) is a connected tile and

(i) when q is even, T (A,D) is disk-like if and only if 2|p| ≤ |q + 2|,
(ii) when q > 0 is odd, T (A,D) is disk-like if and only if 2|p| ≤ |q + 3| and

p �= ±1,
(iii) when q < 0 is odd, T (A,D) is disk-like if and only if 2|p| ≤ |q + 3|.

Theorem 1.2. For any expanding matrix A ∈ M2(Z) with reducible characteristic
polynomial x2+px+ q, there exists a noncollinear digit set such that the associated
self-affine set is a disk-like tile. (See Figure 5.)
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Also, the Lebesgue measures of the tiles in the above theorems are immediately
obtained from the proofs. It follows from Theorem 1.1 and Theorem 1.2 that there
always exist noncollinear digit sets D for p = 0 so that T is a disk-like tile. Our
study is divided into two parts:

I) We prove Theorem 1.1 by reducing the problem to companion matrices, and
then finding desired digit sets for such matrices.

II) We prove Theorem 1.2 by reducing the problem to a matrix of the form[
m 0
t n

]
, and then giving a digit set with the required properties.

As for the organization of the paper, we give some preparatory results in Section
2. We prove Theorem 1.1 in Section 3 as a combination of several propositions.
Theorem 1.2 is proved in Section 4. In the last section, we list the digit sets
for each case and summarize the results of this work in more detail as a table in
the appendix. We also have several figures of finite point-set approximations to
connected tiles, which are generated by using MATLAB. The different shades of
gray in those figures correspond to the q pieces A−1(T + dj), 1 ≤ j ≤ q, of the
self-affine set T .

2. Preliminaries

In this section, we list the results that will be frequently used in the following
sections. We first give the following criterion of the connectedness. It was first
proved in [7] and later rediscovered in [9] independently.

Theorem 2.1 ([7], [9]). Let T be an attractor defined by A ∈ Mn(Z) and a digit
set D ⊂ R

n. Define

Σ = {(di, dj) : di, dj ∈ D and (T + di) ∩ (T + dj) �= ∅}.
Then T is connected if and only if for any pair of di, dj ∈ D, there exists a finite set
{dj1 , · · · , djk} ⊂ D such that dj1 = di, djk = dj and (djl , djl+1

) ∈ Σ for 1 ≤ l ≤ k−1.

It is easy to see that (di, dj) ∈ Σ if and only if

di − dj =

∞∑
k=1

A−kvk, vk ∈ D −D.

However, it is not clear how to check whether (di, dj) ∈ Σ or not.
We continue with the definitions. If T is a tile, then there exists a subset J ⊆ Z

n

such that

T + J = R
n and (T + t)o ∩ (T + t′)o = ∅, t �= t′, t, t′ ∈ J

(see e.g., [12]). J is called a tiling set; T + J is called a tiling of Rn and a lattice
tiling if J is a lattice. When J = Z

n, the Lebesgue measure of T , µ(T ), is 1 [12],
and T is called a Z

n-tile or a Haar tile (because of its relation to Haar wavelets).
If v ∈ Z

n \ {0} and (T + v) ∩ T �= ∅, then (T + v) is called a neighbor of T .

Theorem 2.2 ([2, 3]). Let T be a disk-like tile and T + J a lattice tiling of R2.
Then one of the following holds.

(i) T has exactly 6 neighbors T ± �1, T ± �2, T ± (�1 + �2) for some �1, �2 ∈ J
and �1Z+ �2Z = J .

(ii) T has exactly 8 neighbors T ± �1, T ± �2, T ± (�1 + �2), T ± (�1 − �2) for
some �1, �2 ∈ J , and �1Z+ �2Z = J .
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Theorem 2.3 ([3]). Let T be a Z
2-tile with not more than six neighbors. Then T

is disk-like if and only if T is connected.

The characterizations in Theorem 2.2 and Theorem 2.3 are sharp. In order to use
these theorems, it is crucial to obtain the neighbors. There are also graph-theoretic
algorithms to determine the neighbors of T [20, 21]. It is mentioned in [20] that
the algorithm there is more suitable for a large class of tiles and faster than the
one in [21]. Each of our proofs uses a different matrix (or matrices) and mostly a
different class (or classes) of digit sets. The implementation of those algorithms in
[20, 21] for each proof and each digit set here does not look much easier than our
calculations as can be seen from [5]. On the other hand, the ad hoc methods used
in this paper to determine the neighbors of the tiles directly give explicit infinite
digit expansions of a few boundary points for each tile.

We will also need the following, which can be found in [9].

Proposition 2.4. Let A ∈ Mn(Z) be an expanding matrix and let D1, D2 be two
digit sets with D2 = x0 +D1 for some x0 ∈ R

n. Then the two attractors T1 and T2

corresponding to (A,D1) and (A,D2) are related by

T2 = T1 + (A− I)−1x0.

Proposition 2.5. Let A ∈ Mn(Z) be an expanding matrix and D ⊆ R
n be a digit

set. Suppose that there exists a vector v ∈ R
n such that D = v −D. Then

T (−A,D) = T (A,D)− (A−A−1)−1v.

Lemma 2.6. Let f(x) = x2 + ax ± q, where a ∈ Z, 1 �= q ∈ N. Then f(x) is
expanding if and only if |a| ≤ q for f(0) = q, and |a| ≤ q − 2 for f(0) = −q.

Lemma 2.7. Let f(x) and f̃(x) denote the characteristic polynomials of A,−A ∈
Mn(Z), respectively. Then f̃(x) = (−1)nf(−x).

3. The irreducible-characteristic-polynomial case

In this section, we will assume that all characteristic polynomials x2+px+ q are
irreducible and |q| ≥ 3. We will need the following results.

Proposition 3.1. For any expanding matrix A ∈ Mn(Z) with irreducible charac-
teristic polynomial f(x), B = {v,Av, · · ·An−1v} is a linearly independent set for
any v ∈ Z

n \ {0}, and the matrix representation of A in basis B is the companion
matrix C of f(x); C has 1’s below the diagonal, the negatives of the coefficients of
f(x) in the last column, and zeroes at all other entries.

Proof. The proof follows from the proof of Theorem 3.1 in [9]. �

By Proposition 3.1, it is sufficient to study companion matrices for our purposes.
A digit set D is said to be a primitive digit set if the lattice J generated by
{AiD}n−1

i=0 is Zn. D is called a complete residue system (mod A) or just a complete
digit set if it is a complete set of coset representatives of the additive group Z

n/AZ
n.

For future use, we state the following fact so that Theorem 2.2 and Theorem 2.3
apply.

Theorem 3.2 ([12]). Let T = T (A,D) be a tile generated by a primitive complete
digit set D and an expanding matrix A ∈ Mn(Z) with irreducible characteristic
polynomial over Z. Then µ(T ) = 1 and T is a Haar tile.
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Figure 1. Disk-like tiles of Proposition 3.4

The following trivial lemma will be used together with Proposition 2.4 or Propo-
sition 2.5.

Lemma 3.3. Let T be a tile and v, x ∈ R
n. Then T ∩ (T + v) �= ∅ if and only if

(T + x) ∩ (T + x+ v) �= ∅.

For simplicity, we will denote an element
∑∞

k=1 A
−kdjk ∈ T, djk ∈ D, by the

sequence dj1dj2dj3 · · · . As a special case, a periodic sequence will be a sequence

of the form dj1 . . . djmdjm+1
. . . djm+s

djm+1
. . . djm+s

. . . = dj1 . . . djmdjm+1
. . . djm+s

,
i.e., the block of digits djm+1

, djm+2
, . . . , djm+s

is repeated indefinitely. The proof
of Theorem 1.1 will follow from the series of propositions below.

Proposition 3.4. For any expanding matrix A ∈ M2(Z) with characteristic poly-
nomial f(x) = x2±q, q > 2, there exists a noncollinear digit set D so that T (A,D)
is disk-like. (See Figure 1.)

Proof. (A) f(x) = x2 − q: Without loss of generality (abbreviated as WLOG), we

only consider the companion matrices A =
[

0 q
1 0

]
with characteristic polynomial

x2 − q (see Proposition 3.1) and let D = {
[

0
0

]
,
[

k
1

]
: 1 ≤ k ≤ q − 1} such that

D = {d1 =
[

0
0

]
, d2 =

[
1
1

]
, · · · , dq−1 =

[
q − 2

1

]
, dq =

[
q − 1

1

]
}

for q ≥ 3. We want to show that T = T (A,D) is disk-like. We first note that
µ(T ) = 1 by Theorem 3.2 since f(x) is irreducible by our assumption and D is

a primitive complete digit set. Our plan is to show that T ±
[

2
1

]
, T ±

[
1
0

]
,

T ±
[

1
1

]
are the only neighbors of T , and thus Theorem 2.1 and Theorem 2.3

imply that T is disk-like. It is clear that if T + v is a neighbor of T , then T − v is

also a neighbor. Hence it is enough to show that T +
[

2
1

]
, T +

[
1
0

]
, T +

[
1
1

]
are the only neighbors of T for the disklikeness.

We now begin to determine the neighbors of T . We will leave the verification of
all necessary matrix computations to the reader. We note that

dq−1 =
[

2
1

]
, d2d1 − d1d2 =

[
1
0

]
, dq − d2d1 =

[
1
1

]
.

Hence T +
[

2
1

]
, T +

[
1
0

]
, T +

[
1
1

]
are neighbors of T .
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We show that there are no other neighbors. To this end, we notice that all of
the entries of Ak are nonnegative. Hence, for the above digit sets, it is easy to see

that
[

x
y

]
∈ T − T implies that

[
| x |
| y |

]
≤

∞∑
k=1

A−k
[

q − 1
1

]
= (A− I)−1

[
q − 1

1

]
=

[
2 + 1

q−1

1 + 1
q−1

]

so that | x |≤ 2 and | y |≤ 1 for integers x, y. We need to show that
[

2
−1

]
,
[

−1
1

]
,[

0
1

]
and

[
2
0

]
are not in T − T . Recall that

(A− I)−1
[

q − 1
1

]
=

[
2 + 1

q−1

1 + 1
q−1

]
, (A− I)−1

[
q − 2

1

]
=

[
2
1

]
.

From these we see that
[

x
y

]
∈ T − T and x ≥ 2 imply that all the digits d in

the decimal expansion of
[

x
y

]
must satisfy d ≥

[
q − 2

1

]
. This gives y ≥ 1. Thus[

2
−1

]
,
[

2
0

]
cannot be in T − T .

