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THE STRUCTURE OF BALANCED MULTIVARIATE

BIORTHOGONAL MULTIWAVELETS

AND DUAL MULTIFRAMELETS

BIN HAN

Abstract. Multiwavelets and multiframelets are of interest in several ap-
plications such as numerical algorithms and signal processing, due to their
desirable properties such as high smoothness and vanishing moments with rel-
atively small supports of their generating functions and masks. In order to
process and represent vector-valued discrete data efficiently and sparsely by
a multiwavelet transform, a multiwavelet has to be prefiltered or balanced.
Balanced orthonormal univariate multiwavelets and multivariate biorthogo-
nal multiwavelets have been studied and constructed in the literature. Dual
multiframelets include (bi)orthogonal multiwavelets as special cases, but their
fundamental prefiltering and balancing property has not yet been investigated
in the literature. In this paper we shall study the balancing property of mul-
tivariate multiframelets from the point of view of the discrete multiframelet

transform. This approach, to our best knowledge, has not been considered so
far in the literature even for multiwavelets, but it reveals the essential structure
of prefiltering and the balancing property of multiwavelets and multiframelets.
We prove that every biorthogonal multiwavelet can be prefiltered with the bal-
ancing order matching the order of its vanishing moments; that is, from every
given compactly supported multivariate biorthogonal multiwavelet, one can
always build another (essentially equivalent) compactly supported biorthogo-
nal multiwavelets with its balancing order matching the order of the vanishing
moments of the original one. More generally, we show that if a dual mul-
tiframelet can be prefiltered, then it can be equivalently transformed into a
balanced dual multiframelet with the same balancing order. However, we no-
tice that most available dual multiframelets in the literature cannot be simply
prefiltered with its balancing order matching its order of vanishing moments
and they must be designed to possess high balancing orders. The key ingredi-
ent of our approach is based on investigating some properties of the subdivision
and transition operators acting on discrete vector polynomial sequences, which
play a central role in a discrete multiframelet transform and are of interest in
their own right. We also establish a new canonical form of a matrix mask,
which greatly facilitates the investigation and construction of multiwavelets
and multiframelets. In this paper, we obtain a complete criterion and the
essential structure for balanced or prefiltered dual multiframelets in the most
general setting. Our investigation of the balancing property of a multiframelet
deepens our understanding of the multiframelet transform in signal processing

and scientific computation.
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1. Introduction and motivation

Multiwavelets and multiframelets are derived from refinable function vectors via
a multiresolution analysis and are of interest in several applications such as signal
processing, numerical algorithms, and computer graphics. In order to process and
represent vector-valued discrete data efficiently and sparsely by a discrete multi-
wavelet transform, a multiwavelet must be either prefiltered or balanced in advance,
due to the discrepancy of its approximation properties between the function setting
and the discrete vector data setting. Balanced or prefiltered orthonormal univariate
multiwavelets have been studied and constructed in the literature. The reader is
referred to [1, 3, 4, 14, 15, 18, 19, 20] and the references therein for a comprehensive
discussion on the background, motivation, and literature on balanced multiwavelets.
Later in this section, we shall give a detailed explanation of the importance of the
balancing property of multiwavelets and multiframelets from the point of view of a
discrete multiframelet transform instead of the traditional function setting.

Recently there has been a growing interest in the study and construction of
framelets and multiframelets; see [2, 6, 7, 10, 11, 12, 13, 16, 17] and the many
references therein. For example, tight and dual multiframelets have been charac-
terized in [7, 16, 17] and a unitary extension principle has been given in [16, 17]
for constructing dual framelets from scalar refinable functions. More recently, an
oblique extension principle has been proposed in [6] (also cf. [2] and [5, 11, 13]) for
constructing dual multiframelets with high vanishing moments from refinable func-
tion vectors. A multiframelet includes a multiwavelet as a special case by allowing
redundancy into a wavelet system. As demonstrated in [2, 6, 11, 13], multiframelets
have more freedom in their design and the redundancy in a multiframelet is a de-
sirable feature in several applications such as signal denoising and numerical algo-
rithms. In order to process and represent vector-valued discrete data efficiently and
sparsely by a discrete multiframelet transform, the multiframelet must be similarly
either prefiltered or balanced in advance. Except for some introductory discussions
in [11] on univariate dual multiframelets, this fundamental issue on the balancing
and prefiltering property of a multivariate multiframelet has not been addressed
so far in the literature. Moreover, to our best knowledge, all approaches in the
literature to studying the balancing property of a multiwavelet are from the point
of view of the function setting. In this paper, instead we shall study the balancing
and approximation properties of multivariate multiframelets from the point of view
of a discrete multiframelet transform. We shall see in this paper that it is more
natural to study and understand the balancing property of multiframelets from the
point of view of a discrete data setting than the function setting. Our results not
only generalize the results in the literature (e.g., [1, 3, 4, 11, 14, 15, 18, 19, 20])
on balanced biorthogonal multiwavelets to multivariate dual multiframelets, but
also shed a new light on understanding the balancing property of (bi)orthogonal
multiwavelets.

Before proceeding further, we first recall some notation and definitions. We say
that a d× d integer matrix M is a dilation matrix if limn→∞ M−n = 0; that is, all
the eigenvalues of M are greater than 1 in modulus. An M -refinable function (or
distribution) vector φ = (φ1, . . . , φr)

T satisfies the vector refinement equation

(1.1) φ = | detM |
∑
k∈Zd

akφ(M · −k),
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where a = {ak}k∈Zd : Zd → Cr×r is called a (matrix) mask with multiplicity r for
φ. For a sequence u = {uk}k∈Zd : Zd → Cn×r, its (formal) Fourier series û is
defined to be

(1.2) û(ξ) :=
∑
k∈Zd

uke
−ik·ξ, ξ ∈ Rd,

where k ·ξ denotes the inner product of the vectors k and ξ in Rd. If u is finitely sup-
ported, then û is a matrix of 2π-periodic trigonometric polynomials in d-variables.
Now the refinement equation in (1.1) can be rewritten in the frequency domain as

(1.3) φ̂(MT ξ) = â(ξ)φ̂(ξ), ξ ∈ Rd,

where MT denotes the transpose of the matrix M . For f ∈ L1(R
d), its Fourier

transform f̂ is defined to be f̂(ξ) :=
∫
Rd f(x)e

−ix·ξdx, ξ ∈ Rd, which can be
naturally extended to tempered distributions. A wavelet function vector ψ =

(ψ1, . . . , ψr)
T is generally derived from a refinable function vector φ via ψ̂(MT ξ) :=

b̂(ξ)φ̂(ξ) for some r× r matrix b̂ of 2π-periodic trigonometric polynomials in d vari-
ables with some desirable properties.

In this paper we are interested in investigating the balancing property of MRA
dual multiframelets. Let {ψ1, . . . , ψL} be a finite set of r × 1 function vectors in
L2(R

d). We say that {ψ1, . . . , ψL} generates an M -multiframelet in L2(R
d) if

{ψ�
j,k := | detM |j/2ψ�(M j · −k) : j ∈ Z, k ∈ Zd, � = 1, . . . , L}

is a frame in L2(R
d), that is, if there exist two positive constants C1 and C2 such

that

(1.4) C1‖f‖2L2(Rd) �
L∑

�=1

∑
j∈Z

∑
k∈Zd

|〈f, ψ�
j,k〉|2 � C2‖f‖2L2(Rd) ∀ f ∈ L2(R

d),

where |〈f, ψ�
j,k〉|2 := 〈f, ψ�

j,k〉〈ψ�
j,k, f〉 is the square of the �2 Euclidean norm of the

row vector 〈f, ψ�
j,k〉 in R1×r. For an n × r matrix g and an n′ × r matrix h of

functions in L2(R
d), the inner product 〈g, h〉 is an n× n′ matrix defined by

(1.5) 〈g, h〉 :=
∫
Rd

g(x)h(x)
T
dx, g ∈ (L2(R

d))n×r, h ∈ (L2(R
d))n

′×r.

If both {ψ1, . . . , ψL} and {ψ̃1, . . . , ψ̃L} generate M -multiframelets in L2(R
d) and

satisfy

(1.6) 〈f, g〉 =
L∑

�=1

∑
j∈Z

∑
k∈Zd

〈f, ψ̃�
j,k〉〈ψ�

j,k, g〉 ∀ f, g ∈ L2(R
d),

where
ψ�
j,k := | detM |j/2ψ�(M j · −k)

and
ψ̃�
j,k := | detM |j/2ψ̃�(M j · −k),

then we say that ({ψ1, . . . , ψL}, {ψ̃1, . . . , ψ̃L}) generates a pair of dual M -multi-
framelets in L2(R

d). By (1.6), every function f ∈ L2(R
d) has the multiframelet

representation:

(1.7) f =
L∑

�=1

∑
j∈Z

∑
k∈Zd

〈f, ψ̃�
j,k〉ψ�

j,k
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with the series converging absolutely in the L2 norm.
Biorthogonal multiwavelets consist of a particular family of dual multiframelets.

We say that ({ψ1, . . . , ψL}, {ψ̃1, . . . , ψ̃L}) generates a pair of biorthogonal M -multi-
wavelets in L2(R

d) if it generates a pair of dual M -multiframelets in L2(R
d) and

satisfies the biorthogonality condition:

(1.8) 〈ψ�
j,k, ψ̃

�′

j′,k′〉 = δ�−�′δj−j′δk−k′Ir, j, j′ ∈ Z, k, k′ ∈ Zd, �, �′ = 1, . . . , L,

where Ir denotes the r × r identity matrix and δ denotes the Dirac sequence such
that δ0 = 1 and δk = 0 for all k �= 0.

Let â, b̂1, . . . , b̂L and ˆ̃a, ̂̃b1, . . . , ̂̃bL be r × r matrices of 2π-periodic trigonometric
polynomials in d variables such that they satisfy

(1.9) P
[ˆ̃a,
̂̃
b1,...,

̂̃
bL]

(ξ)
T
P
[â,b̂1,...,b̂L]

(ξ) = Imr,

where m := | detM | and

(1.10) P
[â,b̂1,...,b̂L]

(ξ) :=

⎡⎢⎢⎢⎢⎣
â(ξ + 2πγ0) â(ξ + 2πγ1) · · · â(ξ + 2πγm−1)

b̂1(ξ + 2πγ0) b̂1(ξ + 2πγ1) · · · b̂1(ξ + 2πγm−1)
...

...
. . .

...

b̂L(ξ + 2πγ0) b̂L(ξ + 2πγ1) · · · b̂L(ξ + 2πγm−1)

⎤⎥⎥⎥⎥⎦
with {γ0, . . . , γm−1} = ΓMT and γ0 = 0, where ΓMT denotes a complete set of
representatives of the distinct cosets of the quotient group [(MT )−1Zd]/Zd with
0 ∈ ΓMT .

A pair of dual M -multiframelets is generally obtained from a pair of refinable
function vectors in L2(R

d). Suppose that φ and φ̃ are two compactly supported
r × 1 M -refinable function vectors in L2(R

d) such that

(1.11) φ̂(MT ξ) = â(ξ)φ̂(ξ), ˆ̃φ(MT ξ) = ˆ̃a(ξ) ˆ̃φ(ξ) with φ̂(0)
T ˆ̃φ(0) = 1.

Define wavelet function vectors ψ1, . . . , ψL and dual wavelet function vectors ψ̃1,
. . . , ψ̃L by

ψ̂�(MT ξ) := b̂�(ξ)φ̂(ξ) and̂̃ψ�(MT ξ) := ̂̃b�(ξ) ˆ̃φ(ξ), ξ ∈ Rd, � = 1, . . . , L.
(1.12)

Now one can directly verify that (1.9) implies that∑
k∈Zd

〈f, φ̃j+1,k〉〈φj+1,k, g〉

=
∑
k∈Zd

〈f, φ̃j,k〉〈φj,k, g〉+
L∑

�=1

∑
k∈Zd

〈f, ψ̃�
j,k〉〈ψ�

j,k, g〉 ∀ j ∈ Z, f, g ∈ L2(R
d).

(1.13)

Note that all φ, ψ1, . . . , ψL, φ̃, ψ̃1, . . . , ψ̃L are compactly supported function vectors
in L2(R

d). If all ψ1, . . . , ψL and ψ̃1, . . . , ψ̃L have at least one vanishing moment;
that is,

(1.14) b̂1(0)φ̂(0) = · · · = b̂L(0)φ̂(0) = ̂̃b1 ˆ̃φ(0) = · · · = ̂̃bL(0) ˆ̃φ(0) = 0,

by [10, Theorem 2.3], the inequality on the right side of (1.4) holds. Similarly, the
inequality on the right side of (1.4) also holds when ψ1, . . . , ψL are replaced by
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ψ̃1, . . . , ψ̃L, respectively. Now it is not difficult to deduce that if (1.9) and (1.14)

hold, then ({ψ1, . . . , ψL}, {ψ̃1, . . . , ψ̃L}) generates a pair of dual M -multiframelets
in L2(R

d). For more details, see [11, Theorem 3.4] and [2, 5, 6, 7, 10, 13, 16, 17].

If in addition L = | detM | − 1 and φ, φ̃ satisfy the biorthogonality relation

(1.15) 〈φ, φ̃(· − k)〉 = δkIr, k ∈ Zd,

then ({ψ1, . . . , ψL}, {ψ̃1, . . . , ψ̃L}) generates a pair of biorthogonal M -multiwavelets
in L2(R

d). In this case, since L = | detM | − 1, the matrix P
[â,b̂1,...,b̂L]

in (1.10)

becomes a square matrix of 2π-periodic trigonometric polynomials in d variables.
For a positive integer κ, throughout this paper Πκ denotes the set of all polyno-

mials in d variables of total degree no more than κ. To have a sparse multiframelet
representation in (1.7), an important property of a multiframelet is its order of

vanishing moments. We say that {ψ̃1, . . . , ψ̃L} has κ+ 1 vanishing moments if

(1.16)

∫
Rd

h(x)ψ̃�(x) dx = 0 ∀ � = 1, . . . , L and h ∈ Πκ.

When f agrees with a polynomial of degree no more than κ inside the support of
the function vector ψ̃�

j,k, by (1.16), we see that the wavelet coefficient 〈f, ψ̃�
j,k〉 = 0.

In other words, if f can be well approximated by some polynomial of degree no
more than κ inside the support of ψ̃�

j,k, then the notion of κ+1 vanishing moments

of ψ̃1, . . . , ψ̃L guarantees that the (high-pass) wavelet coefficients 〈f, ψ̃�
j,k〉 will be

negligible. So, for a smooth function f , the multiframelet representation in (1.7)
is sparse, which is one of the most desirable features of wavelets and framelets.
For the scalar wavelet case (that is, the multiplicity of all wavelet function vectors
is r = 1), this desirable property of vanishing moments guarantees that a similar
desirable property holds for the discrete wavelet transform in the discrete data
setting. In other words, for a discrete datum u which takes sampled values on the
integer lattice of a polynomial with degree no more than κ, the output high-pass
wavelet coefficients of u, after applying a discrete wavelet transform, are identically
zero. However, as we shall see later, for multiplicity r > 1, this desirable property
of wavelets for the function setting is not automatically carried over to the discrete
multiframelet transform for discrete vector data. In order to overcome such a
difficulty, either a prefilter is required for a given multiframelet or a multiframelet
has to be designed in advance to possess some extra balancing property (see [1, 3,
4, 11, 14, 15, 18, 19, 20]).

