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ERROR BOUND BETWEEN MONOTONE DIFFERENCE

SCHEMES AND THEIR MODIFIED EQUATIONS

ZHEN-HUAN TENG

Abstract. It is widely believed that if monotone difference schemes are ap-
plied to the linear convection equation with discontinuous initial data, then
solutions of the monotone schemes are closer to solutions of their parabolic
modified equations than that of the original convection equation. We will
confirm the conjecture in this paper. It is well known that solutions of the
monotone schemes and their parabolic modified equations approach discon-
tinuous solutions of the linear convection equation at a rate only half in the
L1-norm. We will prove that the error bound between solutions of the mono-
tone schemes and that of their modified equations is order one in the L1-norm.
Therefore the conclusion shows that the monotone schemes solve the modified
equations more accurately than the original convection equation even if the
initial data is discontinuous. As a consequence of the main result, we will
show that the half-order rate of convergence for the monotone schemes to the
convection equation is the best possible.

1. Introduction

In this paper we consider the linear (p+q+1)-point monotone difference schemes
of the form

vn+1
j =

q∑
s=−p

asv
n
j+s,(1.1)

v0j = u0(jΔx),(1.1′)

which are applied to the linear convection equation

∂u

∂t
+ a

∂u

∂x
= 0 for (x, t) ∈ R×R+,(1.2)

u(x, 0) = u0(x) for x ∈ R,(1.2′)

where p and q are nonnegative integers and a is a constant. The monotone condi-
tions for (1.1) are

as ≥ 0 for s = −p, . . . , q
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and the consistency conditions are

(1.3)

q∑
s=−p

as = 1 and

q∑
s=−p

sas = −λa.

For simplicity of expression in what follows we will only consider the 3(1+1+1)-
point monotone schemes of the form

vn+1
j = λ(γ − a/2)vnj+1 + (1− 2γλ)vnj + λ(γ + a/2)vnj−1,(1.4)

v0j = u0(jΔx),(1.4′)

but all conclusions obtained in this paper also apply to the (p+q+1)-point monotone
schemes (1.1). The form (1.4) implies the consistence conditions (1.3), and the
arbitrary constant γ and Courant number λ = Δt/Δx in the monotone schemes
(1.4) satisfy the monotone conditions

(1.5) γ ≥ |a|/2 and λ ≤ 1

2γ
,

where Δx and Δt are space and time steps, respectively. The monotone conditions
(1.5) mean that the coefficients of vnj−1, vnj and vnj+1 in (1.4) are nonnegative.
Here vnj are the numerical solutions, which approximate the exact solution u(x, t)
at the point (xj , tn), where xj = jΔx for j = 0,±1,±2, . . . and tn = nΔt for
n = 0, 1, 2, . . . are space and time grid points, respectively.

It is known that the monotone schemes are of first-order accuracy and include
several popular difference schemes such as the upwind scheme (γ = |a|/2), the
Lax-Friedrichs scheme (γ = 1/(2λ)) [5] and the generalized Lax-Friedrichs scheme
(|a|/2 < γ < 1/(2λ)) [7]. Dividing (1.4) by Δt the monotone schemes can be
written in the form

(1.6)
vn+1
j − vnj

Δt
+ a

vnj+1 − vnj−1

2Δx
= γΔx

vnj+1 − 2vnj + vnj−1

Δx2
.

We will derive modified equations for the monotone difference schemes by using
truncation error analysis [2, 3, 10, 12]. Let v(x, t) be a smooth function that satisfies
the monotone schemes (1.6) at the grid points. Substituting v(x, t) into equation
(1.6) and using the Taylor series at (xj , tn) gives

(vt)
n
j +

Δt

2
(vtt)

n
j +O(Δt2) + a(vx)

n
j +O(Δx2) = γΔx(vxx)

n
j +O(Δx3).

Since λ = Δt/Δx is a constant, O(Δx) and O(Δt) are the same order as Δx or Δt
goes to zero. Keeping the first order or second order of Δx in the above equation
gives

(1.7) (vt)
n
j + a(vx)

n
j = O(Δx)

or

(1.8) (vt)
n
j +

Δt

2
(vtt)

n
j + a(vx)

n
j = γΔx(vxx)

n
j +O(Δx2).

Differentiating equation (1.7) with respect to t gives

(1.9) (vtt)
n
j + a(vtx)

n
j = O(Δx)

and substituting vt from (1.7) into equation (1.9) yields

(1.10) (vtt)
n
j − a2(vxx)

n
j = O(Δx).
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By using equation (1.10) to eliminate vtt from equation (1.8) we obtain

(1.11) (vt)
n
j + a(vx)

n
j = Δx(γ − λa2/2)(vxx)

n
j +O(Δx2),

where it follows from the monotone conditions (1.5) that

(1.12) γ − λ

2
a2 ≥ |a|

2
(1− λ|a|) > 0.

Remark. Except for a trivial case (λ|a| = 1, a pure translation), the last inequality
is a strict inequality.