On the other hand,
[

x
y

]
∈ T − T and y ≥ 1 also imply that all the digits d in

the decimal expansion of
[

x
y

]
must satisfy d ≥

[
q − 2

1

]
. So we must have x ≥ 2.

Then
[

−1
1

]
,
[

0
1

]
cannot be in T − T either.

(B) f(x) = x2 + q:
(i) We now consider the companion matrices A with characteristic polynomial

x2 + q, where q > 2 is even and D = {
[

2k
0

]
,
[

2k
−1

]
: 0 ≤ k ≤ q−2

2 }. Then

AD = {
[

0
2k

]
,
[

q
2k

]
: 0 ≤ k ≤ q−2

2 } and

D +AD = {
[

2k
2l

]
,
[

2k
2l − 1

]
,
[

2k + q
2l

]
,
[

2k + q
2l − 1

]
: 0 ≤ k, l ≤ q − 2

2
}

= {
[

2k
2l

]
,
[

2k
2l − 1

]
: 0 ≤ k ≤ q − 1, 0 ≤ l ≤ q − 2

2
}.

Set

D′ =
[

0
1

]
+D +AD = {

[
2k
2l

]
,
[

2k
2l + 1

]
: 0 ≤ k ≤ q − 1, 0 ≤ l ≤ q − 2

2
}

= {
[

2k
l

]
: 0 ≤ k, l ≤ q − 1}.

Then T (A,D) = T (A2, D′)− (A2 − I)−1
[

0
1

]
by Proposition 2.4. Note that A2 =

−qI =: Ã,
∑∞

k=1 Ã
−2k = (Ã2−I)−1 = 1

q2−1I, and
∑∞

k=1 Ã
−(2k−1) = Ã(Ã2−I)−1 =

−q
q2−1I. Then

[
x
y

]
∈ T (A2, D′) implies that −2q q−1

q2−1 ≤ x ≤ 2 q−1
q2−1 , −q q−1

q2−1 ≤ y ≤
q−1
q2−1 . Therefore, T (A

2, D′) = 2[ −q
q+1 ,

1
q+1 ]× [ −q

q+1 ,
1

q+1 ] and so

T (A,D) = T (A2, D′)− (A2 − I)−1
[

0
1

]
= 2[

−q

q + 1
,

1

q + 1
]× [

−(q − 1)

q + 1
,

2

q + 1
].

(ii) We next consider the companion matrices A with characteristic polynomial

x2 + q, where q > 2 is odd, and D = {
[

2k
0

]
,
[

2l + 1
−1

]
: 0 ≤ k ≤ q−1

2 , 0 ≤ l ≤
q−3
2 }. Note that D is not a primitive digit set. Therefore, we transform it to a
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primitive complete digit set so that Theorem 3.2 applies. For our purposes, we let

B−1 =
[

1
2

1
2

0 −1

]
. Then B−1AB =

[
1 q+1

2
−2 −1

]
, and

B−1D = {
[

0
0

]
,
[

1
0

]
,
[

2
0

]
, · · · ,

[
q−1
2
0

]
,
[

0
1

]
,
[

1
1

]
,
[

2
1

]
, · · · ,

[
q−3
2
1

]
}.

Since T (B−1AB,B−1D) = B−1T (A,D), we may assume that A =
[

1 q+1
2

−2 −1

]
and

D = {d1 =
[

0
0

]
, d2 =

[
1
0

]
, · · · , d q+1

2
=

[
q−1
2
0

]
, d q+3

2
=

[
0
1

]
, · · · ,

[
q−3
2
1

]
}

in the rest of the proof. We now show that T ±
[

1
0

]
, T ±

[
1
−1

]
, T ±

[
0
1

]
are

neighbors of T . Notice that for k ∈ N, we have

A−2k = (
−1

q
)kI =

{ 1
qk
I if k is even,

−1
qk

I if k is odd,
A−(2k−1) =

{ 1
qk
A if k is even,

−1
qk

A if k is odd.

T ±
[

1
−1

]
is a neighbor of T : d1d1d q+1

2
d q+1

2
− d q+1

2
d q+1

2
d1d1 =

[
1
−1

]
∈ T − T .

T ±
[

0
1

]
is a neighbor of T : d q+1

2
d1d1d q+1

2
− d1d q+1

2
d q+1

2
d1 = d q+3

2
∈ T − T .

T ±
[

1
0

]
is a neighbor of T :

d q+3
2
d q+1

2
d q+1

2
d1d1d q+1

2
− d1d1d1d q+1

2
d q+1

2
d1 = −d2 ∈ T − T.

We next show that these are the only neighbors of T and, by Theorem 2.3, T is

disk-like. First note that
[

x
y

]
∈ T − T implies that |x| ≤ the first entry of

[
3
2
·

]
=

∑
even k

A−2k
[

q−1
2
0

]
−

∑
odd k

A−2k
[

q−1
2
0

]
+

∑
even k

A−(2k−1)
[

q−3
2
1

]

−
∑

odd k

A−(2k−1)
[

q−3
2
1

]
=
[

1
2
0

]
+

1

q − 1
A
[

q−3
2
1

]
=
[

1
2
0

]
+

1

q − 1

[
q−3
2

+ q+1
2

·

]

so that |x| ≤ 3
2 . Also

[
x
y

]
∈ T − T implies that |y| ≤ the second entry of

∑
even k

A−2k
[

0
1

]
−

∑
odd k

A−2k
[

0
1

]
+

∑
odd k

A−(2k−1)
[

q−1
2
0

]

−
∑

even k

A−(2k−1)
[

q−1
2
0

]
=

[
0
1

q−1

]
+

−1

q − 1
A
[

q−1
2
0

]
=

[
0
1

q−1

]

+
−1

q − 1

[
q−1
2

−(q − 1)

]
=

[
− 1

2
1 + 1

q−1

]

so that |y| ≤ 1 + 1
q−1 . Therefore, |x| ≤ 1 and |y| ≤ 1 for integer

[
x
y

]
∈ T − T .

We must prove that T ±
[

1
1

]
are not neighbors of T. For this, we only need to

note that y = 1 if and only if we replace the digit
[

0
1

]
by any other digit of the

form
[

·
0

]
in the above expression. To maximize the first entry of that expression,
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Figure 2. A non-disk-like connected tile (left) and a disk-like tile
of Proposition 3.5

we take
[

q−1
2
0

]
in place of

[
0
1

]
. Then

[
0
1

]
=

∑
even k

A−2k
[

q−1
2
0

]
−

∑
odd k

A−2k
[

q−1
2
0

]
+

∑
odd k

A−2(k−1)
[

q−1
2
0

]

−
∑

even k

A−2(k−1)
[

q−1
2
0

]
=

[
1
2
0

]
+

−1

q − 1
A
[

q−1
2
0

]
=

[
1
2
0

]
+

−1

q − 1

[
q−1
2

−(q − 1)

]
.

This shows that x ≤ 0, and so x cannot be 1 when
[

x
1

]
∈ T − T . �

In the following, we will write 0 for the zero matrix.

Proposition 3.5. For any expanding matrix A ∈ M2(Z) with characteristic poly-
nomial x2 + px + q, where q is odd and p, q > 0, there exists a noncollinear digit
set D so that T (A,D) is a connected tile and is disk-like if and only if 2p ≤ q + 3
and p �= 1. (See Figure 2.)

Proof. Let A be the companion matrix of x2 + px+ q and let

D = {
[

0
0

]
,
[

k
1

]
: 1 ≤ k ≤ q − 1}.

In order to obtain neighbors of T , WLOG, we can use translates ofD by Proposition
2.4 and Lemma 3.3.

(A) Because the proof in (B) below doesn’t work for the case p = 1, 2 (namely,[
p − 2

1

]
and

[
p − 1

1

]
are not in the last two translated digit sets considered there),

we need to study that case separately. For p = 1, it follows from Table 1 that

T ±
[

1
0

]
, T ±

[
p − 1

1

]
(=

[
0
1

]
), T ±

[
p − 2
−1

]
(=

[
−1
−1

]
), T ±

[
p − 2

1

]
(=

[
−1
1

]
)

are neighbors of T .

For p = 2, the same table shows that T ±
[

1
0

]
, T ±

[
p − 1

1

]
(=

[
1
1

]
), T ±[

p − 2
1

]
(=

[
0
1

]
) are neighbors of T. By Theorem 2.1, T is connected for p = 1, 2.

(B) For p > 2, Table 1 shows that T ±
[

1
0

]
, T ±

[
p − 1

1

]
, T ±

[
p − 2

1

]
are

neighbors of T again. As before, we conclude that T is connected.
(C) When 2p > q + 3 or p = 1, T is not disk-like: The neighbors for p = 1

obtained in (A) are in the form of Theorem 2.2 (ii). For p = 1, we see from Table 1
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Table 1

Cases Translates of D Integer vectors in T − T

p = 1 {d1 =

[
1
0

]
, · · · , dq =

[
q
1

]
} A−1d1 + A−3dq = 0 ⇒[

−1
−1

]
= dqdqd1d1dqdq − d1d1dqdq

p = 1 the same as above A−1dq − A−2dq =

[
1
−1

]
⇒[

1
−1

]
= dqd1d1dqdq − d1dqdqd1d1dqdq

p = 1 the same as above

[
0
−1

]
= dqd1d1dqdq − d1d1dqdq

p = 1 the same as above −d1 = d1dqdqd1d1dqdq − d1d1dqdq

p = 2 the same as above A−1d1 + A−2dq = −d1 ⇒

−
[

1
1

]
= dqd1d1dq − d1d1dq

p = 2 the same as above −
[

0
1

]
= dqd1d1dq − d1dqd1d1dq

p = 2 the same as above −d1 = d1dqd1d1dq − d1d1dq

p > 2 {d1 =

[
0
−1

]
, d2 =

[
1
0

]
, · · · ,

[
q − 1

0

]
} A−1d2 + A−2d1 = 0 ⇒

d2 = d2d1 − d1d2d1

p > 2 {·, d2 =

[
p − 1

1

]
, · · · , dq−p+3 =

[
q
1

]
, · · · } A−1d2 + A−2dq−p+3 = 0 ⇒

d2 = d2dq−p+3 − dq−p+3d2dq−p+3

p > 2 {d1 =

[
p − 2

1

]
, · · · ·, dq−p+3 =

[
q
2

]
, · · · } A−1d1 + A−2dq−p+3 = 0 ⇒

d1 = d1dq−p+3 − dq−p+3d1dq−p+3

p = 1 {d1 =

[
1
−1

]
, d2 =

[
2
0

]
, · · · , dq =

[
q
0

]
} A−1d1 + A−2dq = −d2 ⇒

−d2 = d1dqd2d1dq − d2d1dq

2p > q + 3 {··, d2p−q−2 =

[
2(p − 1)

2

]
, · · · , dq =

[
2q
2

]
} A−1d2p−q−2 + A−2dq = 0 ⇒

d2p−q−2 = d2p−q−2dq − dqd2p−q−2dq

that T ±
[

2
0

]
is the fifth pair of neighbors of T so that T is not disk-like by

Theorem 2.2 and (A).
We now assume that 2p > q+3. Note that this inequality implies that 2(p−1) ≥

q + 2. Then the last line of Table 1 says that T + d2p−q−2 is another neighbor of
T . Then, by Theorem 2.2 and (B) in this proof, T is not disk-like.