It is the purpose of this paper to investigate the balancing property of a multi-
variate multiframelet from the point of view of a discrete algorithm using only the
condition in (1.9). This point of view will enable us to understand the essence of
the above-mentioned difficulty facing most multiwavelets and multiframelets. This
in turn will give us an overall better picture about both prefiltering of multiwavelets
and balanced multiframelets.

In order to present the discrete multiframelet transform, we first recall two linear
operators acting on discrete vector data—the subdivision and transition operators,
whose properties will play a central role in our study of the balancing property of
a discrete multiframelet transform.

By (�(Zd))n×r we denote the linear space of all sequences u : Zd �→ Cn×r, that
is, u = {uk}k∈Zd with each uk being an n× r matrix of complex numbers. In many
applications, instead of a function f , information is often recorded in the discrete
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form, that is, a sequence u ∈ (�(Zd))n×r which could be obtained by sampling
an underlying continuous function f . In order to have a similar multiframelet
representation in (1.7) for a discrete data, a fast multiframelet transform is used
in the literature, which we shall discuss in detail as follows. For a dilation matrix
M and a finitely supported sequence u : Zd �→ Cr×r, the subdivision operator
Su,M : (�(Zd))n×r �→ (�(Zd))n×r and the transition operator Tu,M : (�(Zd))n×r �→
(�(Zd))n×r are defined to be

[Su,Mv]j := | detM |
∑
k∈Zd

vkuj−Mk,

[Tu,Mv]j :=
∑
k∈Zd

vkuk−Mj
T ,

j ∈ Zd, v ∈ (�(Zd))n×r.(1.17)

In the frequency domain, one can easily verify that (1.17) is equivalent to

Ŝu,Mv(ξ) = | detM |v̂(MT ξ)û(ξ),

T̂u,Mv(MT ξ) = | detM |−1
∑

γ∈ΓMT

v̂(ξ + 2πγ)û(ξ + 2πγ)
T
,(1.18)

where ΓMT denotes a complete set of representatives of the distinct cosets of the
quotient group [(MT )−1Zd]/Zd with 0 ∈ ΓMT .

Let â, b̂1, . . . , b̂L and ˆ̃a, ̂̃b1, . . . , ̂̃bL be r× r matrices of 2π-periodic trigonometric
polynomials in d variables such that (1.9) is satisfied. We now discuss a discrete
multiframelet transform, which consists of two parts: the multiframelet decomposi-
tion transform and the multiframelet reconstruction transform. For an input data
vj : Zd �→ C1×r at a given fine scale j, the multiframelet decomposition transform
computes the coarse-scale low-pass wavelet (or framelet) coefficients vj−1 and the
high-pass wavelet coefficients wj−1,�, � = 1, . . . , L, from vj , by

(1.19) vj−1 := Tã,Mvj and wj−1,� := Tb̃�,Mvj , � = 1, . . . , L.

From vj−1 and wj−1,�, � = 1, . . . , L, the multiframelet reconstruction transform can
perfectly reconstruct the original signal vj by

(1.20) vj = Sa,Mvj−1 +

L∑
�=1

Sb�,Mwj−1,�.

The perfect reconstruction of the original signal vj by the multiframelet reconstruc-
tion transform in (1.20) is guaranteed by the condition in (1.9) and can be easily
verified using (1.9) and (1.18) as follows: By (1.18) and (1.19), it follows from (1.9)

that the Fourier series of Sa,Mvj−1 +
∑L

�=1 Sb�,Mwj−1,� is given by

| detM |v̂j−1(MT ξ)â(ξ) + | detM |
L∑

�=1

ŵj−1,�(MT ξ)b̂�(ξ)

=
∑

γ∈Γ
MT

v̂j(ξ + 2πγ)

[
ˆ̃a(ξ + 2πγ)

T

â(ξ) +

L∑
�=1

̂̃b�(ξ + 2πγ)
T

b̂�(ξ)

]

=
∑

γ∈Γ
MT

v̂j(ξ + 2πγ)δγ = v̂j(ξ).
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Hence, (1.20) holds. In fact, the above argument also shows that (1.9) is a necessary
and sufficient condition for the perfect reconstruction in (1.20) of the multiframelet
transform. One can recursively apply the above multiframelet decomposition trans-
form in (1.19) many times so that one obtains vj−n and wj−n,�, wj−(n−1),�, . . . ,
wj−1,�, � = 1, . . . , L, from which the original data vj can be perfectly reconstructed
by the (multilevel) multiframelet reconstruction transform using (1.20).

In many applications, a datum v is given as a sequence of scalar numbers, that
is, v : Zd �→ C. However, the input datum vj in (1.19) is a sequence of 1 × r
vectors, that is, vj : Zd �→ C1×r. Thus, we have to convert a scalar sequence v into
a vector sequence vj . In the following, we discuss this conversion process in detail.
We say that a mapping E : �(Zd) �→ (�(Zd))1×r is a vector conversion operator if E
is a linear operator such that E is one-to-one and onto. Thus, a vector conversion
operator E is always invertible. In dimension one, a natural choice of a vector
conversion operator E is given by

(1.21) [Ev]k := (vrk, vrk+1, . . . , vrk+r−1), k ∈ Zd, v ∈ �(Zd).

Namely, one groups r numbers at r consecutive positions of a sequence v into a 1×r
vector. For a general dimension d, one chooses a d× d integer matrix N such that
| detN | = r. Let ΩN = {ω0, ω1, . . . , ωr−1} denote a complete set of representatives
of the distinct cosets of the quotient group Zd/[NZd]. A natural choice of a vector
conversion operator Er : �(Zd) �→ (�(Zd))1×r associated with N and ΩN is given by

(1.22) [Erv]k := (vNk+ω0
, vNk+ω1

, . . . , vNk+ωr−1
), k ∈ Zd, v ∈ �(Zd).

We call Er in (1.22) a standard vector conversion operator. For dimension d = 1,
(1.22) becomes (1.21) if N = r and ωj = j for j = 0, . . . , r − 1. For the scalar case
r = 1, one simply chooses N = Id and therefore, the standard vector conversion
operator E1 is the identity mapping.

Now a (multilevel) discrete multiframelet transform with a given vector conver-
sion operator E consists of the following steps:

(1) Data conversion: For a given input scalar sequence v ∈ �(Zd), applying the
given vector conversion operator E, one obtains a vector input sequence
vj := Ev.

(2) Decomposition: Applying the multiframelet decomposition transform in
(1.19) n times on the input data vj , one obtains low-pass wavelet coefficients
vj−n and high-pass wavelet coefficients wj−n,�, wj−(n−1),�, . . . , wj−1,�, � =
1, . . . , L.

(3) Processing on wavelet coefficients: Do some required processing (such as
thresholding and quantization) on the original wavelet coefficients vj−n and
wj−n,�, . . . , wj−1,� to obtain after-processing coefficients ṽj−n and w̃j−n,�,
. . ., w̃j−1,�.

(4) Reconstruction: Applying the multiframelet reconstruction transform in
(1.20) (replacing v and w by ṽ and w̃) n times on the after-processing
wavelet coefficients ṽj−n and w̃j−n,�, . . . , w̃j−1,�, one obtains a reconstructed
vector sequence ṽj .

(5) Data inversion: Applying the inverse of the vector conversion operator E,
one obtains a reconstructed scalar sequence ṽ := E−1ṽj .

If we have ṽj−n = vj−n and w̃j−k,� = wj−k,� (that is, no processing on wavelet
coefficients), then we must have the perfect reconstruction ṽ = v. In order to have
a sparse representation of the original data v, it is desirable to have most high-pass
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wavelet coefficients wj−n,�, . . . , wj−1,� negligible. Now we describe the balancing
property of a multiframelet transform.

Let E be a given vector conversion operator. Let â, b̂1, . . . , b̂L and ˆ̃a, ̂̃b1, . . . , ̂̃bL
be r× r matrices of 2π-periodic trigonometric polynomials in d variables such that
(1.9) is satisfied. In the following, we introduce the notion of balancing order from
the point of view of a discrete multiframelet transform. We say that the discrete
multiframelet transform in (1.19) and (1.20) has κ+1 balancing order (with respect
to a given vector conversion operator E) if

(i) Tã,ME(Πκ) ⊆ E(Πκ). In other words, for every polynomial input data
v ∈ Πκ, the output low-pass wavelet coefficient Tã,ME(v) is still some
vector polynomial sequence in E(Πκ) and therefore, E−1Tã,ME(v) is still
a polynomial in Πκ.

(ii) Tb̃�,ME(Πκ) = 0 for all � = 1, . . . , L. That is, for a polynomial input data

v ∈ Πκ, all the output high-pass wavelet coefficients Tb̃�,ME(v) must vanish.
In other words, there is no leakage of information from the low-frequency
part to the high-frequency part.

The property Tã,ME(Πκ) ⊆ E(Πκ) in item (i) is very important for a multilevel
multiframelet transform for two reasons. First of all, this property guarantees that
all the low-pass wavelet coefficients Tn

ã,ME(v) ∈ E(Πκ) for all n ∈ N and v ∈ Πκ.

Consequently, after data inversion, E−1Tn
ã,ME(v) ∈ Πκ for all v ∈ Πκ. Secondly,

combining with item (ii), this property guarantees that all the high-pass multilevel
wavelet coefficients Tb̃�,MTn

ã,ME(v) = 0 for all n ∈ N, � = 1, . . . , L and v ∈ Πκ.

If item (ii) holds, then we say that the high-pass filters b̃�, � = 1, . . . , L, have
κ+1 discrete vanishing moments with respect to the vector conversion operator E.
Generally, the identity Tb̃�,Mv = 0 for all v ∈ (Πκ)

1×r is not true when r > 1. We
shall present a necessary and sufficient condition in Corollary 6.1 for Tb̃�,Mv = 0

for all v ∈ (Πκ)
1×r.

To our best knowledge, the balancing property of a biorthogonal multiwavelet
is often defined from the point of view of the function setting (see [1, 3, 4, 15, 18,
19, 20]). Our definition of the balancing order here is not only more natural and
general, but also weaker than other known related notions. We obtain a complete
criterion and the essential structure of the balancing and prefiltering property of
a multiframelet transform under the most general and natural condition in (1.9),
since (1.9) is the necessary and sufficient condition for the perfect reconstruction of
a multiframelet transform in (1.19) and (1.20). Beyond (1.9), we do not require the

existence of the refinable function vectors φ, φ̃ ∈ (L2(R
d))r×1 satisfying (1.11) and

the vanishing moment condition in (1.14) for the wavelet function vectors ψ1, . . . , ψL

and ψ̃1, . . . , ψ̃L. Our criterion is also applicable to masks satisfying (1.9) such that

1 is not an eigenvalue, or 1 is a multiple eigenvalue, of â(0) or ˆ̃a(0). Nevertheless,
in sections 4 and 6 we shall present some connections of our notion of a balancing
order to other related known notions of balancing order in the literature.

The structure of the paper is as follows. In section 2, we shall investigate a
vector conversion operator E and a closely related vector polynomial space Pκ,y.
The space Pκ,y will play a central role in our understanding of the balancing order
of multiframelets and the approximation order of refinable function vectors. As we
have seen, a multiframelet transform in (1.19) and (1.20) is built on the subdivision
operator and transition operator. In order to understand the balancing order of a
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multiframelet, in section 3, we shall study several basic properties of the subdivi-
sion operator and the transition operator acting on a vector polynomial space Pκ,y.
This serves as our basis for understanding the essence of the balancing property of
a multiframelet. Next in section 4, based on the results in previous sections, we
shall present the main results on the prefiltering and balancing property of a dual
multiframelet and a biorthogonal multiwavelet. In this paper, we obtain a complete
criterion and the essential structure for balanced dual multiframelets in the most
general setting by requiring only the natural condition in (1.9). Our results in this
section not only enable us to generalize some known results on a balanced biorthog-
onal multiwavelet to a dual multiframelet, but also provide a better picture for us
to understand the prefiltering and balancing property of a multiframelet. In fact,
from every given compactly supported multivariate biorthogonal multiwavelet, one
can always build another (essentially equivalent) compactly supported biorthogonal
multiwavelet with its balancing order matching the order of the vanishing moments
of the original one. More generally, we show that if a dual multiframelet can be pre-
filtered, then it can be equivalently transformed into a balanced dual multiframelet
with the same balancing order. We prove that every biorthogonal multiwavelet can
be prefiltered to have the highest possible balancing order, while we notice that
most available dual multiframelets in the literature cannot be simply prefiltered
with high balancing orders and they must be designed to possess high balancing
orders. In section 5, we shall present some auxiliary results and a new canonical
form of a matrix mask in high dimensions. Such a canonical form of a matrix mask
greatly facilitates our investigation and constriction of multiframelets as well as
many problems related to vector subdivision schemes and refinable function vec-
tors. Finally, in section 6 we shall connect our notion and results on the balancing
property of dual multiframelets in the discrete data setting with other definitions of
balancing orders in the literature for orthonormal and biorthogonal multiwavelets
in the function setting. Some advantages of our notion and results in this paper on
balancing orders of multiframelets in the discrete data setting will be mentioned in
section 6.

2. The vector conversion operator and the vector polynomial space

In order to understand the balancing property of a discrete multiframelet trans-
form, in this section we study various properties of the vector conversion operator
E and the vector polynomial space Pκ,y.

To present the definition of the space Pκ,y, let us recall some necessary notions.
Let N0 := N ∪ {0}. For x = (x1, . . . , xd)

T ∈ Rd and µ = (µ1, . . . , µd)
T ∈ Nd

0,
we denote µ! := µ1! · · ·µd!, |x| := |x1| + · · · + |xd| and xµ := xµ1

1 · · ·xµd

d . Let
∂j denote the differentiation operator with respect to the jth coordinate. For
µ = (µ1, . . . , µd)

T ∈ Nd
0, ∂ := (∂1, . . . , ∂d)

T and ∂µ is the differentiation operator
∂µ1

1 · · · ∂µd

d . Throughout this paper, we shall use the following notation:

(2.1) f(ξ) = g(ξ) +O(‖ξ‖κ+1), ξ → 0

to mean ∂µf(0) = ∂µg(0) for all |µ| � κ and µ ∈ Nd
0.

The vanishing moments in (1.16) and the balancing order in section 1 are closely
related to the notion of sum rules. For an r×r matrix â of 2π-periodic trigonometric
polynomials in d variables, we say that â has κ+ 1 sum rules (or satisfies the sum
rules of order κ+1) with a dilation matrix M (e.g., see [8, 9]) if there exists a 1× r
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vector ŷ of 2π-periodic trigonometric polynomials in d variables such that

ŷ(0) �= 0 and

ŷ(MT ξ)â(ξ + 2πγ) = δγ ŷ(ξ) +O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT ,
(2.2)

where ΓMT denotes a complete set of representatives of the distinct cosets of the
quotient group [(MT )−1Zd]/Zd with 0 ∈ ΓMT . By the Leibniz differentiation for-
mula, it is not difficult to see that the equations in (2.2) depend only on the values
∂µŷ(0), |µ| � κ and µ ∈ Nd

0. See [3, 8] for more details on the definition of sum
rules in the time domain.

Let �0(Z
d) denote the linear space of all finitely supported sequences on Zd.