Truncating the second-order error terms from equation (1.11) gives parabolic
equations

(1.13)
∂w

∂t
+ a

∂w

∂x
= Δx

(
γ − λ

2
a2
)

∂2w

∂x2
,

which are called parabolic modified equations for the monotone difference schemes.
In what follows we write the modified equations as

(1.14)
∂w

∂t
+ a

∂w

∂x
= ε

∂2w

∂x2
,

where ε is defined by

(1.15) ε := Δx

(
γ − λ

2
a2
)

> 0.

The truncation errors given at the right hand of (1.11) show that if λ < 1/|a|,
then the monotone schemes produce first-order accurate approximations to the
convection equation (1.4) and second-order to the modified equations (1.13).

We should point out that the preceding statement is derived by assuming smooth-
ness of the solutions. But it is widely believed that a similar result could be made
for discontinuous solutions [2, 1, 6]. We will confirm the conjecture in this paper.

It is well known that solutions of the monotone schemes and their parabolic mod-
ified equations approach discontinuous solutions of the linear convection equation
at a rate only half in the L1-norm [4, 9, 13]. More precisely, let the initial data u0(x)
be a BV function, vΔx(x, t) be the numerical solutions of the monotone schemes
(1.4) and (1.4′) and u(x, t) be the discontinuous solution of (1.2) and (1.2′). Then
we have

(1.16) ‖vΔx(·, t)− u(·, t)‖L1 ≤ C|u0|BV (tΔx)1/2,

where vΔx(x, t) is defined by

vΔx(x, t) = vnj for (x, t) ∈ [xj , xj+1)× [ tn, tn+1).

Similarly, for the modified equations we have the same error estimate

(1.17) ‖wΔx(·, t)− u(·, t)‖L1 ≤ C|u0|BV (tΔx)1/2,

where wΔx(·, t) is the solution of (1.13) with wΔx(x, 0) = u0(x). Here C is a
constant, which is independent of t, x, Δt and Δx, but depends on the coefficients
of the schemes. The semi-norm |u0|BV [11] is defined by

|u0|BV = sup
h �=0

1

|h| ‖u0(·+ h)− u0(·)‖L1(R).
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Remark. We should point out that the half-order rates of convergence given in
(1.16) and (1.17) are the best possible [9] and this is also shown in Corollary 1.3
below.

In this paper we will show that the L1-error bound between solutions of the
monotone schemes (1.4) and that of their modified equations (1.13) is O(Δx).
More precisely, we will prove the following theorem.

Theorem 1.1. If u0(x) is a BV function, and vΔx and wΔx are solutions of (1.4)
and (1.13) with initial data u0(x), respectively, then we have

(1.18) ‖vΔx(·, t)− wΔx(·, t)‖L1 ≤ C(λ, γ, a)|u0|BV Δx,

where C(λ, γ, a) is a positive constant defined by (4.14).

Remark 1.2. It is noticed that the right-hand side of the estimate given in (1.18)
is C(λ, γ, a)|u0|BV Δx, which is, not like (1.16) and (1.17), independent of the time
t. This means that the estimate is of long time accuracy.

The main theorem implies that the monotone schemes solve the modified equa-
tions more accurately than the original convection equation even if the initial data
is discontinuous.

As a by-product of the main theorem we can show that the half-order rate of
convergence for the monotone schemes to the convection equation given by (1.16)
is the best possible. More precisely, we have

Corollary 1.3. Let u0 ∈ BV , vΔx(x, t) be the numerical solutions of the monotone
schemes (1.4) and (1.4′) and u(x, t) be the discontinuous solutions of (1.2) and
(1.2′). Then for any t > 0 and M > 0

(1.19) sup
|u0|BV ≤M

‖vΔx(·, t)− u(·, t)‖L1 ≥ α(γ, λ)M(tΔx)1/2,

provided that Δx is small enough. Here α(γ, λ) > 0 is a constant depending only
on γ and λ.

As another consequence of the main theorem we can show that the monotone
schemes approach any other modified parabolic equations at a rate only half in the
L1-norm. More precisely we have the following corollary.

Corollary 1.4. Let u0(x) ∈ BV , vΔx be solutions of (1.4) and (1.4′) and w̄Δx be
solutions of the following parabolic equations:

(1.20)
∂w

∂t
+ a

∂w

∂x
= β̄Δx

∂2w

∂x2
,

with initial data u0(x), where β̄ > 0 is subject to

β̄ �= β := γ − λ

2
a2.

Then for any M > 0 and t > 0,

(1.21) sup
|u0|BV ≤M

‖vΔx(·, t)− w̄Δx(·, t)‖L1 ≥ M

∣∣∣√β̄ −
√
β
∣∣∣

√
π

(tΔx)1/2,

provided that Δx is small enough.
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The paper is organized as follows. In section 2 we will prove the main theorem
for an important special solution, the Riemann solution, and based on the result we
will prove the two corollaries in section 3. In section 4 we will prove the theorem
for the general discontinuous solutions. In section 5 we will present some numerical
examples to verify the theoretical conclusions. Some comments and discussions are
given in the last section.

2. Riemann initial data

The Riemann problem plays an important role in error estimates for discontin-
uous solutions. In this section we will prove the main theorem for the Riemann
initial data.