(D) When 2p ≤ q + 3 and p �= 1, there are no other neighbors: Let v =
[

1
0

]
.

Then we can write D as D = {
[

0
0

]
, bkv+Av : 1 ≤ bk ≤ q−1}. We note that any

nonzero integer vector d ∈ T−T has the form d =
∑∞

k=1A
−k(ε′kAv)+

∑∞
k=1A

−kbkv,
where ε′k = 0,±1, |bk| ≤ q−1. Now we want to see the contribution of γv+ δAv :=∑∞

k=2 A
−(k−1)ε′kv to d. In particular, we want to know when |δ| ≤ 1

q−p−1 < 1. The

first inequality is obtained by modifying Lemma 4.4 in [13] for γv + δAv. The last
inequality holds if and only if p < q− 2. Note that q− p− 1 > 0 if p < q− 2. When
p ≥ q − 2, we have three cases.

Case 1. p = q − 2 and 2p = 2(q − 2) ≤ q + 3 yields q ≤ 7. Thus this case occurs
when (p, q) = (3, 5), (5, 7) since p �= 1 and q is odd.

Case 2. p = q − 1 and 2p = 2(q − 1) ≤ q + 3 forces q ≤ 5. In this case, we get
(p, q) = (2, 3), (4, 5).

Case 3. p = q and 2p = 2q ≤ q + 3 gives q ≤ 3. Then (p, q) = (3, 3) since q is odd.
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In all these cases, ∆ = p2 − 4q < 0. Then we can use the inequality |δ| <
2

(
√
q−1)(

√
4q−p2)

, which is derived by modifying (4.10) in Lemma 4.7 of [13] for

γv + δAv =
∑∞

k=2 A
−(k−1)ε′kv. Using this inequality, in cases 1 and 2, we can see

that |δ| < 1 by direct computation. When p = q = 3, we get |δ| < 2.
Let d = γ′v + δ′Av ∈ T − T . We have two possibilities for the case 2p ≤ q + 3

and p �= 1.
(D-I) 2p ≤ q + 2 and p �= 1: Then the proof of Theorem 4.1 in [13] shows that

possible nonzero integer vectors for
∑∞

k=1 A
−kbkv are ±v,±(pv+Av),±((p−1)v+

Av). This case automatically excludes the pair (p, q) �= (3, 3). Therefore, it follows
that δ′, the second coordinate of d, can only be 0,±1. We use a technique to find
candidates for neighbors of T . If γ′v + δ′Av = ε′1v + b1A

−1v +
∑∞

k=2 A
−k(bkv +

ε′kAv) ∈ T − T , where |bk| ≤ q − 1, and ε′k = 0,±1, then multiplying by A, we
get γ′′v + δ′′Av ∈ T − T, where b1v + ε′1Av ∈ D − D, γ′′ = −(qδ′ + b1) and
δ′′ = γ′ − pδ′ − ε′1, ε

′
1 = 0,±1. This, in turn, implies that γ′′′v + δ′′′Av ∈ T − T,

where γ′′′ = −(qδ′′ + b2) and δ′′′ = γ′′ − pδ′′ − ε′2, ε
′
2 = 0,±1, etc.

We already know that δ′ = 0 and γ′ = ±1 give neighbors of T by (A) and (B)
above. If δ′ = 0 and γ′ �= 0,±1, then the only possibility is γ′ = ±2, ε′1 = ±1 and
δ′′ = ±1 since we must have |δ′′| = |γ′ − ε′1| ≤ 1 by our findings for a neighbor
above.

We show that ±2v+T cannot be neighbors of T. Assume that ±2v ∈ T −T and
get a contradiction. For the case δ′ = 0, γ′ = 2, ε′1 = 1 and δ′′ = 1, we have γ′′ =
−(δ′q+b1) = −b1. We will show below that when δ′′ = 1 the only possibilities for γ′′

are p−2, p−1, p, p+1, p+2. Therefore, b1 = −(p−2),−(p−1),−p,−(p+1),−(p+2).

Note that p ≥ 2 forces b1 ≤ 0. Then 2v = A−1
[

b1
1

]
+

∑∞
k=2(bkv + ε′kAv) ∈

T − T. Since the sign of b1 is nonpositive,
[

b1
1

]
cannot be in D − D, which is a

contradiction. Thus the assumption that ±2v ∈ T − T is wrong.
When δ′ = 1, |δ′′| = |γ′ − p− ε′1| ≤ 1 implies that γ′ = p− 2, p− 1, p, p+1, p+2.

When δ′ = −1, |δ′′| = |γ′+p−ε′1| ≤ 1 implies that γ′ = −(p−2),−(p−1),−p,−(p+
1),−(p+ 2).

We next argue that γ′ = p and δ′ = 1 don’t yield a neighbor. Suppose that
pv+Av ∈ T −T. Then δ′′ = γ′ − p− ε′1 = p− p− ε′1 = −ε′1 and γ′′ = −(q+ b1) < 0
forces ε′1 = 0, 1 because ε′1 = −1 would give δ′′ > 0 and γ′′ = −(q + b1) < 0 is not
possible by the previous paragraph. If ε′1 = 0, then |γ′′| = | − (q + b1)| ≤ 1 yields

b1 = −(q−1). Hence pv+Av = A−1
[

−(q − 1)
0

]
+
∑∞

k=2 A
−k(bkv+ ε′kAv) ∈ T −T ,

where |bk| ≤ q − 1, |ε′k| ≤ 1. This is a contradiction since
[

−(q − 1)
0

]
�∈ D −D. If

ε′1 = 1, then δ′′ = −1, and γ′′ = −(q + b1) < 0 yields q + b1 = p − 2, p − 1, p
or γ′′ = −p,−(p − 1),−(p − 2) because we will see below that δ′′ = −1 and
γ′′ = −(p+1),−(p+2) don’t yield neighbors. Thus b1 = p− q, p− q− 1, p− q− 2.

But p ≤ q, so b1 = p− q, p − q − 1, p − q − 2 ≤ 0. Hence pv + Av = A−1
[

b1
1

]
+∑∞

k=2 A
−k(bkv + ε′kAv) ∈ T − T. This is a contradiction since b1 ≤ 0 implies[

b1
1

]
�∈ D −D.

We then show that γ′ = p + 2 and δ′ = 1 don’t yield a neighbor. Suppose that
γ′ = p+ 2 and δ′ = 1 gives a neighbor. Then δ′′ = γ′ − pδ′ − ε′1 = p+ 2− p− ε′1 =
2−ε′1 ≥ 1 implies that δ′′′ = γ′′−pδ′′−ε′2 ≤ −(qδ′+b1)−p−ε′2 ≤ −q+(q−1)−p−ε′2 =
−p− 1− ε′2 ≤ −2 since p ≥ 2 and |ε′2| ≤ 1. This contradicts with |δ′′′| ≤ 1.
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So far, we have shown that 2v + T , pv +Av + T and (p+ 2)v +Av + T are not
neighbors of T . We finally suppose that (p+ 1)v + Av + T is a neighbor of T , i.e,
(p + 1)v + Av = ε′1v + b1v +

∑∞
k=2 A

−k(bkv + ε′kAv) ∈ T − T , where |bk| ≤ q − 1,
|ε′k| ≤ 1. Then δ′′ = γ′ − pδ′ − ε′1 = p+ 1− p− ε′1 = 1− ε′1 ≥ 1 for ε′1 �= 1, and we
proceed as in the previous paragraph to get the contradiction δ′′′ ≤ −2. If ε′1 = 1,
then δ′′ = 0 and we must have |γ′′| = |−(qδ′+b1)| = |−(q+b1)| ≤ 1 for a potential
neighbor. This leads to b1 = −(q − 1). Then (p + 1)v + Av = v − (q − 1)A−1v +∑∞

k=2 A
−k(bkv+ ε′kAv) = A−1

[
−(q − 1)

1

]
+
∑∞

k=2A
−k(bkv+ ε′kAv) ∈ T − T . This

is impossible since
[

−(q − 1)
1

]
�∈ D −D.

Thus (p+1)v+Av+T is not a neighbor of T , and so ±v+T , ±((p−1)v+Av)+T
and ±((p− 2)v + Av) + T form the neighbors of T in this case. Theorem 2.1 and
Theorem 2.3 imply that T is disk-like.

(D-II) 2p = q + 3: We must necessarily have p ≥ 3 since we assume that q ≥ 3.
This case includes the pairs (p, q) = (3, 3), (4, 5), (5, 7) above. Let ∆ = p2 − 4q =
p2 − 4(2p− 3) = p2 − 8p+ 12. We have three cases:

(1) ∆ > 0: Then we obtain p > 6, q > 9 and |δ′| ≤ q
q−p+1 = q

q− q+3
2 +1

= 2q
q−1 < 3.

The inequality for |δ′| is a slightly changed version of the inequality in case (ii) of
the proof of Proposition 4.5 in [13] for γ′v + δ′Av ∈ T − T .

(2) ∆ = 0: Since p ≥ 3 and 2p = q + 3, we have p = 6, q = 9 and x2 + px+ q =
(x + 3)2. But we are assuming in this section that x2 + px + q is irreducible. So
∆ = 0 doesn’t occur in our consideration here.