For y = {yk}k∈Zd ∈ (�0(Z
d))1×r and a positive integer κ, as in [8, 9], we define a

subspace Pκ,y of (Πκ)
1×r by

(2.3) Pκ,y := {h ∗ y : h ∈ Πκ},
where

(2.4) h ∗ y :=
∑
k∈Zd

h(· − k)yk, h ∈ Πκ.

Denote Π :=
⋃∞

κ=0 Πκ, the set of all polynomials in d variables. For a vector poly-
nomial g ∈ Π1×r, it is evident that the vector polynomial g is uniquely determined
by its restriction g|Zd on the integer lattice Zd. Therefore, throughout the paper,
g ∈ Π1×r means either a vector polynomial with domain Rd or a vector polynomial
sequence g|Zd with domain Zd, which can be easily distinguished from the context.

The following result shows that the space Pκ,y only depends on the values ∂µŷ(0),
|µ| � κ.

Proposition 2.1. Let y : Zd �→ C1×r be a finitely supported sequence on Zd. Then

h ∗ y = [h(· − i∂)ŷ](0) =
∑
µ∈Nd

0

(∂µh)(·) (−i∂)µ

µ!
ŷ(0)

=
∑
µ∈Nd

0

[(∂µh)(−i∂)ŷ](0)
(·)µ
µ!

, h ∈ Π

(2.5)

and for h ∈ Π,

∂ν(h ∗ y) = (∂νh) ∗ y, ν ∈ Nd
0 and

(h ∗ y)(· − k) = h(· − k) ∗ y, k ∈ Rd.
(2.6)

Consequently, for any κ ∈ N0, the space Pκ,y is contained in (Πκ)
1×r and is in-

variant under both differentiation and shifts in Rd. If ŷ(0) �= 0, then dim(Pκ,y) =
dim(Πκ).

Proof. By the definition of h∗y in (2.4), we have [h∗y]j =
∑

k∈Zd h(j−k)yk. Since
h ∈ Π is a polynomial, using the Taylor expansion of h at the point j, we deduce
that

h(j − k) =
∑
µ∈Nd

0

(∂µh)(j)
(−k)µ

µ!
, h ∈ Π.

Consequently,

(2.7) [h ∗ y]j =
∑
k∈Zd

h(j − k)yk =
∑
µ∈Nd

0

(∂µh)(j)
∑
k∈Zd

yk
(−k)µ

µ!
, h ∈ Π.
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On the other hand, by ŷ(ξ) =
∑

k∈Zd yke
−ik·ξ, we observe that (−i∂)µ

µ! ŷ(0) =∑
k∈Zd yk

(−k)µ

µ! . Now from (2.7), it is straightforward to see that (2.5) holds, since

by the Taylor expansion of h, we have

h(x− i∂) =
∑
µ∈Nd

0

(∂µh)(x)
(−i∂)µ

µ!
and

h(x− i∂) =
∑
µ∈Nd

0

xµ

µ!
(∂µh)(−i∂), x ∈ Rd, h ∈ Π.

Note that ∂ here only acts on the frequency variable ξ, not on the time variable x.
By (2.5), we see that ∂ν(h ∗ y) = (∂νh) ∗ y for all ν ∈ Nd

0 and h ∈ Π. Therefore,
Pκ,y is invariant under differentiation. Similarly, by (2.5), we have (h ∗ y)(· − k) =
h(· − k) ∗ y for all k ∈ Rd and h ∈ Π. So, Pκ,y is invariant under shifts in Rd.

If ŷ(0) �= 0, then it is easy to verify that the mapping h ∈ Πκ �→ h ∗ y ∈ Pκ,y is
one-to-one, since (2.5) and h ∗ y = 0 will force h = 0. Consequently, dim(Pκ,y) =
dim(Πκ) if ŷ(0) �= 0. �

Due to Proposition 2.1, as long as ŷ(ξ) is κth differentiable at ξ = 0, then we can
always define a space Pκ,y := {h ∗ y : h ∈ Πκ} using the definition of h ∗ y in (2.5)
instead of (2.4). In other words, in order to define the space Pκ,y, it is not necessary
to require that ŷ be a 1× r vector of 2π-periodic trigonometric polynomials.

The following result connects the vector conversion operator Er in (1.22) to a
vector polynomial subspace Pκ,y.

Proposition 2.2. Let N be a d×d real-valued invertible matrix and let ω0, . . . , ωr−1

∈ Rd. Let y ∈ (�0(Z
d))1×r be a finitely supported sequence satisfying

(2.8)
(−i∂)µ

µ!
ŷ(0) =

( (N−1ω0)
µ

µ!
, . . . ,

(N−1ωr−1)
µ

µ!

)
, |µ| � κ, µ ∈ Nd

0.

In other words,

ŷ(ξ) = Ŷ (ξ) +O(‖ξ‖κ+1), ξ → 0

with Ŷ (ξ) := (eiN
−1ω0·ξ, eiN

−1ω1·ξ, . . . , eiN
−1ωr−1·ξ).

(2.9)

Then for any nonnegative integer κ,

Er(h) = h(N ·) ∗ Y = TIrδ,N (h ∗ Y N )

= (h(N ·+ω0), . . . , h(N ·+ωr−1)), h ∈ Πκ,
(2.10)

where Ŷ N (ξ) := Ŷ (NT ξ) = (eiω0·ξ, eiω1·ξ, . . . , eiωr−1·ξ). Consequently,{(
h(N ·+ω0), h(N ·+ω1), . . . , h(N ·+ωr−1)

)
: h ∈ Πκ

}
= {h ∗ y : h ∈ Πκ} = Pκ,y.

(2.11)

In particular, for the vector conversion operator Er in (1.22), we have Er(Πκ) =

Pκ,Y for every κ ∈ N0, where Ŷ is defined in (2.9).

Proof. Since N is invertible, it is easy to see that the set on the left side of (2.11)
agrees with{

(h(·+N−1ω0), h(·+N−1ω1), . . . , h(·+N−1ωr−1)) : h ∈ Πκ

}
.
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Therefore, using a Taylor expansion, for h ∈ Πκ, we have

h(·+N−1ωj) =
∑
µ∈Nd

0

(∂µh)(·) (N
−1ωj)

µ

µ!
=
∑
|µ|�κ

(∂µh)(·) (N
−1ωj)

µ

µ!
.

On the other hand, for any sequence y satisfying (2.8), by (2.5) or [9, (2.13)], for
h ∈ Πκ, we deduce that

h ∗ y =
∑
µ∈Nd

0

(∂µh)(·) (−i∂)µ

µ!
ŷ(0) =

∑
|µ|�κ

(∂µh)(·)
((N−1ω0)

µ

µ!
, . . . ,

(N−1ωr−1)
µ

µ!

)
=
(
h(·+N−1ω0), . . . , h(·+N−1ωr−1)

)
.

By (3.1), we have h(N ·) ∗ Y = TIrδ,N (h ∗ Y N ). Consequently, we conclude that
(2.11) holds. �

We shall see that the converse direction of Proposition 2.2 is also true. In order
to do so, we need an auxiliary result. For a square matrix Û(ξ) of 2π-periodic

trigonometric polynomials in d variables, we say that Û is strongly invertible if Û(ξ)

is invertible for all ξ ∈ Rd and the inverse of Û(ξ) is also a matrix of 2π-periodic
trigonometric polynomials in d variables.

In order to understand the space Pκ,y better and to prove the converse direction
of Proposition 2.2, we need the following technical result, whose proof will be given
in section 5.

Lemma 2.3. Let ŷ and ˆ̃y be two s×r (s < r) vectors of functions that are infinitely

differentiable at the origin. Suppose that ŷ(0) and ˆ̃y(0) have the full rank s. If r > 1,

then for any nonnegative integer n, there is a strongly invertible r× r matrix Û(ξ)
of 2π-periodic trigonometric polynomials such that

(2.12) ∂µŷ(0) = ∂µ[ˆ̃y(·)Û(·)](0), |µ| < n, µ ∈ Nd
0,

or equivalently, ŷ(ξ) = ˆ̃y(ξ)Û(ξ) +O(‖ξ‖n), ξ → 0.

Conversely, for any y ∈ (�0(Z
d))1×r with ŷ(0) �= 0 and for any nonnegative

integer κ, we show that there always exists a vector conversion operator E such
that E(Πκ) = Pκ,y.

Theorem 2.4. Let κ ∈ N0 and y ∈ (�0(Z
d))1×r with ŷ(0) �= 0. Then there exists a

strongly invertible r×r matrix Û(ξ) =
∑

k∈Zd Uke
−ik·ξ of 2π-periodic trigonometric

polynomials in d variables such that the following vector conversion operator

(2.13) E = CU ◦ Er : �(Zd)
Er�−→ (�(Zd))1×r CU�−→ (�(Zd))1×r

satisfies E(Πκ) = Pκ,y, where Er is the standard vector conversion operator in
(1.22) and the convolution operator CU is defined to be

CUw := w ∗ U :=
∑
k∈Zd

w·−kUk

for w ∈ (�(Zd))1×r. Moreover,

(2.14) E(h) = h(N ·) ∗ y = TIrδ,N (h ∗ yN ), h ∈ Πκ with ŷN (ξ) := ŷ(NT ξ).
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Proof. If r = 1, then the claim holds with Û = 1. Thus, we assume r > 1. Let Ŷ
be defined in (2.9). By Proposition 2.2, we have Er(Πκ) = Pκ,Y . Since Ŷ (0) �= 0

and ŷ(0) �= 0, by Lemma 2.3, there is a strongly invertible matrix Û such that

(2.15) ŷ(ξ) = Ŷ (ξ)Û(ξ) +O(‖ξ‖κ+1), ξ → 0.

Therefore, for h ∈ Πκ, by (2.10), we have

E(h) = CU (Er(h)) = CU (h(N ·) ∗ Y ) = h(N ·) ∗ Y ∗U = h(N ·) ∗ y = TIrδ,N (h ∗ yN )

and

E(Πκ) = CU (Er(Πκ)) = CU (Pκ,Y ) = {(h ∗ Y ) ∗ U : h ∈ Πκ}
= {h ∗ (Y ∗ U) : h ∈ Πκ} = Pκ,y.

That is, we have E(Πκ) = Pκ,y.
In order to show that E is a vector conversion operator, since Er is a standard

vector conversion operator, it suffices to show that CU is one-to-one and onto.
Denote V̂ (ξ) =

∑
k∈Zd Vke

−ik·ξ := Û(ξ)−1. Since Û is strongly invertible, V̂ is a

matrix of 2π-periodic trigonometric polynomials. By Û(ξ)V̂ (ξ) = Ir, we deduce
that

∑
k∈Zd Uj−kVk = δjIr for all j ∈ Zd. Now we verify that

(2.16) CV (CUw)=(CUw) ∗ V =(w ∗ U) ∗ V =w ∗ (U ∗ V )=w ∀ w∈(�(Zd))1×r.

In fact, by calculation, for j ∈ Zd, we have

[(CUw) ∗ V ]j =
∑
k∈Zd

[CUw]j−kVk =
∑
k∈Zd

wj−k−nUnVk

=
∑
n∈Zd

wj−n

∑
k∈Zd

Un−kVk =
∑
n∈Zd

wj−nδnIr = wj .

Hence, (2.16) is verified and consequently, CU is one-to-one and onto. �

To further study the vector polynomial space Pκ,y, we need the following simple
fact later.

Lemma 2.5. The following statements hold.

(1) For any given complex numbers cµ, |µ| � κ and µ ∈ Nd
0, there is a 2π-

periodic trigonometric polynomial ĉ such that ∂µĉ(0) = cµ for all |µ| � κ.
(2) For a d×d real-valued matrix N and a 2π-periodic trigonometric polynomial

ĉ1, there is a 2π-periodic trigonometric polynomial ĉ2 such that

ĉ2(ξ) = ĉ1(Nξ) +O(‖ξ‖κ+1), ξ → 0.

(3) Let M be a d× d dilation matrix. For a 2π-periodic trigonometric polyno-

mial ĉ with ĉ(0) �= 0, there exist 2π-periodic trigonometric polynomials ĉ1

and ĉ2 such that ĉ1(0) = ĉ2(0) = 1 and

(2.17) ĉ(ξ) = ĉ(0)
ĉ1(MT ξ)

ĉ1(ξ)
+O(‖ξ‖κ+1) = ĉ(0)

ĉ2(ξ)

ĉ2(MT ξ)
+O(‖ξ‖κ+1), ξ → 0.

Proof. It is straightforward to prove items (1) and (2). To prove item (3), since
ĉ(0) �= 0 and ĉ is a 2π-periodic trigonometric polynomial, it is well known that

φ̂(ξ) :=
∏∞

j=1[ĉ((M
T )−jξ)/ĉ(0)] is a well-defined C∞ function with φ̂(0) = 1.

Choose ĉ1 and ĉ2 to be 2π-periodic trigonometric polynomials such that ĉ1(ξ) =
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φ̂(ξ) + O(‖ξ‖κ+1) and ĉ2(ξ) = 1/φ̂(ξ) + O(‖ξ‖κ+1) as ξ → 0. It is evident that
(2.17) holds. �

The following result is implicitly given in [9, Lemma 3.3] and will be used fre-
quently in this paper. For the convenience of the reader, we present a complete
proof here.

Lemma 2.6. Let N be a d× d invertible real-valued matrix. Let y, ẙ : Zd �→ C1×r

be two finitely supported sequences on Zd with ŷ(0) �= 0. Then Pκ,̊y ⊆ Pκ,y if and
only if there exists a 2π-periodic trigonometric polynomial ĉ such that

(2.18) ˆ̊y(ξ) = ĉ(Nξ)ŷ(ξ) +O(‖ξ‖κ+1), ξ → 0.

In particular, Pκ,̊y = Pκ,y if and only if (2.18) holds with ĉ(0) �= 0.

Proof. By item (2) of Lemma 2.5, it suffices to prove the claim for N = Id. So, in
the following, we assume N = Id. By Proposition 2.1, we see that h ∗ c ∈ Πκ for
all h ∈ Πκ. Moreover, we have {h ∗ c : h ∈ Πκ} = Πκ if and only if ĉ(0) �= 0. If
(2.18) holds, we conclude that

Pκ,̊y = {h ∗ c ∗ y : h ∈ Πκ} ⊆ {h ∗ y : h ∈ Πκ} = Pκ,y.

Now we prove the converse. If r = 1, then by ŷ(0) �= 0, we have Pκ,y = Πκ

and we can simply take a 2π-periodic trigonometric polynomial ĉ such that ĉ(ξ) =
ˆ̊y(ξ)/ŷ(ξ)+O(‖ξ‖κ+1) as ξ → 0. Now all the claims follow easily for the scalar case
r = 1.

Suppose r > 1. By Lemma 2.3, there is a strongly invertible r × r matrix Û(ξ)
of 2π-periodic trigonometric polynomials such that

(2.19) ŷ(ξ)Û(ξ) = (1, 0, . . . , 0) +O(‖ξ‖κ+1), ξ → 0.