The linear convection equation (1.2) with piecewise-constant initial data

(2.1) u0(x) =

{
u−, x < 0

u+, x ≥ 0

is called the Riemann problem, where u− and u+ are two constants and u0 given
by (2.1) is called the Riemann initial data. Since the solution of (1.2) and (1.2′)
can be expressed by

u(x, t) = u0(x− at),

the Riemann solution U(x, t) of (1.2) and (2.1) is also a piecewise-constant function
with a discontinuous line along x = at:

(2.2) U(x, t) =

{
u−, x− at < 0,

u+, x− at ≥ 0.

It is known that the solution of the modified equation (1.14) with the initial data
u0(x) has the explicit expression

(2.3) wΔx(x, t) =
1

2
√
επt

∫ ∞

−∞
u0(ξ)e

− (x−at−ξ)2

4εt dξ,

and hence the solution WΔx(x, t) of (1.14) with the Riemann initial data (2.1) can
be expressed by

(2.4) WΔx(x, t) = u− +
u+ − u−√

2π

∫ x−at√
2εt

−∞
e−ξ2/2 dξ,

where ε is defined by (1.15):

ε = Δx

(
γ − λ

2
a2
)

> 0.

Let Φ(x) denote the norm distribution function

(2.5) Φ(x) :=
1√
2π

∫ x

−∞
e−ξ2/2 dξ.

Then the solution WΔx(x, t) can be expressed in terms of Φ:

(2.6) WΔx(x, t) = u− + (u+ − u−)Φ

(
x− at√

2εt

)
.

Let

(2.7) a1 = λ(γ − a/2), a0 = (1− 2γλ) and a−1 = λ(γ + a/2).
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Then the monotone schemes can be put in the form

(2.8) vn+1
j =

1∑
l=−1

alv
n
j+l,

where al ≥ 0 for l = −1, 0, 1 satisfy the consistent conditions:

(2.9)

1∑
l=−1

al = 1 and

1∑
l=−1

l al = −λa.

By using (2.8) repeatedly for n = 0, . . . , n− 1, we find the explicit solution of (1.4)
and (1.4′):

(2.10) vnj =
∑

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1u0(xj−n−1+n1
),

where C
n−1,n0,n1
n is the multinormial coefficient defined by

Cn−1,n0,n1
n =

n!

n−1!n0!n1!
.

It is easy to know that

(2.11)
∑

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 = (a−1 + a0 + a1)
n = 1.

Substituting the Riemann initial data (2.1) into the solution’s expression (2.10)
and taking account of the identity (2.11) we obtain the solution V n

j to the monotone
schemes (1.4) with the Riemann initial data (2.1):

V n
j = u− + (u+ − u−)

∑
j−n−1+n1≥0

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1

or

(2.12) V n
j = u− + (u+ − u−)

∑
k≤j

∑
n−1−n1=k

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 .

We will apply the following theorem from probability to prove the main conclu-
sion [8, p. 125].

Theorem 2.1 (Nagaev). Let X1, . . . , Xn be independent identically distributed ran-
dom variables, EX1 = μ, E(X1 − μ)2 = σ2 > 0 and E|X1 − μ|3 < ∞. We write

(2.13) Fn(y) := P

(
Sn − nμ

σ
√
n

< y

)
, Sn :=

n∑
l=1

Xl, � :=
E|X1 − μ|3

σ2
.

Then for all y ∈ R,

(2.14) |Fn(y)− Φ(y)| ≤ A
�√

n(1 + |y|)3 ,

where A denotes a universal positive constant and Φ denotes the normal distribution
function (2.5).
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It is easy to show by induction that if X1, . . . , Xn are independent identically
distributed random variables with

P (X1 = −1) = a1, P (X1 = 0) = a0 and P (X1 = 1) = a−1,

then the random variable Sn = X1 + · · ·+Xn has the distribution

(2.15) Pn(k) = P (Sn = k) =
∑

n−1−n1=k
n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 ,

where k = −n,−n+ 1, . . . , n.
If a−1, a0, a1 are defined by (2.7), then

(2.16) μ = EX1 = λa, σ2 = E(X1 − μ)2 = 2λ

(
γ − λ

2
a2
)
,

and

(2.17) � =
E|X1 − μ|3

σ2
=

2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)
2λ(γ − λa2/2)

.

Let

yk :=
k − nμ

σ
√
n

.

Then

(2.18)

Fn(y) = P

(
Sn − nμ

σ
√
n

< y

)
=

∑
yk<y

P (Sn = k)

=
∑
yk<y

∑
n−1−n1=k

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 .

We now turn to the numerical solution V n
j (2.12) and write the summing index

constraint k ≤ j in the form

(2.19) yk =
k − nμ

σ
√
n

≤ j − nμ

σ
√
n

,

where μ and σ are defined by (2.16). Some calculations show that

j − nμ

σ
√
n

=
xj − atn√

2εtn
,

where xj = jΔx, tn = nΔt and ε is defined by (1.15). Therefore the inequality
(2.19) is equivalent to

yk ≤ xj − atn√
2εtn

,

and the solution V n
j (2.12) can be written as

V n
j = u− + (u+ − u−)

∑
yk≤

xj−atn√
2εtn

∑
n−1−n1=k

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1 .