(3) ∆ < 0: In this case, 3 ≤ p ≤ 5 and so (p, q) = (3, 3), (4, 5), (5, 7). Let

A−kv := αkv+ βkAv, k = 1, 2, .... We use the inequality |δ′| ≤ q( p
q2 + 2.q−1

(
√
q−1)

√
−∆

),

which is again derived by modifying the first inequality of (4.10) with j = 3 in
Lemma 4.7 in [13] for γ′v + δ′Av. This modification is obtained by taking into
account the inequality β1 = −q−1 < 0. Then we get |δ′| < 2 for p = 4, 5. For

q = p = 3, β1, β3 < 0 and we need the sharper estimate |δ′| ≤ q( p
q2+

2.q−1

(
√
q−1)

√
−∆

−β3)

to conclude that |δ′| < 2 again.
Now consider the case ∆ > 0. In this case, we recall that p > 6, q > 9 and

|δ′| < 3. Furthermore, it is easy to show that βk =
yk
2−yk

1√
∆

, where y1 = −p+
√
∆

2q , y2 =

−p+
√
∆

2q < 0 are the roots of qx2 + px + 1. Then we study the case |δ′| = 2. For

this, it suffices to consider δ′ = 2. Since |δ′| ≤ q
q−p+1 = 2q

q−1 < 3 by (1), we may

get δ′ = 2 only if we replace q in the numerator by q − 1. (That can be seen, just
as in the case of 2q-adic representations, by considering the explicit expression of

βk). This happens when (
∑∞

k=1 A
−2k −

∑∞
k=1 A

−(2k−1))(q− 1)v =
[

·
2

]
. But such

a series cannot be in T −T because the first digit −
[

q − 1
0

]
is not in D−D. Thus

γ′v+2Av ∈ T−T is not possible. Thus we must have |δ′| < 2. This reduces our proof
to the case (D-I). Hence we conclude in this case that ±v+T , ±((p−1)v+Av)+T
and ±((p− 2)v +Av) + T form the neighbors of T as shown in (D-I). �

Note that the characteristic polynomial in Proposition 3.6 satisfies x2−px+q =
(−1)2((−x)2 + p(−x) + q) so that Lemma 2.7 holds. But D below doesn’t satisfy
the hypothesis of Proposition 2.5. That is why we cannot use Proposition 2.5 and
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Lemma 2.7 together with Proposition 3.5 and we need a separate proof for the
following proposition.

Proposition 3.6. For any expanding matrix A ∈ M2(Z) with characteristic poly-
nomial f(x) = x2 − px+ q, where q is odd and p, q > 0, there exists a noncollinear
digit set D so that T (A,D) is a connected tile and is disk-like if and only if 2p ≤ q+3
and p �= 1. (See Figure 3.)

Proof. Let A be the companion matrix of x2 − px+ q and let

D = {
[

0
0

]
,
[

k
−1

]
: 1 ≤ k ≤ q − 1},

which is slightly different from the one in the previous proof. We proceed as before.

(A) For p = 1, we see from Table 2 that T ±
[

1
0

]
, T ±

[
p − 1
−1

]
, T ±

[
p − 2

1

]
,

T ±
[

p − 2
−1

]
are neighbors of T .

Next we will show that T ±
[

1
0

]
, T ±

[
p − 1
−1

]
, T ±

[
p − 2
−1

]
are neighbors of

T for p = 2. Compared with Proposition 3.5, it is somehow harder to find the
neighbors here.

Assume that p = 2. We use the digit set D′ =
[

1
0

]
+D above. Then A−1d1 −

A−2dq = d1 implies that S1 = A−1d1 −A−2d1 +A−3dq = 0.

T ±
[

−1
1

]
are neighbors of T : −A−1dq = −

[
p − 1
−1

]
=

[
−1
1

]
implies

[
−1
1

]
= S1−A−1dq+

∞∑
k=0

(A−(6k+1)+A−(6k+6)−A−(6k+3)−A−(6k+4))S1 ∈ T −T.

T ±
[

−1
0

]
are neighbors of T :

[
−1
0

]
= −A−1d1 +A−2dq + S1

+

∞∑
k=0

(A−(6k+5) +A−(6k+6) −A−(6k+2) −A−(6k+3))S1 ∈ T − T.

T ±
[

0
1

]
are neighbors of T :

−
[

p − 2
−1

]
=

[
0
1

]
= A−1d1 −A−2dq −A−1dq

+

∞∑
k=0

(A−(6k+1) +A−(6k+2) −A−(6k+4) −A−(6k+5))S1 ∈ T − T.

By Theorem 2.1, T is connected in this case.

(B) We now assume that p > 2. Table 2 shows that T ±
[

p − 2
−1

]
, T ±

[
p − 1
−1

]
,

T ±
[

1
0

]
, are neighbors of T . Theorem 2.1 implies that T is connected again.

(C) When 2p > q+3 or p = 1, T is not disk-like: We now assume that 2p > q+3
so that 2(p − 1) ≥ q + 2. Then by the last line of Table 2, T + d2p−q−2 is also a
neighbor of T . Therefore, T (A,D) is not disk-like by Theorem 2.2 and (B) above.
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Table 2

Cases Translates of D Integer vectors in T − T

p = 1 {d1 =

[
1
0

]
, · · · , dq =

[
q
−1

]
} A−1d1 + A−3dq = 0 ⇒[

−1
−1

]
= dqdqd1d1dqdq − d1d1dqdq

p = 1 the same as above A−1dq − A−2dq =

[
1
−1

]
⇒[

1
−1

]
= dqd1d1dqdq − d1dqdqd1d1dqdq

p = 1 the same as above

[
0
−1

]
= dqd1d1dqdq − d1d1dqdq

p = 1 the same as above −d1 = d1dqdqd1d1dqdq − d1d1dqdq

p > 2 {· · · , dp−1 =

[
p − 1
−1

]
, · · · , dq =

[
q
−1

]
} A−1dp−1 − A−2dq = 0 ⇒

dp−1 = dq − dp−1

p > 2 {d1 =

[
p − 2
−1

]
, · · · , dq−p+3 =

[
q
−2

]
, · · · } A−1d1 − A−2dq−p+3 = 0 ⇒

d1 = dq−p+3 − d1

p > 2 {d1 =

[
0
1

]
, d2 =

[
1
0

]
, · · · ,

[
q − 1

0

]
} A−1d2 − A−2d1 = 0 ⇒

d2 = d1 − d2

2p > q + 3 {· · · , d2p−q−2 =

[
2(p − 1)

−2

]
, · · · , dq =

[
2q
−2

]
} A−1d2p−q−2 − A−2dq = 0 ⇒

d2p−q−2 = dq − d2p−q−2

The neighbors of T in (A) for p = 1 are in the form of Theorem 2.2(ii). For

p = 1, we consider the translated digit set D′ =
[

1
1

]
+ D = {d1 =

[
1
1

]
, d2 =[

2
0

]
,
[

3
0

]
, · · · , dq =

[
q
0

]
} and we will show that T ±

[
2
0

]
is the fifth pair of

neighbors of T so that T is not disk-like by Theorem 2.2 and (A) in this proof. For
this, we note that A−1d1 −A−2dq = d2 gives

S2 := A−1d2 −A−2d1 +A−3dq = 0.

Then

[
2
0

]
= A−1d1−A−2dq −S2+

∞∑
k=0

(A−(6k+2)+A−(6k+3)−A−(6k+5)−A−(6k+6))S2.

This takes care of the case p = 1.
(D) When 2p ≤ q + 3 and p �= 1, there are no other neighbors: As in the

proof of Proposition 3.5, with obvious modifications, we can show that T ±
[

1
0

]
,

T ±
[

p − 1
−1

]
, T ±

[
p − 2
−1

]
are the only neighbors of T and T is disk-like when

2p ≤ q + 3 and p �= 1. �

Proposition 3.7. For any expanding matrix A ∈ M2(Z) with characteristic poly-
nomial f(x) = x2 + px + q, where q > 0 is even and p �= 0, there exists a non-
collinear digit set D so that T (A,D) is a connected tile and is disk-like if and only
if 2|p| ≤ |q + 2|. (See Figure 3.)

Proof. Let A be the companion matrix of x2 + px+ q and

D = {
[

2k
0

]
,
[

2k
−1

]
: 0 ≤ k ≤ q − 2

2
}.
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Figure 3. A disk-like tile of Proposition 3.6 (left) and a disk-like
tile of Proposition 3.7

Note that −A has characteristic polynomial x2−px+q by Lemma 2.7. Also D =[
q − 2
−1

]
−D. Then T (−A,D) = T (A,D)− (A − A−1)−1

[
q − 2
−1

]
by Proposition

2.5. Thus we only need to consider A with x2 + px+ q, p > 0. Note that D is not a
primitive digit set. Hence we transform it to a primitive complete digit set so that

Theorem 3.2 applies. For this purpose, we let B−1 =
[

1
2

0

0 1

]
. Then

B−1AB =
[

0 −q
2

2 −p

]
,

and B−1D = {
[

0
0

]
,
[

1
0

]
, · · · ,

[
q−2
2
0

]
,
[

0
−1

]
,
[

1
−1

]
, · · · ,

[
q−2
2

−1

]
}. Thus we

can assume that A =
[

0 −q
2

2 −p

]
, and

D = {
[

0
0

]
,
[

1
0

]
,
[

2
0

]
, · · · ,

[
q−2
2
0

]
,
[

0
−1

]
,
[

1
−1

]
,
[

2
−1

]
, · · · ,

[
q−2
2

−1

]
}

so that D is a primitive complete digit set and µ(T ) = 1 by Theorem 3.2.
(A) We have two cases.

Case 1. p is odd: We consider the translated digit set

D′ =
[

1
0

]
+D

= {d1 =
[

1
0

]
, · · · ,

[
q
2
0

]
,
[

1
−1

]
, · · · , d q+p+1

2
=

[
p+1
2

−1

]
, · · · , dq =

[
q
2

−1

]
}.

We will show that T ±
[

1
0

]
, T ±

[
p−1
2
1

]
, T ±

[
p+1
2
1

]
are neighbors of T so that

T is connected by Theorem 2.1. Note that A−1d q+p+1
2

+A−2dq = −d1 implies that

A−1d1 +A−2d q+p+1
2

+A−3dq = 0 and so d1d q+p+1
2

dq = 0 ∈ T .

T ±
[

1
0

]
are neighbors of T : d q+p+1

2
dqd1d q+p+1

2
dq−d1d q+p+1

2
dq = −d1 ∈ T−T .

T±
[

p+1
2
1

]
are neighbors of T : dqd1d q+p+1

2
dq−d1d q+p+1

2
dq = −

[
p+1
2
1

]
∈ T−T .

T ±
[

p−1
2
1

]
are neighbors of T : Next, we consider the digit set D′ =

[
1
1

]
+

D = {d1 =
[

1
1

]
, · · · , d q

2
=

[
q
2
1

]
, · · · , dq =

[
q
2
0

]
}. Suppose that p > 1. Then

d p−1
2

=
[

p−1
2
1

]
∈ D′. Now A−1d p−1

2
+ A−2d q

2
= 0 implies that d p−1

2
d q

2
= 0 ∈ T.