Since Û is strongly invertible, the linear mapping (�(Zd))1×r �→ (�(Zd))1×r defined
by u �→ u ∗ U is one-to-one and onto (see the proof of Theorem 2.4). Now it is

easy to see that Pκ,̊y ⊆ Pκ,y if and only if Pκ,̊ỹ ⊆ Pκ,ỹ, where
ˆ̃̊y(ξ) := ˆ̊y(ξ)Û(ξ) and

ˆ̃y(ξ) := ŷ(ξ)Û(ξ). By (2.19) and Proposition 2.1, we deduce that

(2.20) Pκ,ỹ = {h ∗ ỹ : h ∈ Πκ} = {(h, 0, . . . , 0) : h ∈ Πκ}.
By Proposition 2.1 again, we see that Pκ,̊ỹ is a subspace of (Πκ)

1×r and Pκ,̊ỹ ⊆
Pκ,ỹ = {[h, 0, . . . , 0] : h ∈ Πκ} if and only if

ˆ̃̊y�(ξ) = O(‖ξ‖κ+1), ξ → 0, � = 2, . . . , r with (ˆ̃̊y1(ξ),
ˆ̃̊y2(ξ), . . . ,

ˆ̃̊yr(ξ)) :=
ˆ̃̊y(ξ).

Take ĉ(ξ) = ˆ̃̊y1(ξ). Then it follows from the above relations that ˆ̃̊y(ξ) = ĉ(ξ)ˆ̃y(ξ) +

O(‖ξ‖κ+1) as ξ → 0. Since Û is strongly invertible, we conclude that (2.18) holds
with N = Id. �

In the next few sections, we shall see that the balancing order of a multiframelet
transform is closely related to the vector conversion operator E and the vector
polynomial subspace Pκ,y. We shall see later that in order to have the balancing
property of a multiframelet transform, it is very natural to require E(Πκ) = Pκ,y.
For the scalar case r = 1, by ŷ(0) �= 0 and (2.5), it is easy to see that Pκ,y = Πκ.
Therefore, regardless of the choice of the sequence y, E(Πκ) = Pκ,y is always true
for the identity conversion operator E. However, for multiplicity r > 1, Pκ,y has
the same dimension as the linear space Πκ and therefore, it is a proper subspace of
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the vector polynomial space (Πκ)
1×r. The vector polynomial space Pκ,y also plays

a critical role in the study of the approximation properties of refinable function
vectors and sum rules of matrix masks; see [8, 9] for more details on the vector
polynomial space Pκ,y.

3. Some properties of the subdivision operators

and transition operators

In this section, we shall study various properties of a subdivision operator Su,M

and a transition operator Tu,M in (1.17) acting on a general vector polynomial
space Pκ,y.

Since the balancing property of a multiframelet transform is closely related to
the action of the subdivision operator and the transition operator on the space
E(Πκ), by the connection of the spaces E(Πκ) and Pκ,y in Proposition 2.2 and
Theorem 2.4, it is of interest and importance to study the properties of the sub-
division operator and transition operator acting on the space Pκ,y. We address
this issue here. The results in this section will serve as our basis for understanding
the notion of sum rules, (discrete) vanishing moments, and balancing orders of a
multiframelet transform.

For a transition operator Tu,M acting on a space Pκ,y, following [11], we have
the following result.

Proposition 3.1. Let u : Zd �→ Cr×r be a finitely supported sequence of r × r
matrices on Zd. Let y ∈ (�0(Z

d))1×r be a finitely supported sequence of 1 × r
vectors on Zd. Then for any nonnegative integer κ,

(3.1) Tu,M (h ∗ y) = h(M ·) ∗ ẙ, h ∈ Πκ,

where ẙ is a finitely supported sequence of 1× r vectors on Zd such that

(3.2) ˆ̊y(MT ξ) = ŷ(ξ)û(ξ)
T
+O(‖ξ‖κ+1), ξ → 0.

As a consequence of (3.1), we have

(1) Tu,MPκ,y = Pκ,̊y with ẙ satisfying (3.2). If in addition ŷ(0)û(0)
T �= 0, then

the restricted mapping Tu,M |Pκ,y
: Pκ,y �→ Pκ,̊y is one-to-one and onto.

(2) Tu,M (h ∗ y) = 0 for all h ∈ Πκ if and only if ŷ(ξ)û(ξ)
T

= O(‖ξ‖κ+1) as
ξ → 0.

(3) For y ∈ (�0(Z
d))1×r with ŷ(0) �= 0, Tu,MPκ,y ⊆ Pκ,y if and only if there

exists a 2π-periodic trigonometric polynomial ĉ such that

(3.3) ŷ(ξ)û(ξ)
T
= ĉ(ξ)ŷ(MT ξ) +O(‖ξ‖κ+1), ξ → 0.

Moreover, Tu,MPκ,y = Pκ,y if and only if (3.3) holds with ĉ(0) �= 0.

Proof. By the definition of the transition operator Tu,M in (1.17), for h ∈ Πκ, we
have

[Tu,M (h ∗ y)]j =
∑
k∈Zd

(h ∗ y)kuk−Mj
T =

∑
k∈Zd

∑
n∈Zd

h(k − n)ynuk−Mj
T

=
∑
k∈Zd

∑
n∈Zd

h(Mj + k)ynuk+n
T .
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By the Taylor expansion of h(M ·) at the point j, we have

h(Mj + k) = h(M(j +M−1k)) =
∑
µ∈Nd

0

[∂µ(h(M ·))](j) (M
−1k)µ

µ!
.

Hence, we have

(3.4) [Tu,M (h ∗ y)]j =
∑
|µ|�κ

[∂µ(h(M ·))](j)
∑
k∈Zd

∑
n∈Zd

ynuk+n
T (M−1k)µ

µ!
, h ∈ Πκ.

Denote v̂(ξ) := ŷ(ξ)û(ξ)
T
. By the assumption that ˆ̊y(MT ξ)= ŷ(ξ)û(ξ)

T
+O(‖ξ‖κ+1)

as ξ → 0, we have

ˆ̊y(ξ) = ŷ((MT )−1ξ)û((MT )−1ξ)
T
+O(‖ξ‖κ+1) = v̂((MT )−1ξ)+O(‖ξ‖κ+1), ξ → 0.

That is, ∑
k∈Zd

ẙke
−ik·ξ =

∑
k∈Zd

vke
−ik·(MT )−1ξ +O(‖ξ‖κ+1)

=
∑
k∈Zd

vke
−iM−1k·ξ +O(‖ξ‖κ+1), ξ → 0.

Now for |µ| � κ, we deduce from the above relation that

(−i∂)µ

µ!
ˆ̊y(0) =

[ (−i∂)µ

µ!

∑
k∈Zd

ẙke
−ik·ξ

]∣∣∣
ξ=0

=
[ (−i∂)µ

µ!

∑
k∈Zd

vke
−iM−1k·ξ

]∣∣∣
ξ=0

=
∑
k∈Zd

vk
(−M−1k)µ

µ!
.

Since v̂(ξ) = ŷ(ξ)û(ξ)
T
, we have vk =

∑
n∈Zd ynun−k

T . Hence,

(−i∂)µ

µ!
ˆ̊y(0) =

∑
k∈Zd

vk
(−M−1k)µ

µ!
=
∑
k∈Zd

v−k
(M−1k)µ

µ!

=
∑
k∈Zd

∑
n∈Zd

ynun+k
T (M−1k)µ

µ!
.

By (3.4) and (2.5), we conclude that

[Tu,M (h ∗ y)]j =
∑
|µ|�κ

[∂µ(h(M ·))](j) (−i∂)µ

µ!
ˆ̊y(0) = [(h(M ·)) ∗ ẙ]j .

So, (3.1) has been verified.

By (3.1), it is evident that item (1) holds. If ˆ̊y(0) = ŷ(0)û(0)
T �= 0, by Propo-

sition 2.1, then dim(Pκ,y) = dim(Pκ,̊y) = dim(Πκ). Since Tu,MPκ,y = Pκ,̊y, the
restricted mapping Tu,M |Pκ,y

: Pκ,y �→ Pκ,̊y must be one-to-one and onto.
For h ∈ Πκ, by (3.1), we have Tu,M (h ∗ y) = h(M ·) ∗ ẙ. So, Tu,M (h ∗ y) = 0 for

all h ∈ Πκ if and only if∑
|µ|�κ

[∂µ(h(M ·))](·) (−i∂)µ

µ!
ˆ̊y(0) = h(M ·) ∗ ẙ = 0 ∀ h ∈ Πκ,
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and therefore, if and only if (−i∂)µ

µ!
ˆ̊y(0) = 0 for all |µ| � κ. In other words, Tu,M (h∗

y) = 0 for all h ∈ Πκ if and only if ˆ̊y(MT ξ) = ŷ(ξ)û(ξ)
T
= O(‖ξ‖κ+1) as ξ → 0.

So, item (2) holds.

By (3.1), we have Tu,MPκ,y = Pκ,̊y with ˆ̊y(ξ) := ŷ((MT )−1ξ)û((MT )−1ξ)
T
. By

Lemma 2.6, Pκ,̊y ⊆ Pκ,y if and only if (3.3) holds for some 2π-periodic trigonometric
polynomial ĉ. Hence, item (3) is verified. It also follows from Lemma 2.6 that
Pκ,̊y = Pκ,y if and only if (3.3) holds for some 2π-periodic trigonometric polynomial
ĉ with ĉ(0) �= 0. Thus, item (4) holds. �

Recall that ΓMT is a complete set of representatives of the distinct cosets of
[(MT )−1Zd]/Zd with 0 ∈ ΓMT . Denote by ΩM a complete set of representatives of
the distinct cosets of Zd/[MZd] with 0 ∈ ΩM .

In order to study a subdivision operator Su,M acting on a space Pκ,y, we need
the following result, which generalizes [9, Proposition 2.2].

Lemma 3.2. Let M be a d × d dilation matrix and u : Zd �→ Cr×r be a finitely
supported sequence of r × r matrices on Zd. Let h ∈ Π1×r be a 1 × r vector of
polynomial sequences in d variables. Then the following are equivalent:

(1) Su,Mh is a 1× r vector of polynomial sequences; that is, Su,Mh ∈ Π1×r.
(2)

∑
k∈Zd(∂µh)(−M−1β − k)uβ+Mk =

∑
k∈Zd(∂µh)(−k)uMk for all β ∈ ΩM

and µ ∈ Nd
0.

(3) [(∂µh)(−i∂)ûβ](0) = [(∂µh)(−i∂)û0](0) for all β ∈ ΩM and µ ∈ Nd
0, where

ûβ(ξ) :=
∑

k∈Zd uβ+Mke
−i(M−1β+k)·ξ.

(4) [(∂µh)(−iM−1∂)û](2πγ) = 0 for all γ ∈ ΓMT \{0} and µ ∈ Nd
0.

Moreover, if any of the above holds, then Su,Mh = h(M−1·) ∗ u,

(3.5) Su,M (∂νh) = [(∂νh)(M−1·)] ∗ u ∀ ν ∈ Nd
0,

and

Su,M (h(· − k)) = h(M−1 · −k) ∗ u
for all k ∈ Rd.

Proof. By the definition of the subdivision operator Su,M in (1.17), it is easy to
deduce that

(3.6) [Su,Mh]β+Mj = | detM |
∑
k∈Zd

h(M−1(β+Mj)−M−1β−k)uβ+Mk, β, j ∈ Zd.

Now we see that Su,Mh ∈ Π1×r if and only if
∑

k∈Zd h(· − M−1β − k)uβ+Mk is
independent of β. Since

h(x−M−1β − k) =
∑
µ∈Nd

0

(∂µh)(−M−1β − k)
xµ

µ!
,

we deduce that∑
k∈Zd

h(· −M−1β − k)uβ+Mk =
∑
µ∈Nd

0

xµ

µ!

∑
k∈Zd

(∂µh)(−M−1β − k)uβ+Mk.

Thus,
∑

k∈Zd h(· − M−1β − k)uβ+Mk is independent of β if and only if item (2)

holds; that is,
∑

k∈Zd(∂µh)(−M−1β−k)uβ+Mk is independent of β. So, (1) ⇔ (2).
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To prove (2) ⇔ (3), it suffices to show that

(3.7) [g(−i∂)ûβ ](0) =
∑
k∈Zd

g(−M−1β − k)uβ+Mk, g ∈ Π1×r, β ∈ Zd.

Since g(−i∂) =
∑

µ∈Nd
0
∂µg(0) (−i∂)µ

µ! , we deduce that

[g(−i∂)ûβ ](0) =
∑
µ∈Nd

0

∑
k∈Zd

∂µg(0)uβ+Mk

[ (−i∂)µ

µ!
e−i(M−1β+k)·ξ

]∣∣∣
ξ=0

=
∑
k∈Zd

∑
µ∈Nd

0

∂µg(0)
(−M−1β − k)µ

µ!
uβ+Mk.

By g(x) =
∑

µ∈Nd
0
∂µg(0)xµ/µ!, we now see that (3.7) holds. So, (2) ⇔ (3).

To prove (3) ⇔ (4), we show that for g ∈ Π1×r,

(3.8) [g(−i∂)ûβ ](0) = g(−i∂)û0(0) ∀ β ∈ ΩM

if and only if

(3.9) [g(−i∂)(û((MT )−1 ·+2πγ))](0) = 0 ∀ γ ∈ ΓMT \{0}.

By û(ξ) =
∑

β∈ΩM
ûβ(MT ξ), for γ ∈ ΓMT , we have

û((MT )−1ξ + 2πγ) =
∑

β∈ΩM

ûβ(ξ)e−i2πβ·γ .

Putting these relations into a matrix form, we have

(3.10) (û((MT )−1ξ + 2πγ))γ∈ΓMT
= (e−i2πβ·γ)γ∈ΓMT ,β∈ΩM

(ûβ(ξ))β∈ΩM
.

Hence, we have(
g(−i∂)(û((MT )−1·+2πγ))(0)

)
γ∈Γ

MT
=(e−i2πβ·γ)γ∈ΓMT ,β∈ΩM

(
g(−i∂)ûβ(0)

)
β∈ΩM

.

Since | detM |−1/2(e−i2πβ·γ)γ∈ΓMT ,β∈ΩM
is a unitary matrix, it is now easy to deduce

that (3.8) is equivalent to (3.9). Since g(−i∂)(f((MT )−1·))(0) = g(−iM−1∂)f(0),
by (3.9), we conclude that (3) ⇔ (4).

If any of (1)–(4) holds, by (3.6), we see that Su,Mh = h(M−1·) ∗ u, since

h =
∑

β∈ΩM

∑
k∈Zd

h(M−1(· − β−Mk))uβ+Mk =
∑
k∈Zd

h(M−1(· − k))uk = h(M−1·) ∗ u.

If item (2) holds for h, then it is straightforward to see that item (2) also holds
with h being replaced by ∂νh. Consequently, (3.5) holds. Similarly, noting that

h(· − k) =
∑

ν∈Nd
0
∂νh(·) (−k)ν

ν! , we see that Su,M (h(· − k)) = h(M−1 · −k) ∗ u. �

For a finitely supported sequence u : Zd �→ C, by Lemma (3.2), we see that
Su,MΠκ ⊆ Πκ if and only if

(3.11) û(ξ + 2πγ) = O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT \{0}.
Similarly, by Lemma (3.2), we see that Su,MΠκ ⊆ Πκ if and only if Su,Mpn ∈ Πκ,
n = 1, . . . , N for some p1, . . . , pN ∈ Πκ such that span{∂µpn : n = 1, . . . , N, µ ∈
Nd

0} = Πκ.
For a subdivision operator Su,M acting on a space Pκ,y, we have the following

result.
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Proposition 3.3. Let u : Zd �→ Cr×r be a finitely supported sequence of r × r
matrices on Zd. Let y ∈ (�0(Z

d))1×r be a finitely supported sequence of 1 × r
vectors on Zd. Then for any nonnegative integer κ, the following statements hold:

(1) Su,MPκ,y ⊆ (Πκ)
1×r if and only if

(3.12) ŷ(MT ξ)û(ξ + 2πγ) = O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT \{0}.
(2) If (3.12) holds, define ˆ̊y(ξ) := ŷ(MT ξ)û(ξ). Then Su,MPκ,y = Pκ,̊y and

Su,M (h ∗ y) = | detM |−1SSu,My,Mh = | detM |−1h(M−1·) ∗ [Su,My]

= h(M−1·) ∗ ẙ, h ∈ Πκ.