By using (2.18) we can write V n
j as

(2.20) V n
j = u− + (u+ − u−)Fn

(
xj − atn√

2εtn

)
.
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It follows from (2.20) and (2.6) that

|V n
j −WΔx(xj , tn)| = |u+ − u−|

∣∣∣∣Fn

(
xj − atn√

2εtn

)
− Φ

(
xj − atn√

2εtn

)∣∣∣∣ .
The estimate (2.14) from Theorem 2.1 implies that

(2.21) |V n
j −WΔx(xj , tn)| ≤ |u+ − u−|A

�

√
n

(
1 +

∣∣∣∣xj − atn√
2εtn

∣∣∣∣
)3 .

Let VΔx(x, t) = V n
j for (x, t) ∈ [xj , xj+1)× [tn, tn+1) and

‖VΔx(·, tn)−WΔx(·, tn)‖l1 :=

∞∑
j=−∞

|VΔx(xj , tn)−WΔx(xj , tn)|Δx.

Then it follows from (2.21) that

‖VΔx(·, tn)−WΔx(·, tn)‖l1 ≤ |u+ − u−|A
∞∑

j=−∞

�

√
n

(
1 +

∣∣∣∣xj − atn√
2εtn

∣∣∣∣
)3Δx

≤ 2|u+ − u−|A
�√
n

∞∑
j=0

1(
1 +

xj√
2εtn

)3Δx

≤ 2|u+ − u−|A
�√
n

⎛
⎜⎜⎜⎝Δx+

∫ ∞

0

1(
1 +

x√
2εtn

)3 dx

⎞
⎟⎟⎟⎠

= 2|u+ − u−|A
�√
n

(
Δx+

√
2εtn
2

)

= |u+ − u−|A�
(
2 +

√
2λ(γ − λa2/2)

)
Δx,(2.22)

where in the last equality we use the definition (1.15). (2.22) gives the l1-error
bound.

Now we derive the error bound in the L1-norm. Since |WΔx(·, tn)|BV = |u+−u−|,

‖VΔx(·, tn)−WΔx(·, tn)‖L1

≤
∞∑

j=−∞

∫ xj+1

xj

|WΔx(xj , tn)−WΔx(ξ, tn)|dξ + ‖VΔx(·, tn)−WΔx(·, tn)‖l1

≤ |WΔx(·, tn)|BV Δx+ ‖VΔx(·, tn)−WΔx(·, tn)‖l1
= |u+ − u−|Δx+ ‖VΔx(·, tn)−WΔx(·, tn)‖l1 .(2.23)

Substituting the l1-error bound (2.22) into the right-hand side gives

‖VΔx(·, tn)−WΔx(·, tn)‖L1 ≤ |u+ − u−|
[
1 +A�

(
2 +

√
2λ(γ − λa2/2)

)]
Δx
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By using the expression (2.17) we obtain

‖VΔx(·, tn)−WΔx(·, tn)‖L1

≤ |u+ − u−|
[
1 +A

2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)
2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)]
Δx.

Let

(2.24)
C(λ, γ, a) :=1 +A

2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)
2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)
.

Then we obtain

(2.25) ‖VΔx(·, tn)−WΔx(·, tn)‖L1 ≤ |u+ − u−|C(λ, γ, a)Δx.

Now we consider the case of t �= tm for ∀m ∈ N and assume that t = tn + δt for
some n, where 0 < δt < Δt. Therefore

‖VΔx(·, t)−WΔx(·, t)‖L1 = ‖VΔx(·, tn)−WΔx(·, tn + δt)‖L1 .

Using the Taylor expansion at tn, on account of (1.14), we have

WΔx(x, tn + δt) = WΔx(x, tn) + δt∂tWΔx(x, tn + θδt)

= WΔx(x, tn) + δt (−a∂x + ε∂xx)WΔx(x, tn + θδt),(2.26)

where 0 < θ < 1. It follows from (2.4) that

‖(−a∂x + ε∂xx)WΔx(·, tn + θδt)‖L1 ≤ |u+ − u−|
(
|a|+

√
2γ − λa2

2πλ

)

and hence

(2.27)

‖VΔx(·, t)−WΔx(·, t)‖L1 ≤ ‖VΔx(·, tn)−WΔx(·, tn)‖L1

+ δt|u+ − u−|
(
|a|+

√
2γ − λa2

2πλ

)
.

Combining (2.25) and (2.27) gives

(2.28) ‖VΔx(·, t)−WΔx(·, t)‖L1 ≤ |u+ − u−|C(λ, γ, a)Δx,

where

(2.29)

C(λ, γ, a) :=1 +A
2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)

2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)
+ λ

(
|a|+

√
2γ − λa2

2πλ

)
.

We have now completed the proof of Theorem 1.1 for the Riemann initial data.