Hence −d p−1
2

= d q
2
d p−1

2
d q

2
− d p−1

2
d q

2
∈ T − T.
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We next assume that p = 1. Then A−1dq + A−2d q
2
= −d1 implies A−1d1 +

A−2dq + A−3d q
2
= 0. Then d1dqd q

2
= 0 ∈ T , and hence −

[
p−1
2
1

]
= −

[
0
1

]
=

d q
2
d1dqd q

2
− d1dqd q

2
∈ T − T.

We now assume that 2|p| ≤ |q + 2| and determine candidates for possible neigh-
bors of T . Considering the translated digit set

D +
[

0
1

]
= {

[
0
0

]
,
[

1
0

]
,
[

2
0

]
, · · · ,

[
q−2
2
0

]
,
[

0
1

]
,
[

1
1

]
,
[

2
1

]
, · · · ,

[
q−2
2
1

]
},

we see that any integer vector d ∈ T −T has the form 1
2 (εv+

∑∞
k=1A

−kbkv), where

v =
[

1
0

]
, ε = 0,±1, and |bk| ∈ {0, 1, 2, ..., q− 1}. The proof of Theorem 4.1 in [13]

shows that possible nonzero integer vectors for
∑∞

k=1A
−kbkv are ±v,±((p− 1)v+

Av),±(pv +Av). Thus any nonzero integer vector d ∈ T − T has one of the forms
±v,± 1

2 ((p − 1)v + Av),± 1
2 ((p + 1)v + Av) since p is odd. Therefore, the above

discussion shows that the neighbors of T consist of T ± v, T ± 1
2 ((p − 1)v + Av),

T ± 1
2 ((p+1)v+Av). We conclude that T is disk-like by Theorem 2.1 and Theorem

2.3.

Case 2. p is even: WLOG, we can study the translated digit set

D′ =
[

1
0

]
+D = {d1 =

[
1
0

]
, · · · , d q

2
=

[
q
2
0

]
, · · · , d q+p

2
=

[
p
2

−1

]
, · · · ,

[
q
2

−1

]
}.

We will show that T ±
[

1
0

]
, T ±

[
p
2
1

]
, T ±

[
p−2
2
1

]
are neighbors of T so that T

is connected by Theorem 2.1. We first notice that A−1d q+p
2

+A−2d q
2
= −d1 implies

that d1d q+p
2
d q

2
= 0 ∈ T.

T ±
[

1
0

]
are neighbors of T : d q+p

2
d q

2
d1d q+p

2
d q

2
− d1d q+p

2
d q

2
= −d1 ∈ T − T.

T ±
[

p
2
1

]
are neighbors of T : d q

2
d1d q+p

2
d q

2
− d1d q+p

2
d q

2
= −

[
p
2
1

]
∈ T − T.

T ±
[

p−2
2
1

]
are neighbors of T : We may study the translated digit set

D′ =
[

1
2

]
+D

= {
[

1
2

]
, · · · , d q

2
=

[
q
2
2

]
, d q+2

2
=

[
1
1

]
, · · · , dq =

[
q
2
1

]
}.

We first suppose that p > 2 so that d q+p−2
2

=
[

p−2
2
1

]
∈ D′. Then A−1d q+p−2

2
+

A−2d q
2
= 0 implies that d q+p−2

2
d q

2
= 0 ∈ T.

This gives d q
2
d q+p−2

2
d q

2
− d q+p−2

2
d q

2
= −d q+p−2

2
∈ T.

We next assume that p = 2. Then A−1dq +A−2d q
2
= −d q+2

2
implies A−1d q+2

2
+

A−2dq + A−3d q
2
= 0. Then d q+2

2
dqd q

2
= 0 ∈ T and hence −

[
p−2
2
1

]
=

[
0
−1

]
=

d q
2
d q+2

2
dqd q

2
− d q+2

2
dqd q

2
∈ T − T.

We now suppose that 2|p| ≤ |q + 2| and we determine candidates for possible
neighbors of T . Considering the translated digit set

D +
[

0
1

]
= {

[
0
0

]
,
[

1
0

]
,
[

2
0

]
, · · · ,

[
q−2
2
0

]
,
[

0
1

]
,
[

1
1

]
,
[

2
1

]
, · · · ,

[
q−2
2
1

]
},

we see that any nonzero integer vector d ∈ T−T has the form 1
2 (εv+

∑∞
k=1 A

−kbkv),

where v =
[

1
0

]
, ε = 0,±1, and |bk| ∈ {0, 1, 2, ..., q− 1}. The proof of Theorem 4.1
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in [13] shows that possible nonzero integer vectors for
∑∞

k=1A
−kbkv are ±v,±((p−

1)v + Av),±(pv + Av). Thus any nonzero integer vector d ∈ T − T ⊆ Z
2 has one

of the forms ±v,± 1
2 ((p− 2)v +Av),± 1

2 (pv +Av). Therefore, the above discussion

shows that the neighbors of T consist of T ±v, T ± 1
2 ((p−2)v+Av), T ± 1

2 (pv+Av).
We again conclude that T is disk-like by Theorem 2.3.

(B) We now assume that 2|p| > |q + 2| and prove that T (A,D) is not disk-like
by giving another neighbor of T . We now consider the translated digit set

D′ =
[

q
2

+ 1
2

]
+D

= {
[

q
2

+ 1
1

]
,
[

q
2

+ 2
1

]
, · · · ,

[
q − 1

1

]
,
[

q
1

]
,
[

q
2

+ 1
2

]
, · · · , dq =

[
q
2

]
}

with dp−1 =
[

p − 1
2

]
. Then it follows from the equalities A−1dp−1 + A−2dq = 0

and A−1dq = −dp−1 that dp−1 = dp−1dq − dqdp−1dq ∈ T − T . Therefore, T + dp−1

is a neighbor of T . This neighbor is not in the form of Theorem 2.2 and so T (A,D)
is not disk-like. �
Proposition 3.8. For any expanding matrix A ∈ M2(Z) with characteristic polyno-
mial f(x) = x2+px−q, where q is odd and p, q > 0, there exists a noncollinear digit
set D so that T (A,D) is a connected tile and is disk-like if and only if 2p ≤ q − 3.

Proof. Let A =
[

0 q
1 −p

]
, the companion matrix of x2+px−q. Note that p ≤ q−2

by Lemma 2.6.

Let D = {
[

0
0

]
,
[

k
1

]
: 1 ≤ k ≤ q − 1}.

(A) For p+2 = q,
∑∞

k=1 A
−k = (A− I)−1 =

[
−1 q
1 −p − 1

]−1

=
[

p + 1 p + 2
1 1

]
.

Using the translated digit set in the first line of Table 3, we have d2d1 − d1 =[
p + 2

1

]
∈ T − T . Thus T ±

[
p + 2

1

]
are neighbors of T . This together with the

first three lines of Table 3 shows that T ±
[

1
0

]
, T ±

[
p + 1

1

]
, T ±

[
p + 2

1

]
are

neighbors of T . This makes T connected by Theorem 2.1.

Table 3

Cases Translates of D Integer vectors in T − T

{d1 =

[
0
−1

]
, d2 =

[
1
0

]
,

[
2
0

]
, · · · ,

[
q − 1

0

]
} A−1d2 + A−2d1 = 0 ⇒

d2 = d2d1 − d1d2d1

{
[

1
0

]
, dp+1 =

[
p + 1

1

]
, · · · , dq =

[
q
1

]
} A−1dp+1 − A−2dq = 0 ⇒

dp+1 = dq − dp+1

p + 2 < q {d1 =

[
p + 2

1

]
, · · · , dq−p−1 =

[
q
2

]
, · · · , } A−1d1 − A−2dq−p−1 = 0 ⇒

d1 = dq−p−1 − d1

2p = q − 1 {d1 =

[
q + 2

2

]
, · · · , dq−1 =

[
2q
3

]
,

[
2q + 1

3

]
} A−2dq−1 − A−1d1 = 0 ⇒

d1 = dq−1 − d1

2p > q − 1 {· · · , d2p−q+2 =

[
2(p + 1)

2

]
, · · · , dq =

[
2q
2

]
} A−2dq − A−1d2p−q+2 = 0 ⇒

d2p−q+2 = dq − d2p−q+2

(B) When 2p ≥ q− 1, T is not disk-like: If 2p = q− 1, then from the fourth line

of Table 3, we see that T +
[

q + 2
2

]
is another neighbor of T and, in view of (A),
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T is not disk-like by Theorem 2.2. For 2p > q− 1, we have 2(p+1) > q+1. In this

case, the last line of Table 3 says that
[

2(p + 1)
2

]
is also a neighbor of T and so T

is not disk-like by Theorem 2.2.
(C) We now assume that 2p ≤ q−3. This case automatically excludes q = 3 since

p �= 0, and hence we must have q ≥ 4. We will show that there are no neighbors

of T other than T ±
[

1
0

]
, T ±

[
p + 1

1

]
, T ±

[
p + 2

1

]
. In our case, we need more

study of the elements of T − T than that in [13].
We note that any nonzero integer vector d ∈ T − T has the form d = ε′1v +

b1A
−1v +

∑∞
k=2 A

−k(ε′kv +A−kbkv), where v =
[

1
0

]
, ε′k = 0,±1, |bk| ≤ q − 1.

Now we need to see the contribution of γv + δAv :=
∑∞

k=2A
−kε′kv to d. Let

A−kv := αkv+βkAv, k = 1, 2, .... Similar to the proof of Lemma 4.4 in [13], we can
use the recursion relation for αk and βk in Proposition 4.2 of [13], and we can show
that |γ| ≤ 1+p

q−p−1 ≤ q−1
q+1 < 1 using 2p ≤ q− 3, and also |δ| ≤ 1

q−p−1 ≤ 2/(q+1) < 1

since q ≥ 4. Then the proof of Theorem 4.1 in [13] shows that possible nonzero
integer vectors for

∑∞
k=2 A

−kε′kv+
∑∞

k=1 A
−kbkv are ±v,±(pv+Av),±(p+1)v+Av.

Suppose that ε′1 = 0. Then d =
∑∞

k=2 A
−kε′kv +

∑∞
k=1A

−kbkv has one of
the forms ±v,±(pv + Av),±((p + 1)v + Av) by the above observation. Suppose
that ε′1 = ±1. Thus any nonzero vector d ∈ T − T ⊆ Z

2 has one of the forms
±v,±2v,±((p− 1)v +Av),±(pv +Av),±((p+ 1)v +Av)),±((p+ 2)v + Av).