If in addition ŷ(0)û(0) �= 0, then mapping Su,M |Pκ,y
: Pκ,y �→ Pκ,̊y is one-

to-one and onto.
(3) Su,MTv,M (h ∗ y) = h ∗ y for all h ∈ Πκ if and only if

(3.13) ŷ(ξ)v̂(ξ)
T
û(ξ + 2πγ) = δγ ŷ(ξ) + O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT .

Proof. Denote ˆ̊y(ξ) := ŷ(MT ξ)û(ξ). To prove items (1) and (2), we first show that
we always have

(3.14) Su,M (h ∗ y) = | detM |−1SSu,My,Mh = Sẙ,Mh, h ∈ Π.

In fact, by the definition of the subdivision operator in (1.17), we deduce that

[Su,M (h ∗ y)]j = | detM |
∑
k∈Zd

(h ∗ y)kuj−Mk

= | detM |
∑
k∈Zd

∑
n∈Zd

h(k − n)ynuj−Mk

= | detM |
∑
k∈Zd

∑
n∈Zd

h(k)ynuj−M(k−n)

=
∑
k∈Zd

h(k)| detM |
∑
n∈Zd

ynuj−Mk−Mn

=
∑
k∈Zd

h(k)[Su,My]j−Mk = | detM |−1[SSu,My,Mh]j .

Since Ŝu,My(ξ) = | detM |ŷ(MT ξ)û(ξ) = | detM |ˆ̊y(ξ), we now see that (3.14) is
verified. In particular, by (3.14), Su,MPκ,y = Sẙ,MΠκ. By Lemma 3.2 and in
particular (3.11), we conclude that Su,MPκ,y = Sẙ,MΠκ ⊆ (Πκ)

1×r if and only if
ˆ̊y(ξ+2πγ) = O(‖ξ‖κ+1) as ξ → 0 for all γ ∈ ΓMT \{0}. That is, Su,MPκ,y ⊆ (Πκ)

1×r

if and only if (3.12) holds. So, item (1) is verified. Item (2) is a direct consequence

of (3.14) and Lemma 3.2. If ˆ̊y(0) = ŷ(0)û(0) �= 0, by Proposition 2.1, then we have
dim(Pκ,y) = dim(Pκ,̊y) = dim(Πκ). Now it follows from Su,MPκ,y = Pκ,̊y that the
restricted mapping Su,M |Pκ,y

: Pκ,y �→ Pκ,̊y is one-to-one and onto.
To prove item (3), by (3.1), we have Tv,M (h ∗ y) = h(M ·) ∗ ỹ, h ∈ Πκ with

ˆ̃y(MT ξ) := ŷ(ξ)v̂(ξ)
T
+ O(‖ξ‖κ+1), ξ → 0. Therefore, Su,MTv,M (h ∗ y) = h ∗ y for

all h ∈ Πκ if and only if

(3.15) Su,M (h(M ·) ∗ ỹ) = h ∗ y, h ∈ Πκ.

Now by items (1) and (2), (3.15) holds if and only if

ˆ̃y(MT ξ)û(ξ + 2πγ) = ŷ(ξ)v̂(ξ)
T
û(ξ + 2πγ) = O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT \{0}
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and
ˆ̃y(MT ξ)û(ξ) = ŷ(ξ)v̂(ξ)

T
û(ξ) = ŷ(ξ) +O(‖ξ‖κ+1), ξ → 0.

Therefore, (3.15) holds if and only if (3.13) holds. Hence, item (3) is verified. �

Lemma 3.4. Let u ∈ (�0(Z
d))r×r and y, ỹ ∈ (�0(Z

d))1×r with ˆ̃y(0) �= 0. Then
Su,MPκ,y = Pκ,ỹ if and only if

(3.16) ŷ(MT ξ)û(ξ + 2πγ) = δγ ĉ(ξ)ˆ̃y(ξ) +O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT

for some 2π-periodic trigonometric polynomial ĉ with ĉ(0) �= 0. In particular, for
y ∈ (�0(Z

d))1×r with ŷ(0) �= 0, Su,MPκ,y = Pκ,y if and only if

[ˆ̃c(MT ξ)ŷ(MT ξ)][Cû(ξ + 2πγ)] = δγ [ˆ̃c(ξ)ŷ(ξ)] +O(‖ξ‖κ+1),

ξ → 0, γ ∈ ΓMT

(3.17)

for some nonzero constant C and some 2π-periodic trigonometric polynomial ˆ̃c with
ˆ̃c(0) �= 0.

Proof. If (3.16) holds, then it is evident that (3.12) holds and

(3.18) ˆ̊y(ξ) := ŷ(MT ξ)û(ξ) = ĉ(ξ)ˆ̃y(ξ) +O(‖ξ‖κ+1), ξ → 0.

So, by item (2) of Proposition 3.3 and Lemma 2.6, we conclude that Su,MPκ,y =
Pκ,̊y = Pκ,ỹ.

Conversely, if Su,MPκ,y = Pκ,ỹ, then by items (1) and (2) of Proposition 3.3,
we conclude that (3.12) holds and Su,MPκ,y = Pκ,̊y. Since Su,MPκ,y = Pκ,ỹ, this

implies that Pκ,̊y = Pκ,ỹ. Since ˆ̃y(0) �= 0, by Lemma 2.6, there must exist a 2π-
periodic trigonometric polynomial ĉ with ĉ(0) �= 0 such that (3.18) holds. Now it
is straightforward to see that (3.12) and (3.18) are equivalent to (3.16).

We now prove the second claim. By what has been proved, Su,MPκ,y = Pκ,y if
and only if

(3.19) ŷ(MT ξ)û(ξ + 2πγ) = δγ ĉ(ξ)ŷ(ξ) +O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT

for some 2π-periodic trigonometric polynomial ĉ with ĉ(0) �= 0. Since ĉ(0) �= 0, by

Lemma 2.5, (2.17) holds. Take ˆ̃c = ĉ2 and C = 1/ĉ(0). We see that (3.19) holds if
and only if (3.17) holds. �

We mention that (3.17) (or (3.19)) is equivalent to saying that the mask Cû(ξ)
(or the mask û(ξ)/ĉ(0)) satisfies the sum rules of order κ+ 1 in (2.2) with â and ŷ

being replaced by Cû and ˆ̃cŷ (or by û/ĉ(0) and ĉ2ŷ with ĉ2 in (2.17)), respectively.
More precisely, we have the following result:

Corollary 3.5. Let u ∈ (�0(Z
d))r×r and y ∈ (�0(Z

d))1×r with ŷ(0) �= 0. Then the
following are equivalent:

(1) û has κ+1 sum rules with the dilation matrix M and the vector sequence y

in (3.17) with C = 1 for some 2π-periodic trigonometric polynomial ˆ̃c with
ˆ̃c(0) �= 0.

(2) û satisfies (3.19) for some 2π-periodic trigonometric polynomial ĉ with
ĉ(0) = 1.

(3) ŷ(0)û(0) = ŷ(0) and Su,MPκ,y = Pκ,y.
(4) ŷ(0)û(0) = ŷ(0) and there are polynomials hn ∈ Πκ, n = 1, . . . , N , such

that Su,M (hn∗y) ∈ Pκ,y for all n = 1, . . . , N and span{∂µhn : µ ∈ Nd
0, n =

1, . . . , N} = Πκ.
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4. Balancing and prefiltering property of dual multiframelets

Based on the results in previous sections, we shall discuss in this section the pre-
filtering and balancing property of multivariate dual multiframelets and biorthog-
onal multiwavelets from the point of view of discrete algorithms using transition
operators and subdivision operators.

For dual multiframelets, we have the following main result in this section.

Theorem 4.1. Let M denote a d× d dilation matrix and κ ∈ N0. Let â, b̂1, . . . , b̂L

and ˆ̃a, ̂̃b1, . . . , ̂̃bL be r × r matrices of 2π-periodic trigonometric polynomials in d
variables such that (1.9) is satisfied. Let E : �(Zd) �→ (�(Zd))1×r be a vector
conversion operator. Let y ∈ (�0(Z

d))1×r be given by Proposition 2.2 such that
Pκ,y = E(Πκ). If the associated multiframelet transform has κ+ 1 balancing order
with respect to the vector conversion operator E, then

1) there is a 2π-periodic trigonometric polynomial ĉ such that

(4.1) ŷ(ξ)ˆ̃a(ξ)
T

= ĉ(ξ)ŷ(MT ξ) +O(‖ξ‖κ+1), ξ → 0.

2) The high-pass filters ̂̃b1, . . . , ̂̃bL have κ+1 discrete vanishing moments with
respect to ŷ:

(4.2) ŷ(ξ)
̂̃
b�(ξ)

T

= O(‖ξ‖κ+1), ξ → 0, � = 1, . . . , L.

3) Sa,MTã,M (h ∗ y) = h ∗ y for all h ∈ Πκ.
4) Tã,MPκ,y = Pκ,y. That is, (4.1) holds with ĉ(0) �= 0.
5) Sa,MPκ,y = Pκ,y.

Conversely, items 1) and 2) together imply that the multiframelet transform has
κ+1 balancing order with respect to the vector conversion operator E. Moreover, if
L = | detM | − 1 (this is true for a biorthogonal multiwavelet), then the associated
multiframelet transform has κ + 1 balancing order with respect to E if and only if
item 5) holds.

Proof. First, we show that the multiframelet transform has κ + 1 balancing order
with respect to E if and only if items 1) and 2) hold. Since E(Πκ) = Pκ,y, by
item (2) of Proposition 3.1, Tb̃�,ME(Πκ) = Tb̃�,MPκ,y = 0 for all � = 1, . . . , L if

and only if item 2) holds. Similarly, by item (1) of Proposition 3.1, we see that
Tã,ME(Πκ) = Tã,MPκ,y = Pκ,̊y with

(4.3) ˆ̊y(MT ξ) := ŷ(ξ)ˆ̃a(ξ)
T

.

Hence, Tã,MPκ,y ⊆ Pκ,y if and only if Pκ,̊y ⊆ Pκ,y. Since ŷ(0) �= 0, by Lemma 2.6,
we conclude that Tã,MPκ,y ⊆ Pκ,y if and only if (4.1) holds. Therefore, the mul-
tiframelet transform has κ + 1 balancing order with respect to E if and only if
items 1) and 2) hold.

Suppose that the multiframelet transform has κ + 1 balancing order. Then
items 1) and 2) hold. We now prove items 3), 4) and 5). From the relation in (1.9),
we deduce that

[ŷ(ξ), 0, . . . , 0]P
[ˆ̃a,̂̃b1,...,̂̃bL]

(ξ)
T
P
[â,b̂1,...,b̂L]

(ξ) = [ŷ(ξ), 0 . . . , 0].
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By calculation, the above relation is equivalent to

ŷ(ξ)ˆ̃a(ξ)
T

â(ξ + 2πγ) +

L∑
�=1

ŷ(ξ) ̂̃b�(ξ)T b̂�(ξ + 2πγ) = δγ ŷ(ξ), γ ∈ ΓMT .

Now by item 2), it follows from the above relation that

(4.4) ŷ(ξ)ˆ̃a(ξ)
T

â(ξ + 2πγ) = δγ ŷ(ξ) +O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT .

Thus, by item (3) of Proposition 3.3, we conclude that item 3) holds.
In particular, item 3) implies that Sa,MTã,MPk,y = Pκ,y. Since both Sa,M and

Tã,M are linear operators, Sa,MTã,MPk,y = Pκ,y and Tã,MPκ,y ⊆ Pκ,y (this is item
(i) in the definition of κ+1 balancing order) will force dim(Tã,MPκ,y) = dim(Pκ,y).
That is, we must have Tã,MPκ,y = Pκ,y. Now we have Pκ,̊y = Tã,MPκ,y = Pκ,y,

where ˆ̊y is defined in (4.3). By Lemma 2.6, (4.1) must hold with ĉ(0) �= 0. Hence,
item 4) holds.

By items 3) and 4), it is straightforward to see that Sa,MPκ,y = Pκ,y. Thus,
item 5) holds.

For the case L = | detM | − 1, in order to show that the multiframelet transform
has κ+ 1 balancing order if and only if item 5) holds, we only need to prove that
item 5) implies both items 1) and 2). By ŷ(0) �= 0 and Lemma 3.4, we first note
that item 5) is equivalent to

(4.5) [ˆ̊c(MT ξ)ŷ(MT ξ)][Câ(ξ+2πγ)] = δγ [ˆ̊c(ξ)ŷ(ξ)]+O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT

for some nonzero number C ∈ C\{0} and some 2π-periodic trigonometric poly-

nomial ˆ̊c with ˆ̊c(0) �= 0. When L = | detM | − 1, the matrices P
[â,b̂1,...,b̂L]

and

P
[ˆ̃a,
̂̃
b1,...,

̂̃
bL]

are square matrices. Therefore, (1.9) implies that

P
[â,b̂1,...,b̂L]

(ξ)P
[ˆ̃a,
̂̃
b1,...,

̂̃
bL]

(ξ)
T
= Imr.

Hence, we have

(C ˆ̊c(MT ξ)ŷ(MT ξ), 0, . . . , 0)P
[â,b̂1,...,b̂L]

(ξ)P
[ˆ̃a,̂̃b1,...,̂̃bL]

(ξ)
T

= (C ˆ̊c(MT ξ)ŷ(MT ξ), 0, . . . , 0).

By calculation, the above identity is equivalent to∑
γ∈ΓMT

C ˆ̊c(MT ξ)ŷ(MT ξ)â(ξ + 2πγ)ˆ̃a(ξ + 2πγ)
T

= C ˆ̊c(MT ξ)ŷ(MT ξ),

∑
γ∈ΓMT

C ˆ̊c(MT ξ)ŷ(MT ξ)â(ξ + 2πγ) ̂̃b�(ξ + 2πγ)
T

= 0, � = 1, . . . , L.

By (4.5) and the above two identities, we deduce that

ˆ̊c(ξ)ŷ(ξ)ˆ̃a(ξ)
T

= C ˆ̊c(MT ξ)ŷ(MT ξ) +O(‖ξ‖κ+1) and

ˆ̊c(ξ)ŷ(ξ) ̂̃b�(ξ)T = O(‖ξ‖κ+1), ξ → 0.

Since ˆ̊c(0) �= 0, we now see that (4.1) and (4.2) hold with ĉ(ξ) = C ˆ̊c(MT ξ)/ˆ̊c(ξ). �
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In fact, the two 2π-periodic trigonometric polynomials ĉ in (4.1) and ˆ̊c in (4.5)
are related and determined by each other through the following relation:

(4.6) ĉ(ξ)ˆ̊c(ξ) = C ˆ̊c(MT ξ) +O(‖ξ‖κ+1), ξ → 0 and C = ĉ(0).