1482 Z.-H. TENG

3. Lower bounds for monotone schemes

In this section we will use the upper bound (2.28) to derive the lower bound
estimates (1.19) and (1.21).

We first prove the lower bound (1.19) for the monotone schemes. It follows from
(2.2) and (2.3) that for t > 0,

‖WΔx(·, t)− U(·, t)‖L1 = |u+ − u−| ‖Φ(·)−R(·)‖L1

√
2εt

= |u+ − u−| ‖Φ(·)−R(·)‖L1

√
2Δx

(
γ − λ

2
a2
)
t,

where

R(x) =

{
0, x < 0,

1, x ≥ 0.

By using the triangle inequality and the upper bound (2.28), we have

‖VΔx(·, t)− U(·, t)‖L1 ≥ ‖WΔx(·, t)− U(·, t)‖L1 − ‖VΔx(·, t)−WΔx(·, t)‖L1

≥ |u+ − u−| ‖Φ(·)−R(·)‖L1

√
2Δx

(
γ − λ

2
a2
)
t− |u+ − u−|C(λ, γ, a)Δx

= |u+ − u−|
√
tΔx

(
‖Φ(·)− R(·)‖L1

√
2

(
γ − λ

2
a2
)
− C(λ, γ, a)

√
Δx

t

)
.

Some calculations show that

‖Φ(·)−R(·)‖L1 =

√
2

π
.

Therefore

‖VΔx(·, t)− U(·, t)‖L1 ≥ |u+ − u−|
√
tΔx

(
2

√
1

π

(
γ − λ

2
a2
)
− C(λ, γ, a)

√
Δx

t

)
.

This means that if

(3.1) Δx ≤ 1

π

(
γ − λ

2
a2
)

t

C(λ, γ, a)2
,

then

(3.2) ‖VΔx(·, t)− U(·, t)‖L1 ≥ α(γ, λ)|u+ − u−|(tΔx)1/2,

where

(3.3) α(γ, λ) =

√
1

π

(
γ − λ

2
a2
)

> 0.

The inequality (3.2) implies that the lower bound (1.19), with α(γ, λ) given by (3.3),
holds provided Δx satisfies (3.1). We have now completed the proof of Corollary 1.3.

Similarly, we can prove the lower bound (1.21) by using (2.28). Let VΔx(·, t),
WΔx(·, t) and W̄Δx(·, t) be the solutions of (1.4), (1.13) and (1.20) with the Riemann
initial data (2.1), respectively. Then by using the triangle inequality we have
(3.4)
‖W̄Δx(·, t)− VΔx(·, t)‖L1 ≥ ‖W̄Δx(·, t)−WΔx(·, t)‖L1 − ‖WΔx(·, t)− VΔx(·, t)‖L1 .
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It follows from the expression (2.4) that we have

W̄Δx(x, t)−WΔx(x, t) =
u+ − u−√

2π

∫ x−at√
2β̄Δx t

x−at√
2βΔx t

e−ξ2/2 dξ,

where

β = γ − λ

2
a2 �= β̄,

and hence

‖W̄Δx(·, t)−WΔx(·, t)‖L1

=
√
2βΔx t

|u+ − u−|√
2π

∫ ∞

−∞

∣∣∣∣∣
∫ √

β/β̄ η

η

e−ξ2/2 dξ

∣∣∣∣∣ dη
= 2

√
βΔx t

|u+ − u−|√
π

∣∣∣∣
∫ ∞

0

η

(√
β/β̄ e−

β
β̄
η2/2 − e−η2/2

)
dη

∣∣∣∣
= 2

√
βΔx t

|u+ − u−|√
π

∣∣∣∣1−
√
β̄/β

∣∣∣∣
= 2

√
Δx t

|u+ − u−|√
π

∣∣∣∣√β −
√
β̄

∣∣∣∣ .(3.5)

Substituting (3.5) and (2.28) into (3.4) yields

‖W̄Δx(·, t)− VΔx(·, t)‖L1

≥ 2
√
Δx t

|u+ − u−|√
π

∣∣∣∣√β −
√
β̄

∣∣∣∣− |u+ − u−|C(λ, γ, a)Δx

=
√
Δx t |u+ − u−|

∣∣∣∣√β −
√

β̄

∣∣∣∣
(

2√
π
− C(λ, γ, a)

|
√
β̄ −

√
β |

√
Δx

t

)
.

The above inequality shows that if

Δx ≤ 1

π

(
√
β̄ −

√
β )2

C(λ, γ, a)2
t,

then

‖W̄Δx(·, t)− VΔx(·, t)‖L1 ≥ |u+ − u−|

∣∣∣√β̄ −
√
β
∣∣∣

√
π

(tΔx)1/2.

The above statement implies Corollaries 1.4. We have now completed the proof of
Corollary 1.3 and 1.4.