If γ′v + δ′Av = ε′1v + b1A
−1v +

∑∞
k=2A

−k(bkv + ε′kAv) ∈ T − T , where |bk| ≤
q − 1, and ε′k = 0,±1, then multiplying by A, we get γ′′v + δ′′Av ∈ T − T, where
b1v + ε′1Av ∈ D −D, γ′′ = −(−qδ′ + b1) and δ′′ = γ′ − pδ′ − ε′1, ε

′
1 = 0,±1. Here,

the thing that differs from (D-I) of the proof of Proposition 3.5 is the coefficient
of qδ′ in γ′′ = −(−qδ′ + b1), which is 1. Then a case-by-case argument, which is
shorter than (D-I), leads us to ±2v,±((p− 1)v +Av),±(pv+Av) �∈ T − T and we
omit the details here.

Thus ±v + T,±((p+ 1)v + Av)) + T,±((p+ 2)v + Av) + T form the neighbors
of T , and T is disk-like by Theorem 2.3 and (A) in this proof. �

Proposition 3.9. For any expanding matrix A ∈ M2(Z) with characteristic polyno-
mial f(x) = x2−px−q, where q is odd and p, q > 0, there exists a noncollinear digit
set D so that T (A,D) is a connected tile and is disk-like if and only if 2p ≤ q − 3.
(See Figure 4.)

Proof. Let A be the companion matrix of x2 − px− q. Again p ≤ q − 2 by Lemma

2.6. Let D = {
[

0
0

]
,
[

k
−1

]
: 1 ≤ k ≤ q − 1}.

(A) We assume that p+2 = q. We now make use of the digit set D′ =
[

q − 1
−1

]
+

D = {d1 =
[

q − 1
−1

]
, d2 =

[
q
−2

]
,
[

q + 1
−2

]
, · · · ,

[
2(q − 1)

−2

]
}. Then A−2d2 = d1

implies that A−3d2 −A−1d1 = 0. Since A−1d2 =
[

−(p + 2)
1

]
, we obtain

[
−(p + 2)

1

]
= A−1d2 +

∞∑
k=0

A−(4k+1)(A−1d1 −A−3d2)

+
∞∑
k=0

A−(4k)(I +A−1 +A−2)(A−3d2 −A−1d1) ∈ T − T.
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Table 4

Cases Translates of D Integer vectors in T − T

{d1 =

[
0
1

]
, d2 =

[
1
0

]
, · · · ,

[
q − 1

0

]
} A−1d2 − A−2d1 = 0 ⇒

d2 = d1 − d2

{
[

1
0

]
, · · · , dp+1 =

[
p + 1
−1

]
· · · , dq =

[
q
−1

]
} A−1dp+1 + A−2dq = 0 ⇒

dp+1 = dp+1dq − dqdp+1dq

p + 2 < q {d1 =

[
p + 2
−1

]
, · · · , dq−p−1 =

[
q
−2

]
, · · · } A−1d1 + A−2dq−p−1 = 0 ⇒

d1 = d1dq−p−1 − dq−p−1d1dq−p−1

2p = q − 1 {d1 =

[
q + 2
−2

]
, · · · , dq−1 =

[
2q
−3

]
,

[
2q + 1
−3

]
} A−1d1 + A−2dq−1 = 0 ⇒

d1 = d1dq−1 − dq−1d1dq−1

2p > q − 1 {·, · · · , d2p−q+2 =

[
2(p + 1)

−2

]
, · · · , dq =

[
2q
−2

]
} A−1d2p−q+2 + A−2dq = 0 ⇒

d2p−q+2 = d2p−q+2dq − dqd2p−q+2dq

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
A=[0 5; 1 1  ] ; D=[0 1 2 3 4 ; 0 −1 −1 −1 −1 ]

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1
A=[0 4; 1 −1 ] ; D=[0 2 0 2; 0 0 −1 −1]

Figure 4. A disk-like tile of Proposition 3.9 (left) and a disk-like
tile of Proposition 3.10.

This together with the first three lines of Table 4 yields that T ±
[

1
0

]
, T ±[

p + 1
−1

]
, T ±

[
p + 2
−1

]
are neighbors of T so that T is connected by Theorem 2.1.

(B) When 2p ≥ q − 1, T is not disk-like: The last two lines of Table 4 say that
T has neighbors other than the ones in (A) above and they are not in the form of
Theorem 2.2. Therefore, T is not disk-like.

(C) Assume that 2p ≤ q − 3. As in (C) in the proof of Proposition 3.8, one can
show that ±2v+T , ±((p−1)v−Av)+T and ±(pv−Av)+T are not neighbors of T.
Thus the neighbors of T consist of ±v+T,±((p+1)v−Av)+T,±((p+2)v−Av)+T
and T is disk-like by Theorem 2.3. �

Remark. The proofs also give boundary points of the tiles. For instance, in the
first line of Table 4, we have d2 = d1 − d2 or d2 + d2 = d1. This means that d1 is a
boundary point.

Proposition 3.10. For any expanding matrix A ∈ M2(Z) with characteristic poly-
nomial x2 + px− q, where q > 0 is even and p �= 0, there exists a noncollinear digit
set D so that T (A,D) is a connected tile and is disk-like if and only if 2|p| ≤ |q+2|.
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Proof. Instead of using the companion matrix of x2 + px− q and the digit set

{
[

2k
0

]
,
[

2k
−1

]
: 0 ≤ k ≤ q − 2

2
},

we can assume that A =
[

0 q
2

2 −p

]
, and

D = {
[

0
0

]
,
[

1
0

]
,
[

2
0

]
, · · · ,

[
q−2
2
0

]
,
[

0
−1

]
,
[

1
−1

]
,
[

2
−1

]
, · · · ,

[
q−2
2

−1

]
}

as in the proof of Proposition 3.7. Note that −A has characteristic polynomial

x2 − px− q by Lemma 2.7. Also D =
[

q−2
2

−1

]
−D. Then T (−A,D) = T (A,D)−

(A − A−1)−1
[

q−2
2

−1

]
by Proposition 2.5, and we only need to consider A with

x2 + px− q, p > 0. By Lemma 2.6, we have p ≤ q − 2.
(A) Compared with Proposition 3.7, it is a little harder to find the neighbors

here. We have two cases.

Case 1. p is odd: We will show that T ±
[

1
0

]
, T ±

[
p−1
2
1

]
, T ±

[
p+1
2
1

]
are

neighbors of T so that T will be connected.

T ±
[

1
0

]
are neighbors of T : Here we note that p+3

2 ≤ q
2 because q is even, p

is odd and p ≤ q − 2. We consider the translated digit set D′ =
[

1
0

]
+D with

D′ = {d1 =
[

1
0

]
, · · · , d q

2
=

[
q
2
0

]
,
[

1
−1

]
, · · · , d q+p−1

2
=

[
p−1
2

−1

]
,

d q+p+1
2

=
[

p+1
2

−1

]
, d q+p+3

2
=

[
p+3
2

−1

]
, · · · , dq =

[
q
2

−1

]
}.

Here we should also impose the condition p > 1 to make sure that d q+p−1
2

∈ D′.

Since A−1d q+p−1
2

−A−2dq = −d1, we have

S3 =
∞∑
k=0

A−k(A−1d1 +A−2d q+p−1
2

−A−3dq) = 0.

Then,

−d1 = A−1d q+p−1
2

−A−2dq + S3 =
∞∑
k=1

A−kd q+p+1
2

−
∞∑
k=2

A−kdq

= A−1d1 −A−1d1 +
∞∑
k=1

A−kd q+p+1
2

−
∞∑
k=2

A−kdq

= d q+p+3
2

d q+p+1
2

− d1dq ∈ T − T.

In the case p = 1, notice that d1 = A−1d q
2
+ A−2dq − A−1dq so that A−2d q

2
+

A−3dq −A−1d1 −A−2dq = 0. Then

d1 = d q
2
dqd q

2
dq − dqd1dq.
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T ±
[

p−1
2
1

]
are neighbors of T : Let D′ =

[
1
0

]
+D again. We have A−1dq =[

p−1
2
1

]
= d. Then,

d = A−1dq − S3

= A−2d1 −A−2d1 +A−1dq +
∞∑
k=3

A−kdq −A−1d1 −
∞∑
k=2

A−kd q+p+1
2

= dqd1dq − d1d q+p+3
2

d q+p+1
2

∈ T − T.

T ±
[

p+1
2
1

]
are neighbors of T : Finally, we consider the translated digit set

D′ =
[

1
1

]
+D = {

[
1
1

]
, d p+1

2
=

[
p+1
2
1

]
, · · · , d q

2
=

[
q
2
1

]
,
[

1
0

]
, · · ·

[
q
2
0

]
}.

Then A−1d p+1
2

−A−2d q
2
= 0 implies that d p+1

2
= d q

2
− d p+1

2
.

We now assume that 2|p| ≤ |q + 2| and determine candidates for possible neigh-
bors of T . Considering the translated digit set

D +
[

0
1

]
= {

[
0
0

]
,
[

1
0

]
,
[

2
0

]
, · · ·

[
q−2
2
0

]
,
[

0
1

]
,
[

1
1

]
, · · ·

[
q−2
2
1

]
},

we see that any nonzero integer vector d ∈ T−T has the form 1
2 (εv+

∑∞
k=1 A

−kbkv),

where v =
[

1
0

]
, ε = 0,±1, |bk| ∈ {0, 1, 2, ..., q − 1}. The proof of Theorem 4.1 in

[13] shows that possible nonzero integer vectors for
∑∞

k=1A
−kbkv are ±v,±((p +

1)v + Av),±(pv + Av). Then each nonzero d ∈ T − T ⊆ Z
2 has one of the forms

±v,± 1
2 ((p− 1)v +Av),± 1

2 ((p+ 1)v + Av), and this shows that T is disk-like.

Case 2. p is even: We will show that T±
[

1
0

]
, T±

[
p
2
1

]
, T±

[
p+2
2
1

]
are neighbors

of T .

T ±
[

1
0

]
are neighbors of T : We first suppose that p ≤ q− 4. WLOG, we can

study the translated digit set

D′ =
[

1
0

]
+D = {d1 =

[
1
0

]
, · · · , d q

2
=

[
q
2
0

]
, · · · , d q+p

2
=

[
p
2

−1

]
, · · · ,

[
q
2

−1

]
}.

Then A−1d q+p
2

− A−2d q
2
= −d1 implies that

S4 =

∞∑
k=0

A−k(A−1d1 +A−2d q+p
2

−A−3d q
2
) = 0.