In fact, with γ = 0 in (4.5), we have

ŷ(MT ξ)â(ξ) = C−1
ˆ̊c(ξ)

ˆ̊c(MT ξ)
ŷ(ξ) +O(‖ξ‖κ+1), ξ → 0.

Now by (4.1) and the above relation, it follows from (4.4) with γ = 0 that

ŷ(ξ) = ŷ(ξ)ˆ̃a(ξ)
T

â(ξ) +O(‖ξ‖κ+1) = ĉ(ξ)ŷ(MT ξ)â(ξ) +O(‖ξ‖κ+1)

= C−1ĉ(ξ)
ˆ̊c(ξ)

ˆ̊c(MT ξ)
ŷ(ξ) +O(‖ξ‖κ+1), ξ → 0.

Since ŷ(0) �= 0, it is now easy to see that

C−1ĉ(ξ)
ˆ̊c(ξ)

ˆ̊c(MT ξ)
= 1 +O(‖ξ‖κ+1)

as ξ → 0. So, (4.6) holds. Note that (1.9) still holds if â and ˆ̃a are replaced with

Câ and C−1ˆ̃a, respectively. Therefore, the appearance of a nonzero constant C in
(4.5) is very natural, due to the lack of normalization for â and ˆ̃a in (1.9). Without
loss of any generality, one may assume that C = 1 and consequently, by (4.1) and

(4.5), ŷ(0)ˆ̃a(0)
T

= ŷ(0) = ŷ(0)â(0); that is, ŷ(0) is a nonzero left eigenvector to

both â(0) and ˆ̃a(0)
T

with the eigenvalue 1.
From the following known result (e.g., [9, Proposition 3.1]), which is a direct

consequence of [9, Lemma 2.2], we shall see that under some mild conditions the
space Pκ,y is generally uniquely determined by the values ∂µâ(0), |µ| � κ or by the

values ∂µˆ̃a(0), |µ| � κ if ˆ̃a is a dual mask of â.

Proposition 4.2. Let M be a d×d dilation matrix and denote σ := (σ1, . . . , σd)
T ,

where σ1, . . . , σd are all the eigenvalues of M . Let â and ˆ̃a be r × r matrices of
2π-periodic trigonometric polynomials in d variables.

(1) If 1 is a simple eigenvalue of â(0) and σ−µ, 0 < |µ| � κ and µ ∈ Nd
0, are not

eigenvalues of â(0), then up to a multiplicative constant, there is a unique
nontrivial solution {∂µŷ(0) : |µ| � κ} to the system of linear equations
induced by

ŷ(MT ξ)â(ξ) = ŷ(ξ) + O(‖ξ‖κ+1), ξ → 0.

(2) If 1 is a simple eigenvalue of ˆ̃a(0) and σµ, 0 < |µ| � κ and µ ∈ Nd
0, are not

eigenvalues of ˆ̃a(0), then up to a multiplicative constant, there is a unique

nontrivial solution {∂µ ˆ̃φ(0) : |µ| � κ} to the system of linear equations
induced by

ˆ̃φ(MT ξ) = ˆ̃a(ξ) ˆ̃φ(ξ) +O(‖ξ‖κ+1), ξ → 0.

In particular, suppose that â has κ + 1 sum rules in (2.2) with a vector y ∈
(�0(Z

d))1×r. Then
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(i) if the condition in item (1) holds for â(0), then up to a multiplicative con-
stant the values ∂µŷ(0), |µ| � κ and the space Pκ,y are uniquely determined
by the values ∂µâ(0), |µ| � κ;

(ii) if the condition in item (2) holds for ˆ̃a(0) and if ˆ̃a is a dual mask of â, that
is,

(4.7)
∑

γ∈ΓMT

â(ξ + 2πγ)ˆ̃a(ξ + 2πγ)
T

= 1,

then up to a multiplicative constant the values ∂µŷ(0), |µ| � κ and the space

Pκ,y are uniquely determined by the values ∂µˆ̃a(0), |µ| � κ via the following
formula:

(4.8) ŷ(ξ)ˆ̃a(ξ)
T

= ŷ(MT ξ) +O(‖ξ‖κ+1), ξ → 0.

Proof. Item (ii) has been proved in [8, Theorem 3.1] and plays an important role
in the CBC (coset by coset) algorithm for constructing biorthogonal multiwavelets
with arbitrarily high orders of vanishing moments. For completeness, we sketch the
proof here in the frequency domain. By (4.7) and (2.2), we can easily deduce that

ŷ(MT ξ) =
∑

γ∈ΓMT

ŷ(MT ξ)â(ξ+2πγ)ˆ̃a(ξ + 2πγ)
T

= ŷ(ξ)ˆ̃a(ξ)
T

+O(‖ξ‖κ+1), ξ → 0.

Hence, (4.8) holds. By the condition in item (2) for ˆ̃a(0) and [9, Lemma 2.2], up to
a multiplicative constant, there is a unique nontrivial solution {∂µŷ(0) : |µ| � κ}
to the system of linear equations induced by (4.8). �

By Theorem 4.1 and Proposition 4.2, we see that the space Pκ,y is generally
determined by either a vector conversion operator E or a mask â. Namely, we have
two choices to determine the space Pκ,y: one corresponds to balanced multiframelets
by fixing E and designing â, and the other corresponds to prefiltering a given dual
multiframelet by fixing â and designing E.

One choice is to fix a vector conversion operator E, for example, taking E = Er,
the standard vector conversion operator in (1.22). By Proposition 2.2, we have
E(Πκ) = Pκ,y for some y ∈ (�0(Z

d))1×r with ŷ(0) �= 0. Note that if E = Er, then

ŷ can be taken to be Ŷ in (2.9). Then by Theorem 4.1, the design of balanced
multiwavelets and multiframelets with κ + 1 balancing order with respect to the
given vector conversion operator E (often E = Er) corresponds to designing

(1) a mask â such that â has κ + 1 sum rules in (4.5) with C = 1, where ˆ̊c
can be freely chosen to be any 2π-periodic trigonometric polynomial with
ˆ̊c(0) �= 0;

(2) a mask ˆ̃a such that (4.1) holds with ĉ(ξ) := ˆ̊c(MT ξ)/ˆ̊c(ξ);

(3) high-pass filters b̂1, . . . , b̂L, ̂̃b1, . . . , ̂̃bL such that (1.9) and (4.2) hold.

The above three conditions can be translated into the function setting as follows:

Proposition 4.3. Assume that there are compactly supported 1×r function vectors
φ, ψ1, . . . , ψL, φ̃, ψ̃1, . . . , ψ̃L in L2(R

d) such that (1.11) and (1.12) are satisfied.
Suppose that (4.5) holds with γ = 0 and C = 1. We further assume that the

condition on ˆ̃a in item (2) of Proposition 4.2 is satisfied. Then the associated
multiframelet transform has κ+1 balancing order with respect to a vector conversion
operator E satisfying E(Πκ) = Pκ,y if and only if
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(1) for some 2π-periodic trigonometric polynomial ˆ̃c with ˆ̃c(0) �= 0,

(4.9) ˆ̃c(ξ)ŷ(ξ) = ˆ̃φ(ξ)
T

+O(‖ξ‖κ+1), ξ → 0;

(2) all wavelet function vectors ψ̃1, . . . , ψ̃L have κ+ 1 vanishing moments:

(4.10) ̂̃ψ�(ξ) = O(‖ξ‖κ+1), ξ → 0, � = 1, . . . , L.

Moreover,

(4.11) φ̂(ξ)
T ˆ̃φ(ξ) = 1 +O(‖ξ‖κ+1), ξ → 0.

Proof. Suppose that the associated multiframelet transform has κ + 1 balancing
order. By Theorem 4.1, items 1) and 2) of Theorem 4.1 hold.

Since (4.5) holds with γ = 0 and C = 1, we must have (4.6) with C = 1. Now
(4.1) becomes

(4.12) ˆ̊c(ξ)ŷ(ξ)ˆ̃a(ξ)
T

= ˆ̊c(MT ξ)ŷ(MT ξ) +O(‖ξ‖κ+1), ξ → 0.

Since ˆ̃φ(ξ)
T

ˆ̃a(ξ)
T

= ˆ̃φ(MT ξ)
T

, by Proposition 4.2 and (4.12), we conclude that

there exists a nonzero constant C̃ such that C̃ ˆ̊c(ξ)ŷ(ξ) =
ˆ̃
φ(ξ)

T

+ O(‖ξ‖κ+1) as

ξ → 0. That is, (4.9) holds with ˆ̃c(ξ) := C̃ ˆ̊c(ξ). Therefore, item (1) holds. By (4.9),
we see that

(4.13) ̂̃ψ�(MT ξ)
T

= ̂̃b�(ξ) ˆ̃φ(ξ)T = ˆ̃c(ξ)ŷ(ξ) ̂̃b�(ξ)T +O(‖ξ‖κ+1), ξ → 0.

Consequently, by (4.2) and ˆ̃c(0) �= 0, (4.10) holds. Therefore, item (2) is verified.

Conversely, suppose that (4.9) and (4.10) are satisfied. Since ˆ̃c(0) �= 0, by
Lemma 2.5, there is a 2π-periodic trigonometric polynomial ĉ such that ĉ(ξ) =
ˆ̃c(MT ξ)/ˆ̃c(ξ) + O(‖ξ‖κ+1) as ξ → 0. By (4.9) and

ˆ̃φ(ξ)
T

ˆ̃a(ξ)
T

= ˆ̃φ(MT ξ)
T

,

it is now straightforward to see that (4.1) is satisfied. By (4.9), (4.13) holds.

By (4.10) and ˆ̃c(0) �= 0, it is straightforward to see that (4.2) holds. Now by
Theorem 4.1, the multiframelet transform has κ+ 1 balancing order.

We now prove (4.11). By (4.5) with γ = 0 and C = 1, it follows from φ̂(MT ξ) =

â(ξ)φ̂(ξ) that

ˆ̊c(MT ξ)ŷ(MT ξ)φ̂(MT ξ) = ˆ̊c(MT ξ)ŷ(MT ξ)â(ξ)φ̂(ξ)

= ˆ̊c(ξ)ŷ(ξ)φ̂(ξ) +O(‖ξ‖κ+1), ξ → 0.

Since M is a dilation matrix, by [9, Lemma 2.2], we must have ˆ̊c(ξ)ŷ(ξ)φ̂(ξ) =
ˆ̊c(0)ŷ(0)φ̂(0) + O(‖ξ‖κ+1) as ξ → 0. As we proved, (4.9) holds with ˆ̃c(ξ) = C̃ ˆ̊c(ξ).
Now we get

φ̂(ξ)
T ˆ̃φ(ξ) = ˆ̃φ(ξ)

T

φ̂(ξ) = C̃ ˆ̊c(ξ)ŷ(ξ)φ̂(ξ) +O(‖ξ‖κ+1)

= C̃ ˆ̊c(0)ŷ(0)φ̂(0) +O(‖ξ‖κ+1), ξ → 0.

Since φ̂(0)
T ˆ̃φ(0) = 1, we now see that (4.11) holds. �
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The other choice is to fix a mask â and all other filters b̂1, . . . , b̂L, ˆ̃a, ̂̃b1, . . . , ̂̃bL.
Therefore, the space Pκ,y is generally determined by â. More precisely, the mask â
is required to have κ+ 1 sum rules with a vector sequence y ∈ (�0(Z

d))1×r in (2.2)
(or (4.5) with C = 1). Consequently, y is known and the vector polynomial space
Pκ,y is fixed by the given mask â. By Theorem 4.1, prefiltering a given multiwavelet
(e.g., see [14, 15]) or a multiframelet corresponds to designing a vector conversion
operator E such that E(Πκ) = Pκ,y. More precisely, we have the following result.

Proposition 4.4. Let M be a d×d dilation matrix. Let â, b̂1, . . . , b̂L and ˆ̃a, ̂̃b1, . . . ,̂̃
bL be r × r matrices of 2π-periodic trigonometric polynomials in d variables such
that (1.9) holds. Suppose that the mask â satisfies the sum rules of order κ+1 with
a vector sequence y ∈ (�0(Z

d))1×r in (2.2). In order to prefilter the multiframelet
transform so that it has κ+ 1 balancing order,

(1) one has to design a vector conversion operator E satisfying E(Πκ) = Pκ,y.
In particular, we can choose E = CU ◦Er in Theorem 2.4, where Er is the
standard vector conversion operator in (1.22) and Û is a strongly invertible
r×r matrix of 2π-periodic trigonometric polynomials such that (2.15) holds.

(2) The two conditions in (4.1) and (4.2) of Theorem 4.1 are satisfied.

In particular, if L = | detM | − 1 (this is true for a biorthogonal multiwavelet),
then item (1) implies item (2) and item (2) can be dropped. Moreover, if the dual

multiframelet â, b̂1, . . . , b̂L, ˆ̃a, ̂̃b1, . . . , ̂̃bL can be prefiltered to have κ + 1 balancing
order (i.e., items (1) and (2) above hold), define

ˆ̊a(ξ) := Û(MT ξ)â(ξ)Û(ξ)−1, ˆ̃̊a(ξ) := Û(MT ξ)T
−1

ˆ̃a(ξ)Û(ξ)
T

,̂̊
b�(ξ) := b̂�(ξ)Û(ξ)−1,

̂̃̊
b�(ξ) :=

̂̃
b�(ξ)Û(ξ)

T

, � = 1, . . . , L.

(4.14)

Then ˆ̊a,
̂̊
b1, . . . ,

̂̊
bL and ˆ̃̊a,

̂̃̊
b1, . . . ,

̂̃̊
bL satisfy

(4.15) P
[
ˆ̊
ã,
̂̃̊
b1,...,

̂̃̊
bL]

(ξ)
T
P
[ˆ̊a,
̂̊
b1,...,

̂̊
bL]

(ξ) = Imr with m := | detM |,

and their associated new dual multiframelet transform has κ + 1 balancing order
with respect to the standard vector conversion operator Er. That is, the new dual
multiframelet is balanced with κ+ 1 balancing order.

Proof. When L = | detM | − 1, since â satisfies the sum rules of order κ + 1 with
y in (2.2), we have Sa,MPκ,y = Pκ,y. Now by Theorem 4.1 and E(Πκ) = Pκ,y,
the multiframelet transform has κ + 1 balancing order with respect to the vector
conversion operator E. Therefore, by Theorem 4.1, item (1) implies item (2).
Hence, item (2) is not needed when L = | detM | − 1.

The identity (4.15) can be easily verified by (1.9) and (4.14). Let Ŷ be defined
in (2.9) such that Er(Πκ) = Pκ,Y . We deduce from (2.15) and (4.1) that as ξ → 0,

Ŷ (ξ)ˆ̃̊a(ξ)
T

= Ŷ (ξ)Û(ξ)ˆ̃a(ξ)
T

Û(MT ξ)−1 = ŷ(ξ)ˆ̃a(ξ)
T

Û(MT ξ)−1 +O(‖ξ‖κ+1)

= ĉ(ξ)ŷ(MT ξ)Û(MT ξ)−1 +O(‖ξ‖κ+1) = ĉ(ξ)Ŷ (MT ξ) +O(‖ξ‖κ+1).
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By (2.15) and (4.2), we have

Ŷ (ξ)
̂̃̊
b�(ξ)

T

= Ŷ (ξ)Û(ξ) ̂̃b�(ξ)T = ŷ(ξ) ̂̃b�(ξ)T +O(‖ξ‖κ+1)

= O(‖ξ‖κ+1), ξ → 0, � = 1, . . . , L.