4. Discontinuous initial data

In this section we will prove the main theorem 1.1 for the general discontinuous
initial data. Assume that u0(·) ∈ BV and hence the discontinuous solution u(x, t) =
u0(x − at) of (1.2) and (1.2′) also belongs to BV space, i.e., u(·, t) ∈ BV . Since
u0 ∈ BV , limy→x−0 u0(y) exists for ∀x ∈ R. For certainty we assume that for
∀x ∈ R,

(4.1) u0(x) = lim
y→x−0

u0(y).
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The assumption will make assuming the point-wise initial data given by (1.4′)
meaningful. Of course, assuming the averaged initial data

v0j =

∫ (j+1/2)Δx

(j−1/2)Δx

u0(ξ) dξ

also works. We will estimate the error bound ‖vΔx(·, t)−wΔx(·, t)‖L1 by using the
explicit solution’s expressions (2.3) and (2.10). Using index substitution j − n−1 +
n1 = k into (2.10) we can write vnj as

vnj =

j+n∑
k=j−n

∑
n−1−n1=j−k

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1u0(xk)

or

vnj =

∞∑
k=−∞

∑
n−1−n1=j−k

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1u0(xk),

where C
n−1,n0,n1
n = 0 for n−1 − n1 < −n or n−1 − n1 > n.

We write the solution wΔx(xj , tn) (2.3) into the form

(4.2) wΔx(xj , tn) =
1

2
√
επtn

∫ ∞

−∞
u0(ξ)e

− (xj−atn−ξ)2

4εtn dξ = I + II,

where I and II are defined by

I :=

∞∑
k=−∞

1

2
√
επtn

u0(xk)

∫ xk+1

xk

e
− (xj−atn−ξ)2

4εtn dξ,

II :=

∞∑
k=−∞

1

2
√
επtn

∫ xk+1

xk

(u0(ξ)− u0(xk))e
− (xj−atn−ξ)2

4εtn dξ.

We first estimate

vnj − I =

∞∑
k=−∞

( ∑
n−1−n1=j−k

n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1

− 1

2
√
επtn

∫ xk+1

xk

e
− (xj−atn−ξ)2

4εtn dξ

)
u0(xk).

It follows from (2.15) that

Pn(j − k) =
∑

n−1−n1=j−k
n−1≥0,n0≥0,n1≥0
n−1+n0+n1=n

Cn−1,n0,n1
n a−1

n−1a0
n0a1

n1

and hence

(4.3) vnj − I =
∞∑

k=−∞

(
Pn(j − k)− 1

2
√
επtn

∫ xk+1

xk

e
− (xj−atn−ξ)2

4εtn dξ

)
u0(xk).



MONOTONE DIFFERENCE SCHEMES AND THEIR MODIFIED EQUATIONS 1485

By using the definitions (2.5) and (2.13) we obtain that

(4.4)

k−1∑
l=−∞

1

2
√
επtn

∫ xl+1

xl

e
− (xj−atn−ξ)2

4εtn dξ =
1

2
√
επtn

∫ xk

−∞
e
− (xj−atn−ξ)2

4εtn dξ

=
1√
2π

∫ ∞

xj−xk−atn√
2εtn

e−η2/2dη = 1− Φ

(
xj − xk − atn√

2εtn

)

and

(4.5)

k−1∑
l=−∞

Pn(j − l) =

∞∑
l=j−k+1

Pn(l) = 1−
j−k∑

l=−∞
Pn(l)

= 1−
∑

yl<
xj−xk−atn√

2εtn

Pn(l) = 1− Fn

(
xj − xk − atn√

2εtn

)
,

where

yl =
xl − atn√

2εtn
.

Applying summation by parts to (4.3) and using the identities (4.4) and (4.5)
gives

vnj − I =− lim
k→∞

(
Fn(yk−1)− Φ(yk−1)

)
u0(xk) + lim

k→−∞

(
Fn(yk−1)− Φ(yk−1)

)
u0(xk)

+

∞∑
k=−∞

(
Fn

(
xj − xk − atn√

2εtn

)
− Φ

(
xj − xk − atn√

2εtn

))
(u0(xk)− u0(xk−1)).

It follows from (2.5) and (2.18) that

lim
k→∞

Fn(yk) = lim
k→∞

Φ(yk) = 1 and lim
k→−∞

Fn(yk) = lim
k→−∞

Φ(yk) = 0.

Since u0 ∈ BV and the assumption (4.1), limk→±∞ u0(xk) exist and are finite.
Therefore

lim
k→±∞

(
Fn(yk−1)− Φ(yk−1)

)
u0(xk) = 0

and hence

vnj − I =

∞∑
k=−∞

(
Fn

(
xj − xk − atn√

2εtn

)
− Φ

(
xj − xk − atn√

2εtn

))
(u0(xk)− u0(xk−1)).

Applying the impotent inequality (2.14) to the right-hand side gives

(4.6) |vnj − I| ≤
∞∑

k=−∞
A

�

√
n

(
1 +

∣∣∣∣xj − xk − atn√
2εtn

∣∣∣∣
)3 |u0(xk)− u0(xk−1)|.

Let

‖vΔx(·, tn)− I‖l1 =
∞∑

j=−∞
|vnj − I|Δx.