Hence

−d1 = A−1d q+p
2

−A−2d q
2
+ S4

= A−1
[

p+4
2

−1

]
−A−1d1 +

∞∑
k=2

A−k
[

p+2
2

−1

]
−

∞∑
k=2

A−kd q
2
∈ T − T.

Next, we assume that p = q − 2. Thus our original digit set becomes

D = {
[

0
0

]
, d2 =

[
1
0

]
, · · · ,

[
p
2
0

]
,
[

0
−1

]
, d q+4

2
=

[
1
−1

]
, · · · , dq =

[
p
2
−1

]
}.

Using this digit set and noting that
∑∞

k=1 A
−k = (A− I)−1 =

[
p + 1 p

2
+ 1

2 1

]
, we

obtain
A−1((A− I)−1d q+4

2
− dq) = d2 ∈ T − T.
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T ±
[

p+2
2
1

]
are neighbors of T : WLOG, we can study the digit set

D′ =
[

1
2

]
+D = {

[
1
2

]
, · · · , d q

2
=

[
q
2
2

]
, · · · , d q+p+2

2
=

[
p+2
2
1

]
, · · · ,

[
q
2
1

]
}.

Then A−1d q+p+2
2

−A−2d q
2
= 0 implies that d q+p+2

2
= d q

2
− d q+p+2

2
∈ T − T.

T ±
[

p
2
1

]
are neighbors of T : Finally, we consider the translated digit set

D′ =
[

1
1

]
+D = {

[
1
1

]
, · · · , d p

2
=

[
p
2
1

]
, · · · ,

[
q
2
1

]
,
[

1
0

]
, · · · , dq =

[
q
2
0

]
}.

Then A−1d p
2
−A−2dq = 0 implies that d p

2
= dq − d p

2
∈ T − T.

We now assume that 2|p| ≤ |q + 2| and determine candidates for possible neigh-
bors of T . Considering the translated digit set

D +
[

0
1

]
= {

[
0
0

]
,
[

1
0

]
,
[

2
0

]
, · · · ,

[
q−2
2
0

]
,
[

0
1

]
,
[

1
1

]
,
[

2
1

]
, · · · ,

[
q−2
2
1

]
},

we see that any nonzero integer vector d ∈ T−T has the form 1
2 (εv+

∑∞
k=1 A

−kbkv),

where v =
[

1
0

]
, ε = 0,±1, |bk| ∈ {0, 1, 2, ..., q − 1}. The proof of Theorem 4.1 in

[13] shows that possible nonzero integer vectors for
∑∞

k=1A
−kbkv are ±v,±((p +

1)v + Av),±(pv + Av). Thus each nonzero d ∈ T − T ⊆ Z
2 has one of the forms

±v,± 1
2 ((p+ 2)v +Av),± 1

2 (pv +Av) and so T is disk-like in this case.
(B) We suppose that 2|p| > |q + 2| and prove that T (A,D) is not disk-like by

giving another neighbor of T and using Theorem 2.2 and (A). We now consider the
translated digit set

D′ =

[ q
2
+ 1

2

]
+D

= {
[ q

2
+ 1

1

]
, · · · ,

[
q
1

]
,

[ q
2
+ 1

2

]
, · · · , dp+1 =

[
p+ 1
2

]
, dq =

[
q
2

]
}.

Then A−1dq = dp+1 and A−1dp+1 −A−2dq = 0 will imply that dp+1 = dq − dp+1.
Hence T + dp+1 is a neighbor of T . �

4. The reducible-characteristic-polynomial case

In this section, we will study a class of self-affine sets arising from expanding
matrices with integer eigenvalues. A matrixA is said to be unimodular if U ∈ Mn(Z)
and | det(U)| = 1. The set of such matrices will be denoted by GLn(Z).

Lemma 4.1. Suppose that the expanding matrix A ∈ M2(Z) has eigenvalues m,n ∈
Z. Then there exists a unimodular matrix U ∈ GL2(Z) such that

(4.1) A′ = U−1AU =
[

m 0
t n

]
.

Proof. Choose an eigenvector
[

x
y

]
∈ Z

2 of A corresponding to the eigenvalue n

such that gcd(x, y) = 1. Then there exist integers r, s such that yr − xs = 1. Now

set U =
[

r x
s y

]
. Then U−1AU is of the required form. �

Because of Lemma 4.1, for the disk-like case, it is enough to study only the
matrices A′ of the form in (4.1). We have two cases in (4.1).
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(I) t = 0 : T (A′, D) with D = {
[

i
j

]
: 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1} is the

unit square and it is disk-like. If m < 0, n > 0, then A′ =
[

− | m | 0
0 n

]
and D =

{
[

i
j

]
: 0 ≤ i ≤| m | −1, 0 ≤ j ≤ n− 1} lead to T (A′, D) = [ −|m|

|m|+1 ,
1

|m|+1 ]× [0, 1],

which is again a square of area 1.

Now v =
[

| m | −1
| n | −1

]
∈ Z

2 gives D = v−D for D = {
[

i
j

]
: 0 ≤ i ≤| m | −1, 0 ≤

j ≤| n | −1} so that we can make use of Proposition 2.5. To handle the other cases,

namely when the expanding matrix is of the form A′ =
[

± | m | 0
0 − | n |

]
, we use

Proposition 2.5 to give a disk-like tile.
(II) t �= 0 : In this case, we consider the digit set

(4.2) D = {
[

i
tj

]
: 0 ≤ i ≤| m | −1, 0 ≤ j ≤| n | −1}.

In fact, we can make a further reduction of A′ in (4.1) and D in (4.2). For this,

we let B =
[

1 0
0 t

]
provided that t �= 0. Then

Ã = B−1A′B =
[

m 0
1 n

]
,(4.3)

D̃ = B−1D = {
[

i
j

]
: 0 ≤ i ≤| m | −1, 0 ≤ j ≤| n | −1}.(4.4)

To be able to use Theorem 2.3, we need a characterization of Haar tiles. For
this characterization, the concept of a stretched tile is introduced by Lagarias and
Wang [12]: T = T (A,D) is called a stretched tile if A and D satisfy

A =

[
A1 0
B A2

]
, D =

{[ ai
bi

]
+

[
0

Qcij

]
: 1≤ i≤| det(A1)|, 1 ≤ j ≤ | det(A2)|

}

where A1 ∈ Mr(Z), A2 ∈ Ms(Z) such that (i) {ai} ⊆ Z
r is a complete residue

system (mod A1); (ii) {bi} ⊂ Z
s; (iii) | detQ| ≥ 2 and for each i, {Qcij} ⊂ Z

s is
a complete residue system (modA2). A matrix A as in this definition is called a
reducible matrix. A primitive digit set D is said to be standard if it is a complete
residue system (mod A). We say that two tiles T = T (A,D) and T ′ = T (A′, D′) are
Z-similar if there exists a unimodular matrix U ∈ GLn(Z) such that A′ = U−1AU
and D′ = U−1D. In [12], it was proved that

If T is a tile generated by a standard digit set and a reducible matrix, then
µ(T ) > 1 (µ denotes the Lebesgue measure) if and only if T is Z-similar to a
stretched tile.

Lemma 4.2. Let Ã, D̃ be as in (4.3) and (4.4) with m = n = λ. Then T (Ã, D̃)
has Lebesgue measure 1.

Proof. By Proposition 2.5, it is enough to consider the case m = n = λ > 0. Note
that D̃ is a standard digit set. Now, we show that T (Ã, D̃) cannot be Z-similar to

a stretched tile and hence it is a Haar tile. ÃU = U
[

x 0
y z

]
with U =

[
a b
c d

]
,
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U ∈ GL2(Z), yields

λa = ax+ by,(4.5)

λb =
bλ2

x
,(4.6)

a+ λc = cx+ dy,(4.7)

b+ λd =
dλ2

x
.(4.8)

We have two cases:
a) b �= 0: Then (4.6) gives λ = x. This together with (4.8) give b = 0, a

contradiction. Thus we cannot have b �= 0.
b) b = 0: | det(U)| = 1 and b = 0 imply ad = ±1. (4.5) gives λ = x. Finally, we

get y = ±1 by (4.7).

Therefore, U−1ÃU =
[

x 0
y z

]
for a unimodular matrix U if and only if x = z =

λ, y = ±1 and U−1 =
[

ε 0
c′ ε′

]
, where ε, ε′ ∈ {±1}.

Now when
[

i
j

]
∈ D̃, U−1

[
i
j

]
=

[
εi

c′i + ε′j

]
. Also c′i + ε′j cannot be of the

form bi + qcij with q > 1 and cij are distinct for fixed i; for otherwise, we would

have |(c′i + ε′1) − (c′i ± 0)| = | ± 1| = |q(ci1 − ci0)| > 1. Thus T (Ã, D̃) cannot be

Z-similar to a stretched tile. Hence the Lebesgue measure of T (Ã, D̃) is 1. �

Proposition 4.3. Let Ã, D̃ be as in (4.3) and (4.4). Then T (Ã, D̃) is a Haar
tile.

Proof. We first recall that D̃ is a standard digit set. By Lemma 4.2, we only need
a proof for the case m �= n. We first assume that m,n > 0. Now, we will use
the idea in the previous proof to show that T (Ã, D̃) is a Haar tile. Suppose that

ÃU = U
[

x 0
y z

]
with U ∈ GL2(Z). Then we get ma = ax + by and mb = bz. If

b = 0, then a �= 0 and the first equation gives x = m. If b �= 0, then the second
equation gives m = z. Thus we have two cases.

Case 1. x = m and z = n: Then ÃU = U
[

x 0
y z

]
implies b+ nd = dn. This gives

b = 0. Therefore, ad = ±1 since | det(U)| = 1 and U−1 has the form
[

ε 0
c′ ε′

]
.

Then U−1
[

i
j

]
=

[
εi

c′i + ε′j

]
. As before, c′i + ε′j cannot be of the form bi + qcij

with q > 1 and cij are distinct for fixed i. Thus T (Ã, D̃) is a Haar tile.