Hence, by Theorem 4.1, the new dual multiframelet has κ+1 balancing order with
respect to the standard vector conversion operator Er. �

The convolution operator CU : (�(Zd))1×r �→ (�(Zd))1×r in item (1) of Propo-
sition 4.4 is called the prefilter in the literature. The existence of such a prefilter
CU and a vector conversion operator E in Proposition 4.4 is guaranteed by Theo-
rem 2.4. However, when L �= | detM | − 1, the conditions in (4.1) and (4.2) are not
automatically true and are not the direct consequence of (1.9) and the assumption
that â has κ+ 1 sum rules with y in (4.5). As a consequence, dual multiframelets
generally have to be designed to satisfy (4.1) and (4.2). But when L = | detM |−1,
a dual multiframelet can always be prefiltered with the balancing order matching
the order of the sum rules of â. In particular, for biorthogonal multiwavelets, we
have the following result.

Corollary 4.5. Let M be a d× d dilation matrix and L = | detM | − 1. Let φ and

φ̃ be two compactly supported r × 1 M -refinable function vectors in L2(R
d) such

that (1.11) and (1.15) are satisfied. Suppose that â, b̂1, . . . , b̂L and ˆ̃a,
̂̃
b1, . . . ,

̂̃
bL are

r×r matrices of 2π-periodic trigonometric polynomials such that (1.9) holds. Define

ψ1, . . . , ψL and ψ̃1, . . . ψ̃L as in (1.12). If â has κ+1 sum rules with y ∈ (�0(Z
d))1×r

in (2.2), then ({ψ1, . . . , ψL}, {ψ̃1, . . . , ψ̃L}) generates a pair of biorthogonal M -

multiwavelets in L2(R
d) with ψ̃1, . . . , ψ̃m having κ+1 vanishing moments. Let E =

CU ◦ Er as in item (1) of Proposition 4.4 and define ˆ̊a,
̂̊
b1, . . . ,

̂̊
bL and ˆ̃̊a,

̂̃̊
b1, . . . ,

̂̃̊
bL

as in (4.14). Define φ̊ and ˚̃φ by
ˆ̊
φ(ξ) := Û(ξ)φ̂(ξ) and

ˆ̊
φ̃(ξ) := Û(ξ)T

−1 ˆ̃φ(ξ). Then

ˆ̊
φ(MT ξ) = ˆ̊a(ξ)

ˆ̊
φ(ξ),

ˆ̃̊
φ(MT ξ) = ˆ̃̊a(ξ)

ˆ̃̊
φ(ξ),

ψ̂�(MT ξ) =
̂̊
b�(ξ)

ˆ̊
φ(ξ),

̂̃
ψ�(MT ξ) =

̂̃̊
b�(ξ)

ˆ̃̊
φ(ξ),

the new multiframelet transform (more precisely, a biorthogonal multiwavelet trans-

form) has κ+1 balancing order, and ({ψ1, . . . , ψm}, {ψ̃1, . . . , ψ̃m}) generates a pair
of balanced biorthogonal M -multiwavelets in L2(R

d) with κ+1 balancing order using

the new generators φ̊, ˚̃φ, ˆ̊a,
̂̊
b1, . . . ,

̂̊
bL, ˆ̃̊a,

̂̃̊
b1, . . . ,

̂̃̊
bL.

5. A new canonical form of a matrix mask

In this section, we shall develop a canonical form of a multivariate matrix mask.
As demonstrated in [9, 11, 13], the canonical form of a matrix mask greatly facil-
itates the study of refinable function vectors, vector subdivision schemes, and the
construction of dual multiframelets. Following the lines developed in [11, 13] for the
univariate setting, in this section we shall introduce a new canonical form of a mul-
tivariate matrix mask with multiplicity greater than one, by adding new features
to the existing canonical form of a matrix mask in [9, 11, 13]. The new canonical
form of a matrix mask plays a critical role in the investigation and construction
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of balanced multivariate biorthogonal multiwavelets and balanced multiframelet
transforms.

Recall that Û is strongly invertible if both Û(ξ) and Û(ξ)−1 are matrices of
2π-periodic trigonometric polynomials. First, we prove Lemma 2.3.

Proof of Lemma 2.3. We first prove the case s = 1 by showing that there exists a
strongly invertible r × r matrix V̂ of 2π-periodic trigonometric polynomials such
that

(5.1) ŷ(ξ)V̂ (ξ) = (1, 0, . . . , 0) +O(‖ξ‖n), ξ → 0.

Denote (ŷ1(ξ), . . . , ŷr(ξ)) := ŷ(ξ). Since ŷ(0) �= 0, without loss of any generality,
we may assume ŷ1(0) �= 0; otherwise, we perform a permutation on ŷ first. Choose
2π-periodic trigonometric polynomials ĉ1, ĉ2, . . . , ĉr such that ĉ1(ξ) = 1/ŷ1(ξ) +
O(‖ξ‖n) and ĉ�(ξ) = ŷ�(ξ)/ŷ1(ξ) +O(‖ξ‖n), as ξ → 0, for � = 2, . . . , r. That is, we
have

ĉ1(ξ)ŷ1(ξ) = 1 +O(‖ξ‖n) and

ŷ�(ξ)− ĉ�(ξ)ŷ1(ξ) = O(‖ξ‖n), ξ → 0, � = 2, . . . , r.
(5.2)

Note that ĉ1(0) �= 0. Therefore, we have(
1− ĉ1(ξ)/ĉ1(0)

)2n
= 1− ĉ1(ξ)Qn(ξ)

with Qn(ξ) :=

2n−1∑
k=0

(−1)k
(

2n

k + 1

)
[ĉ1(ξ)]

k/[ĉ1(0)]
k+1.

(5.3)

Define two strongly invertible matrices Û1 and Û2 by

(5.4) Û1(ξ) :=

(
1 −f̂(ξ)
0 Ir−1

)
with f̂(ξ) := (ĉ2(ξ), . . . , ĉr(ξ))

and

(5.5) Û2(ξ) :=

⎛⎝ ĉ1(ξ) −
(
1− ĉ1(ξ)/ĉ1(0)

)n
0(

1− ĉ1(ξ)/ĉ1(0)
)n

Qn(ξ) 0
0 0 Ir−2

⎞⎠ .

Note that det Û1(ξ) = det Û2(ξ) = 1 by (5.3). Therefore, Û1 and Û2 are strongly

invertible. Now by (5.2) and (5.3), it is easy to check (5.1) by taking V̂ (ξ) :=

Û1(ξ)Û2(ξ). In fact, by (5.2), as ξ → 0, we have

ŷ(ξ)Û1(ξ)Û2(ξ) = (ŷ1(ξ), 0, . . . , 0)Û2(ξ) +O(‖ξ‖n)
= (ĉ1(ξ)ŷ1(ξ), 0, . . . , 0) + O(‖ξ‖n) = (1, 0, . . . , 0) +O(‖ξ‖n).

Similarly, there exists a strongly invertible r × r matrix ˆ̃V of 2π-periodic trigono-

metric polynomials such that ˆ̃y(ξ) ˆ̃V (ξ) = (1, 0, . . . , 0) + O(‖ξ‖n) as ξ → 0. Now

the proof for the case s = 1 is completed by taking Û(ξ) := ˆ̃V (ξ)[V̂ (ξ)]−1.
We now prove the general claim. Clearly, it suffices to show the claim with

ŷ(ξ) = (Is, 0). We now prove it by induction on s with s < r. As we just proved,
the claim holds for s = 1. Suppose that the claim holds for s− 1 with s < r. Now
we prove it for the case s. Let ĉ denote the first row of the matrix ˆ̃y. Since ˆ̃y(0)
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has the full rank s, we must have ĉ(0) �= 0. Now by what has been proved, there is

a strongly invertible matrix Û1 such that

ˆ̃y(ξ)Û1(ξ) =

(
1 +O(‖ξ‖κ+1) O(‖ξ‖κ+1)

∗ ˆ̊y(ξ)

)
, ξ → 0,

where ∗ denotes some column vector of 2π-periodic trigonometric polynomials and
ˆ̊y is an (s− 1)× (r− 1) matrix of 2π-periodic trigonometric polynomials. Since Û1

is strongly invertible and ˆ̃y(0) has full rank s, we can deduce that ˆ̊y(0) has the full
rank s− 1. Since s− 1 < r− 1, by the induction hypothesis, there exists a strongly
invertible (r − 1)× (r − 1) matrix V̂ (ξ) such that

ˆ̊y(ξ)V̂ (ξ) = (Is−1, 0) +O(‖ξ‖κ+1), ξ → 0.

Denote Û2(ξ) := diag(1, V̂ (ξ)). Then we observe that

ˆ̃y(ξ)Û1(ξ)Û2(ξ) = (Û3(ξ), 0) +O(‖ξ‖κ+1), ξ → 0,

where Û3(ξ) is an s×s lower-triangular matrix with all ones in its diagonal and with
all other lower-triangular elements being 2π-periodic trigonometric polynomials.
Consequently, the matrix Û3 is strongly invertible. Define

Û(ξ) := Û1(ξ)Û2(ξ)diag(Û3(ξ)
−1, Ir−s).

By calculation, it is not difficult to see that (2.12) holds with ŷ(ξ) = (Is, 0). �

Let φ be an M -refinable function (or distribution) vector satisfying φ̂(MT ξ) =

â(ξ)φ̂(ξ). For a strongly invertible matrix Û , we define

ˆ̊a(ξ) := Û(MT ξ)â(ξ)Û(ξ)−1 and
ˆ̊
φ(ξ) := Û(ξ)φ̂(ξ).

Then we have
ˆ̊
φ(MT ξ) = ˆ̊a(ξ)

ˆ̊
φ(ξ). It is evident that φ is compactly supported if

and only if φ̊ is compactly supported. Similarly, a is finitely supported if and only
if å is finitely supported.

Now we have the following result on the canonical form of a multivariate matrix
mask.

Theorem 5.1. Let M be a d× d dilation matrix. Let â be an r × r matrix of 2π-
periodic trigonometric polynomials in d variables with multiplicity r > 1. Suppose
that â satisfies the sum rules of order κ + 1 in (2.2) with the dilation matrix M
and a 1 × r vector ŷ of 2π-periodic trigonometric polynomials. Then there exists
a strongly invertible r × r matrix Û (that is, both Û and Û−1 are matrices of 2π-
periodic trigonometric polynomials) such that

(5.6) ˆ̊a(ξ) :=

(
ˆ̊a1,1(ξ) ˆ̊a1,2(ξ)
ˆ̊a2,1(ξ) ˆ̊a2,2(ξ)

)
:= Û(MT ξ)â(ξ)Û(ξ)−1

has the following property:

ˆ̊a1,1(ξ + 2πγ) = δγ +O(‖ξ‖κ+1) and

ˆ̊a1,2(ξ + 2πγ) = O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT ,
(5.7)

where ˆ̊a1,1, ˆ̊a1,2, ˆ̊a2,1, and ˆ̊a2,2 are 1×1, 1× (r−1), (r−1)×1 and (r−1)× (r−1)
matrices of 2π-periodic trigonometric polynomials. If in addition there is an r × 1
vector φ of compactly supported tempered distributions satisfying

(5.8) φ̂(MT ξ) = â(ξ)φ̂(ξ), ξ ∈ Rd and ŷ(0)φ̂(0) �= 0,



946 BIN HAN

then for any nonnegative integer n, there is a strongly invertible matrix Û such that
(5.6) and (5.7) are satisfied with the additional properties:

(5.9) ˆ̊a1,1(ξ) = 1 +O(‖ξ‖n), ˆ̊a2,1(ξ) = O(‖ξ‖n), ξ → 0

and

(5.10)
̂̊
φ1(ξ) = 1 +O(‖ξ‖n) and

̂̊
φ�(ξ) = O(‖ξ‖n), ξ → 0, � = 2, . . . , r,

where
ˆ̊
φ(ξ) := (

̂̊
φ1, . . . ,

̂̊
φr)

T := Û(ξ)φ̂(ξ). Thus, except for φ̊1, all other components

φ̊2, . . . , φ̊r have n vanishing moments.

Proof. Since ŷ(0) �= 0, by Lemma 2.3, there is a strongly invertible matrix Û such
that

ŷ(ξ)Û(ξ)−1 = (1, 0, . . . , 0) +O(‖ξ‖κ+1), ξ → 0.

That is,

(1, 0, . . . , 0) = ŷ(MT ξ)Û(MT ξ) +O(‖ξ‖κ+1), ξ → 0.

Since â satisfies the sum rules of order κ+1 in (2.2), we deduce that for γ ∈ ΓMT ,
as ξ → 0,

(1, 0, . . . , 0)ˆ̊a(ξ + 2πγ)

= ŷ(MT ξ)Û(MT ξ)−1Û(MT ξ)â(ξ + 2πγ)Û(ξ + 2πγ)−1 +O(‖ξ‖κ+1)

= y(MT ξ)â(ξ + 2πγ)Û(ξ + 2πγ)−1 +O(‖ξ‖κ+1)

= δγ ŷ(ξ)Û(ξ + 2πγ)−1 +O(‖ξ‖κ+1)

= (δγ , 0, . . . , 0) +O(‖ξ‖κ+1).

That is, we have

(5.11) (1, 0, . . . , 0)ˆ̊a(ξ + 2πγ) = (δγ , 0, . . . , 0) +O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT .

In other words, ˆ̊a satisfies the sum rules of order κ with the vector ŷ in (2.2) being
[1, 0, . . . , 0]. Now it is straightforward to see that (5.7) is equivalent to the relation
in (5.11).

In addition, suppose that (5.8) is satisfied. By what has been proved, there exists

a strongly invertible matrix ˆ̃U such that

(5.12) ŷ(ξ) ˆ̃U(ξ)−1 = (1, 0, . . . , 0) +O(‖ξ‖κ+1), ξ → 0

and

ˆ̃a(ξ) :=

(
ˆ̃a1,1(ξ) ˆ̃a1,2(ξ)
ˆ̃a2,1(ξ) ˆ̃a2,2(ξ)

)
:= ˆ̃U(MT ξ)â(ξ) ˆ̃U(ξ)−1

satisfies

ˆ̃a1,1(ξ + 2πγ) = δγ +O(‖ξ‖κ+1) and

ˆ̃a1,2(ξ + 2πγ) = O(‖ξ‖κ+1), ξ → 0, γ ∈ ΓMT .
(5.13)

Denote

(5.14) ˆ̃φ(ξ) := ( ˆ̃φ1(ξ), . . . ,
ˆ̃φr(ξ))

T := ˆ̃U(ξ)φ̂(ξ).

Clearly, by (5.8) and (5.12), we have

ˆ̃φ1(0) = (1, 0, . . . , 0) ˆ̃φ(0) = ŷ(0) ˆ̃U(0)−1 ˆ̃U(0)φ̂(0) = ŷ(0)φ̂(0) �= 0.
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Without loss of any generality, we can assume that n > κ. Since
ˆ̃
φ1(0) �= 0, as

in the proof of Lemma 2.3, we can choose 2π-periodic trigonometric polynomials
ĉ1, . . . , ĉr such that

ĉ1(ξ)
ˆ̃
φ1(ξ) = 1 +O(‖ξ‖n) and

ˆ̃
φ�(ξ)− ĉ�(ξ)

ˆ̃
φ1(ξ) = O(‖ξ‖n), ξ → 0, � = 2, . . . , r.