Then it follows from (4.6) that

‖vΔx(·, tn)−I‖l1 ≤ A
∞∑

k=−∞

∞∑
j=−∞

�

√
n

(
1 +

∣∣∣∣xj − xk − atn√
2εtn

∣∣∣∣
)3Δx|u0(xk)−u0(xk−1)|.
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Similar to the estimate (2.22), the second summation term above satisfies

∞∑
j=−∞

�

√
n

(
1 +

∣∣∣∣xj − xk − atn√
2εtn

∣∣∣∣
)3Δx ≤ �

(
2 +

√
2λ(γ − λa2/2)

)
Δx.

Hence

‖vΔx(·, tn)− I‖l1 ≤ A�
(
2 +

√
2λ(γ − λa2/2)

)
Δx

∞∑
k=−∞

|u0(xk)− u0(xk−1)|

≤ A�
(
2 +

√
2λ(γ − λa2/2)

)
|u0|BV Δx.(4.7)

It is easy to show that

‖II‖l1 ≤ Δx

∞∑
j=−∞

∞∑
k=−∞

1

2
√
επtn

∫ xk+1

xk

|u0(ξ)− u0(xk)|e−
(xj−atn−ξ)2

4εtn dξ

=

∞∑
k=−∞

∫ xk+1

xk

|u0(ξ)− u0(xk)|
1

2
√
επtn

∞∑
j=−∞

e
− (xj−atn−ξ)2

4εtn Δx dξ.(4.8)

We now estimate the second summation term:

1

2
√
επtn

∞∑
j=−∞

e
− (xj−atn−ξ)2

4εtn Δx

≤ 1

2
√
επtn

∞∑
j=−∞

∫ xj

xj−1

e
− (x−atn−ξ)2

4εtn dx

+
1

2
√
επtn

(
e
− ([(atn+ξ)/Δx]Δx−atn−ξ)2

4εtn + e
− (([(atn+ξ)/Δx]+1)Δx−atn−ξ)2

4εtn

)
Δx

2

≤ 1 +
Δx

2
√
επtn

= 1 +
Δx

2Δx
√(

γ − λ
2 a

2
)
πnλ

≤ 1 +
1

2
√(

γ − λ
2a

2
)
πλ

,

where [η] means the largest integer of η, which is less than or equal to η. Substi-
tuting the above estimation into (4.8) gives

‖II‖l1 ≤

⎛
⎝1 +

1

2
√(

γ − λ
2 a

2
)
πλ

⎞
⎠ ∞∑

k=−∞

∫ xk+1

xk

|u0(ξ)− u0(xk)|, dξ

≤

⎛
⎝1 +

1

2
√(

γ − λ
2 a

2
)
πλ

⎞
⎠ |u0|BV Δx.(4.9)



MONOTONE DIFFERENCE SCHEMES AND THEIR MODIFIED EQUATIONS 1487

It follows from (4.2), (4.7) and (4.9) that

‖vΔx(·, tn)− wΔx(·, tn)‖l1 ≤ ‖vΔx(·, tn)− I‖l1 + ‖II‖l1

≤

⎛
⎝A�

(
2 +

√
2λ(γ − λa2/2)

)
+ 1 +

1

2
√(

γ − λ
2a

2
)
πλ

⎞
⎠ |u0|BV Δx.

Similar to the estimate (2.23) we have

‖vΔx(·, tn)− wΔx(·, tn)‖L1 ≤ ‖vΔx(·, tn)− wΔx(·, tn)‖l1 + |u0|BV Δx

and hence we have

‖vΔx(·, tn)− wΔx(·, tn)‖L1

≤

⎛
⎝A�

(
2 +

√
2λ(γ − λa2/2)

)
+ 2 +

1

2
√(

γ − λ
2a

2
)
πλ

⎞
⎠ |u0|BV Δx.

Substituting the � expression (2.17) into the above inequality we obtain

(4.10) ‖vΔx(·, tn)− wΔx(·, tn)‖L1 ≤ C(λ, γ, a)|u0|BV Δx,

where

(4.11)

C(λ, γ, a) = A
2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)

2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)
+ 2 +

1

2
√(

γ − λ
2 a

2
)
πλ

.

Now we consider the case of t �= tm for ∀m ∈ N and assume that t = tn + δt for
some n, where 0 < δt < Δt. Similar to the estimate (2.27) we have

(4.12)

‖vΔx(·, t)− wΔx(·, t)‖L1 ≤ ‖vΔx(·, tn)− wΔx(·, tn)‖L1

+ δt|u0|BV

(
|a|+

√
2γ − λa2

2πλ

)
.

Combining (4.10) and (4.12) gives

(4.13) ‖vΔx(·, t)− wΔx(·, t)‖L1 ≤ C(λ, γ, a)|u0|BV Δx,

where

(4.14)

C(λ, γ, a) = A
2λγ(1− |λa|3)− 3(λa)2(1− 2λγ) + |λa|3(1− |λa|)

2λ(γ − λa2/2)

×
(
2 +

√
2λ(γ − λa2/2)

)
+ 2 +

1

2
√(

γ − λ
2 a

2
)
πλ

+ λ

(
|a|+

√
2γ − λa2

2πλ

)
.