Case 2. x = n and z = m: ÃU = U
[

x 0
y z

]
with U =

[
a b
c d

]
implies

a+ nc = cn+ dy,(4.9)

b+ nd = dm.(4.10)

We have two possibilities:
a) a �= 0: Then (4.9) gives a = dy �= 0. By (4.10), b = (m − n)d. Substi-

tuting these into | det(U)| = |ad − bc| = 1 yields d = ±1. Thus U−1 has the

form
[

ε ε′(m − n)
−c a

]
, where ε, ε′ ∈ {±1}. For

[
i
j

]
∈ D̃, we have U−1

[
i
j

]
=[

εi + ε′(m − n)j
−ci + aj

]
. Then U−1D̃ cannot be a digit set of a stretched tile since m �= n.
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Thus T (Ã, D̃) cannot be Z-similar to a stretched tile. Hence the Lebesgue measure

of T (Ã, D̃) is 1.
b) a = 0: Then | det(U)| = 1 implies bc = ±1. This together with (4.10)

gives b = (m − n)d = ±1 and so d = ±1. U−1 has the form
[

ε ε′

ε′′ 0

]
, where

ε, ε′, ε′′ ∈ {±1}. Now when
[

i
j

]
∈ D̃, U−1

[
i
j

]
=

[
εi + ε′j

ε′′i

]
. Then U−1D̃

cannot be a digit set of a stretched tile since m �= n. Thus T (Ã, D̃) cannot be
Z-similar to a stretched tile. Hence T is a Haar tile.

The proof for the case m < 0, n > 0 is similar. For the remaining two cases, we
use Proposition 2.5 to finish the proof. �

We can now prove the second main theorem.

The proof of Theorem 1.2. Let T̃ = T (Ã, D̃), where Ã and D̃ are as in Proposition

4.3. Then it suffices to show that T̃ is disk-like.

(A) We first assume that m,n > 0. Let T̃ ∩(T̃ +
[

x
y

]
) �= ∅. Since Ã−k has non-

negative entries, |x| ≤ the first entry of
∑∞

k=1 Ã
−k

[
m − 1

·

]
= (Ã−I)−1

[
m − 1

·

]
=[ 1

m−1
0

−1
(m−1)(n−1)

1
n−1

] [
m − 1

·

]
=

[
1
·

]
so that |x| ≤ 1. Also, |y| ≤ the second entry

of
∑∞

k=1 Ã
−k

[
0

n − 1

]
=

[
·
1

]
so that |y| ≤ 1. Thus

[
x
y

]
∈ T̃ − T̃ implies that

|x|, |y| ≤ 1. Furthermore,

[
α + 1

0

]
−
[

α
0

]
=

[
1
0

]
=

∞∑
k=1

Ã−k
[

m − 1
1

]
, 0 ≤ α ≤ m− 2,

[
β
γ

]
−
[

β
γ − 1

]
=

[
0
1

]
=

∞∑
k=1

Ã−k
[

0
n − 1

]
, 0 ≤ γ ≤ n− 1,

[
α + 1

γ

]
−
[

α
γ − 1

]
=

[
1
−1

]
=

∞∑
k=1

Ã−k
[

m − 1
1

]
−

∞∑
k=1

Ã−k
[

0
n − 1

]

so that ±
[

1
0

]
∈ T̃ − T̃ , ±

[
0
1

]
∈ T̃ − T̃ , and ±

[
1
−1

]
∈ T̃ − T̃ . We now assume

that T̃ ∩ (T̃ +
[

1
y

]
). Then

[
1
y

]
=

∑∞
k=1 Ã

−k
[

dk
d′k

]
∈ T̃ − T̃ would imply that∑∞

k=1
1

mk dk = 1 and hence dk = m − 1. We also note that Ã−k =
[ 1

mk 0

−ak
1

nk

]
,

where ak > 0 and
∑∞

k=1 Ã
−k

[
m − 1
d′k

]
≤

[
1

1 − (m − 1)
∑∞

k=1 ak

]
so that y < 1. Thus

T̃ +
[

1
1

]
cannot be a neighbor of T̃ .

Hence T̃ has exactly 6 neighbors: T̃ ±
[

1
0

]
, T̃ ±

[
0
−1

]
, T̃ ± (

[
1
0

]
+
[

0
−1

]
).

Since T̃ is connected by Theorem 2.1, and a Haar tile by Proposition 4.3, it is a
disk-like tile by Theorem 2.3.

(B) For the case m < 0, n > 0, we consider the digit set D̃ +
[

− | m |
0

]
=

{
[

i
j

]
: − | m |≤ i ≤ −1, 0 ≤ j ≤ n − 1}. Let d1 =

[
− | m |

1

]
, d2 =

[
−1
0

]
,

d3 =
[

−1
n − 1

]
. We have A−1d1 = −d2, A

−1d2+A−2d1 = 0 so that d2d1 = 0. Then

−d2 = d1d2d1 − d2d1 ∈ T̃ − T̃ . Furthermore,
[

0
1

]
= d3 − d2 ∈ T̃ − T̃ . To see that
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[
−1
1

]
∈ T̃ − T̃ , we use D̃ +

[
1
0

]
= {

[
i
j

]
: 1 ≤ i ≤| m |, 0 ≤ j ≤ n− 1}. Then

Ã−1(Ã−1
[

| m |
n − 1

]
+
[

1
0

]
)− Ã−1

[
| m |
0

]
= Ã−1

[
0
1

]
− Ã−1

[
| m |
0

]
=

[
1
0

]

so that

S5 = Ã−2
[

1
0

]
+ Ã−3

[
| m |
n − 1

]
− Ã−1

[
1
0

]
− Ã−2

[
| m |
0

]
= 0.

We finally get
[

−1
1

]
= Ã−1

[
| m |
n − 1

]
+
∑∞

k=0 Ã
−2kS5 ∈ T̃ − T̃ .

To show that there are no other neighbors, we let
[

x
y

]
∈ T̃ − T̃ . Then y is

maximized if the second entry of Ã−kd, d ∈ D̃ − D̃, is maximized for each k.

This is so if d =
[

0
n − 1

]
for Ã−1d, and hence for each Ã−kd, d ∈ D̃ − D̃. Thus

|y| ≤ the second entry of
∑∞

k=1 Ã
−k

[
0

n − 1

]
=

[
0
1

]
. Additionally, x ≤ the first

entry of
∑∞

k=1(Ã
−2k − Ã−(2k−1))

[
| m | −1

z

]
=

[
1
t

]
, 0 ≤ |z| ≤ n − 1. This shows

that |x|, |y| ≤ 1. We need to see that
[

1
1

]
�∈ T̃ − T̃ . Notice that t will reach its

maximum value when z = 0. Then
∑∞

k=1(Ã
−2k−Ã−(2k−1))

[
| m | −1

0

]
=

[
1

− 1
n+1

]
.

Therefore, T̃ has exactly the six neighbors displayed in (A).
(C) For the remaining two cases, we use Proposition 2.5. To be able to use

Proposition 2.5 for m > 0, n < 0, we need to take D̃ as the digit set in case (B).

Then
[

| m | −1
n − 1

]
−D̃ = D̃, and Proposition 2.5 applies. This finishes the proof. �

Let N = (T̃ − T̃ ) ∩ Z
2 = {±

[
1
0

]
,±

[
0
1

]
,±

[
1
−1

]
}. For a digit set D, an

r-chain in D is a finite sequence {d1, ..., dr} of r distinct vectors in D such that
di − di+1 ∈ N for i = 1, ..., r− 1. We assume that the digit set D′ has the following
property to ensure that T (Ã,D′) +N is a set of neighbors of T (Ã,D′) :

(1) if Ã =
[

|m| 0
1 |n|

]
, then D′ contains the digits

[
|m| − 1

1

]
,
[

0
|n| − 1

]
;

(2) if Ã =
[

−|m| 0
1 |n|

]
, then D′ involves

[
0
0

]
,
[

0
1

]
,
[

|m| − 1
0

]
,
[

|m| − 1
|n| − 1

]
.

Then the foregoing proof together with Theorem 2.1 also yields the following propo-
sition, which gives a systematic way of obtaining self-affine curves. In a similar
manner, we are able to generate self-affine curves in the irreducible-polynomial
case.

Proposition 4.4. Let D′ be a subset of D̃ with condition (1) or (2). Then T (Ã,D′)
is a self-affine curve if and only if there is a q-chain in D′, where q = #D′.

If D′ is not a subset of D̃, but possesses property (1) or (2), then the sufficiency
in Proposition 4.4 still holds. For the curve in Figure 5, the sufficiency holds even
though 0 �∈ D′.

5. Appendix

In Table 5, A denotes the specified expanding integer matrix with characteristic
polynomial f(x) and D is the associated digit set. Also t �= 0 and C denotes the
companion matrix. We also assume that the polynomials below the second row are
irreducible with p, q > 0. In the last column, we list our results on T (A,D), which
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Table 5

f(x) A D Disk-like

(x − m)(x − n)

[
m 0
0 n

]
{
[

i
j

]
: 0 ≤ i ≤| m | −1, 0 ≤ j ≤| n | −1} yes

(x − m)(x − n)

[
m 0
t n

]
{
[

i
tj

]
: 0 ≤ i ≤| m | −1, 0 ≤ j ≤| n | −1} yes

x2 − q C {
[

0
0

]
,

[
k
1

]
: 1 ≤ k ≤ q − 1} yes

x2 + q, q even C {
[

2k
0

]
,

[
2k
−1

]
: 0 ≤ k ≤ q−2

2
} yes

x2 + q, q odd C {
[

2k
0

]
,

[
2l + 1
−1

]
: 0 ≤ k ≤ q−1

2
, 0 ≤ l ≤ q−3

2
} yes

x2 ± px + q, q odd, C {
[

0
0

]
,

[
k
±1

]
: 1 ≤ k ≤ q − 1} no

p = 1 or 2p > q + 3

x2 ± px + q, q odd, C {
[

0
0

]
,

[
k
±1

]
: 1 ≤ k ≤ q − 1} yes

p �= 1 and 2p ≤ q + 3

x2 ± px − q, q odd, C {
[

0
0

]
,

[
k
±1

]
: 1 ≤ k ≤q−1} no

2p > q − 3

x2 ± px − q, q odd, C {
[

0
0

]
,

[
k
±1

]
: 1 ≤ k ≤ q − 1} yes

2p ≤ q − 3

x2 + px ± q, q even, C {
[

2k
0

]
,

[
2k
−1

]
: 0 ≤ k ≤ q−2

2
} no

2p > |q + 2|

x2 + px ± q, q even, C {
[

2k
0

]
,

[
2k
−1

]
: 0 ≤ k ≤ q−2

2
} yes

2p ≤ |q + 2|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−0.6
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Figure 5. A disk-like tile of Theorem 1.2 (left) and a self-affine curve

were proved in Section 3 and Section 4. We also note that all such T (A,D) are
connected tiles.

Remark. We note that the digit sets in the table are listed in a generic sense when A

has an irreducible characteristic polynomial. For example,
[

2
−1

]
would represent a

digit of the form 2v−Av for any nonzero integer vector v and C is the representation
of an integer expanding matrix A in basis {v,Av}; see Proposition 3.1.
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