(5.15)

Define two strongly invertible matrices Û1 and Û2 as in (5.4) and (5.5). Then we

take a strongly invertible matrix Û(ξ) := [Û1(ξ)Û2(ξ)]
T ˆ̃U(ξ). We now show that Û

is a desired strongly invertible matrix such that all the claims in Theorem 5.1 hold.
By (5.12), as ξ → 0, we have

ŷ(ξ)Û(ξ)−1 = ŷ(ξ) ˆ̃U(ξ)−1[Û2(ξ)
T Û1(ξ)

T ]−1

= (1, 0, . . . , 0)(Û1(ξ)
−1)T (Û2(ξ)

−1)T +O(‖ξ‖κ+1).
(5.16)

By the choice of Û1 in (5.4) and Û2 in (5.5), since we assumed that n � κ, we see
that

(1, 0, . . . , 0)[Û1(ξ)
−1]T = (1, 0, . . . , 0)

and
(1, 0, . . . , 0)[Û2(ξ)

−1]T =
(
Qn(ξ), (1− ĉ1(ξ)/ĉ1(0))

n, 0, . . . , 0
)
.

That is, by (5.16), as ξ → 0, we deduce that

ŷ(ξ)Û(ξ)−1 =
(
Qn(ξ), (1− ĉ1(ξ)/ĉ1(0))

n, 0, . . . , 0
)
+O(‖ξ‖κ+1)

= (Qn(ξ), 0, . . . , 0) +O(‖ξ‖κ+1).
(5.17)

By (5.3) and (5.15), we see that as ξ → 0,

Qn(ξ) = 1/ĉ1(ξ) + (1− ĉ1(ξ)/ĉ1(0))
2n/ĉ1(ξ) = 1/ĉ1(ξ) +O(‖ξ‖2n)

= ĉ1(ξ)
̂̃
φ1(ξ)/ĉ1(ξ) +O(‖ξ‖n) = ̂̃φ1(ξ) +O(‖ξ‖n).

Since ˆ̃φ(MT ξ) = ˆ̃a(ξ) ˆ̃φ(ξ), now by (5.13) we have ˆ̃φ1(M
T ξ) = ˆ̃φ1(ξ) + O(‖ξ‖κ)

as ξ → 0. Since M is a dilation matrix, it now follows from this relation that
ˆ̃φ1(ξ) =

ˆ̃φ1(0)+O(‖ξ‖κ) as ξ → 0 (see [9, Lemma 2.2]). That is, by (5.17), we have

ŷ(ξ)Û(ξ)−1 = (̂̃φ1(0), 0, . . . , 0) +O(‖ξ‖κ+1), ξ → 0.

Therefore, by ̂̃φ1(0) �= 0 and the same argument as in the first part of the proof,
(5.7) is satisfied. More precisely, we see that å satisfies the sum rules of order κ

with the sequence (̂̃φ1(0), 0, . . . , 0), from which we easily deduce that (5.7) holds.
By (5.15) and (5.3), we have

ˆ̊
φ(ξ) = Û2(ξ)

T Û1(ξ)
T ˆ̃U(ξ)φ̂(ξ) =

[ ˆ̃
φ(ξ)T Û1(ξ)Û2(ξ)]

T

= (1, 0, . . . , 0)T +O(‖ξ‖n), ξ → 0.

That is, (5.10) holds. To prove (5.9), we can easily verify that
ˆ̊
φ(MT ξ) = ˆ̊a(ξ)

ˆ̊
φ(ξ).

Therefore, by (5.10), we deduce that

ˆ̊
φ(MT ξ) = ˆ̊a1,1(ξ)

ˆ̊
φ1(ξ) +O(‖ξ‖n) and ˆ̊a1,2(ξ)

ˆ̊
φ1(ξ) = O(‖ξ‖n), ξ → 0.

Now it follows easily from (5.10) that (5.9) holds. �
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To complete this section, following the lines developed in [11, 13], we shortly
sketch the construction procedure of dual multiframelets with high balancing orders.
Let â and ˆ̃a be given r × r matrices of 2π-periodic trigonometric polynomials such
that â has κ+1 sum rules in (2.2) with y and ˆ̃a has κ̃+1 sum rules with ỹ. Let Û

and ˆ̃U be given in Theorem 5.1 such that ˆ̊a(ξ) := Û(MT ξ)â(ξ)Û(ξ)−1 and ˆ̃̊a(ξ) :=
ˆ̃U(MT ξ)ˆ̃a(ξ) ˆ̃U(ξ)−1 have the desirable properties as described by Theorem 5.1 (for

the part of ã, replace a and U by ã and Ũ). Now one constructs r × r matriceŝ̊
b1, . . . ,

̂̊
bL and

̂̃̊
b1, . . . ,

̂̃̊
bL such that (4.15) holds and

(1, 0, . . . , 0)
̂̊
b�(ξ)

T

= O(‖ξ‖κ̃+1),

(1, 0, . . . , 0)
̂̃̊
b�(ξ)

T

= O(‖ξ‖κ+1), ξ → 0, � = 1, . . . , L.

Then the dual multiframelet transform associated with ˆ̊a,
̂̊
b1, . . . ,

̂̊
bL and ˆ̃̊a,

̂̃̊
b1,

. . .,
̂̃̊
bL has κ + 1 balancing order. One can also equivalently transform back to â

(or ˆ̃a) from ˆ̊a (or ˆ̃̊a) by using Û (or ˆ̃U). For more details, see [11] for the univariate
case.

6. Connections to balancing orders of multiwavelets

in the literature

For the convenience of the reader, in this section we shall connect our notion
and results on balancing orders of multiframelets in the discrete data setting with
other notions of balancing order in the literature for biorthogonal multiwavelets in
the function setting.

In the univariate setting, for a compactly supported orthonormal 2-refinable
function vector φ̃ = (φ̃1, . . . , φ̃r)

T in L2(R), a notion of κ+ 1 balancing order for φ
is introduced in [18, 19] saying that∫

R

φ̃1(x)x
jdx =

∫
R

φ̃2(x)(x− 1
r )

jdx = · · · =
∫
R

φ̃r(x)(x− r−1
r )jdx,

j = 0, . . . , κ.
(6.1)

This notion was further generalized in [3] to multivariate biorthogonal multiwave-

lets. For a compactly supported M -refinable function vector φ̃ = (φ̃1, . . . , φ̃r)
T in

L2(R
d) and some points α0, . . . , αr−1 ∈ Rd, φ̃ is said to have κ+ 1 balancing order

(see [3, (3.1)]) relative to the r-tuple [α0, . . . , αr−1] if∫
Rd

φ̃1(x)(x− α0)
µdx =

∫
Rd

φ̃2(x)(x− α1)
µdx

= · · · =
∫
Rd

φ̃r(x)(x− αr−1)
µdx, |µ| � κ.

(6.2)

Denote ωj := Nαj for j = 0, . . . , r − 1 and Ŷ (ξ) := (eiN
−1ω0·ξ, . . . , eiN

−1ωr−1·ξ)

as in (2.9) of Proposition 2.2. In the frequency domain, noting that
∫
Rd φ̃j(x)(x−

αj−1)
µdx = i|µ|∂µ[eiξ·αj−1̂̃φj(ξ)](0) (derivative on the variable ξ only), we see that
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(6.2) is equivalent to

(6.3) ˆ̃φ(ξ)
T

= ˆ̃c(ξ)Ŷ (ξ) +O(‖ξ‖κ+1), ξ → 0

for some 2π-periodic trigonometric polynomial ˆ̃c. We observed that [3] uses the

mapping E̊ : h ∈ Πκ �→ (h(· + α1), . . . , h(· + αr−1)) ∈ Π1×r
κ ; however, for general

r-tuples [α0, . . . , αr−1], the existence and construction of such a vector conversion
operator are not known in [3]. By Theorem 2.4, we have a desired vector conversion

operator E : �(Zd) �→ (�(Zd))1×r such that Pκ,Y = E(Πκ) = E̊(Πκ), since by (2.10)
and αj = N−1ωj ,

E(h(N−1·)) = (h(N−1(N ·+ω0)), . . . , h(N
−1(N ·+ωr−1)))

= (h(·+ α0), . . . , h(·+ αr−1)), h ∈ Πκ.

We now show that our notion of balancing order with respect to a vector con-
version operator E satisfying E(Πκ) = Pκ,Y agrees with the one in (6.2), or equiv-
alently (6.3), for biorthogonal multiwavelets.

Assume that there are compactly supported 1×r function vectors φ, ψ1, . . . , ψL,
φ̃, ψ̃1, . . . , ψ̃L in L2(R

d) such that (1.11) and (1.12) are satisfied. As in [3, 4, 18, 19],
for the case of biorthogonal multiwavelets, we also assume that the biorthogonality
condition in (1.15) holds and the mask â has κ+ 1 sum rules with y ∈ (�0(Z

d))1×r

in (2.2) (that is, (3.17) holds with C = 1 and ˆ̊c ≡ 1). By the biorthogonality

relation in (1.15), we deduce that φ and φ̃ are compactly supported M -refinable
function vectors in L2(R

d) with stable integer shifts. Consequently, it is known
(see [9, Proposition 3.1]) that the condition in item (2) of Proposition 4.2 holds

for all κ ∈ N for both ˆ̃a(0) and â(0), since 1 is a simple eigenvalue of â(0) and
ˆ̃a(0) and all the other eigenvalues of â(0) and ˆ̃a(0) are less than one in modulus.
Since â has κ + 1 sum rules in (2.2) with a vector sequence y ∈ (�0(Z

d))1×r and
L = | detM | − 1, using (1.9) and (2.2), we can easily check that (4.10) must hold
and (cf. [9, Proposition 2.2])

(6.4) ŷ(ξ)φ̂(ξ + 2πk) = ŷ(0)φ̂(0)δk +O(‖ξ‖κ+1), ξ → 0, k ∈ Zd.

Now by Proposition 4.3, the biorthogonal multiwavelet transform has κ+1 balanc-
ing order with respect to a vector conversion operator E satisfying E(Πκ) = Pκ,Y

if and only if (6.3) holds. Hence, in the function setting, for biorthogonal multi-
wavelets, our notion of balancing order recovers that in [3, 4, 18, 19].

Moreover, by item (ii) of Proposition 4.2 and item (5) of Theorem 4.1 (i.e.,
Sa,MPκ,Y = Pκ,Y ), we must have Pκ,y = Pκ,Y . That is, by Lemma 2.6, there
is a 2π-periodic trigonometric polynomial ĉ with ĉ(0) �= 0 such that ĉ(ξ)ŷ(ξ) =

Ŷ (ξ)+O(‖ξ‖κ+1) as ξ → 0, which by Theorem 4.1 is also a necessary and sufficient
condition for the biorthogonal multiwavelet to have κ+1 balancing order, since we
assumed in advance that the mask â has κ + 1 sum rules with y ∈ (�0(Z

d))1×r in
(2.2). Now it follows from (6.4) that

Ŷ (ξ)φ̂(ξ + 2πk) = ĉ(ξ)ŷ(ξ)φ̂(ξ + 2πk) +O(‖ξ‖κ+1)

= ŷ(0)φ̂(0)ĉ(ξ)δk +O(‖ξ‖κ+1), ξ → 0, k ∈ Zd.
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In the time domain, by αj = N−1ωj for j = 0, . . . , r − 1, the above relation is
equivalent to

r∑
j=1

∑
k∈Zd

h(k + αj−1)φj(· − k) =

r∑
j=1

∑
k∈Zd

h(k +N−1ωj−1)φj(· − k)

= (h ∗ Y ) ∗ φ = (h ∗ c ∗ y) ∗ φ = ŷ(0)φ̂(0)h ∗ c, h ∈ Πκ.

(6.5)

The advantages of our approach are obvious. Even in the special case of biorthog-
onal multiwavelets, we do not assume in advance that â has κ+ 1 sum rules. Un-
der the most natural condition (1.9), which is a necessary and sufficient condition
for the perfect reconstruction in (1.20) of a multiframelet transform, our criterion
and results on balancing orders of biorthogonal multiwavelets (or more generally
L = | detM |−1) and dual multiframelets with an arbitrary number L do not assume
any other conditions. On the other hand, all other papers on balanced or prefiltered
multiwavelets in the literature (see [1, 3, 4, 14, 15, 18, 19, 20]) assumed that 1) there

exist compactly supported M -refinable function vectors φ, φ̃ in L2(R
d) satisfying

(1.11) and the biorthogonality condition (1.15); 2) all the wavelet function vectors
must have at least one vanishing moment in (1.14); 3) the mask â must have κ+ 1
sum rules. As we have seen above, these extra conditions in the function setting
put some constraints on the masks â and ˆ̃a. For example, as a consequence of these
extra conditions, 1 must be a simple eigenvalue of â(0) and ˆ̃a(0) and all the other

eigenvalues of â(0) and ˆ̃a(0) must be less than one in modulus. In the following,
we shall present another example to show that our results apply equally to other
cases which are excluded by the results on balancing orders in the literature even
for the special case of L = | detM | − 1.

In some applications, it may be of interest to consider a more general vector
conversion operator E : (�(Zd))1×s �→ (�(Zd))1×r such that E is a one-to-one and
onto linear operator. Similarly, for y ∈ (�0(Z

d))s×r, we define Pκ,y := {h ∗ y :
h ∈ (Πκ)

1×s} ⊆ (Πκ)
1×r. We point out that the analysis in this paper is applica-

ble in this more general setting and most claims in this paper hold similarly, for
example, for a vector conversion operator E : (�(Zd))1×s �→ (�(Zd))1×r such that
E((Πκ)

1×s) = Pκ,y for some y ∈ (�0(Z
d))s×r such that ŷ(0) has the full rank s.

Then Theorem 4.1 still holds. More precisely, Tã,ME((Πκ)
1×s) ⊆ E((Πκ)

1×s) and
Tb̃�,ME((Πκ)

1×s) = 0 for all � = 1, . . . , L if and only if (4.1) and (4.2) hold with
ĉ being an s × s matrix of 2π-periodic trigonometric polynomials. We shall ad-
dress the balancing and prefiltering property of multiframelets in the more general
setting as well as their symmetry and orthogonality properties in detail elsewhere.
Here let us present the special case that E : (�(Zd))1×r �→ (�(Zd))1×r is the identity
mapping.

Corollary 6.1. Let M be a d×d dilation matrix. Let â, b̂1, . . . , b̂L and ˆ̃a, ̂̃b1, . . . , ̂̃bL
be r × r matrices of 2π-periodic trigonometric polynomials in d variables such
that (1.9) holds. Then the dual multiframelet transform satisfies Tã,M (Πκ)

1×r ⊆
(Πκ)

1×r and Tb̃�,M (Πκ)
1×r = 0 for all � = 1, . . . , L (that is, the associated multi-

framelet transform has κ + 1 balancing order with respect to all vector conversion
operators) if and only if Tb̃�,M (Πκ)

1×r = 0 for all � = 1, . . . , L; that is,

̂̃b�(ξ) = O(‖ξ‖κ+1), ξ → 0,
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for � = 1, . . . , L. If in addition L = | detM | − 1, then it is also equivalent to

Sa,M (Πκ)
1×r ⊆ (Πκ)

1×r;

that is,
â(ξ + 2πγ) = O(‖ξ‖κ+1), ξ → 0,

for all γ ∈ ΓMT \{0}.
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