We have now completed the proof of Theorem 1.1 for the BV initial data.
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5. Numerical experiments

In this section we will compute a discontinuous solution of the following linear
convection equation by using an upwind monotone difference scheme and show that
the l1-convergence rate between the upwind solution and its modified solution is
one. The linear convection equation is

(5.1)

⎧⎨
⎩

∂u

∂t
+

∂u

∂x
= 0 for (x, t) ∈ R×R+,

u(x, 0) = u0(x) for x ∈ R,

where u0 is a Riemann initial data:

(5.2) u0(x) =

{
0, x ≤ 0,

1, x > 0.

The solution of (5.1) and (5.2) is

(5.3) u(x, t) = u0(x− t),

which has a discontinuous curve x = t. The upwind scheme is

(5.4)

⎧⎨
⎩

vn+1
j − vnj

Δt
+

vnj − vnj−1

Δx
= 0,

v0j = u0(xj),

where Δx and Δt satisfy the stable condition:

λ =
Δt

Δx
< 1,

and its modified equation is

(5.5)

⎧⎨
⎩

∂w

∂t
+

∂w

∂x
= ε

∂2w

∂x2
,

w(0, x) = u0(x),

where ε is defined by

(5.6) ε :=
1− λ

2
Δx > 0.

It follows from (2.6) that the solution wΔx(x, t) of the modified equation (5.5) is

(5.7) wΔx(x, t) = Φ

(
x− t√
2εt

)
.

In the numerical computation, we set

λ =
Δt

Δx
= 0.5 and Δx = 2−m for m = 2, 3, . . . , 8.

The numerical results are shown in Table 1. Here u(x, t), given by (5.3), is the exact
solution of the linear convection equation (5.1), wΔx(x, t), given by (5.7), is the
solution of the modified equation (5.5) and vΔx(x, t) is the numerical solution of the
upwind difference scheme (5.4). The data given in Table 1 clearly indicates that the
upwind numerical solution archives a first-order rate of convergence in approaching
the solution of the modified equation, but a half-order rate in approaching the exact
solution of the original convection equation. This verifies the theoretical conclusion
of Theorem 1.1.



MONOTONE DIFFERENCE SCHEMES AND THEIR MODIFIED EQUATIONS 1489

Table 1. l1-errors and convergence rates for the numerical solu-
tion vΔs at t = 1.

t = 1 ‖vΔx − wΔx‖l1 ‖vΔx − u‖l1
Δx l1-error l1-rate l1-error l1-rate
2−2 0.1251 0.3418
2−3 0.0625 1.0005 0.2209 0.6296
2−4 0.0313 1.0001 0.1487 0.5712
2−5 0.0156 1.0000 0.1025 0.5374
2−6 0.0078 1.0000 0.0715 0.5192
2−7 0.0039 1.0000 0.0502 0.5097
2−8 0.0020 1.0000 0.0354 0.5049

The numerical solution of the upwind scheme (5.4) with Δx = 2−3, the solution
of the modified equation (5.5) and the exact solution of the convection equation
(5.1) at t = 1 are plotted in Figure 1. The figure shows that the numerical solution
is much closer to the modified solution than the exact solution.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. The numerical “ · · × · · ”, modified “−−−” and exact
“ ” solution at t = 1 with Δx = 2−3.

In order to test the long time accuracy for the numerical solution to approach the
modified solution, we compute the numerical solutions by using the upwind scheme
(5.4) with λ = 1/2 and Δx = 2−2, 2−3, . . . , 2−8 at t = 1, t = 5 and t = 10, and
the results are shown in Table 2. From the table we see that the l1-errors between
the numerical solution and the modified solution at different times, i.e., at t = 1,
t = 5 and t = 10, are almost the same and the long time accuracy agrees with the
theoretical prediction given by Remark 1.2.
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Table 2. Testing the long time accuracy for ‖vΔx − wΔx‖l1 at
t = 1, t = 5 and t = 10

‖vΔx − wΔx‖l1
Δx t = 1 t = 5 t = 10
2−2 0.1251 0.1250 0.1250
2−3 0.0625 0.0625 0.0625
2−4 0.0313 0.0312 0.0312
2−5 0.0156 0.0156 0.0156
2−6 0.0078 0.0078 0.0078
2−7 0.0039 0.0039 0.0039
2−8 0.0020 0.0019 0.0019

6. Conclusions

In this paper we justify that monotone difference schemes give solutions closer to
those of the parabolic modified equations than that of the original convection equa-
tion and, in particular, prove that the L1-error bound between monotone difference
schemes and their modified equations is first-order accurate for general BV initial
data, which is better than the half-order accuracy between monotone schemes and
the convection equation. Furthermore the constant in the error estimate is inde-
pendent of computational time, and therefore the estimate is of long time accuracy.
The results in this paper give a more complete picture for the relationship between
the solutions of monotone difference schemes, their parabolic modified equations
and the convection equation.

The main conclusion of the paper is for monotone difference schemes approx-
imating the linear convection equation with constant coefficients, but we believe
that the result can be extended to the nonlinear conservation laws and this needs
some prior estimates for solutions of nonlinear equations. We will report the results
elsewhere.
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